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THE NON-LEFSCHETZ LOCUS OF CONICS

EMANUELA MARANGONE

Abstract. A graded Artinian algebra A has the Weak Lefschetz Property if there exists
a linear form ℓ such that the multiplication map by ℓ : [A]i → [A]i+1 has maximum rank
in every degree. The linear forms satisfying this property form a Zariski-open set; its
complement is called the non-Lefschetz locus of A.

In this paper, we investigate analogous questions for degree-two forms rather than lines.
We prove that any complete intersection A = k[x1, x2, x3]/(f1, f2, f3), with char k = 0, has
the Strong Lefschetz Property at range 2, i.e. there exists a linear form ℓ ∈ [R]1, such that
the multiplication map ×ℓ2 : [M ]i → [M ]i+2 has maximum rank in each degree.

Then we focus on the forms of degree 2 such that ×C : [A]i → [A]i+2 fails to have
maximum rank in some degree i. The main result shows that the non-Lefschetz locus of

conics for a general complete intersection A = k[x1, x2, x3]/(f1, f2, f3) has the expected
codimension as a subscheme of P5. The hypothesis of generality is necessary. We include
examples of monomial complete intersections in which the non-Lefschetz locus of conics has
different codimension.

To extend a similar result to the first cohomology modules of rank 2 vector bundles over
P
2, we explore the connection between non-Lefschetz conics and jumping conics. The non-

Lefschetz locus of conics is a subset of the jumping conics. Unlike the case of the lines, this
can be proper when E is semistable with first Chern class even.
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1. Introduction

A graded Artinan algebra A has the Weak Lefschetz Property (WLP) if the multiplication
map by a linear form ℓ has maximum rank in every degree. If the multiplication map by any
power of a general linear form ℓ has maximum rank as well, we say that A has the Strong
Lefschetz Property (SLP). This last property also implies theMaximum rank property (MRP)
i.e, for any d, the multiplication by a general form of degree d always has maximum rank.
In this paper, we study the forms of degree 2 such that ×C : [A]i → [A]i+2 fails to have
maximum rank in some degree i.

The most famous result in the study of the Lesfchetz Property states that every Ar-
tinian monomial complete intersection over a field k of characteristic zero has the SLP
[Sta80], [RRR91] [Wat87]. As a consequence of this theorem, a general complete intersec-
tion k[x1, . . . , xn]/(f1, . . . , fn) with fixed generator degrees has the SLP. However, it is an
open question to determine whether every complete intersection has the SLP or even the
WLP. The most important result in this direction proves the Weak Lefschetz Property for
n = 3. To prove this theorem, Harima–Migliore–Nagel–Watanabe [HMNW03] applied the
Grauert-Mülich Theorem to the syzygy bundle, in this case, a locally free sheaf of rank 2
over P2.

The study of the non-Lefschetz locus, defined as the set of linear forms that fail to have
maximum rank in some degree, started with the work of Boij–Migliore–Miró-Roig–Nagel
[BMMRN18]. In [BMMRN18], the authors conjecture that the non-Lefschetz locus of a
general complete intersection has the expected codimension. This conjecture has been proven
for general complete intersections if n = 3 [BMMRN18]. Failla–Flores–Peterson [FFP21]
generalize the study of the Lefschetz Property to first cohomology module H1

∗(P
2, E) of any

vector bundle E of rank 2 over P2 and prove that these finite-length modules have the WLP.
The non-Lefschetz locus of H1

∗(P
2, E) is exactly the set of jumping lines, and it has the

expected codimension under the assumption that E is general [Mar23].
We investigate analogous questions for higher-degree forms rather than lines. This problem

is connected with the SLP at range 2 and with the Maximum Rank Property (MRP). In
analogy with [BMMRN18], we endow

CA,i = {C ∈ [R]2 | × C : [A]i → [A]i+2 does not have max rank}

with a scheme structure given by the ideal I(CA,i) of maximal minors of a suitable hi+2 × hi

matrix of linear forms. CA is the subscheme of P
(n+1

2 )−1 defined by the ideal I(LA) =
⋂

I(LA,i). In this paper, we will mainly focus on the case n = 3. In this case, we refer to CA
as the non-Lefschetz locus of conics of A. The main result provides a version of [BMMRN18,
Theorem 5.3] for conics.

Theorem (6.1). The non-Lefschetz locus of conics for a general complete intersection of
height 3 has the expected codimension and degree as a subscheme of P5.

This paper is organized as follows. In §2, following what has been done for lines in
[BMMRN18], we define the non-Lefschetz locus for forms of degree 2, for any Artinian algebra

A over R = k[x1, . . . , xn], as a subscheme P
(n+1

2 )−1. We will prove that

Proposition (2.10). Let A be a Gorenstein Artinian algebra of socle degree e. If A has the
WLP, then the non-Lefschetz locus of forms of degree 2 is defined by the ideal in the middle
degree.
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In §3, we specialize to the case in 3 variables. In this setting, we refer to CA with its
structure as a subscheme of P5 as the non-Lefschetz locus of conics of A. Our goal is to
study the non-Lefschetz locus of conics for the first cohomology modules H1

∗(P
2, E) of a rank

2 vector bundles E , as a generalization of the case of complete intersections R/(f1, f2, f3).
Therefore in this section, we provide some background on vector bundles over P2.

In §4, we give the following result.

Corollary (4.2). Any complete intersection A = k[x1, x2, x3]/(f1, f2, f3) has the Strong Lef-
schetz Property at range 2.

Moreover, the lines ℓ for which the multiplication map by ℓ2 does not have maximal rank
form a hypersurface in the space of linear forms. The same is true as well for any first
cohomology module of a rank 2 vector bundle H1

∗(P
2, E) over P

2 (Proposition 4.1). As a
consequence the non-Lefschetz locus of conics of M = H1

∗(P
2, E) has positive codimension in

P
5.
In §5, we investigate the connection between non-Lefschetz conics and the jumping conics.

The notion of jumping conics was initially introduced by [Vit04] for semistable vector bundles
of rank 2 over P

2. We first extend the definition to include the case when E is unstable.
It follows that whenever E is unstable or c1(E) is odd, the jumping conics are exactly the
non-Lefschetz conics. In such cases, the non-Lefschetz locus of conics CM is a hypersurface
in P

5. This does not hold when E is semistable with c1(E) even: while every non-Lefschetz
conic is indeed a jumping conic, the reverse is not necessarily true.

Corollary (5.12). Let E be a semistable, normalized vector bundle with c1(E) = 0.
A smooth conic C is a non-Lefschetz conic if and only if it is a jumping conic such that
E|C ∼= OP1(a)⊕OP1(−a) with a > 1.

In §5.1, we compute the expected codimension of CM . For a semistable E with even
first Chern class, the non-Lefschetz locus of conics is expected to have codimension 2 if E is
semistable but not stable, and 3 if E is stable. We conjecture that such dimension is achieved
for E general.

In §6, we resolve the question about the codimension of the non-Lefschetz locus of conics
for a general complete intersection, proving the conjecture for this particular case.

Theorem (6.1). Let A = R/(f1, f2, f3) be a general complete intersection of type (d1, d2, d3),
and socle degree e. The non-Lefschetz locus of conics has the expected codimension in P

5:

codim CA =











1 if e is even or d3 ≥ d1 + d2 + 2;

2 if d3 = d1 + d2
3 if e odd and d3 ≤ d1 + d2 − 2.

The most interesting case is when the socle degree e is odd and d3 ≤ d1 + d2. For this
case, in §6.1 we construct an explicit Gorenstein algebra R/J with the desired Hilbert
function for which the non-Lefschetz locus of conics has expected codimension and then
invoke semicontinuity. In §6.2, for the case d3 < d1 + d2 − 2, we also prove that the set of
conics in CA that do not vanish at any of the points of the zero-dimensional scheme defined
by the ideal (f1, f2), has codimension 3 in P

5.
The hypothesis of generality is necessary whenever the socle degree e is odd and d3 ≤

d1 + d2. In fact, in §7 we construct examples of monomial complete intersection A =
R/(xd1

1 , xd2
2 , xd3

3 ) with d3 ≤ d1 + d2 − 2, where CA has codimension 1, 2, or 3. Moreover,
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we show that for every monomial complete intersection with d3 = d1 + d2, CA is always a
hypersurface even if, in this case, the expected codimension is 2.

In §8, we study the non-Lefschetz locus of conics for general height 3 Gorenstein algebras
with fixed Hilbert function. As in the case of lines studied in [BMMRN18], to have the
expected codimension we need an extra condition on the g-vector (1, 2, g2, . . . , g⌊ e

2
⌋), defined

as the positive part of the first difference of the Hilbert function.

Proposition (8.2). Let (1, 3, h2, . . . , he) be an SI-sequence such that its g-vector is of de-
creasing type. Then for a general Gorenstein algebra with Hilbert function (1, 3, h2, . . . , he)
the non-Lefschetz locus of conics has expected codimension in P

5.

Without the condition on the first difference, the expected codimension might not be
achieved. Given a SI-sequence (1, 3, h2, . . . , he) with g-vector not of decreasing type, the non-
Lefschetz locus of conics of a general Gorenstein algebra with Hilbert function (1, 3, h2, . . . , he),
always has codimention 1.

2. The non-Lefschetz locus of forms of degree 2

In this section, we want to define the non-Lefschetz locus for forms of degree 2 for any
Artinian algebra, following what has been done for linear forms in [BMMRN18]. We will
first recall the definitions of Lefschetz Properties and non-Lefschetz locus.

Let k be an algebraic closed field of characteristic 0, and let R = k[x1, . . . , xn] be the
standard graded polynomial ring in n variables.

Let A = R/I a graded Artinian algebra of socle degree e, A =
⊕e

i=0[A]i. We denote with
(h0, . . . , he) the Hilbert function of A, i.e. hi = dim([A]i) for each 0 ≤ i ≤ e.

Definition 2.1. A has the Weak Lefschetz Property (WLP) if there exists a linear element ℓ
in R such that the multiplication map ×ℓ : [A]i → [A]i+1 has maximal rank for every degree
i, i.e. it is always either surjective or injective. Such an element is called a (Weak) Lefschetz
element.

That set of Lefschetz elements form a Zariski-open set, and its complement is called the
non-Lefschetz locus of A and denoted with LA.

Definition 2.2. We say that A has the Strong Lefschetz Property (SLP) if there is a linear
element ℓ such that the multiplication map for any power of ℓ, ×ℓd : [A]i → [A]i+d, has
maximal rank in each degree i.

The SLP also implies the Maximum Rank Property:

Definition 2.3. A has the Maximal Rank Property (MRP) if for each d the multiplication
map for any general form of degree d, f ∈ [R]d, has maximal rank in each degree.

If we fix d we also have

Definition 2.4. We say that A has the Strong Lefschetz Property (SLP) at range d if there
is a linear element ℓ such that the multiplication map ×ℓd : [A]i → [A]i+d, has maximal rank
in each degree i.

In this paper, we want to focus only on the case d = 2, and study the forms C ∈ [R]2 such
that there exists a degree i for which the multiplication map ×C : [A]i → [A]i+2 is neither
surjective nor injective.
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Definition 2.5. For the Artinian algebra A of socle degree e, we define the non-Lefschetz
locus of forms of degree 2 as

CA =

e−2
⋃

i=0

CA,i

where

CA,i = {C ∈ [R]2 : ×C : [A]i → [A]i+2 does not have maximum rank }.

We want to study the non-Lefschetz locus of forms of degree 2 as a subscheme of PN−1,
for N =

(

n+1
2

)

, in a similar way to what has been done for the non-Lefschetz locus LA in
[BMMRN18].

For each i we have a map

φ : [R]2 → homk([A]i, [A]i+2)

C 7→ ×C : [A]i → [A]i+2.

