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Abstract—This paper focuses on mitigating DRAM Rowham-
mer attacks. In recent years, solutions like TRR have been
deployed in DDR4 DRAM to track aggressor rows and then
issue a mitigative action by refreshing neighboring victim rows.
Unfortunately, such in-DRAM solutions are resource-constrained
(only able to provision few tens of counters to track aggressor
rows) and are prone to thrashing based attacks, that have been
used to fool them. Secure alternatives for in-DRAM trackers
require tens of thousands of counters.

In this work, we demonstrate secure and scalable rowhammer
mitigation using resource-constrained trackers. Our key idea
is to manage such trackers with probabilistic management
policies (PROTEAS). PROTEAS includes component policies like
request-stream sampling and random evictions which enable
thrash-resistance for resource-constrained trackers. We show
that PROTEAS can secure small in-DRAM trackers (with 16
counters per DRAM bank) even when Rowhammer thresholds
drop to 500 while incurring less than 3% slowdown. Moreover,
we show that PROTEAS significantly outperforms a recent
similar probabilistic proposal from Samsung (called DSAC) while
achieving 11X - 19X the resilience against Rowhammer.

I. INTRODUCTION

DRAM scaling has led to higher DRAM capacities by
packing DRAM cells more closely. This has increased inter-
cell interference, leading to the problem of Rowhammer [21],
whereby rapid activations of one DRAM row can cause charge
leakage and bit-flips in neighboring rows. Such Rowhammer
bit-flips are not just a reliability problem, but also a major
security threat. Numerous studies have illustrated exploits us-
ing Rowhammer [1], [5], [8]–[10], [23], [37], [41]. Moreover,
the vulnerability is worsening with each DRAM generation.
The number of activations required to induce bit-flips, called
the Rowhammer threshold (TRH), has dropped from 140K
in DDR3 [21] to just 4.9K in LPDDR4 [18] over the last
decade. Thus, there is a growing need for effective and scalable
mitigations, as TRH is expected to drop further.

Mitigating Rowhammer effects within the DRAM module
has been an ongoing challenge. Since the release of DDR4
in 2015, DRAM manufacturers have deployed an in-DRAM
mitigation called Targeted Row Refresh (TRR). TRR and
many subsequent solutions rely on a tracking mechanism to
identify rapidly activated rows or aggressor rows and then
issue a mitigative action by refreshing the neighboring victim
rows [12]. The tracker typically consists of a group of counters
within each DRAM bank that counts row activations and issues
mitigations in the background of regular refresh commands
when they are issued to DRAM by the memory controller.

∗Gururaj contributed to this work while he was affiliated with NVIDIA.

Unfortunately, given the limited storage capabilities within
the logic space of a DRAM module, TRR implementations
often store less than 32 counters per DRAM bank [6], [13],
[15]. Such limited capacity of in-DRAM trackers has made
them significantly vulnerable to thrashing-based attacks such
as TRRespass [8] and Blacksmith [15], which ensure ag-
gressor rows are evicted from the tracker by activating a
larger number of rows than the tracker capacity, as shown
in Figure 1(b). Such thrashing-based attacks can continue to
activate untracked rows far beyond TRH without a mitigation,
thus inducing Rowhammer bit-flips and rendering resource-
limited trackers such as TRR non-secure.

Emerging trackers attempt to avoid such thrashing-based
attacks with deterministic tracking algorithms, which require
a larger number of counters. Graphene [31] maintains acti-
vation counts using the Misra-Gries algorithm [30]; recent
proposals [19], [27] store such counters within the DRAM
logic area. However, the required counters per bank increases
as the TRH decreases; as shown in Figure 1(a), Graphene
and similar solutions require ∼5K counters per bank at TRH
of 500 (680KB of SRAM per DRAM rank in DDR5 [32]);
such high storage overheads make these solutions impractical
for in-DRAM adoption. Alternative solutions maintain one
counter per row, requiring 8K to 16K counters per bank. These
counters are stored in memory [17], [32] and require additional
DRAM accesses to fetch and update the counters, leading to
high worst-case performance overheads of up to 70% [32];
storing them entirely within the DRAM array [3] requires
complex redesigns of the DRAM MATs. Consequently, such
deterministic trackers requiring thousands of counters per bank
have been difficult to adopt in commodity DRAM.

While trackerless solutions such as PARA [21] exist which
probabilistically issue mitigations to adjacent rows on activa-
tions, incurring no storage overhead, such solutions however
cannot be implemented transparently within the DRAM. They
are required to be implemented only within the memory
controller, as mitigative refresh commands cannot be issued
by the DRAM transparently after any given activation.

For an in-DRAM only solution, we seek a defense that (a)
incurs low storage (b) has strong security (c) has low per-
formance overheads (d) scales to low row hammer thresholds
(< 1K), and (e) is compatible with current DRAM interfaces.
Thus, we focus on low overhead mechanisms to secure in-
DRAM trackers (like TRR) by making them thrash-resistant.
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Fig. 1. (a) As Rowhammer thresholds drop below 1K, Rowhammer trackers require 1000s to 10,000s of counters to be secure, while resource-constrained
trackers (like TRR or DSAC) with tens of counters, which are practical within the logic area in DRAM, provide little to no security. (b) This is because
trackers with tens of counters are vulnerable to thrashing-based attacks, which can easily evict tracked entries to fool the tracker, exploiting its deterministic
management. (c) PROTEAS provides strong security with a small 16-entry tracker, via thrash resistance through probabilistic sampling and random evictions.

This paper shows that in-DRAM trackers can be made
thrash-resistant by enhancing the tracker management poli-
cies, which heavily influence the tracker’s security properties.
Conventional tracker management policies typically consist of
(a) a lookup policy (which DRAM activations should consult
the tracker) (b) an update policy (how to update tracker state
on hits) (c) an eviction policy (which entry to evict when
it is capacity-limited), (d) an insertion policy (whether to
insert entries on a miss), and finally (e) a mitigation policy
(which entry to issue a mitigation for). For instance, the in-
DRAM tracker in TRR [13] has a lookup policy where the
activation stream is sampled at deterministic time instances,
and mitigation/eviction policies, though not documented, that
are also likely deterministic (as attack patterns aligned to miti-
gation instances have shown better success in deterministically
evicting entries [6]). Such deterministic policies are the root
cause of vulnerability to thrashing-based attacks.

Based on this observation, we propose PRObabilistic
TrackEr mAnagement policieS (PROTEAS) to enable thrash-
resistant in-DRAM trackers. We observe that non-determinism
can be best introduced by varying the insertions and evictions,
rather than the mitigation policy. To that end, PROTEAS
proposes (i) probabilistic sampling to minimize the number
of insertions into the tracker and (ii) randomize replacement
to ensure that a diversity of rows are retained in the tracker.

We systematically study two different sampling approaches
to minimize thrashing. First, thrashing can be prevented by
modifying the tracker insertion policy to perform Probabilistic
Miss Stream Sampling (PMSS), where only a subset of the
misses are inserted into the tracker while the others are
bypassed (similar to the Bimodal Insertion Policy (BIP) [33]
for caches). A similar scheme was proposed recently by Sam-
sung’s probabilistic tracker, DSAC [14]1. However, we show
that sampling the miss stream is ineffective as the periodic in-
sertions continue to thrash the small tracker. Alternatively, we
can modify the tracker lookup policy to perform Probabilistic
Request Stream Sampling (PRSS) where only a subset of the
request stream looks up the tracker while the rest are bypassed.
We observe that PRSS performs significantly better than PMSS
(or DSAC) because sampling the request stream results in a
working set smaller than the tracker capacity. This ensures
that inserted rows get mitigated without the adversary being

able to thrash them, and thus provides much stronger protec-
tion against thrashing-based attacks. Consequently, PROTEAS
adopts PRSS for its sampling-based thrash-resistance.