Given a choice of basis for [A]i and [A]i+2 as k-vector spaces, φ(C) ∈ homk([A]i, [A]i+2) is
represented by a hi+2 × hi matrix whose entries linearly depend on the coefficients of the
C. Then C ∈ Ci,A if and only if the rankφ(C) < min{hi, hi+2}, i.e. if one of the maximal
minors of φ(C) is zero, and this does not depend on the choice of the basis.

Following this idea, we define S = k[a1, . . . , aN ] to be the coordinate ring associated with
P
N−1. We can think of the variables a1, . . . , aN as the coefficients of a conic

C = a1x
2
1 + a2x1x2 + · · ·+ aNx

2
n.

The multiplication map ×C on S ⊗k A give us a map

×C : S ⊗k [A]i → S ⊗k [A]i+2

that, chosen a basis for [A]i and [A]i+2, can be represented by a hi+2 × hi matrix of linear
forms in S. We call this matrix Bi.

Definition 2.6. CA,i ⊆ P
N−1 is scheme-theoretically defined by the ideal I(CA,i) of maximal

minors of the matrix Bi. The non-Lefschetz locus of forms of degree 2, CA, is defined as a
subscheme of PN−1 by the homogeneous ideal I(CA) =

⋂

0≤i≤e−2 I(CA,i).

Remark 2.7. This definition can be applied to forms of higher degrees as well; in this paper,
we analyze just the case of degree 2.

The expected codimension of LA,i is |hi+2 − hi| + 1 and if this codimension is achieved

then degLI,i =
(

hi+2

hi−1

)

by [Mig86].
The non-Lefschetz locus CA of forms of degree-two forms is defined a priori as a union of

determinantal schemes. However, to get a clearer understanding (and in particular to facili-
tate the computation of the expected codimension) we need to understand which condition
we need in order to get a containment between the ideals I(CA,i) and determine that CA is
“concentrated” in one degree.

Similarly to what is done for lines in [BMMRN18], we have the following proposition.

Proposition 2.8. If hi ≤ hi+2 ≤ hi+4 and there is no socle in degree i and i + 1, then
I(CA,i+2) ⊆ I(CA,i).
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Proof. The proof is divided into three parts. First, we will show that we can reduce to the
case hi+2 = hi+4. In the second step, we take care of the case when one of the ideals is 0.
Finally, in the third part, we assume hi+2 = hi+4 and I(CA,i+2) 6= 0 6= I(CA,i) and prove the
desired inclusion.

Step 1. Here we reduce to the case when hi+2 = hi+4.
Fix bases for [A]i+2 and [A]i+4. Recall that I(CA,i+2) is the ideal of maximal minors of the

hi+4 × hi+2 matrix Bi+2, given by the map

S ⊗k [A]i+2
Bi+2

→ S ⊗k [A]i+4.

Denote with {v1, . . . , vhi+4
} the chosen basis for [A]i+4. For each J ⊆ {1, . . . , hi+4} consisting

of hi+2 elements, we define AJ to be the algebra obtained by quotienting A by the ideal
generated by the forms of degree i+ 4 indexed by elements not in J :

AJ =
A

(vj | j /∈ J)
.

Since we quotient by an ideal generated in degree i+ 4, [AJ ]j = [A]j for every j < i+ 4.
In particular, [AJ ]i = [A]i and [AJ ]i+1 = [A]i+1, so I(CAJ ,i) = I(CA,i). Consider the diagram

S ⊗k [A]i+2 S ⊗k [A]i+4

S ⊗k [A
J ]i+2 S ⊗k [A

J ]i+4.

Bi+2

BJ

Under these identifications, the lower map is represented by the submatrix BJ , obtained
from Bi+2 by considering just the rows indexed by elements of J . In fact, BJ is a maximal
square submatrix of Bi+2, and all the maximum submatrices are of this form, for some
J ⊆ {1, . . . , hi+4} with |J | = hi+2. Since I(CAJ ,i+2) is defined to be the ideal of maximal
minors of BJ , we have (detBJ) = I(CAJ ,i+2).

In order to prove that I(CA,i+2) ⊆ I(CA,i), we need to show that each maximal minor of
the Bi+2 is in the ideal I(CA,i), equivalently that for each J , (detBJ ) ⊆ I(CA,i). By the
equalities proved above this is the same as to prove that I(CAJ ,i+2) ⊆ I(CAJ ,i), for each
J ⊆ {1, . . . , hi+4} subset of cardinality hi+2.

If we prove the proposition for each Artinian algebra with hi ≤ hi+2 = hi+4 and no socle
in degree i and i+ 1, then the statement will follow.

Step 2. Consider the case when one of the ideals is zero. If I(CA,i+2) = 0, then there
is nothing to prove. When I(CA,i) = 0, it is enough to show that CA,i+2 = P

N−1. Assume
by contradiction that ∃C ∈ [R]2 such that the multiplication map ×C : [A]i+2 → [A]i+4 is
injective. Since we assume I(CA,i) = 0, CA,i = P

N−1and, in particular, there exists a f ∈ [A]i
non-zero with Cf = 0. A does not have socle in degree i or i+ 1, so ∃ℓ, ℓ′ ∈ [R]1 such that
fℓℓ′ 6= 0 in [A]i+2. But Cfℓℓ′ = 0 contradicting injectivity of ×C : [A]i+2 → [A]i+4.

Step 3. Let us assume hi+4 = hi+2 and CA,i+2 6= P
N−1 6= CA,i. Then we can choose a conic

C ∈ [R]2, such that ×C : [A]i+2 → [A]i+4 is bijective, and so ×C : [A]i → [A]i+2 injective,
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by the argument in Step 2. We have the diagram

S ⊗k [A]i S ⊗k [A]i+2

S ⊗k [A]i+2 S ⊗k [A]i+4.

Bi

×C

∼

×C

Bi+2

Since C is fixed the vertical maps are the identity on S. Hence, chosen appropriate basis
for [A]i+2 and [A]i+4, Bi is a submatrix of Bi+2. We assume hi+2 = hi+4, so Bi+2 is a square
matrix, and Bi is a submatrix with the same number of rows hi+2 as Bi+2. Then, detBi+2

can be written as a linear combination of the maximal minors of Bi, and

I(CA,i+2) = (detBt+2) ⊆ (max minors of Bi) = I(CA,i)

as desired.
�

Remark 2.9. Proposition 2.8 holds if we consider finite length module M instead of Artinian
algebras. Moreover, we also have a dual statement: if hi ≥ hi+2 ≥ hi+4 and there are no
new generators in degree in degree i + 3 and i + 4, i.e. (x1, . . . , xn)[M ]i+2 = [M ]i+3 and
(x1, . . . , xn)[M ]i+3 = [M ]i+4, then I(CM,i+2) ⊇ I(CM,i).

Theorem 2.10. Let A be a Gorenstein Artinian algebra of socle decree e. If A has the Weak
Lefschetz Property, then the non-Lefschetz locus of forms of degree 2 is defined as subscheme
of PN−1 by the ideal in the middle degree

I
(

CA
)

= I
(

CA,⌊ e
2
⌋−1

)

.

Proof. The WLP guarantees the unimodality of the Hilbert function. Then applying Propo-
sition 2.8 we have that

e even: · · · ≤ h e
2
−4 ≤ h e

2
−2 ≤ h e

2
⇒ · · · ⊇ I(CA, e

2
−4) ⊇ I(CA, e

2
−2)

· · · ≤ h e
2
−3 ≤ h e

2
−1 = h e

2
+1 ⇒ · · · ⊇ I(CA, e

2
−3) ⊇ I(CA, e

2
−1)

e odd: · · · ≤ h e−1

2
−4 ≤ h e−1

2
−2 ≤ h e−1

2

⇒ · · · ⊇ I(CA, e−1

2
−4) ⊇ I(CA, e−1

2
−2)

· · · ≤ h e−1

2
−3 ≤ h e−1

2
−1 ≤ h e+1

2

⇒ · · · ⊇ I(CA, e−1

2
−3) ⊇ I(CA, e−1

2
−1)

where e is the socle degree of A.
Since A is Gorenstein, duality shows that, for each i ≥ 0, I

(

CA,⌊ e
2
⌋−i−2

)

= I
(

CA,⌊ e+1

2
⌋+i

)

and so we have

I
(

CA
)

=

e−2
⋂

i=0

I
(

CA,i

)

= I
(

CA,⌊ e
2
⌋−1

)

∩ I
(

CA,⌊ e
2
⌋−2

)

.

To prove I
(

CA
)

= I
(

CA,⌊ e
2
⌋−1

)

we will show

I
(

C⌊ e
2
⌋−1

)

⊆ I
(

C⌊ e
2
⌋−2

)

using the assumption that A has the WLP. We will divide the proof depending on the parity
of the socle degree e.
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Case e odd. Fix a Weak Lefschetz element ℓ ∈ [R]1. Then ×ℓ : [A] e−1

2
−2 → [A] e−1

2
−1 is

injective and ×ℓ : [A] e−1

2

→ [A] e+1

2

is bijective (h e−1

2

= h e+1

2

). We have the diagram

S ⊗k [A] e−1

2
−2 S ⊗k [A] e−1

2
−1

S ⊗k [A] e−1

2
−1 → S ⊗k [A] e+1

2

.

B e−1
2

−2

×ℓ

∼

×ℓ
B e−1

2
−1

Then, choosing appropriate bases, we can see B e−1

2
−2 as a submatrix of B e−1

2
−1. Since

h e−1

2

= h e+1

2

, B e−1

2
−1 and B e−1

2
−2 have the same number of rows, that is greater than or

equal to the number of columns of B e−1

2
−1. This implies that each maximal minor of B e−1

2
−1

can be seen as a linear combination of maximal minors of B e−1

2
−2. Hence,

I(CA, e−1

2
−1) = (max minors of B e−1

2
−1) ⊆ (max minors of B e−1

2
−2) = I(CA, e−1

2
−2).

Case e even. By duality I(CA, e
2
−2) = I(CA, e

2
). So it is enough to show

I
(

C e
2
−1

)

⊆ I
(

C e
2

)

.

Since we assume A has the WLP we can choose a linear form ℓ ∈ [R]1 such that the map
×ℓ : [A] e

2
−1 → [A] e

2
is injective and ×ℓ : [A] e

2
→ [A] e

2
+1 is surjective. Then we have the

commutative diagram

S ⊗k [A] e
2
−1 S ⊗k [A] e

2
+1

S ⊗k [A] e
2

S ⊗k [A] e
2
+2

B e
2
−1

×ℓ

∼

×ℓ

B e
2

and, with appropriate choices of bases, the diagonal map can be represented by a matrix B
of linear forms in S such that B is a submatrix of B e

2
−1 and B e

2
is a submatrix of B:

S ⊗k [A] e
2
−1 S ⊗k [A] e

2
+1

S ⊗k [A] e
2

S ⊗k [A] e
2
+2.

B e
2
−1

×ℓ
B ∼

×ℓ

B e
2

First we notice that B e
2
−1 is a square sub-matrix of B, with the same number of columns as

B, so
I(CA, e

2
−1) = (detB e

2
−1) ⊆ (max minors of B).

On the other side B is a submatrix of B e
2
, with the same number of rows, that is smaller or

equal to h e
2
, the number of columns of B e

2
. Therefore each maximal minor of B is a maximal

minor of B e
2
as well.

I(CA, e
2
−1) ⊆ (max minors of B) ⊆ (max minors of B e

2
) = I(CA, e

2
).