However, thrash resistance alone is not sufficient. If the
sampling rate is not carefully selected, too low of a sampling
rate can allow requests that escape sampling to be used
for rowhammer, and too high of a sampling rate can lead
to thrashing. Hence, we derive the optimal sampling rate
where the tracker just begins to thrash, when the insertion
probability equals the mitigation probability of the tracker (1
per tREFI). To prevent such thrashing from being exploitable,
PROTEAS proposes a random replacement policy to ensure
a diversity of rows are stored in the tracker, and thus the
frequency-based mitigations are to diverse rows, as shown in
Figure 1(c). The tracker sampling decisions are based on a
pseudo-random number generator (PRNG) with a secret seed
(which is periodically changed), so the attacker cannot align
with and exploit sampling instances [15].

We evaluate PROTEAS on 500 uniform and non-uniform
attack patterns based on TRRespass [8] and Blacksmith [15].
Across all patterns, we measure maximum disturbance, the
maximum activations any row receives before a mitigation.
With 1 mitigation per tREFI, PROTEAS limits the maximum
disturbance to 2.1K, making it a suitable defense for current
(LP)DDR4 DRAM with TRH of 4.9K to 9K [18], [22].

We also co-design PROTEAS with RFM (a feature in
DDR5), which allows extra mitigation opportunities to the
DRAM. We observe that a baseline deterministic tracker (like
TRR), benefits minimally from additional RFM mitigations,
as it is easily thrashed even in the shorter period between
mitigations; it thus suffers a maximum disturbance of 73K to
64K activations with 1 to 8 mitigations per tREFI. Whereas,
PROTEAS with RFM significantly benefits from additional
mitigations: with 4 mitigations per tREFI, PROTEAS limits
the maximum disturbance to 600, which reduces to 300 with
8 mitigations per tREFI. This makes PROTEAS a scalable
defense even as TRH drops to 1K or 500 in the future.

1 PROTEAS aligns closely with recent work by Samsung (i.e., DSAC [14])
and SK Hynix [20] who also employ non-determinism through PRNG based
Rowhammer trackers. Samsung’s DSAC uses miss-sampling (like PMSS),
making it less thrash resistant; in Section VI-B we find that it is insecure
for Blacksmith-like attacks [15]. Hynix provides insufficient details for us to
provide a reasonable security comparison.
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Compared to recent probabilistic designs, our in-DRAM
solution PROTEAS achieves a maximum disturbance that is
15% lower than PARA [21], a trackerless solution in the mem-
ory controller, and 19X lower than Samsung’s DSAC [14], a
probabilistic in-DRAM tracker at equivalent mitigation costs.

Overall, this paper makes the following contributions:
1) We show that effective tracker management can enable

in-DRAM trackers to be secure against row hammer
attacks at Rowhammer thresholds of 1K or below.

2) We propose PROTEAS, a probabilistic tracker man-
agement policy, that uses request stream sampling and
random replacement to prevent tracker thrashing.

3) We demonstrate how a recent probabilistic tracker, Sam-
sung’s DSAC [14], is insecure and incurs a max distur-
bance beyond TRH, and 19X higher than PROTEAS.

4) We co-design PROTEAS with RFM on DDR5 systems
to show PROTEAS can significantly lower the max dis-
turbance below TRH of 1K and 500, unlike deterministic
trackers (like TRR) in commodity DRAM which benefit
minimally from extra RFM mitigations.

To our knowledge, this is the first work to systematically
analyze the relationship between a tracker’s management poli-
cies and its susceptibility to rowhammer. Our Gem5 evalua-
tions with SPEC CPU2017 workloads show that the average
performance impact is less than 1% for a TRH of 1K and
3% for TRH of 500. Our in-DRAM implementation incurs
negligible storage (less than 3KB per DRAM rank) that is
similar to current TRR implementations.

II. BACKGROUND AND MOTIVATION

A. DRAM Architecture and Parameters.

To access data from DRAM, the memory controller first
issues an activate (ACT) for a DRAM row to read it into a
row-buffer, the 64B data is then transferred to the bus, and then
the row may be closed and pre-charged (PRE). For reliable
operation, the memory controller ensures a minimum time gap
of tRC between two successive ACTs to a bank. The charge
of a DRAM row must also be refreshed periodically every
tREFW time period. For this, the memory controller issues a
REF command every tREFI period to refresh a subset of rows.
There are 8192 REFs issued every tREFW period to cover all
DRAM rows. Table I provides these timing parameters.

TABLE I
DRAM PARAMETERS (FROM MICRON DDR4 DATASHEET [29])

Parameter Explanation Value
tREFW Refresh Period 64 ms
tREFI Time between successive REF Commands 7800 ns
tRFC Execution Time for REF Command 350 ns
tRC Time between successive ACTs to a bank 45 ns
ACTs-per-tREFI ( tREFI - tRFC ) / tRC 165

B. DRAM Rowhammer Attacks

Kim et al. [21] discovered that rapid activations of a DRAM
row (called Rowhammer) can cause charge leakage and bit
flips in neighboring rows. The heavily activated row is called
an “aggressor” row and the neighboring row with a bit-flip

is called the “victim” row. These bit flips can occur up to
distance of 2 rows from the aggressor rows (also known as the
“blast-radius”) [22]. The minimum number of activations to an
aggressor row to cause a bit-flip in a victim row is called the
“Rowhammer threshold” (TRH). With DRAM scaling, TRH
has dropped significantly from 139K for DDR3 in 2014 [21]
to 10K for DDR4 [18] and just 4.8K–9K for LPDDR4 in
2020 [18], [22]. (see Table II).

Rowhammer is not only a reliability issue but has also
become a critical security threat. Numerous exploits have
shown that Rowhammer bit-flips in page-tables or sensitive
binaries can be used by attackers to escalate to kernel-level
privileges [8], [9], [37], [46], or the data-dependent nature of
the bit-flips can be used to leak confidential data [23]. Thus,
it is imperative to reduce the risk of Rowhammer attacks.

TABLE II
ROWHAMMER THRESHOLD OVER TIME

DRAM Generation RH-Threshold
DDR3 22.4K [18] - 139K [21]
DDR4 10K [18] - 17.5K [18]

LPDDR4 4.8K [18] - 9K [22]

C. Threat Model

Our threat model assumes an attacker with native execution
capability, that can issue memory requests for arbitrary ad-
dresses. We assume the attacker knows the defense algorithm,
but does not have physical access to the memory controller or
DRAM to learn any secret information stored inside DRAM
(e.g., seed used for random-number generator). Our defense
aims to prevent all known forms of Rowhammer attacks,
including TRRespass [8] and Blacksmith [15], that attempt
to fool the tracker or Half-Double [22] which fools mitigative
refresh. The recent RowPress [26] attack is out-of-scope, since
its effects are orthogonal to Rowhammer and can be mitigated
with a paging policy that limits the time a row is kept open.

D. Targeted Row Refresh (TRR) Mitigation in DDR4

DDR4 modules support in-DRAM mitigation against
Rowhammer called Targeted Row Refresh (TRR) [8]. TRR
maintains an aggressor row tracker within each DRAM bank.
Each tracker entry holds the DRAM row number and a
frequency counter. When the memory controller issues a REF
command every tREFI period, the DRAM issues a mitigation
for the highest activated row in the tracker. The mitigation in-
volves refreshing the neighboring victim rows (in a given blast
radius) during tRFC in the background of a REF command.