�

Remark 2.11. The hypothesis of the Weak Lefschetz property in Theorem 2.10 is necessary.
Otherwise, we can only conclude that

I(CA) = I(CA,⌊ e
2
⌋−1) ∩ I(CA,⌊ e

2
⌋−2).
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3. First cohomology module of a rank 2 vector bundle over P
2

In this section, we will focus on the case of three variables. It is easy to see that all
the definitions introduced in the previous section for Artinian algebras can be extended to
finite-length modules over the polynomial ring R. For any finite length graded module M
over R = k[x1, x2, x3], we say that a form C ∈ [R]2 is a Lefschetz Conic if the multiplication
map ×C : [M ]i → [M ]i+2 has maximum rank in each degree, and we refer to CM (Definition
2.5) with its structure as subscheme of P5 as the non-Lefschetz locus of conics of M .

Our goal is to study the non-Lefschetz locus for a height three complete intersection
A = k[x1, x2, x3]/(f1, f2, f3), and as a generalization any finite length module M that is the
cokernel of a graded map

ϕ :

n+2
⊕

i=1

R(−ai) →
n
⊕

i=1

R(−bi).

In [FFP21], the authors showed that M = cokerϕ is isomorphic to the first cohomology
module of a rank 2 vector bundle E over P2:

M ∼= H1
∗(P

2, E) := ⊕t∈Z H
1(P2, E(t)).

Note that if n = 1 and b1 = 0 then the cokernel is a complete intersection R/(f1, f2, f3) with
deg fi = ai. These two descriptions are equivalent since any first cohomology module of a
rank 2 vector bundle over P2, is of such form. This result is likely known to experts; however,
since we were not able to find a proof in the literature, a proof is included for completeness.

Proposition 3.1. Let E be a vector bundle of rank 2 over P
2, and let M = H1

∗(P
2, E).

Assume M 6= 0. Then there exists integers n, ai, bi such that we have a exact sequence

0 → E →
n+2
⊕

i=1

R(−ai) →
n
⊕

i=1

R(−bi) → M → 0

where Ẽ = E .

Proof. Let E be a rank 2 vector bundle, and let M = H1
∗(P

2, E) :=
⊕

t∈Z H
1(P2, E(t)). M is a

finite length graded module over R = [x1, x1, x3] [Har77, Ch.III, §5-7]. We assumed M 6= 0,
excluding the case where E splits. Let E := Γ∗(P

2, E) =
⊕

t∈Z H
0(P2, E(t)).

E is a finitely generated graded R−module and Ẽ ∼= E [Har77, Proposition III.5.15]. Using
[ILL+07, Theorem 13.21], we have that H2

m(E) = H1
∗(P

2, E) = M 6= 0, hence depthE ≤ 2.
Since Γ∗(P

2, Ẽ) = Γ∗(P
2, E) = E by definition of E, the depth of E must be exacly 2 [ILL+07,

Theorem 13.22] and so its projective dimension is 1. Then E has a free resolution of length
2, that we can sheafify and dualize to get the exact sequence of sheaves

0 → Ě →
n+2
⊕

i=1

OP2(āi) →
n
⊕

i=1

OP2(b̄i) → 0

for some integers āi, b̄i. Since E is a rank 2 vector bundle over P2, it follows that Ě ∼= E(d),
where −d = c1(E) is the first Chern Class of E [Har80, OSS88]. Then shifting by −d we
obtain the exact sequence of sheaves

0 → E →
n+2
⊕

i=1

OP2(−ai) →
n
⊕

i=1

OP2(−bi) → 0
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where we define ai = d− āi, and bi = d− b̄i. Applying the functor Γ∗ we get the sequence

0 → E →
n+2
⊕

i=1

R(−ai) →
n
⊕

i=1

R(−bi) → H1
∗(P

2, E) → 0

as desired. �

Let E is a rank 2 vector bundle over P2 and M = H1
∗(P

2, E) its first cohomology module.

Remark 3.2. A conic C is a Lefschetz conic for M = H1
∗(P

2, E) if and only if

×C : [M ]i

∼=

H1(P2,E(i))

→ [M ]i+2

∼=

H1(P2,E(i+2))

has maximum rank for each i. Since this property is independent of the shift, we can always
assume E normalized, hence it has first Chern Class c1(E) ∈ {0,−1} ([OSS88]). With an
abuse of notation we will label with ×C the map H1(P2, E(i)) → H1(P2, E(i+ 2)).

Before proceeding with the study of the non-Lefschetz locus of conic of M = H1
∗(P

2, E)
we recall some results about vector bundles over projective space, that we will use in the
following sections.

Definition 3.3 ([OSS88]). Let E be rank r vector bundle over P
n. Let c1(E) be its first

Chern class, and µ(E) = c1(E)/r the slope of E . We say that

• E is semistable if for any non-zero coherent subsheaf F ⊂ E the slope satisfies µ(F) ≤
µ(E);

• E is stable if such equality is strict, i.e. for any non-zero coherent subsheaf F ⊂ E ,
µ(F) < µ(E);

• E is unstable it is not semistable.

Since we restrict attention to the case of (normalized) rank 2 vector bundles, we use the
following equivalent classification as the defining property for stability.

Lemma 3.4 ([OSS88]). Let E be a normalized rank 2 vector bundle over P
n. Then

• E is stable if and only if it has no global sections, i.e. H0(Pn, E) = 0;
• if c1(E) = −1, stability and semistability are equivalent;
• if c1(E) = 0, E is semistable if and only if H0(Pn, E(−1)) = 0.

Definition 3.5 ([FFP21]). For a an unstable normalized rank 2 vector bundle over Pn we
can define the instability index of E as the largest integer k such that H0(Pn, E(−k)) 6= 0.

As a consequence, for an unstable vector bundle E

• k > 0 if c1(E) = 0
• k ≥ 0 if c1(E) = −1.

Recall that every vector bundle over P1 splits by Grothendieck’s Theorem [OSS88], hence,
for a rank 2 vector bundle over Pn, E|ℓ splits for any line ℓ in P

n.

Definition 3.6 ([OSS88]). Given a line ℓ the splitting type of E on ℓ is the couple (a, b)
where E|ℓ ∼= OP1(a)⊕OP2(b).
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Theorem 3.7 ( Grauert-Mülich Theorem [OSS88]). Let E be a semistable normalized rank
2 vector bundle on P

n and let ℓ be a general line. Then

E|ℓ ∼=

{

OP1 ⊕OP1 if c1(E) = 0;

OP1(−1)⊕OP1 if c1(E) = −1.

We are mainly interested in rank 2 vector bundles on P
2. The Grauert-Mülich Theorem

gives us the splitting type of E over a general line ℓ when is semistable. For E unstable we
have:

Theorem 3.8 ([FFP21]). Let E an unstable normalized vector bundle of rank 2 over P2, and
let k be the instability index of E . Then for a general line ℓ

E|ℓ ∼=

{

OP1(−k)⊕OP1(k) if c1(E) = 0;

OP1(−k − 1)⊕OP1(k) if c1(E) = −1.

Definition 3.9. A jumping line is a linear element ℓ with splitting type different from the
splitting type of a general line.

Finally, if E is a semistable rank 2 vector bundle over P
2 with first Chern class odd, we

have the following definition:

Definition 3.10 ([Hul79]). A line ℓ is called a splitting line of second type for E when
H0(P2, E|ℓ2) 6= 0.

Hulek in [Hul79] proved in this case the following results:

Theorem 3.11 ([Hul79]). Let E be a semistable rank 2 vector bundle over P2 with c1(E) = 0.
Then the jumping lines of second type form a curve of degree 2(c2(E)− 1).

Theorem 3.12 ([Hul79]). Let E be a general semistable rank 2 vector bundle over P
2 with

c1(E) = 0 and second Chern class c2(E). Then there are
(

c2(E)
2

)

jumping lines, and they
correspond to the singular points of the curve formed by the jumping lines of second type of
E .

Remark 3.13. We can talk about general vector bundle since the moduli space of the rank
2 vector bundles over P2 with c1 = −1 fixed second Chern class c2 is irreducible by [Hul79].
Similarly, also the moduli space of the rank 2 vector bundles with c1 = 0 and fixed second
Chern class c2 is irreducible (see [OSS88]).

4. Strong Lefschetz property at range 2

To study the non-Lefschetz locus of conics CM ⊂ P
5 we first want to show that it has

positive codimension. Equivalently, we will show that there exists a Lefschetz conic. In
fact, we will prove that there exists a linear form ℓ ∈ [R]1 such that the multiplication map
×ℓ2 : [M ]i → [M ]i+2 has maximum rank in each degree.

Proposition 4.1. Let M = H1
∗(P

2, E) be the first cohomology module of E , a rank 2 vector
bundle over P2. Then the multiplication map ×ℓ2 : [M ]i → [M ]i+2, for a general linear form
ℓ ∈ [R]1, has maximum rank in each degree. Moreover, the set of lines ℓ that fail to have
this property form a hypersurface in (P2)∗.

Proof. Without loss of generality, we can assume E is normalized. A general line ℓ is a
Lefschetz element for M by [FFP21]. In fact, by [FFP21] we have:
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• If E is semistable and c1(E) = 0, then ×ℓ : [M ]i−1 → [M ]i is injective for i < −1,
bijective for i = −1, and surjective for i > −1;

• If E is unstable with index of instability k and c1(E) = 0, then k > 0 and ×ℓ is
injective for i < −(k + 1), bijective for −(k + 1) ≤ i ≤ k − 1, and surjective for
i > k − 1;

• If E is unstable with index of instability k and c1(E) = −1, then k ≥ and ×ℓ is
injective for i < −(k + 1), bijective for −k − 1 ≤ i ≤ k, and surjective for i > k.

Case 1: E is unstable or c1(E) = 0. In this case, the multiplication map in the middle
degree is an isomorphism. Then the multiplication by ℓ2 : [M ]i → [M ]i+2 must always have
maximum rank for each i. This also shows that if E is unstable or if the first Chern class is
even, the lines ℓ for which ×ℓ2 : [M ]i → [M ]i+2 fails to have maximum rank in some degree
are exactly the non-Lefschetz elements of M . These are the jumping lines of E by [Mar23],
which, in this case, form a hypersurface in P

2.
Case 2: E is semistable with c1(E) = −1. In this case by [FFP21] the multiplication map

×ℓ : [M ]i−1 → [M ]i by a general line ℓ is injective for i ≤ −1 and surjective for i ≥ 0.
Therefore ×ℓ2 : [M ]i → [M ]i+2, when ℓ is a general linear form, is injective for i < −2 and
surjective for i ≥ −1. So it is enough to show that there exists ℓ ∈ [R]1 such that

×ℓ2 : [M ]−2

∼=

H1
∗
(P2,E(−2))

→ [M ]0

∼=

H1
∗
(P2,E)

has maximum rank. From the short exact sequence

0 → E(−2)
×ℓ2
→ E → E|ℓ2 → 0

we get the long exact sequence

0 → H0(P2, E(−2)) → H0(P2, E) → H0(P2, E|ℓ2) → H1(P2, E(−2))
×ℓ2
→ H1(P2, E) →

→ H1(P2, E|ℓ2) → H2(P2, E(−2)) → H2(P2, E) → H2(P2, E|ℓ2) = 0.

Since E is semistable and c1(E) = −1, H0(P2, E) = 0. Using duality

H2(P2, E(−2)) ∼= H0(P2, Ě(−1)) ∼= H0(P2, E) = 0

since Ě = E(1) for a rank 2 vector bundle with c1(E) = −1. Then the sequence above
becomes

0 → H0(P2, E|ℓ2) → H1(P2, E(−2))
×ℓ2
→ H1(P2, E) → H1(P2, E|ℓ2) → 0.

It is sufficient that H0(P2, E|ℓ2) = 0 to obtain that ×ℓ2 : [M ]−2 → [M ]0 is injective, and so
ℓ2 has maximum rank. This condition is also necessary. In fact, using duality again we have
that H1(P2, E(−2)) ∼= H1(P2, Ě(−1)) ∼= H1(P2, E), hence ×ℓ2 : [M ]−2 → [M ]0 has maximum
rank if and only if it is an isomorphism.