Recent Attacks. Recent studies [8], [13], [15] have shown
that trackers typically contain less than 32 entries per bank
due to DRAM storage constraints. The TRRespass [8] attack
exploited this limited storage by uniformly hammering a large
number of rows beyond the tracker capacity, to thrash the
tracker, and evict resident entries. As a result, the hammered
rows that are evicted escape a mitigation, and bit-flips can
be induced by fooling the tracker. Recent work [15] also
observed that some tracker implementations may perform
deterministic temporal sampling of activations for insertion
into the tracker. The Blacksmith attack [15] exploited this to
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flip bits by aligning its hammering pattern to escape sampling
and increasing the intensity of hammering for these rows.

Refresh Management (RFM). DDR5 includes a new fea-
ture, RFM, where memory controller can issue additional mit-
igations (RFM commands) to the DRAM when the activations
per bank crosses a threshold. However, the actual row to be
mitigated still depends on the in-DRAM tracker implementa-
tion. Consequently, if a vulnerable tracker like TRR [8], [15]
can be fooled (by thrashing or escaping sampling) between
mitigations, it can allow existing attacks to continue despite
additional RFM mitigations, as we shown in Section VI-B.

Resource-constrained trackers (like TRR with <32 en-
tries) are susceptible to attacks exploiting thrashing-based
evictions or deterministic sampling to escape insertions.

E. Storage Overheads of State-of-the-Art Trackers

State-of-the-art trackers typically store a large number of en-
tries to deterministically prevent thrashing-based attacks. Such
trackers may be stored in SRAM, DRAM or in both SRAM
and DRAM. At one end of the spectrum, Graphene [31] and
Mithril [19] perform approximate counting and require fewer
counters, while at the other end of the spectrum, solutions
utilize one counter per row [3], [17], [32] to perform exact
tracking. Other trackers [24], [38], [44] lie between these.

Graphene: Graphene [31] uses activation counters based
on Misra-Gries summaries, a solution to the frequent element
problem, to identify aggressor rows from a stream of row
activations in the memory controller. When any counter in the
tracker crosses a predefined threshold (TRH/2), the associated
row is mitigated. The counts in this tracker are always guar-
anteed to be greater than or equal to the actual row activation
counts, so long as the number of tracker entries is greater than
ACTs-per-tREFW / (TRH/2). For TRH of 500, this requires
5440 counters per DRAM bank (87K counters per rank)
consuming 240 KB SRAM per DRAM rank; additionally, this
must be organized as a 5400-entry CAM per bank, which may
be beyond practical capabilities [32].

Mithril: Mithril [19] stores a similar Misra-Gries tracker
within DRAM, and co-designs it with RFM to allow a smaller
tracker size when the mitigations are issued at a higher
frequency (with lower RFMTH ). Unfortunately, Mithril also
faces a similar problem that at low thresholds of 500, to
keep performance overheads low, it requires a tracker of few
thousand counters per DRAM bank, which is impractical given
that deployed in-DRAM defenses only have tens of counters.

Hydra: Hydra [32] and CRA [17] store one counter per
DRAM row, in a reserved portion of the DRAM. A 4GB
DRAM Rank (with 8KB rows) requires 512K counters per
rank. Unfortunately, Hydra faces performance overheads due
to additional DRAM accesses to fetch and update the counters.
Although these solutions deploy complex caching and filtering
mechanisms on-chip within the memory controller to avoid
extra DRAM accesses, recent work [32] shows that the average
slowdown for CRA is 25%, and for pathological workloads

where Hydra’s filtering may be ineffective, the worst-case
slowdown can be as high as 70%.

Panopticon: Panopticon [3] and PRHT from Hynix [20]
propose per-row counters stored within the DRAM array. This
requires 512K counters per DRAM rank, as before, which may
be updated without additional DRAM accesses. However, such
solutions require a significant redesign of the DRAM MATs,
and additional logic to store and update these counters in the
background of a DRAM ACT, which can additionally impact
DRAM timings. The required complex redesign of the DRAM
arrays makes such solutions less desirable.

State-of-the-art trackers require large storage overhead
(87K – 512K counters per DRAM rank) or require signif-
icant SRAM / DRAM changes making them undesirable.

F. Challenge with Existing Probabilistic Mitigations

PARA [21] or PRA [17] are trackerless probabilistic solu-
tions that issue a neighboring row activation from the memory
controller with a probability p on each DRAM activation.
Such solutions are trackerless, so they incurs no storage over-
heads. Unfortunately, this cannot be implemented transparently
within the DRAM as only the memory controller can issue
additional activation commands at arbitrary time instances to
specific rows; thus, such solutions must be implemented within
the memory controller. This also means that the memory
controller requires the knowledge of adjacent rows, which is
not currently exposed by DRAM to the memory controller.
Prior works [39], [45] have attempted to minimize mitigations
in PARA, but at the cost of lowering the security.

Recent proposals like PRoHIT [39] and Samsung’s
DSAC [14] employ stochastic replacement in resource con-
strained in-DRAM trackers, to filter out decoy rows in TR-
Respass attacks. DSAC achieves this by modifying the tracker
insertion policy to progressively reduce the probability of
eviction from the tracker on misses as the minimum count
in the tracker increases. PRoHIT uses two tracker tables (hot
table and cold table) and probabilistically promotes entries
from the cold to hot table to limit thrashing. While such
designs provide security against TRRespass attack, they are
vulnerable to newer attacks: e.g., DSAC’s consistent reduction
in insertion probability allows rows that escape sampling to
still be hammered (like in the Blacksmith attack [15]). In
Section VI-B, we show that both PRoHIT and DSAC are
insecure against Blacksmith-like attack patterns, which were
not evaluated in the original submissions.

G. Goal: Low Cost, Scalable, and Secure Trackers

Ideally, we desire a secure Rowhammer mitigation solution
that incurs low performance and storage overheads and is
compatible with existing DRAM protocols to be easily adopt-
able by current and future DRAM. Furthermore, we desire a
scalable solution as Rowhammer thresholds drop to 500 (by
10x compared to 2020 levels). To that end, we study storage-
limited trackers (like TRR) and redesign them to be secure by
systematically enabling them to be thrash-resistant.
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TABLE III
ATTACK PATTERN OF ACTIVATIONS UNDER STUDY

Type Pattern Parameter Sweep
Uniform (r1, ..., rj)

N j = 2, 4, 8, 16, 20,
32, 40, 80, 120, 140

Non-Uniform [(r1, ..., rj)
X , (d1, ..., dk)]

N j = 2, 4, 8, 16, 20,
32, 40, 80, 120, 140

X = 2, 3, 4, 5
k = 5, 10, 20, 32, 40, 80

III. METHODOLOGY

To analyze the thrash-resistance properties of trackers, we
use an empirical methodology based on access patterns de-
rived from recent row hammer attacks, like TRRespass [8],
Blacksmith [15], and SMASH [6]. We develop a trace-driven
Rowhammer simulator which models our trackers and uses
DRAM activation traces of attacks as input.

Attack Patterns: We use uniform [8] and non-uniform [15]
attack patterns (see Table III). A uniform attack pattern
resembles a TRRespass attack [8], consisting of a cyclical
reference to a set of target rows r with length j (larger
than the tracker capacity). A non-uniform pattern is like
Blacksmith [15], where activations occur to a set of target
rows r with length j with a higher intensity (X), compared
to a second set of rows d with length k, with an intensity of
1. The difference in intensity (X) and sequence lengths (j, k)
achieves the effect of varying intensity, phase, and frequency
like in Blacksmith [15]. We evaluate 10 uniform activation
patterns for different values of j (see Table III). For non-
uniform activation patterns, we evaluate ten different values for
j, four different values for X , and six different values for k for
a total of 240 non-uniform patterns. Recent attacks [6] show
that aligning activation patterns to tREFI can further increase
the success of row hammer attacks. Thus, we evaluate aligned
and unaligned versions of our 250 attack patterns for a total
of 500 patterns. These patterns cover footprints of 2 − 220
unique addresses.