So we conclude that ×ℓ2 : [M ]i → [M ]i+2 fails to have maximum rank if and only if
H0(P2, E|ℓ2) 6= 0, i.e. if and only if ℓ is a jumping line of E of second type (Definition 3.10).
By Theorem 3.11 these form a hypersurface in (P2)∗. In particular, the complement is not
empty, so for a general line ℓ the multiplication map ×ℓ2 : [M ]i → [M ]i+2 has maximum
rank in each degree. �
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Corollary 4.2. Any Artinian complete intersection A = R/(f1, f2, f3), has the Strong Lef-
schetz Property at range 2, i.e. there exists a linear form ℓ ∈ [R]1 such that multiplication
map ×ℓ2 : [A]i → [A]i+2 has maximum rank in each degree.

Proof. The first syzygy E bundle of A is a rank 2 vector bundle over P2, and A ∼= H1
∗(P

2, E),
so we can apply Proposition 4.1. �

Remark 4.3. The proof of Proposition 4.1 shows that if E is unstable or if the first Chern
class of E is even, ×ℓ2 : [M ]i → [M ]i+2 fails to have maximum rank in some degree if and
only if ℓ is a jumping line. The same proof shows that ×ℓ1ℓ2 : [M ]i → [M ]i+2 fails to have
maximum rank in some degree if and only if at least one of ℓ1 and ℓ2 is a jumping line. The
same is not true for the case when E is semistable with the first Chern class odd.

5. Jumping conics and non-Lefschetz conics

In this section we want to classify the elements of the non-Lefschetz locus of conics of M ,
the first cohomology module of a rank 2 vector bundle over P

2. In the case of lines, the
non-Lefschetz elements are exactly the jumping lines by [Mar23]. Hence, the first question
that we want to address is whether the elements of the non-Lefschetz locus of conics are
exactly the jumping conics. Unfortunately, this is not always the case. We will see that
every non-Lefschetz conic is a jumping splitting, but the converse is not always true.

We first recall the notion of a jumping conic for a semistable vector bundle E of rank 2
over P

2, introduced by Vitter in [Vit04]. We can assume that E is normalized. If C is a
smooth conic, then E splits over C as

E|C ∼=

{

OP1(a)⊕OP1(−a) if c1(Enorm) = 0;

OP1(a)⊕OP1(−a− 2) if c1(Enorm) = −1

Vitter in [Vit04] generalizes the Grauert-Mulich theorem, and proves the following:

Theorem 5.1. ([Vit04, Corollary 1]) Let E be a semistable normalized rank 2 vector bundle
on P

2 and let C be a general smooth conic. Then

E|C ∼=

{

OP1 ⊕OP1 if c1(E) = 0;

OP1(−1)⊕OP1(−1) if c1(E) = −1.

Hence a smooth jumping conic for a semistable vector E bundle is defined as a smooth
conic for which the splitting type differs from the one described in the previous result.

Definition 5.2 ([Vit04]). A smooth conic C is a jumping conic for a semistable vector
bundle E if

E|C ∼=

{

OP1(a)⊕OP1(−a) if c1(Enorm) = 0;

OP1(a− 1)⊕OP1(−a− 1) if c1(Enorm) = −1

with a > 0.

To extend this definition also for unstable vector bundles, we first we need to study how
an unstable vector bundle E splits when restricted to a general smooth conic.

Proposition 5.3. Let E be an unstable normalized rank 2 vector bundle on P
2, with insta-

bility index k, and let C be a general smooth conic. Then

E|C ∼=

{

OP1(2k)⊕OP1(2k) if c1(E) = 0;

OP1(2k)⊕OP1(−2k − 2) if c1(E) = −1



14 EMANUELA MARANGONE

Proof. Let E be an unstable normalized rank 2 vector bundle on P
2, with instability index

k, and let C be a general smooth conic. We know that h0(P2, E(−k)) 6= 0, and any non-zero
section s ∈ H0(P2, E(−k)) is regular, so its vanishing locus has codimension at least 2. Then
a non-zero section s ∈ H0(P2, E(−k)) gives us the exact sequence

0 → OP2 → E(−k) → I → 0

where I is the ideal sheaf of a set of points. Then shifting by k we get the sequence

0 → OP2(k) → E → Q → 0

where we define Q = I(k). Since C is general, we can assume C does not meet the zero
locus of s, therefore restricting to C the previous sequence, we have the exact sequence

0 → OP2|C(k) → E|C → Q|C → 0.

C is a smooth conic so OP2|C(k) ∼= OP1(2k) and Q|C is a line bundle over C ∼= P
1, so there

exists an ℓ such that Q|C
∼= OP1(ℓ). Then our sequence becomes

0 → OP1(2k) → E|C → OP1(ℓ) → 0.

We can use this sequence to compute the Euler characteristic of E|C

χ(E|C) = χ(OP1(2k)) + χ(OP1(2k)) = 2k + l + 2.

Comparing with

χ(E|C) =

{

2 if c1(Enorm) = 0;

0 if c1(Enorm) = −1;

we obtain

ℓ =

{

−2k if c1(Enorm) = 0;

−2k − 2 if c1(Enorm) = −1.

In both cases, the sequence

0 → OP1(2k) → E|C → OP1(ℓ) → 0

is a split exact sequence since Ext(OP1(2k),OP1(ℓ)) = 0, so

E|C ∼=

{

OP1(2k)⊕OP1(2k) if c1(Enorm) = 0;

OP1(2k)⊕OP1(−2k − 2) if c1(Enorm) = −1.

�

So we can extend Definition 5.2 for any rank 2 vector bundle on P
2 as follows:

Definition 5.4. A smooth jumping conic for E is a smooth conic C such that the restriction
of E to C does not split as to a general conic.

Until now, we have considered only smooth conics. The next question is how to extend
the definition of jumping conic to include also the singular case. When E is semistable, we
recall the definition in [Vit04]:

Definition 5.5 ([Vit04]). Let E be a rank 2 normalized semistable bundle. A singular conic
C = ℓ1ℓ2 is a jumping conic if

• h0(C; E|C) > 0, when c1(E) = −1;
• if either ℓ1 or ℓ2 is a jumping line, when c1(E) = 0.
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Remark 5.6. In the case c1(E) = −1, this definition agrees with the one for smooth jumping
conics; in fact, we can say that a conic C is a jumping conic if and only if h0(C; E|C) > 0.

Vitter also shows that for singular conics this is equivalent to the following.

Definition 5.7. C = ℓ1ℓ2 is a jumping conic for a semistable normalized vector bundle E
exactly when one of the following is true:

• ℓ1 or ℓ2 is a jumping line,
• C = ℓ2 and ℓ is a jumping line of the second kind (Definition 3.10),
• ℓ1 and ℓ2 are generic so that E|ℓj = OP1 ⊕ OP1(−1) j = 1, 2 and the OP1 summands
coincide at the intersection point.

We can extend this definition to the case when E is unstable in a natural way:

Definition 5.8. Let E be a rank 2 normalized unstable vector bundle. A singular conic
C = ℓ1ℓ2 is a jumping conic if ℓ1 or ℓ2 is a jumping line.

To connect the notion of jumping conic with the non-Lefschetz conics let us first state
some facts that we will use in the next proof. Recall that a conic C is a Lefschetz conic for
M = H1

∗(P
2, E) if and only if

×C : [M ]i
∼=

H1
∗
(P2,E(i))

→ [M ]i+2

∼=

H1
∗
(P2,E(i+2))

has maximum rank in for each i. Since all these properties are independent of the shift, we
can always assume E normalized.

With a similar argument to in the proof of Theorem 4.1, from the short exact sequence

0 → E(i− 2) → E(i) → E(i)|C → 0.

we get the long exact sequence

0 → H0(P2, E(i− 2)) → H0(P2, E(i)) → H0(P2, E(i)|C) →

→ H1(P2, E(i− 2))
×C
→ H1(P2, E(i)) → H1(P2, E(i)|C) →

→ H2(P2, E(i− 2)) → H2(P2, E(i)) → H2(P2, E(i)|C) = 0.

Then we have the following facts:

(1) ×C is injective if h0(P2, E(i)|C) = 0 (sufficient condition but not necessary);
(2) ×C is injective if and only if h0(P2, E(i)|C)− h0(P2, E(i)) + h0(P2, E(i− 2)) = 0;

(3) ×C is injective if and only if the map H0(P2, E(i)) → H0(P2, E(i)|C) is surjective;
(4) ×C is surjective if h1(P2, E(i)|C) = 0 (sufficient condition but not necessary);
(5) ×C is surjective if and only if h1(P2, E(i)|C)− h2(P2, E(i− 2)) + h2(P2, E(i)) = 0;

(6) ×C is surjective if and only if the map H1(P2, E(i)|C) → H2(P2, E(i− 2)) is injective.

From this point forward we treat separately the cases E unstable, and E stable.

Proposition 5.9. Let E be an unstable vector bundle. The conic C is not a Lefschetz conic
if and only if it is a jumping conic.

Proof. As we saw in Remark 4.3 a singular conic C = ℓ1ℓ2 is a non-Lefschetz conic if and
only if at least one between ℓ1 or ℓ2 is a jumping line, i.e. if and only if C is a jumping conic
by definition. Assume C is a smooth conic and, without loss of generality, E is normalized.
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For E unstable with instability index k we know that

E|C ∼=

{

OP1(a)⊕OP1(−a) if c1(E) = 0;

OP1(a)⊕OP1(−a− 2) if c1(E) = −1,

and C is a jumping conic if and only if a 6= 2k.
Let us first prove that for any smooth conic C, we must have a ≥ 2k. From the short

exact sequence

0 → E(−k − 2) → E(−k) → E(−k)|C → 0,

we have the cohomology sequence

0 → H0(P2, E(−k − 2)) → H0(P2, E(−k)) → H0(P2, E(−k)|C) → . . .

By definition of instability index we have that H0(P2, E(−k)) 6= 0 and, for any b > k,
H0(P2, E(−b)) = 0. In particular H0(P2, E(−k − 2)) = 0, so the map H0(P2, E(−k)) →
H0(P2, E(−k)|C) is injective. It follows that H

0(P2, E(−k)|C) 6= 0. Since

H0(P2, E(−k)|C) =

{

H0(P1,OP1(−2k + a)⊕OP1(−2k − a)) if c1(E) = 0;

H0(P1,OP1(−2k + a)⊕OP1(−2k − a− 2)) if c1(E) = −1,

we can conclude that a ≥ 2k.
Case 1: c1(E) = 0. In this case k > 0 and E∨ = E . Using [FFP21, Proposition 3.6 ] we

have for i < k

h0(P2, E(i)|ℓ)− h0(P2, E(i)) + h0(P2, E(i− 2))

= h0(P2,OP1(2i− a)) + h0(P2,OP1(2i+ a))−

(

k + i+ 2

2

)

+

(

k + i

2

)

=











4t+ 2 if i ≥ a
2
;

a + 2i+ 1 if − a
2
≤ i < a

2
;

0 if i < −a
2
.

+

{

−2k − 2i− 1 if − k ≤ i < k;

0 if i < −k;

=











a− 2k if − k ≤ i < k;

a + 2i+ 1 if − a
2
≤ i < −k;

0 if i < −a
2
.

If a = 2k then h0(P2, E(i)|ℓ)− h0(P2, E(i)) + h0(P2, E(i− 2)) = 0 for every i < k and so by
Fact (2), the map ×C is injective for i < k.

When a > 2k, using Fact (2) we get instead that ×C is not injective for −a
2
≤ i < k (and

it is injective for i < −a
2
).
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In a similar way using Serre Duality, and [FFP21, Proposition 3.7 ], for i ≥ −k

h1(P2, E(i)|C)− h2(P2, E(i− 2)) + h2(P2, E(i)) =

h1(P2,OP1(2i− a)) + h1(P2,OP1(2i+ a))− h0(P2, E(−i− 3)) + h0(P2, E(−i− 1)) =

h0(P2,OP1(−2i+ a− 2)) + h0(P2,OP1(−2i− a− 2))−

(

k − i+ 1

2

)

−

(

k − i− 1

2

)

=











0 if i > a
2
− 1;

−2i+ a− 1 if − a
2
− 1 < i ≤ a

2
− 1;

−4t− 2 if i ≤ −a
2
− 1.

+

{

0 if i ≥ k;

2i− 2k + 1 if − k ≤ i < k.

If a = 2k, using Fact (5), ×C is surjective for i ≥ −k, so in this case ×C always has
maximum rank. If a > 2k, ×C is not surjective for −k ≤ i < a

2
. So ×C does not have

maximum rank for −k ≤ i < k; since k > 0 this interval is not empty. Hence a smooth conic
C is not a Lefschetz conic for E , when a > 2k.

This proves that for E unstable, normalized with c1(E) = 0, C is a Lefschetz conic if and
only if C is not a jumping conic.

Case 2: c1(E) = −1. In this case E is unstable and normalized with c1(E) = −1, therefore
k ≥ 0 and E∨ = E(1). We can proceed in a similar way to Case 1.

Using [FFP21, Proposition 3.7 ] we have

h0(P2, E(i)|C)− h0(P2, E(i)) + h0(P2, E(i− 2))

= h0(P2,OP1(2i+ a)⊕OP1(2i− a− 2))− h0(P2, E(i)) + h0(P2, E(i− 2))

=











4t if i > a
2
;

2i+ a + 1 if − a
2
≤ i ≤ a

2
;

0 if i < −a
2
.

+

{

−2k − 2i− 1 if − k ≤ i ≤ k;

0 if i < −k;

=











a− 2k if − k ≤ i ≤ k;

2i+ a + 1 if − a
2
≤ i < −k;

0 if i < −a
2
.

Using Serre Duality and [FFP21, Proposition 3.7] again, we get, for i ≥ −k

h1(P2, E(i)|C)− h2(P2, E(i− 2)) + h2(P2, E(i)) =

h0(P2,OP1(−2i− a− 2))+ h0(P2,OP1(−2i+ a))− h0(P2, E(−i))+ h0(P2, E(−i− 2))

=











0 if i > a
2
;

−2i+ a+ 1 if − a
2
≤ i ≤ a

2
;

−4t if i < −a
2
.

+

{

0 if i ≥ k;

−2i− 2k − 1 if − k ≤ i < k.

=











0 if i > a
2
;

2i− a− 1 if k < i ≤ a
2
;

a− 2k if − k ≤ i ≤ k.

We can conclude, using Fact (2) and Fact (5) that
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• if a = 2k, ×C is always injective for i ≤ k and surjective for any i ≥ −k. So ×C
always has maximum rank.

• ×C does not have maximum rank for −k ≤ i ≤ k, and since k ≥ 0, this interval is
not empty. So in this case C is not a Weak Lefschetz element.

This concludes our proof: C is a Lefschetz conic if only if it is not a jumping conic. �

Let us consider now the case E semistable. When E is semistable with first Chern class
c1(E) = −1, as noted by Vitter [Vit04], the jumping conics (smooth or singular) are exactly
the ones for which h0(C; E|C) 6= 0, and equivalently h1(C; E|C) 6= 0, while this is not true if
c1(E) = 0. This difference is noticed in the proof [Vit04, Theorem 2]. This is exactly where
the difference between jumping conics and non-Lefschetz conic lies: while for c1(E) = −1
they are equivalent, for c1(E) = 0 the jumping conics are a subset, corresponding to the
condition of h1(C; E|C) 6= 0.

Theorem 5.10. [Vit04, Theorem 2] The set of jumping conics J2 of a semistable rank 2
vector bundle E on P

2 can be given the scheme structure of a hypersurface in P
5 of degree

c2(E) if c1(E) = 0 and of degree c2(E)− 1 if c1(E) = −1. Furthermore, the singular jumping
conics are in the scheme-theoretic closure of the smooth jumping conics.

The following results can be seen as corollaries of this theorem.

Corollary 5.11. Let E be a stable, normalized vector bundle with c1(E) = −1. A conic C
fails to be a Weak Lefschetz conic if and only if it is a jumping conic.

Proof. Let us first consider the case when C = ℓ1ℓ2 is singular. If C = ℓ2 we prove in 4.1
that C is a non-Lefschetz conic if and only if it is a jumping line of the second type, i.e.
h0(C; E|C) 6= 0. The same proof shows that C = ℓ1ℓ2 is a non-Lefschetz conic if and only if
h0(C; E|C) 6= 0.

Let us assume now that C is smooth. E|C ∼= OP1(a− 1)⊕OP1(−a− 1) and C is a jumping
conic if and only if a > 0. In this case χ(E|C) = 0, so h0(P2, E|C) = h1(P2, E|C), in particular
for a jumping conic they are both non-zero.

Let us assume C is a jumping conic. H0(P2, E) = 0 because E is stable. Then the map
0 = H0(P2, E) → H0(P2, E|C) 6= 0 is not surjective, so by Fact (3) the map ×C is not injective.

The map H1(P2, E|C) → H2(P2, E(−2)) can not be injective because H1(P2, E|C) 6= 0 and

H2(P2, E(−2)) ∼= H0(P2, Ě(1)) ∼= H0(P2, E(−2)) = 0, using Serre Duality and stability of E .
Then ×C is not surjective by Fact (6). In conclusion, C is not a Lefschetz conic because the
multiplication map ×C fails to have maximal rank from degree −2 to degree 0.

Let us consider now a smooth non jumping conic C so E|C ∼= OP1(−1)⊕ OP1(−1). Using
Fact (1), the map ×C is injective if h0(P2, E(i)|C) = h0(P1,OP1(2i − 1)⊕ OP1(2i − 1)) = 0,
then it is injective for every i ≤ 0. ×C is surjective if h1(P2, E(i)|C) = 0 by Fact (4). Using
again Serre Duality

h1(P2, E(i)|C) =h1(P1,OP1(2i− 1)⊕OP1(2i− 1))

h0(P1,OP1(−2i− 1)⊕OP1(−2i− 1))

then it is zero for i > 0. Then ×C always has maximal rank, so C is a Lefschetz element. �

Corollary 5.12. Let E be a semistable, normalized vector bundle with c1(E) = 0. A smooth
conic C fails to be a Weak Lefschetz conic if and only if it is a jumping conic and E|C ∼=
OP1(a) ⊕ OP1(−a) with a > 1. When C is singular, the definitions of jumping and non-
Lefschetz are equivalent.
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Proof. The case when C is singular is the same as in Proposition 5.9 for unstable vector
bundles. In fact C = ℓ1ℓ2 is a non-Lefschetz conic if and only if at least one between ℓ1 or
ℓ2 is a jumping line by Remark 4.3 as in the definition of singular jumping conic.

Let us assume first that E|C ∼= OP1(a)⊕OP1(−a) with a = 0 or a = 1. We want to show that
in this case, C is a Lefschetz conic. Since h0(P2, E(i)|C) = h0(P1,OP1(2i+1)⊕OP1(2i−1)) = 0,
for every i < 0, then Fact (1) implies ×C injective for every i < 0.

The map ×C is surjective if h1(P2, E(i)|C) = 0 by Fact 4. Using Serre Duality

h1(P2, E(i)|C) =h1(P1,OP1(2i+ a)⊕OP1(2i− a))

=h0(P1,OP1(−2i− 2− a)⊕OP1(−2i− 2 + a))

then it is zero for i ≥ 0 (here a = 0 or a = 1). Then ×C always has maximal rank, so C is
a Lefschetz element.

Now we will show that for any smooth conic C such that E|C ∼= OP1(a) ⊕ OP1(−a) with

a > 1, ×C : H1(P2, E(−2)) → H1(P2, E) does not have maximal rank and so C is not a
Lefschetz conic. Note that if a > 1, H0(P2E|C) ∼= H0(P2,OP1(−a) ⊕ OP1(a)) 6= 0 and, using
Serre Duality

H1(P2, E|C) = H1(P1,OP1(−a)⊕OP1(a)) = H0(P1,OP1(a− 2)⊕OP1(−a− 2)) 6= 0.

We consider first the case E stable; later we return to the case when E is semistable but
not stable.

By stability H0(P2, E) = 0, then H0(P2, E) → H0(P2, E|C) 6= 0 can not be surjective and so
by Fact (3), the map ×C is not injective.

Using Serre Duality, and (semi)stability we also have

H2(P2, E(−2)) = H0(P2E(−1)) = 0.

Then the map 0 6= H1(P2, E|C) → H2(P2, E(i− 2)) = 0 is not injective. Then ×C can not be
surjective, by Fact (6).

When E is semistable but not stable the same argument shows that ×C is not surjective,
but in this case H0(P2, E) 6= 0. By Fact (3), the map ×C is injective if and only if the map
H0(P2, E) → H0(P2, E|C) is surjective. Looking at the long exact sequence

H0(P2, E(−2)) → H0(P2, E) → H0(P2, E|C) → H1(P2, E(−2))
×C
→ H1(P2, E) → . . .

we know that that map is injective because H0(P2, E(−2)) = 0. So ×C is injective if and
only if the map H0(P2, E) → H0(P2, E|C) is a isomorphism, but this is not possible since
h0((P2, E|C)) = a+ 1 > 2 while we will show that h0(P2, E) = 1.

We know that h0(P2, E) 6= 0, so we can take a non-zero section s ∈ H0(P2, E). The section
s must be regular, so we have the exact sequence

0 → OP2 → E → I → 0

where I that is the ideal sheaf of a set of point Z. We assumed M = H1
∗(P

2, E) 6= 0, hence
E 6∼= OP2 ⊕OP2 . This implies that Z 6= ∅, then h0(P2, I) = 0. From the cohomology sequence

0 → H0(P2,OP2) → H0(P2, E) → H0(P2, I) = 0

we obtain h0(P2, E) = h0(P2,OP2) = 1. �
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5.1. Expected codimension of the non-Lefschetz locus of conics. In this section,
we want to talk about the codimension of the non-Lefschetz locus of conics CM . The non-
Lefschetz locus of conics CM is defined a priori as a union of determinantal schemes. To
compute the expected codimension, we need to show CA is “concentrated” in one degree.

Proposition 5.13. The non-Lefschetz locus of M = H1
∗(P

2, E), for any rank 2 vector bundle
E , as a subscheme of P5 coincides with the non-Lefschetz locus in the middle degree:

CM = C⌊ d−3

2
⌋−1,M

where −d = c1(E) is the first Chern class of E .

Proof. The proof is similar to what we did for Gorenstein algebras in Theorem 2.10. We
know that M has the WLP by [FFP21]; as a consequence we have that:

• the Hilbert function of M is unimodal;
• M has no socle until degree ⌊d−3

2
⌋ and no new generators after that degree.

Moreover by Serre Duality and the fact that Ě = E(d) we have

H1
(

P
2, E
(⌊d− 4

2

⌋

− i
))

∼= H1
(

P
2, Ě
(

−
⌊d− 3

2

⌋

+ i− 3
))

∼= H1
(

P
2, E
(⌊d− 2

2

⌋

+ i
))

.

Then we can apply Proposition 2.8 and Remark 2.9 and follow the same proof then in
Theorem 2.10 to obtain that CM = C⌊ d−3

2
⌋−1,M . �

This result assures us that the non-Lefschetz locus of conics has a determinantal structure,
so we can compute the expected codimension.