Simulator: We use a trace-based simulator modeling an
aggressor-row tracker assuming DRAM parameters listed in
Table I. We assume a baseline 16-entry fully-associative
tracker. We run our 500 attack patterns through the simulated
tracker. For our baseline tracker, on hits, the frequency counter
of the associated entry is incremented. On every miss, a new
entry is inserted into the tracker with the frequency counter
set to zero. In the event the tracker is full, the Least Fre-
quently Used (LFU) entry in the tracker is evicted. At tREFI
intervals, the Most Frequently Used (MFU) entry is selected
for mitigation after which the entry is invalidated. The attack
patterns are continually repeated for a value N that covers one
refresh interval. Like prior work [14], we report “maximum
disturbance” which is the maximum activations received by
any row in the attack pattern before being refreshed.

IV. PROBABILISTIC TRACKER MANAGEMENT

We first formalize the management policies of a typical
aggressor-row tracker. We then systematically study proba-
bilistic tracker management policies for thrash protection.

Lookup

Insertion
Cntr = 0

Update

Cntr++

… f, e, d, c, b, a
DRAM Activation Stream

Tracker

[ RowAddress, Cntr ]

1

2

4

3 Eviction

Select Entry with 
lowest Cntr

5 Mitigation

Select Entry with 
highest Cntr & Invalidate 

Miss

Hit

Potential for 
Probabilistic Policies

Fig. 2. Overview of Tracker Management Policies and Potential for Proba-
bilistic Policies for Thrash Resistance

A. Formalizing Tracker Management Policies

Structure. Figure 2 shows a representative aggressor-row
tracker typical in DRAM defenses like TRR. We study small
trackers (e.g. 16 entry) which can be fully-associative in-
DRAM tables. Each entry stores the DRAM row address and
a frequency counter, which counts the hits received by the
entry while resident in the tracker. Since the entries with the
highest counts are selected for mitigation, a fool-proof tracker
management policy that retains frequently activated rows is
critical for effective mitigation.

Policies. As shown in Figure 2, tracker management is
composed of many different policies: 1 Lookup Policy,
2 Update Policy, 3 Eviction Policy, 4 Insertion Policy,

and 5 Mitigation Policy. In state-of-the-art trackers (like
TRR [13] or Graphene [31]), the Lookup Policy typically
consults the tracker on all (or a deterministic subset of) DRAM
activations [15]. On a hit, the Update Policy increments the
associated counter. On a miss, the Insertion Policy typically
inserts all missing entries into the tracker [31] with a frequency
count of zero. If the tracker is full2, the Eviction Policy typ-
ically employs a Least Frequently-Used (LFU) policy where
the entry with the lowest count is evicted. Finally, when issuing
a mitigation, the Mitigation Policy selects the entry with
highest count for mitigation [12], [31], after which the entry is
invalidated to enable other frequently accessed rows to receive
mitigations. Without loss of generality, we assume mitigations
are issued at tREFI intervals and refresh neighboring rows
within a blast-radius of 2 (to protect against Half-Double [22]).

B. Probabilistic Tracker Management Policies (PROTEAS)

Unfortunately, deterministic policies in state-of-the-art
trackers are susceptible to thrashing attack patterns. Such
attack patterns are designed with a working set larger than the
tracker capacity to cause thrashing, or are cleverly designed
to avoid insertions into the tracker exploiting the deterministic
policies. To address this, we enable thrash resistance with
PRObabilistic TrackEr mAnagement policieS (PROTEAS)3.

2The insertion policy prioritizes inserting into invalid entries first.
3Named after the Greek God Proteus who could change his form at will.

PROTEAS probabilistically changes insertion patterns seen by the tracker.
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Fig. 3. Probabilistic Sampling of (a) Request Stream and (b) Miss Stream

PROTEAS consists of two key components to introduce
non-determinism and diversity in rows resident within the
tracker: probabilistic sampling of insertions to avoid thrash-
ing and a random-replacement based Eviction Policy. Unlike
conventional tracker policies, both of these mechanisms en-
able diversity in mitigations. We systematically explain the
design of these two components and their benefits. We retain
the baseline Update and Mitigation Policy in Figure 2 (i.e,
frequency counter update on hits and MFU-based mitigations)
since we still desire that the most heavily activated rows are
tracked and mitigated accurately.

C. Probabilistic Sampling to Limit Tracker Thrashing

Our goal is to prevent thrashing based attacks from being
able to fool the tracker by deterministically evicting tracked
entries. Probabilistic sampling of insertions aims to reduce the
number of insertions to limit thrashing capability of the attack.
At the same time, the probabilistic sampling decisions are
based on a pseudo-random-number generator (PRNG), whose
seed is a secret stored within the DRAM and not known to the
attacker, so the attacker may not surgically avoid sampling into
the tracker. Moreover, the seed can be changed periodically,
to prevent an attacker from reverse-engineering the sequence.
Intuitively, sampling to limit insertions can be implemented
either at the Miss Stream or Request Stream. We analyze both.

Probabilistic Miss Stream Sampling (PMSS): Typical
Insertion Policies insert all missing entries into the tracker.
When the tracker is full, the Eviction Policy is used to select
a suitable victim. Consequently, when the access pattern has
a footprint that is larger than the tracker size, the tracker
starts thrashing. Past studies have shown that thrashing can
be avoided by inserting only a subset of the miss stream and
bypassing the rest [33]. Figure 3(b) illustrates the implementa-
tion of PMSS. On a Miss, if there is available capacity in the
tracker, the missing entry is installed in the empty locations.
If the tracker is full, PMSS uses a PRNG with a sampling
probability p to insert a subset of misses into the tracker.
This preserves a portion of the working set in the tracker, and
intermittently installs new entries, thus allowing new untracked
rows to be tracked. In fact, such a technique is deployed in
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Fig. 4. Sensitivity of PMSS and PRSS to Sampling Probability (p). PRSS
achieves a significantly lower minima for the maximum disturbance (2.2K)
compared to PMSS (5.1K), due to its more effective thrash reduction.

thrash-resistant cache replacement policies like BIP [33] and
in DSAC’s stochastic replacement for aggressor-row tracking.

Probabilistic Request Stream Sampling (PRSS): An alter-
native approach to limit thrashing is to probabilistically sample
the request stream and only use a subset of the activations
to consult the tracker. As shown in Figure 3(a), PRSS uses
a sampling probability p, based on a a PRNG, to select a
subset of the requests to lookup the tracker. The key idea is
that frequently accessed rows have a higher chance of being
sampled. Only the sampled requests update on hits and or
can insert into the tracker on misses, while the non-sampled
requests bypass the tracker.

For both PMSS and PRSS, the sampling probability p must
be selected appropriately. If p is high, the tracker can get
thrashed; if p is very low, the non-sampled activations can
induce sufficient hammering while escaping mitigations.