Proposition 5.14. Let E a rank 2 vector bundle over P
2. Then the non-Lefschetz locus of

conics of M = H1
∗(P

2, E) has expected codimension

expcodim CM =











1 if E is unstable or has first Chen class even;

2 if E semistable but not stable;

3 if E stable with c1(E) odd.

Proof. Since CM = C⌊ d−3

2
⌋−1,M , we have that

expcodim CM = h⌊ d−3

2
⌋+1 − h⌊ d−3

2
⌋−1 + 1

where −d = c1(E) is the first Chern class of E .
Case 1: odd Chern class If d is odd, by Serre duality, h1(P2, E(d−3

2
− 1)) = h1(P2, E(d−3

2
+

1)), hence expcodim CM = 1.
Case 2: even Chern class. Let us consider now d even. Without loss of generality, we can

assume E . Then d = −c1(E) = 0, and expcodim CM = h−1 − h−3 + 1
Case 2.1: E unstable. If E is unstable with index of instability k, then by [FFP21] the

multiplication map for a general line ×ℓ : [M ]i−1 → [M ]i, is bijective for −(k+1) ≤ i ≤ k−1.
This implies h−k−2 = h−k−1 = · · · = hk−1, and in particular h−3 = h−1 since k > 0 when E
unstable with c1(E) = 0. So also in this case expcodim CM = 1.
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Case 2.1: E semistable. Let us now consider E semistable with c1(E) = 0. Then applying
Serre Duality we get

expcodim(CM) = h−1 − h−3 + 1 = h1(P2, E(−1))− h1(P2, E(−3)) + 1

= h1(P2, E(−2))− h1(P2, E) + 1

= − χ(E(−2)) + h0(P2, E(−2)) + h2(P2, E(−2))

+ χ(E)− h0(P2, E)− h2(P2, E) + 1

= χ(E)− χ(E(−2)) + h0(P2, E)

since by semicontinuity h0(P2, E(−2)) = 0 as well as

h2(P2, E(−2)) = h0(P2, E(−1)) = 0

h2(P2, E) = h0(P2, E(−3)) = 0.

We can see that

χ(E(i))− χ(E(i− 2)) =

{

4t+ 2 if c1(E) = 0;

4t if c1(E) = −1;

so χ(E)− χ(E(−2)) = 2. If E is stable h0(P2, E) = 0, while if E is semistable (and M 6= 0)
we show in the proof of Corollary 5.12 that h0(P2, E) = 1. Finally, we have

expcodim(CM) =χ(E)− χ(E(−2)) + h0(P2, E) = 2 + h0(P2, E)

=

{

2 if E semistable but not stable;

3 if E stable.

�

In the previous section, we saw that a general conic is a Lefschetz-conic, hence CM 6= P
5

and so the 1 ≤ codim(CM) ≤ expcodim(CM ). This implies that if E is unstable or the first
Chen class c1(E) = −d is odd, the non-Lefschetz locus of conics of M = H1

∗(P
2, E) is always

a hypersurface. In this case the degree is given by h⌊ d−3

2
⌋+1. Note that by Theorem 5.10 and

Corollary 5.11 we already knew that for a semistable bundle E with fist Chern class odd, the
non-Lefschetz locus of conics is a hypersurface in P

5 of degree c2(Enorm)− 1.
It is left to study the non-Lefschetz locus of conics when E is semistable and c1(E) = 0.

By Theorem 5.10 the set of jumping conics forms a hypersurface in P
5 of degree c2(E), and

by Corollary 5.11 CM is contained in this surface.

Conjecture 5.15. For a general E semistable vector bundle with the first Chern class even,
the non-Lefschetz locus has expected codimension

codim CM =

{

2 if E semistable but not stable;

3 if E stable.

We will prove this conjecture in the case when E is the syzygy bundle of a complete
intersection. We will also show that the hypothesis of generality is necessary, using examples
of monomial complete intersections.



22 EMANUELA MARANGONE

6. General complete intersections of height 3

In this section, we focus on Artinian complete intersections. Let A = k[x1,x2,x3]
(f1,f2,f3)

be a

complete intersection of type (d1, d2, d3), and let E be its first syzygy bundle. Our goal is to
prove Conjecture 5.15 for E . Recall that A ∼= H1

∗(P
2, E). Moreover, E has first Chern class

odd if and only if the socle degree e is even, and

• E is stable if d3 < d1 + d2
• E is semistable if d3 ≤ d1 + d2
• E is unstable if d3 > d1 + d2.

Theorem 6.1. Let A = R/(f1, f2, f3) be a general complete intersection of type (d1, d2, d3).
Then, the non-Lefschetz locus of conics has the expected codimension in P

5:

codim CA =



















1 if e is even;

1 if d3 > d1 + d2;

2 if d3 = d1 + d2;

3 if e odd d3 ≤ d1 + d2 − 2.

Note that when either the vector bundle E is unstable or its first Chern class is odd, we
know that the expected codimension is achieved and CA is a hypersurface. This happens when
either the socle degree e is even or d3 > d1 + d2. Therefore, in this case, the non-Lefschetz
locus of conics is a hypersurface of degree h⌊ e

2
⌋−1.

By this reasoning, we can restrict to the case when the socle degree e is odd and d3 ≤
d1+ d2. Equivalently, the first syzygy bundle E is semistable with the first Chern class even.

Let (1, 3, h2, . . . , he−2, 3, 1) be the Hilbert function of a complete intersection of type
(d1, d2, d3).

We will construct a Gorenstein algebra R/J with the same Hilbert function

(1, 3, h2, . . . , he−2, 3, 1)

such that the non-Lefschetz locus of conics has expected codimension. We know that when
the Hilbert function is fixed, the height 3 Gorenstein algebras with such Hilbert function lie in
a flat family [Die96]. Then, by semicontinuity, we can conclude that the general Gorenstein
algebra with that Hilbert function has non-Lefschetz locus of expected codimension. More-
over, from [Die96] we know the Gorenstein algebras with minimum number of generators and
Hilbert function (1, 3, h2, . . . , he−2, 3, 1) form a Zariski dense set in the family of Gorenstein
algebras with this Hilbert function. In our case, we know that (1, 3, h2, . . . , he−2, 3, 1) is the
Hilbert function of a complete intersection, so in this family of Gorenstein algebras the ones
with minimum number of generators must be the complete intersections. Since this set is
dense, we can conclude by semicontinuity that the general complete intersection has the
non-Lefschetz locus of conics of expected codimension, assuming that we have constructed
a Gorenstein Algebra with the same Hilbert function and non-Lefschetz locus of conics of
expected codimension.

6.1. Proof of Theorem 6.1. Before proceeding with the proof of Theorem 6.1, we need to
recall some definitions and results about Gorenstein algebras of height 3.

Recall that a sequence (1, 3, h2, . . . , he) is a Hilbert function for a height 3 Gorenstein
algebra if and only if it is a SI-sequence.

Definition 6.2. A height 3 SI-sequence is a sequence (1, 3, h2, . . . , he) such that
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• it is symmetric;
• the first difference (1, 2, h2 − h1, . . . , h⌊ e

2
⌋ − h⌊ e

2
⌋−1) satisfies Macaulay’s growth con-

dition.

The second condition is equivalent to the statement that

(1, 3, h2, . . . , h⌊ e
2
⌋, h⌊ e

2
⌋, . . . , h⌊ e

2
⌋, . . . )

is the Hilbert function of zero-dimensional scheme Z on P
2.

For a fixed SI-sequence, the family of Gorenstein algebras R/I having that sequence as a
Hilbert function is an irreducible family by [Die96].

Definition 6.3. Let (1, 3, h2, . . . , he) be the Hilbert function of a Gorenstein algebra A. The
g-vector of A is the positive part of the first difference:

(1, 2, g2, . . . , g⌊ e
2
⌋) = (1, 2, h2 − h1, . . . , h⌊ e

2
⌋ − h⌊ e

2
⌋−1)

Definition 6.4. We say that the g-vector (1, 2, g2, . . . , g⌊ e
2
⌋) is of decreasing type if it begins

with (1, 2, 3, . . . ) (growing as the polynomial ring k[x1, x2]) then possibly flat, then strictly
decreasing.

Definition 6.5. We say that the Gorenstein algebra A with Hilbert function (1, 3, h2, . . . , he),
comes from points if it is a quotient of R/IZ where IZ is the ideal associated to a reduced
zero-dimensional scheme Z with Hilbert function

(1, 3, h2, . . . , h⌊ e
2
⌋, h⌊ e

2
⌋ . . . ).

For any SI-sequence, there is always a subfamily of Gorenstein algebras with that sequence
as a Hilbert function which comes from points by [BOI99].

Remark 6.6. A general complete intersection R/(f1, f2, f3) comes from points if and only if
d3 ≥ d1 + d2 − 1. In this case, [R/(f1, f2, f3)]j = [R/(f1, f2)]j for j < e−1

2
and the Hilbert

function of R/(f1, f2) stabilizes at d1 + d2 − 2 ≤ e−1
2
.

The last definition that we need to recall is a strong form of general position for sets of
points Z in P

2:

Definition 6.7. Let Z be a set of points in P
2, we say that Z has the Uniform Position

Property (UPP) if, for any n ≤ degZ, all subsets of n points have the same Hilbert function.

As a consequence, if a set of points Z in P
2 has the UPP, and Y is a subset of n points of

Z we have that the Hilbert function hi(Y ) = dim[R/IY ] of Y must be the truncation of the
Hilbert function of Z:

hi(Y ) = min{hi(Z), n},

where hi(Z) = dim[R/IZ ]i is the Hilbert function of Z
Now we can proceed with the proof of Theorem 6.1: we want to show that the non-

Lefschetz locus of conics CA of a general complete intersection A = R/(f1, f2, f3) of type
(d1, d2, d3) has expected codimension. The only case left to prove is when the socle degree e
is odd and d3 ≤ d1 + d2.

Proof of Theorem 6.1. Let A = R/(f1, f2, f3) a complete intersection of type (d1, d2, d3),
with e is odd and d3 ≤ d1 + d2. Let (1, 3, h2, . . . , he−2, 3, 1) be the Hilbert function of A. By
Proposition 5.14, the expected codimension of CA is
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• 2 when d3 = d1 + d2 (this corresponds to the case when the syzygy bundle E is
semistable but not stable);

• 3 otherwise (when the syzygy bundle E is semistable with c1(E) even).

First, we show that the g-vector is always of decreasing type. Assume by contradiction
that

(1, 2, g2, . . . , g⌊ e
2
⌋) = (1, 2, h2 − h1, . . . , h⌊ e

2
⌋ − h⌊ e

2
⌋−1)

is not of decreasing type. Then there exists i < e−1
2

such that gi−2 > gi−1 = gi. Since
gi−2 > gi−1, we have that d1, d2 ≤ i. Now gi−1 = gi so by [RZ01, Theorem 3.1] all the
generators of degree ≤ i have a common factor of degree gi. So f1 and f2 have a common
factor, but this is not possible since (f1, f2, f3) is a complete intersection.

We will now construct a Gorenstein algebra R/J with the same Hilbert function of a
complete intersection of type (d1, d2, d3), such that the non-Lefschetz locus of conics has
expected codimension.

Let R/J be an Artinian Gorenstein algebra with Hilbert function

(1, 3, h2, . . . , he−2, 3, 1),

that comes from points. So R/J is obtained as a quotient of R/IZ where Z is a reduced zero-
dimensional scheme on P

2. Therefore [R/IZ ]i = [R/J ]i for every i ≤ e−1
2
; moreover, since

h e−1

2

= h e+1

2

and the Hilbert function of IZ stabilises at e−1
2
, we also have that [R/IZ ] e+1

2

=

[R/J ] e+1

2

.