Results. Figure 4 shows the maximum disturbance (i.e.,
the maximum number of activations any DRAM row receives
before a mitigation) as the sampling probability p varies for
PRSS and PMSS (using the baseline LFU replacement), across
the 500 attack patterns described in Section III. The baseline
policy of consulting the tracker on all requests/misses (p = 1
or 100%) incurs a maximum disturbance exceeding 64K,
indicating that the tracker can be easily thrashed. As p re-
duces, PRSS and PMSS both reduce tracker thrashing because
the maximum disturbance decreases until p = 0.01 (1%).
However, as p reduces below 1%, maximum disturbance starts
increasing again. This is because with such low sampling rates,
the tracker is severely underutilized, enabling non-sampled
rows to induce hammering. This suggests that the sampling
rate must ensure at least one insertion per tREFI period.
With a maximum of 165 activations per tREFI (see Table I),
ensuring at least one entry in the tracker is populated requires
a sampling probability of at least 1/165 (i.e., 0.6%).

The lowest maximum disturbance value for PRSS is 2.2K
while that of PMSS is 8.1K (both at p = 0.01 (or 1%)). PRSS
significantly outperforms PMSS because of its underlying
implementation. PMSS by design ensures that the tracker
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Fig. 5. Sensitivity of PRSS to Replacement Policy. PRSS with Random
Replacement achieves a 10% lower minima for maximum disturbance (2K)
compared to LFU Replacement (2.2K).

stays fully occupied because invalid entries are prioritized for
insertion (see Figure 3(b)). Thus, in the steady state, whenever
PMSS performs an insertion, a tracker entry must be evicted.
As such, PMSS still thrashes the tracker and the portion of
access pattern that are not resident escape mitigation similar to
the baseline. On the other hand, with PRSS, the tracker does
not thrash and the occupancy is often below the maximum
capacity (on average 80% in our studies) and it performs best
when the sampling rate equals the mitigation rate. Given the
low chance of eviction, the sampled activations have a higher
chance of receiving mitigations, and thus PRSS achieves
a much lower maximum disturbance than PMSS. Thus for
PROTEAS, we choose PRSS with p = 0.01 (1%) as our
default design. As our tracker just begins to have infrequent
evictions at this probability, we now study replacement policy.

D. Random Replacement Policy for Diversity in Tracking

On tracker misses, state-of-the-art trackers [14], [31] employ
least frequency used (LFU) replacement to select an eviction
candidate. The goal is to retain heavily accessed rows resident
in the tracker so they have the opportunity to be selected for
mitigation. However, the disadvantage of such deterministic
replacement is that it can be exploited by attack patterns to
dislodge target entries deterministically. In doing so, the target
entries may be used for continued hammering while escaping
mitigations (since they are not resident in the tracker). To
address this vulnerability, we propose random replacement on
evictions. This ensures that evictions are unpredictable to the
adversary, thus thwarting attacks that may attempt to dislodge
a specific entry. Furthermore, random replacement ensures a
diversity of rows are retained in the tracker allowing diversity
in mitigations. Note that we only modify the Eviction Policy to
use random replacement. We retain and continue to update the
frequency counters used by the MFU-based Mitigation Policy,
which selects the entry with the highest counter for mitigation.

Results. Figure 5 shows the maximum disturbance for PRSS
with LFU and Random replacement. We observe that PRSS
with Random replacement is almost always better than LFU
replacement. In fact, it achieves a 10% lower minima for
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[ RowAddress, Cntr ]
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3 Eviction

Select Random Entry
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highest Cntr & Invalidate 

Miss

Hit1
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Fig. 6. Overview of Probabilistic Tracker Management Policies (PROTEAS)

the maximum disturbance (2K) compared to LFU based re-
placement (2.2K). This is because random replacement further
avoids thrashing from being easily exploitable by introducing
non-determinism into the tracker replacement behavior.

E. Putting it all together: PROTEAS

Based on Figure 5, PROTEAS uses PRSS with random
replacement as the default design choice. Figure 6 shows the
complete design of PROTEAS, with the PRSS and random
replacement enhancements. As illustrated in the figure, PRO-
TEAS requires minimal changes to the baseline tracker design.
We introduce only two pseudo-random number generators
(PRNG): one for PRSS and one for random replacement.
Section VI-G discusses the design overhead of these modi-
fications.

F. Sizing the Probabilistic Tracker

Figure 7 illustrates the sensitivity of PROTEAS to tracker
size as it varies from 2 to 128 counters. Across tracker sizes,
the lowest value for the maximum disturbance is achieved
close to p = 0.01 (1%), at which point the tracker insertion
rate (approximately 1.6 per tREFI) is close to the mitigation
rate (1 per tREFI). As tracker size increases from 2 to 128,
the maximum disturbance decreases. For a 16-entry tracker,
the maximum disturbance (at p = 0.01) is 2K. As the tracker
size increases to 32, 64, and 128, the maximum disturbance
decreases to 1834, 1538, and 1431 respectively. This is be-
cause the extra tracker capacity makes the attacker take longer
to thrash the tracker. Thus, the chance that a resident entry
receives a mitigation before it is evicted increases thereby
reducing the maximum disturbance for an attack pattern. On
the other hand, as tracker size decreases from 16 to 4 and 2,
the maximum disturbance increases as high as 2.5K. Out of an
abundance of caution, we choose the default tracker size of 16
for PROTEAS (at p = 0.01), where the maximum disturbance
of 2K is less than half the current TRH of 4.9K.

V. COMBINING PROTEAS WITH RFM FOR SCALABILITY

Thus far, we studied PROTEAS with one mitigation per
tREFI, which is issued at the time of the regular refresh during
tRFC. Such a design is appropriate for LPDDR4 and DDR4
(and HBM2) memories, where the opportunity for issuing
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mitigations is only on DRAM refresh commands. Given the
limited tRFC, it is not practical to issue mitigations for more
than one aggressor row per tREFI which involves refreshing
victim rows within a blast radius of 2 or 4.

In DDR5 and HBM3 standards, the memory controller
can issue Refresh Management (RFM) commands [19] to the
DRAM for additional mitigative refreshes per tREFI. We now
show how PROTEAS can leverage these additional mitigations
per tREFI to further limit the maximum disturbance.

Figure 8 shows our design of PROTEAS with RFMs for
DDR5 and LPDDR5 (and HBM3). The memory controller
maintains a Rolling Accumulation of ACTs (RAA) counter
[19]) per bank. When any RAA counter crosses a threshold,
RFMTH , the memory controller resets the RAA counter
and issues an RFM command for the corresponding DRAM
bank. To ensure k mitigations per tREFI under continu-
ous activations to a DRAM bank, we set the RFMTH to
ACTs-per-tREFI/k, i.e., once every 165/k activations. On
each RFM-based mitigation, as illustrated in Figure 6, the
Mitigation Policy (MFU-based) selects an entry from the
tracker and correspondingly issues refreshes to victim rows
within the blast-radius (radius of 2 by default).

DRAM ACTs

RAA Counter Per Bank

RAA0

RAA1

RAA2

…

…
DRAM Banks

…

PROTEAS Tracker 
Per Bank

PRSS

if RAA0 == RFMTH, 
RAA0 set to 0,
RFM0 Issued

Memory Controller DRAM

Fig. 8. Design of PROTEAS with RFM

Figure 9 shows how maximum disturbance varies with
sampling probability (p), as the number of mitigations per
tREFI is increased (RFMTH is lowered). As the number
of mitigations per tREFI is increased from 1 to 2, 4, and
8, the maximum disturbance decreases from 2K to 1K, 533,
and 290. Additionally, the sampling probability (p) at which
the minima for the maximum disturbance increases as the
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Fig. 9. Sensitivity of PROTEAS to Number of Mitigations per tREFI. With
4 and 8 mitigations per tREFI, the maximum disturbance decreases below
future Rowhammer thresholds of 1K and 500.

frequency of mitigation increases, with it being at p = 0.01
for the baseline and increasing to 0.03, 0.05, and 0.10 for 2,
4, and 8 mitigations per tREFI. This shows that the sampling
rate must be proportional to the mitigation rate. If the sampling
rate is lower than the mitigation rate, then the proposed policy
would be unable to issue mitigations since the tracker can be
empty. Overall, we observe that PROTEAS combined with
RFM is suitable for TRH of 1K and 500. Thus, PROTEAS
is a simple, practical, and scalable solution as Rowhammer
thresholds drop to 500 (by 10x compared to 2020 levels).

VI. RESULTS

A. Evaluation Methodology

We now evaluate PROTEAS for Rowhammer protection
efficacy, performance overheads, and storage overheads.

Rowhammer mitigation efficacy. We use our Rowhammer
simulator to compare PROTEAS with prior probabilistic mit-
igations such as DSAC [14] and PARA [21]. We collect the
maximum disturbance (number of activations before a refresh)
across all 500 attack patterns (Section III). The reported
disturbance is averaged over 100 different seeds provided to
the random number generator. We assume a 16-entry tracker
(like TRR) with a baseline policy of deterministic lookup and
insertion (100% sampling). We configure DSAC to target a
TRH of 500. We configure the baseline, PARA, and DSAC
with similar mitigation frequency as PROTEAS (1, 2, 4, or 8
mitigations per tREFI). For PARA, we achieve a rate of 1, 2,
4, and 8 mitigation per tREFI with mitigation probabilities of
0.6%, 1.2%, 2.5%, and 5%.

TABLE IV
BASELINE SYSTEM CONFIGURATION

Out-of-Order Cores 4 core, 3GHz, 8-wide fetch, 192 entry ROB
Last Level Cache (Shared) 4MB, 16-Way, 64B lines

Memory size, bus speed 16 GB, DDR4, 1.2 GHz (2400 MT/s)
tRCD-tCL-tRP -tRC 14.2-14.2-14.2-45 ns

Banks x Ranks x Channels 16×1×1
Rows 128K rows, 8KB row buffer
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Fig. 10. Maximum Disturbance of PROTEAS and other probabilistic miti-
gations. We report the means across 100 runs with different seeds and plot
error-bars for 95% confidence intervals.

Performance evaluations. We also model PROTEAS in
Gem5 [25], a cycle-accurate simulator in the Syscall Emula-
tion (SE) mode. We model a 4-core out-of-order CPU with
DDR4 2400MT/s memory, with timings based on Micron
datasheets [29]. Table IV shows the configuration. To model
the effects of our mitigative action, for 1 mitigation per tREFI
configuration, we assume it is issued during tRFC, similar
to TRR. For additional mitigations per tREFI, we model the
overhead similar to RFM, where the bank is busy for a period
of 2 × blast-radius × tRC. We evaluate our design with 17
SPEC2017 [40] rate workloads and 17 mixed workloads. We
fast-forward the workloads by 25 billion instructions to reach
regions of interest and simulate for 250 million instructions.

B. Comparing Maximum Disturbance of PROTEAS

Figure 10 compares the Max-Disturbance for PROTEAS
with prior probabilistic defenses, PRoHIT [39], DSAC [14],
and PARA [21]. We compare against a baseline deterministic
tracker which samples all lookups and uses LFU for evictions.

At one mitigation per tREFI, PROTEAS with 1% sampling
achieves a max-disturbance of 2.1K, which is 35X lower than
baseline which has a max-disturbance of 74K. As mitigations
per tREFI increase to 2, 4, and 8, the baseline determinis-
tic tracker continues to see a high max-disturbance (65K-
67K), whereas PROTEAS has max-disturbance that reduces
to 1128, 585, and 305 at sampling rates of 3%, 5%, and
10%, respectively. PROTEAS achieves 60X to 222X decrease
over the baseline because the deterministic tracker gets easily
thrashed despite the additional mitigations per tREFI, and the
resident entries are easily evicted between an insertion and
potential mitigation, despite the shorter time window with
higher mitigation frequency. However with PROTEAS, the
tracker can get thrashed over a much longer period, and hence
frequent mitigations limits the time available to an attacker,
thus reducing the maximum disturbance linearly.

In comparison, the prior probabilistic tracker PRoHIT [39],
achieves a max-disturbance of 21k with one mitigation per
tREFI (10x higher than PROTEAS). This is because Black-
smith patterns deterministically evict entries from PRoHIT’s
cold table before they are promoted to the hot table, thus
avoiding mitigations for hammered rows. Similarly, Samsung’s
DSAC [14], achieves a max-disturbance of 41K with one
mitigation per tREFI (19x higher than PROTEAS), which
decreases to 4K at 8 mitigations per tREFI (14x higher than
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Fig. 11. Average Disturbance of PROTEAS and other probabilistic mitiga-
tions. We report the means across 100 runs with different seeds and plot
error-bars for 95% confidence intervals.

PROTEAS). This is because DSAC adopts stochastic evictions
similar to PMSS in Figure 4, which reduces thrashing to a
less extent compared to PRSS in PROTEAS. Moreover, the
sampling probability in DSAC varies inversely to the minimum
count in the tracker. We observe the p in DSAC dynamically
varies between 1 and 0.05 leaving it more vulnerable to
thrashing than our PRSS which always operates at the optimal
sampling probability. The highest maximum disturbance for
DSAC is achieved for non-uniform attack patterns (where
decoy rows are accessed immediately after few iterations
of target rows similar to Blacksmith [15]) which effectively
thrash this tracker and severely degrade its security – these
patterns were not evaluated in DSAC.

The maximum disturbance with PROTEAS is generally
lower than PARA at similar mitigation costs. PARA with one
mitigation issued per tREFI achieves a max-disturbance of
2.4K (15% higher than PROTEAS), and with 8 mitigations
per tREFI, this reduces to 350 (14% higher than PROTEAS).
This is because, unlike PARA where the mitigations are
fully probabilistic, PROTEAS samples probabilistically into
the tracker and then intelligently selects entries for mitigation
based on frequency. This allows PROTEAS to achieve slightly
better resilience at equivalent mitigation costs. Moreover,
unlike PARA which is required to be implemented in the
memory-controller, that requires knowledge of neighboring
rows in DRAM, PROTEAS is an in-DRAM solution that can
be managed directly by memory vendors.

Overall, Figure 10 shows that with 1 mitigation per tREFI,
PROTEAS reduces max disturbance by 35X versus baseline,
by 10X compared to PRoHIT, by 19X compared to DSAC,
and by 15% compared to PARA. With 8 mitigations/tREFI,
these reductions with PROTEAS are 222X vs baseline, 72x
vs PRoHIT, 14X vs DSAC, and 14% vs PARA.

C. Comparing Average Disturbance of PROTEAS

We also compare the average disturbance for PROTEAS to
that of PRoHIT [39], DSAC [14], and PARA [21]. Again, we
compare these against a baseline deterministic tracker which
samples all lookups and uses LFU for evictions. Figure 11
illustrates the average disturbance received across the different
schemes. The figure shows that with 1 mitigation per tREFI,
PROTEAS reduces average disturbance by 20X versus base-
line, by 9X compared to PRoHIT, by 3X compared to DSAC,
and by 30% compared to PARA. With 8 mitigations/tREFI,
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Fig. 12. Sensitivity to Eviction Policy for Baseline and PROTEAS Tracker

these reductions with PROTEAS are 135X vs baseline, 62x
vs PRoHIT, 6X vs DSAC, and 40% vs PARA. Thus, PRO-
TEAS reduces both the maximum disturbance and the average
disturbance for the hammered rows compared to all prior
probabilistic defenses.