Since we showed that the positive first difference of (1, 3, h2, . . . , he−2, 3, 1) is of decreasing
type, we can assume Z satisfies the UPP by [MR88].

By Theorem 2.10, CR/J is “concentrated” in the middle degree, i.e. CR/J = CR/J, e−1

2
−1.

Then under the identification

[R/J ] e−1

2
−1 [R/J ] e+1

2

[R/IZ ] e−1

2
−1 [R/IZ ] e+1

2

×C

×C

C is a non-Lefschetz conic for R/J if and only if ×C : [R/IZ ] e−1

2
−1 → [R/IZ ] e+1

2

is not

injective. If C does not pass through any of the points of Z, then C is a non-zero divisor
and so the multiplication map is injective. Let us assume that C passes through at least one
point of Z and let IY = (IZ : C) be the ideal associated to the set of points Y of Z that
C does not pass through. Then the map ×C : [R/IZ ] e−1

2
−1 → [R/IZ ] e+1

2

is injective if and

only if [IY /IZ ] e−1

2
−1 = 0. So we want to check whether the Hilbert function of IY and IZ are

equal in degree e−1
2

− 1.
Since we assumed Z has the UPP, the Hilbert function of IY depends only on the number

of points of IY , and so it must be the truncated Hilbert function of Z; in particular

dim[R/IY ] e−1

2
−1 = min{dim[R/IZ ] e−1

2
−1, n}.

Case 1: d3 = d2 + d1. In this case expcodim CA = 2, hence h e−1

2
−1 − h e+1

2

= 1. Since

dim([R/IZ ] e−1

2

)− dim([R/IZ ] e−1

2
−1) = h e−1

2
−1 − h e−1

2

= h e−1

2
−1 − h e+1

2

= 1,
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if C meets just one of the points of Z then [IY /IZ ] e−1

2
−1 = 0. If C passes through exactly 2

points of Z, then dim[IY ] e−1

2
−1 = dim[IZ ] e−1

2
−1 − 1 and so the map ×C is not injective. We

can conclude that C ∈ CR/J if and only if C passes through at least 2 points of Z. Then
codim CR/J = 2 as we wanted.

Case 2: d3 ≤ d2 + d1 − 2. Here expcodim CA = 3, hence h e−1

2
−1 − h e+1

2

= 2.

In this case

dim([R/IZ ] e−1

2

)− dim([R/IZ ] e−1

2
−1) = h e−1

2
−1 − h e−1

2

= h e−1

2
−1 − h e+1

2

= 2,

so dim[IY ] e−1

2
−1 6= dim[IZ ] e−1

2
−1 if C passes through at least 3 points of Z. We can conclude

that codim CR/J = 3 as expected.
By semicontinuity, the non-Lefschetz locus of a general Gorenstein ideal with Hilbert

function (1, 3, h2, . . . , he−2, 3, 1) has codimension 3. In particular, for a general complete
intersection I of type (d1, d2, d3), the non-Lefschetz locus has expected codimension. �

6.2. Note about the case d3 ≤ d1 + d2 − 4 and odd socle degree. In Remark 6.6 we
notice that for d3 ≥ d1+ d2 − 1, the Artinian complete intersection A = R/(f1, f2, f3) comes
from points. Moreover, if Z is the set of points defined as a zero-dimensional scheme by the
ideal (f1, f2), we have that [A]j = [R/(f1, f2)]j for any j < d3. Since d3 ≥ d1 + d2 − 1

⌊e

2

⌋

+ 1 ≥
d3 + d3 − 2

2
+ 1 = d3 − 1.

By Theorem 2.10, CA = CA,⌊ e
2
⌋−1, so C is a non-Lefschetz conic if and only if the map

[R/(f1, f2, f3)]⌊ e
2
⌋−1 [R/(f1, f2, f3)]⌊ e

2
⌋+1

[R/(f1, f2)]⌊ e
2
⌋−1 [R/(f1, f2)]⌊ e

2
⌋+1

×C

×C

is not injective. Then a conic C that is in the non-Lefschetz locus of conics of A =
R/(f1, f2, f3) needs necessarily to vanish at least at one of the points of Z (this condition is
not necessarily sufficient, as we can see in the case d3 = d1 + d2).

This is not true in general. In fact, the subset of the non-Lefschetz locus of conics that
do not vanish at any point of Z for a general complete intersection A = R/(f1, f2, f3) with
d3 ≤ d1 + d2 − 4 and e odd, has codimension 3 in P

5. This agrees with the codimension of
the entire scheme CA by Theorem 6.1.

Proposition 6.8. Let A = R/(f1, f2, f3) be a general complete intersection with d3 ≤ d1 +
d2− 4 and e odd. Assume Z is the set of points defined as a zero-dimensional scheme by the
ideal (f1, f2). The set of conics C in the non-Lefschetz locus of conics CA that do not vanish
at any of the points of Z has codimension 3 in P

5.

Proof. Let A = R/(f1, f2, f3) be a general complete intersection and let Z be the set of
points defined as a zero-dimensional scheme by the ideal (f1, f2). For this proof, we consider
just the set of conics C that do not pass through any of the points of Z, or equivalently,
the conics such that (C, f1, f2) is a complete intersection. As before (1, 3, h2, . . . , he−2, 3, 1)
is the Hilbert function of R/I. Here, we are also assuming the socle degree e odd.
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To check if a conic C is a Lefschetz conic it is enough to verify whether the multiplication
map

×C : [A] e−1

2

→ [A] e+1

2
+1

is surjective, or equivalently if [R/(C, f1, f2, f3)] e+1

2
+1 is zero. A general conic C is a Lef-

schetz conic, so [R/(C, f1, f2, f3)] e+1

2
+1 = 0. In this case (C, f1, f2, f3) is an almost complete

intersection of type (2, d1, d2, d3) with Hilbert function

(1, 3, h2 − 1, h3 − h1, . . . , h e−1

2

− h e−1

2
−2, h e+1

2

− h e−1

2
−1).

We want to look now at the conics C ∈ CR/I , so that [R/(C, f1, f2, f3)] e+1

2
+1 6= 0. Since we are

just considering conics that don’t vanish at any point of Z, the ideal (C, f1, f2) is a complete
intersection. To compute the codimension it is enough to consider C such that (C, f1, f2, f3)
is an almost complete intersection whose Hilbert function differs from the general case in the
least possible way. Note that if

dim

[

R

(C, f1, f2, f3)

]

e+1

2
+1

= 1,

by duality we also have

dim ker

(

×C :

[

R

(C, f1, f2, f3)

]

e−1

2
−1

→

[

R

(C, f1, f2, f3)

]

e+1

2

)

= 1,

dim[R/(C, f1, f2, f3)] e+1

2

= h e+1

2

− h e−1

2
−1 + 1 Then we can assume that the Hilbert function

of R/(C, f1, f2, f3) is

(1, 3, h2 − 1, h3 − h1, . . . , h e−1

2

− h e−1

2
−2, h e+1

2

− h e−1

2
−1 + 1, 1).

We want to compute the codimension of the almost complete intersection of type (2, d1, d2, d3)
in R with Hilbert function

(1, 3, h2 − 1, h3 − h1, . . . , h e+1

2

− h e−1

2
−1 + 1, 1)

in the space of all almost complete intersection of type (2, d1, d2, d3). A general almost
complete intersection J of type (2, d1, d2, d3) has Hilbert function

(1, 3, h2 − 1, h3 − h1, . . . , h e+1

2

− h e−1

2
−1).

We can link J by a complete intersection K of type (2, d1, d2) to a Gorenstein ideal G with
socle degree s = d1 + d2 − d3 − 1 and h-vector (1, f1, . . . , fs). In a similar way, we link a
complete intersection J ′ with Hilbert function (1, 3, h2− 1, h3 − h1, . . . , h e+1

2

− h e−1

2
−1 +1, 1)

by a complete intersection K of type (2, d1, d2) to a Gorenstein ideal G′ with socle degree
s and h-vector (1, f ′

1, . . . , f
′
s) that differs from the one of G only in the middle degrees. In

fact, since the Hilbert function of J and J ′ differ by one in degree e
2
and e

2
+1 and are equal

otherwise, we can relate the Hilbert function of G and G′ as follows:
{

f ′
i = fi − 1 if i = s−1

2
or i = s+1

2
;

f ′
i = fi otherwise.

.
We follow a similar method to the proof of [BMMRN18, Theorem 5.6]. Using the same

notation we denote by
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(1) D1, resp. D
′
1, the dimension of the family of Gorenstein Artinian ideals G, resp. G′,

with Hilbert function (1, f1, . . . , fs), (1, f
′
1, . . . , f

′
s) respectively.

(2) D2, resp. D
′
2, the dimension of complete intersections K of type (2, d1, d2) contained

in G, G′ respectively;
(3) D3, resp. D

′
3, the dimension of complete intersections K of type (2, d1, d2) contained

in J , J ′ respectively.

Then the codimension of the almost complete intersection that we are looking at is exactly
D1 +D2 −D3 − (D′

1 +D′
2 −D′

3). The reason why we subtract D3 (D′
3 resp.) is to remove

over-counting, since the same ideal J (J ′) can be reached from many different ideals G (G′)
using different complete intersections in J (J ′).

Since the Hilbert function J and J ′ are different only in degree e+1
2

and e−1
2

+ 1, D3 6= D′
3

only in the case when one of the degrees 2,d1, d2 is equal to e+1
2

or e+1
2

+ 1. But this is not

possible because d3 ≤ d1 + d2 − 4, therefore 2 ≤ d1 ≤ d2 ≤ d3 <
e+1
2
. Then D3 = D′

3.
Similarly D2 6= D′

2 only when one of the degrees 2,d1, d2 is equal to
s±1
2
, since the Hilbert

functions of G and G′ differ only in the middle degrees. This can happen if and only if
d3 = d1 + d2 − 4 or d3 = d1 + d2 − 6, in both cases D2 −D′

2 = −1
Finally to compute D1 − D′

1, we can apply [BMMRN18, Lemma 5.5]: G and G′ are
Gorenstein algebras in codimension 3 with socle degree odd and Hilbert function that differs
by one only in the middle degree, then D1−D′

1 = f s−1

2
+1−2f s−1

2
+3+ f s−1

2
+4+1. Recall that

we obtained the Gorenstein Artinian ideal G from J linking by a complete intersection of K
of type (2, f1, f2). Let (1, 3, h̃2, ..., h̃d1+d2−1, 3, 1) the Hilbert function of K, the socle degree
is d1 + d2 − 1. Using the property of linkage and symmetry we have that

f s−1

2
+1+j = h̃ d1+d2+d3

2
+j

= h̃ d1+d2−d3−2

2
−j

=

(d1+d2−d3−2
2

− j + 2

2

)

−

(d1+d2−d3−2
2

− j

2

)

;

where the last equality uses the fact that d1+d2−d3−2
2

≤ d1 and in our case j = 0, 2, 3. After
some numerical computation, we obtain that

D1 −D′
1 = f s−1

2
+1 − 2f s−1

2
+3 +

s− 1

2
+ 4 + 1 =











4 if d3 = d1 + d2 − 4

or d3 = d1 + d2 − 6;

3 if d3 ≤ d1 + d2 − 8.