D. Sensitivity of PROTEAS to Tracker Eviction Policy

To better understand the impact of replacement algorithms
on trackers, we study sensitivity to tracker eviction policy
in both deterministic and probabilistic trackers. We study
LRU, LFU, BIP [33], and random replacement as the eviction
policy but maintain a LFU-based mitigation policy. Figure 12
illustrates the maximum disturbance for the different eviction
policies on the baseline deterministic tracker (no sampling
based insertion) and a PROTEAS tracker. For a deterministic
tracker, LRU has the highest maximum disturbance (226K)
followed by LFU (70K), which remains high even if mitiga-
tion frequency is increased because they are easily thrashed.
BIP and Random replacement minimize thrashing and reduce
maximum disturbance to 15K and 2K with 8 mitigations per
tREFI. BIP is thrash-resistant in that it retains a fixed portion
of the access stream in the tracker. Random replacement on
the other hand retains different portions of the access stream
allowing them to receive mitigations over time [33].

For PROTEAS, there is limited benefit from intelligent
replacement policies since the maximum disturbance across
all policies are similar. This is because intelligent replacement
policies like LRU/LFU/BIP lose temporal locality information
in the request stream and thus behave like random.

E. Performance Overheads of PROTEAS

We implement PROTEAS in Gem5 and measure its perfor-
mance overheads4 at different Rowhammer thresholds, using
1, 2, 4, and 8 mitigations per tREFI which correspond to
TRH values of 5K, 2K, 1K, and 500 respectively. As shown
in Figure 13, across 17 SPEC-CPU 2017 workloads and 17
mixed workloads (random combinations of SPEC workloads),
PROTEAS incurs negligible slowdown at TRH of 5K and 2K.
At these operating points, PROTEAS requires RFMTH of

4For space reasons we only report performance of PROTEAS. PROTEAS
and PARA incur similar slowdown. PROTEAS requires 15% fewer mitigation
refreshes to achieve similar Max-Disturbance vs PARA, so it achieves slightly
better performance (but both are within 1% of each other). Unlike PROTEAS,
PARA is a memory controller solution that cannot be deployed in-DRAM.

166 and 83, which results in 1 mitigation every 166 or 83
activations in the worst case. As activations are only a subset
of memory accesses, the resulting overheads are insignificant.

At TRH of 1K and 500, PROTEAS incurs slowdowns
of 0.3% and 2.9%. The comparatively higher slowdown is
because PROTEAS requires more frequent mitigations at these
thresholds (i.e., one mitigation per 42 and 21 activations).
With a default blast-radius of 2, each mitigation incurs 4
activations. Thus, PROTEAS at lower thresholds can cause
10% and 20% extra DRAM activations, which leads to higher
slowdowns. The highest slowdowns are for workloads like lbm
(14.9%) and blender (13.4%) at TRH of 500, which have the
highest DRAM activation rates of more than 20 per thousand
instructions (PKI). Workloads such as cactuBSSN and those
after it in the sorted list in Figure 13 have a DRAM activation
rate of less than 1 PKI and thus incur negligible slowdown
even at lower thresholds.

F. Sensitivity of Performance to Blast Radius

Figure 14 shows the performance-sensitivity of PROTEAS
to the blast-radius of the mitigation. Our default defense
refreshes victim rows within a blast radius of 2 from the
aggressor (refreshes to 2 rows above and 2 rows below) to
ensure protection against Half-Double [22] attacks which flip
bits in distance-2 victims. At TRH of 5K and 2K, we observe
negligible slowdown even for blast radius up to 4. At TRH of
1K, as blast-radius of mitigation increases from 1 to 2 to 4,
PROTEAS slowdown increases from 0.3%, 0.7%, and 1.5%,
whereas at TRH of 500, the slowdown increases from 1% to
3% to 6%. As mitigation blast radius increases from 1 to 4,
the number of neighbor rows refreshed per mitigation increases
from 2 to 8. This increases the slowdown at lower thresholds.

G. Storage Overheads of PROTEAS

PROTEAS requires 16 counters (each requiring 5-bytes: 21
bit counter and 17-bit rowID) per DRAM-bank (Table V). In
DDR4, across 16 banks, this incurs a storage overhead of 1.3
KB per rank, and in DDR5 (32 banks) requires 2.6 KB of
counters per rank in-DRAM. In the memory controller, RFM
requires one 8-bit counter per DRAM bank, incurring 32B of
storage within the memory controller for 32 banks per rank in
DDR5. These overheads are similar to TRR and RFM.

TABLE V
STORAGE OVERHEADS OF PROTEAS

Structure Per-Bank Per-Rank
DDR4 DDR5

Tracker in DRAM 16 x 40-bits 1.3KB 2.6KB
RFM Counters in MC 1 x 8-bits - 32B

PROTEAS also requires extra logic for two PRNGs per
DRAM bank (for PRSS and random replacement), requiring
a few thousand gates [2] in-DRAM per bank. We believe
this is practical especially since recent work by Hynix [20]
showcased a DRAM chip fabricated with a PRNG per bank.
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H. Energy Overheads of PROTEAS

PROTEAS relies on mitigative refreshes to victim rows
to prevent Rowhammer, which can lead to an increase in
DRAM energy consumption. On one hand, the additional
mitigations require extra activation and precharge operations
internally within the DRAM, which increase dynamic energy
consumption. On the other hand, extra mitigations may also
cause the overall execution time to increase, which causes an
increase in static DRAM energy (due to normal refreshes and
leakage power). Table VI shows the average energy overheads
for PROTEAS across 34 workloads reported from Gem5,
compared to a baseline without extra mitigations. On average,
PROTEAS incurs negligible energy overheads at TRH of 5K,
whereas at TRH of 1K, this overhead goes up to 0.5%, and
2.4% at TRH of 500. While the dynamic energy increases by
4.2% at TRH of 500, the static energy, which makes up the
majority of the DRAM energy for several workloads, increases
by only 2.3%, making the overall increase in energy of 2.4%.

TABLE VI
DRAM ENERGY OVERHEADS OF PROTEAS (BLAST-RADIUS = 2)

PROTEAS Config Static Energy Dynamic Energy Total Energy
TRH = 5K 0.0% 0.0% 0.0%
TRH = 1K 0.6% 0.5% 0.5%
TRH = 500 2.3% 4.2% 2.4%

VII. RELATED WORK

A. Deterministic Aggressor-Row Trackers

Prior Rowhammer detection mechanisms use resource in-
tensive trackers to identify frequently accessed DRAM rows

deterministically. These structures can either be stored on-chip
in SRAM or off-chip within the DRAM itself. Table VII com-
pares the storage overheads of these trackers with PROTEAS.

At one end of the spectrum, Graphene [31] uses the Misra-
Gries algorithm for tracking, which provides a lower bound on
the number of counters required for guaranteed detection of
rows that may be activated beyond the Rowhammer threshold.
Mithril [19] and PROTRR [27] leverage a similar algorithm
and store such a tracker within the logic portion of the DRAM.
However, at TRH of 500, and with the doubling of number
of banks in DDR5, such structures require a SRAM storage
of 640KB per rank, which is too high to be stored in SRAM
on-chip [31] or in the logic portion of the DRAM [19].

At the other end of the spectrum, Hydra [32] (and
CRA [17]) stores one counter per row in DRAM, with
additional filters or caches in on-chip SRAM to limit extra
accesses to DRAM. While such trackers require reserving
2.3MB of storage in DRAM, which is not significant, the
SRAM-based performance optimizations are access-pattern
dependent, which can lead to a worst-case slowdown of up
to 70% with pathological workloads. Storing such counters in
the DRAM array [3], [20] to avoid these performance issues
requires a significant redesign of the DRAM arrays, which
may affect DRAM access times, and is less desirable.