Then we can conclude that the codimension of the conics C in the non-Lefschetz locus of
conics CA that do not vanish at any of the points of Z in P

5 is

(D1 −D′
1) + (D2 −D′

2)− (D3 −D′
3) =











4 if d3 = d1 + d2 − 4

or d3 = d1 + d2 − 6;

3 if d3 ≤ d1 + d2 − 8;

+











−1 if d3 = d1 + d2 − 4

or d3 = d1 + d2 − 6;

0 if d3 ≤ d1 + d2 − 8.

is 3 as required. �

7. Examples with Monomial Complete Intersections

In this section, we show that the hypothesis of generality in Theorem 6.1 is necessary,
by constructing examples of monomial complete intersections where the non-Lefschetz locus
of conics does not have the expected codimension. Since we know that for every Artinian
monomial complete intersection A = k[x1, x2, x3]/(x

d1
1 , xd2

2 , xd3
3 ) the non-Lefschetz locus of
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conics is a hypersurface in P
5 if d3 > d1 + d2 + 1 or if the socle degree e = d1 + d2 + d3 − 3

is odd, here we will focus on the case when the socle degree e is even and d3 ≤ d1 + d2.
First, if d3 = d1 + d2, in this case CA has expected codimension 2, but this codimension is

never achieved:

Proposition 7.1. The non-Lefschetz locus of conics of an Artinian monomial complete
intersection A = k[x1, x2, x3]/(x

d1
1 , xd2

2 , xd3
3 ) with d3 = d1 + d2 has codimension 1 in P

5.

Proof. As in Case 2.2 of Theorem 6.1, C is a Lefschetz conic if and only if the multiplication
map ×C : [A] e−1

2
−1 → [A] e+1

2

is injective. Since e+1
2

= d1+d2−1 = d3−1 < d3, it is equivalent

to check when the map ×C : [R/(xd1
1 , xd2

2 )]d1+d2−3 → [R/(xd1
1 , xd2

2 )]d1+d2−1 is injective. We
can see that ×C is not injective if and only if a6 = 0, where

C = a1x
2
1 + a2x1x2 + a3x1x3 + a4x

2
2 + a5x2x3 + a6x

2
3.

Clearly if a6 6= 0, then C is not a zero-divisor in R/(xd1
1 , xd2

2 ) and ×C must be injective. If
a6 = 0, we can check that, if a5 6= 0

xd2−1
1 xd1−1

2 −
a3
a5

xd2−2
1 xd1−1

2
×c
7→ 0,

while if a5 = 0

xd2−2
1 xd1−1

2
×c
7→ 0.

So C = a1x
2
1 + · · ·+ a6x

2
3 ∈ CA if and only if a6 = 0, and codim CA = 1. �

This proposition gives us that if d1 + d2 = d3, then the non-Lefschetz locus of conics is
defined as a set by the ideal (a6), but CA as subscheme of P5 does not need to be reduced or
unmixed, as we can see in the following example.

Example 7.2. Using Macaulay2 we obtain that, the non-Lefschetz locus of conics of the
monomial complete intersection

A = k[x1, x2, x3]/(x
2
1, x

2
2, x

4
3)

is defined by the ideal

I(CA) =
(

a36, a5a
2
6,−a3a

2
6,−2a3a5a6 + a2a

2
6

)

.

While the expected codimension is 2 in this case, in agreement with the previous proposition,
codim CA = 1 and

√

I(CA) = (a6). This ideal is saturated, but is not radical and not unmixed:
the primary decomposition

{

(a6) ,
(

a5, a
2
6

)

,
(

a26, a3a6, a
2
3

)

,
(

a25, a
2
3, a

3
6, a5a

2
6, a3a

2
6, 2a3a5a6 − a2a

2
6

)}

has components of respective codimension 1, 2, 2 and 3.

Let us consider now monomial complete intersections

k[x1, x2, x3]

(xd1
1 , xd2

2 , xd3
3 )

with d3 > d1 + d2 and socle degree e even. In this case, the expected codimension is 3, but
examples show that all possible codimensions are achieved.
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Example 7.3. For the monomial complete intersection A = R/(x2
1, x

2
2, x

2
3), the non-Lefschetz

locus of conics is given by the ideal generated by the coefficients of the square-free monomial
of C:

I(CA) = (a5, a3, a2) ,

so it has expected codimension: codim CA = 3.

Example 7.4. For A = k[x1, x2, x3]/(x
3
1, x

3
2, x

4
3), we have that codim CA = 2.

It is interesting to notice that I(CA) is neither saturated nor unmixed: we can show using
Macaulay2 that the primary components have codimension respectively 2, 3, 3, 3, 3, 3, 3, 3,
and 6. The last component is Artinian, and does not correspond to any geometric compo-
nent. Unlike Example 7.2, the radical is also not unmixed, with the first component having
codimension 2 and the rest having codimension 3:

√

I(CA) =(a6, a
2
3a4 − a2a3a5 + a1a

2
5) ∩ (a5, a4, a2) ∩ ( a5, a3, a

2
2 + 2 a1a4) ∩ (a3, a2, a1)∩

(3 a3a
2
5 − 2 a3a4a6 − 2 a2a5a6, 12 a1a

2
5 + a22a6 − 10 a1a4a6, 2 a3a4a5 − a2a

2
5 − 6 a2a4a6, 3 a

2
3a5 − 2 a2a3a6 − 2 a1a5a6,

12 a2a3a5 − 7 a22a6 − 2 a1a4a6, 12 a
2
3a4 + a22a6 − 10 a1a4a6, 8 a2a3a4 + a22a5 − 2 a1a4a5, a2a

2
3 − 2 a1a3a5 + 6 a1a2a6,

a22a3 − 2 a1a3a4 + 8 a1a2a5, a
4
5 + 4 a4a

2
5a6 − 4 a24a

2
6, a

4
3 + 4 a1a

2
3a6 − 4 a21a

2
6, a

4
2 − 68 a1a

2
2a4 + 4 a21a

2
4)

Example 7.5. Finally, if A = R/(x4
1, x

4
2, x

6
3), then the non-Lefschetz locus of conics has

codim CA = 1. Also in this case, the ideal is neither saturated nor unmixed.
Note that even if codim CA = 1 and it is contained in the hypersurface parametrizing the

the jumping conics, these do not coincide. Using Macaulay2 we can show that
√

I(CA) has
one primary component of codimension 1, the ideal (a6), and all other components have
codimension 3.

8. General Gorenstein Algebras

The construction of a Gorenstein algebra with the non-Lefschetz locus of expected codi-
mension in the proof of Theorem 6.1 suggests that it may be possible to generalize the result
to general Gorenstein algebras. We saw that the Gorenstein algebras R/I with fixed Hilbert
function form an irreducible family by [Die96], so by “general Gorenstein algebra” we refer
to a general element in this family.

In this section we want to compute the codimension for the non-Lefschetz locus of conics
CA of a general Gorenstein algebra, fixing the Hilbert function. We will show that the
condition on the g-vector is necessary to get the expected codimension if h⌊ e

2
⌋−1 6= h⌊ e

2
⌋+1.

By Proposition 2.10, we know CA = CA,⌊ e
2
⌋−1, so the non-Lefschetz locus of conics has

expected codimension

expcodim CA = min{h⌊ e
2
⌋+1 − h⌊ e

2
⌋−1, 6}.

By [AAI+23, Proposition 3.2] we know that a general Gorenstein algebra has the Strong
Lefschetz Property; in particular there exists a linear form ℓ such that ×ℓ2 : [A]i → [A]i+2 has
maximum rank for each i, and so ℓ2 /∈ CA, for A general. As a consequence, we know that for
a general Gorenstein algebra A we have codim CA ≥ 1. As a consequence if h⌊ e

2
⌋−1 = h⌊ e

2
⌋+1

the non-Lefschetz locus must have expected codimension.

Remark 8.1. This implies that if A is a general Gorenstein algebra with Hilbert function
(1, 3, h2, . . . , he) and socle degree e even, the non-Lefschetz locus always has the expected
codimension: it is a hypersurface in P

5 of degree h e
2
−1.
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Proposition 8.2. Let (1, 3, h2, . . . , he) be an SI-sequence such that the positive part of its
first difference (1, 2, g2, . . . , g⌊ e

2
⌋) is of decreasing type. Then for a general Gorenstein alge-

bra A with Hilbert function (1, 3, h2, . . . , he) the non-Lefschetz locus of conics has expected
codimension in P

5,

codim CA = min{h⌊ e
2
⌋+1 − h⌊ e

2
⌋−1, 6}.

Proof. If e is even, the CA has expected codimension by 8.1, so we can assume e is odd.
By semicontinuity, it is enough to construct a Gorenstein algebra A with Hilbert function

(1, 3, h2, . . . , he) and non-Lefschetz locus of conics with the expected codimension, and we
can proceed exactly as in the proof of Theorem 6.1.

Let R/J be a Gorenstein algebra with Hilbert function (1, 3, h2, . . . , he) that comes from
points, so that it is a quotient of R/IZ , where IZ is an ideal associated to a set of points Z
with Hilbert function

(1, 3, h2, . . . , h e−1

2

, h e−1

2

. . . ).

Since the first difference of the Hilbert function (1, 2, g2, . . . , g⌊ e
2
) is of decreasing type, we

can assume Z has the UPP by [MR88]. Then a conic C is a Lefschetz conic for R/I if and
only if

×C : [R/IZ ] e−1

2
−1 → [R/IZ ] e+1

2

is injective. With the same notation as in the proof of Theorem 6.1, let IY = (IZ : C) be the
ideal associated to the set of points Y of Z that C does not pass through. The map ×C is
injective if and only if [IY /IZ ] e−1

2
−1 = 0. Since Z has the UPP, this happens if and only if C

passes through at least

h e−1

2

− h e−1

2
−1 + 1 = h e−1

2

− h e+1

2
−1 + 1

points of Z. Since C is a conic, it can not vanish at more than 5 points of Z. So we obtain
that

codim CR/I = min{h e+1

2

− h e−1

2
−1 + 1, 6}.

�

Without the condition on the g-vector, the expected codimension is not necessarily achieved.
In fact, if the g-vector of A is not of decreasing type, then codim CA = 1. The proof pro-
ceeds in the same way that has been done for lines in [BMMRN18], and we include it for
completeness.

Proposition 8.3. Let A be a general Gorenstein algebra A with Hilbert function (1, 3, . . . , he)
such that the g-vector of A is not of decreasing type. Then the non-Lefschetz locus of conics
has codimension 1 in P

5.

Proof. Since the g-vector of A, (1, 2, g2, . . . , g⌊ e
2
⌋), is not of decreasing type, we can find

i < ⌊ e
2
⌋ such that gi−2 > gi−1 = gi. By [RZ01, Theorem 3.1] the generators of I of degree

≤ i have a common factor f and deg f = gi. Moreover, gi−2 > gi−1 and A is general, so the
generators of degrees less than i of (I : f) span the ideal of a set of points Z in P

2, that we
can assume to be reduced [RZ01].

Let C be a form of degree 2 and consider the multiplication map ×C : [A]i−2 → [A]i.
Since i < e−1

2
, this map has maximal rank if and only if it is injective. Note that

[A]j = [R/I]j = [R/(I : f) · f ]j = [R/(IZ) · f ]j
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for any j ≤ i. So we can consider the map ×C : [R/(IZ) · f ]i−2 → [R/(IZ) · f ]i. Let Y be
the set of points defined by the ideal IZ : C. We have the sequence

0 →

[

IY · f

IZ · f

]

i−2

→

[

R

IZ · f

]

i−2

×C
→

[

R

IZ · f

]

i

and the map ×C is injective if and only if [ IY ·f
IZ ·f

]i−2 = 0. Since the Hilbert function of R/IZ
reaches its multiplicity at i−gi−2 by [Dav85], it is enough that C passes through one of the
points of Z to get that [ IY ·f

IZ ·f
]i−2 6= 0. So codimCA,i−2 = 1, and therefore codimCA = 1. �

Without the hypothesis of generality, we do not know if there exists a Lefschetz conic, so
the codimension of CA could be zero. In fact, for Gorenstein algebras k[x1, x2, x3]/I, even
the WLP is an open question.
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