Other prior trackers typically incur different storage and
performance overheads. TWiCe [24] maintains a table of
counters to track activations per row, and prunes the entries
that are unlikely to reach the Rowhammer threshold to save
space. CAT [4] maintains a dynamic tree of counters which
allocates more counters to hot rows, to enable a storage-
efficient tracker. The storage overheads of such solutions scale
as the number of attacked rows increase. At low thresholds of
500, such solutions incur higher storage overheads than Hydra
or CRA, making them impractical.

D-CBF [44] uses a counting bloom-filter to identify poten-
tial aggressor rows that cross a certain threshold of activations.
Unfortunately, as this is a blocklisting-based tracker, rows once
inserted into the filter will continue to be flagged as aggressors
until the end of the refresh period (64ms) when the tracker can
be reset, making it incur high mitigation costs. Additionally,
this incurs a high SRAM storage overhead of 1.5MB per rank.

In contrast, PROTEAS incurs negligible storage costs of
less than 3KB SRAM stored within the DRAM logic area
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(equivalent to currently deployed TRR) and has low mitigation
costs, while providing significantly better security than TRR
by enabling effective thrash protection.

TABLE VII
STORAGE OVERHEADS OF TRACKERS PER 16GB DRAM RANK AT TRH

OF 500 (ALL STORAGE IS IN SRAM UNLESS SPECIFIED OTHERWISE)

Name DDR-4 (16 banks/rank) DDR-5 (32 banks/rank)

Hydra 26 KB (SRAM) 52 KB (SRAM)
2.3MB (DRAM) 2.3MB (DRAM)

TWiCe 2.3 MB 4.6 MB
CAT 1.5 MB 3.0 MB
D-CBF 768 KB 1.5 MB
Graphene 340 KB 640 KB
PROTEAS 1.3 KB (in DRAM) 2.6 KB (in DRAM)

B. Alternative Rowhammer Mitigation Mechanisms

PROTEAS uses a mitigative action of refreshing the neigh-
boring victim rows [13], [14], [19], [31], [32]. Alternatively,
REGA [28] proposed a mitigation of refreshing additional
rows in parallel to DRAM activations, at no slowdown, by
modifying the DRAM sense amplifiers. This avoids slow-
down but has the cost of significant additional refreshes and
increased DRAM energy consumption. PROTEAS can be
combined with REGA, to invoke such refreshes selectively
only for the neighborhood of aggressor rows, thus significantly
lowering the DRAM energy overheads, while enjoying the
performance benefits of simultaneous refresh and activation.

Prior works have also proposed alternative mitigation that
penalizes the aggressors. For instance, recent schemes like
RRS [34] and SRS [43] move aggressor rows within memory
by periodically swapping them with another random row in
memory. AQUA [36] similarly moves an aggressor row to
a quarantine region once it has been activated beyond a
certain threshold. As such mitigative actions are invoked from
the memory-controller, they cannot be directly applied with
PROTEAS, which is an in-DRAM defense. On other hand, in-
DRAM mitigations like SHADOW [42] or CROW [11] which
similarly relocate aggressor or victim rows in-DRAM within
the sub-array at low cost can be combined with PROTEAS.

Alternatively, memory-controller-based solutions like
Blockhammer [44] limit the access rate to potential
aggressor rows. Such mechanisms incur significant worst-case
performance overheads and as such cannot be combined with
PROTEAS given that it is implemented within DRAM.

C. Cryptographic Detection of Rowhammer Bit-Flips

Recent works propose storing cryptographic signatures like
Message Authentication Codes (MACs) for data in DRAM,
and using them to verify that data is free from tampering on
DRAM reads. SafeGuard [7] and CSI-RH [16] store MACs
for each 64 byte data in DRAM, whereas PT-Guard [35] only
stores MACs for OS page-table data. Since these solutions
detect a Rowhammer attack when bits flip, uncorrectable
multi-bit flips can lead to data loss. On the other hand, because
tracker-based solutions like PROTEAS adopt an orthogonal
approach of tracking aggressors and issuing mitigations to
prevent a Rowhammer bit-flip, such data loss is prevented.

VIII. CONCLUSION

In current DRAM modules, DRAM vendors have deployed
Target Row Refresh (TRR) which uses a small in-DRAM
tracking structure with tens of counters to detect row hammer
attacks. Unfortunately, thrashing-based attack patterns have
rendered TRR vulnerable. This paper proposes PRObabilistic
TrackEr mAnagement policieS (PROTEAS) to make in-DRAM
trackers thrash resistant. PROTEAS employs Probabilistic Re-
quest Stream Sampling (PRSS) and random replacement to
prevent thrashing and introduce diversity in entries held within
the tracker. PROTEAS significantly reduces the maximum
disturbance (i.e., number of activations before a mitigation) by
35X compared to a deterministic tracker baseline at current
TRH of 4.9K, and by 220X at thresholds of 500 when co-
designed with RFM. PROTEAS requires only 2.6KB storage
overhead on DDR5 systems while incurring only 0.3% and
3% slowdown for TRH of 1K and 500, respectively.

APPENDIX A
ANALYTICALLY DERIVING OPTIMAL SAMPLING RATES

All entries inserted into the tracker exit the tracker either
when they are evicted on a capacity/conflict miss OR when the
entry is mitigated. PROTEAS desires to operate at a sampling
probability where thrashing is minimized such that entries
inserted exit from the tracker predominantly on mitigations.
At this point, the tracker insertion rate should be at least equal
to the tracker mitigation rates, as inserting at a lower rate than
the mitigation rate means that the tracker is not fully utilized.
The insertion rate should be no more than the mitgation rate,
as that would overflow the tracker and cause thrashing.

For sequence of A activations to a tracker with sampling
rate S and a given MissRate, the total insertions (IA) is:

IA = A×MissRate× S (1)

The total mitigations (MA) for A activations assuming
mitigation rate M (number of mitigations per activation) is:

MA = A×M (2)

To avoid thrashing, PROTEAS desires IA equal MA. By
equating (1) and (2), the sampling rate S is:

S = M/MissRate (3)

Without loss of generality, assuming a MissRate = 0.5;
the optimal analytical sampling rate of PROTEAS is = M ×
2. Table VIII shows that the empirical sampling rate closely
matches the analytical sampling rate.

TABLE VIII
SAMPLING RATES ANALYTICAL VS EMPIRICAL

Mitigation Rate Sampling Rate Sampling Rate
(analytical) (empirical)

1 Mitigation per 166 ACTs 1.2 1
2 Mitigation per 166 ACTs 2.4 3
4 Mitigation per 166 ACTs 4.8 5
8 Mitigation per 166 ACTs 9.6 10
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[44] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi et al., “Block-
hammer: Preventing rowhammer at low cost by blacklisting rapidly-
accessed dram rows,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2021, pp. 345–
358.

[45] J. M. You and J.-S. Yang, “Mrloc: Mitigating row-hammering based
on memory locality,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2019, pp. 1–6.

[46] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“Pthammer: Cross-user-kernel-boundary rowhammer through implicit
accesses,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2020, pp. 28–41.

14

http://www.spec.org/cpu2017/
https://doi.org/10.1145/2976749.2978406

	Introduction
	Background and Motivation
	DRAM Architecture and Parameters.
	DRAM Rowhammer Attacks
	Threat Model
	Targeted Row Refresh (TRR) Mitigation in DDR4
	Storage Overheads of State-of-the-Art Trackers
	Challenge with Existing Probabilistic Mitigations
	Goal: Low Cost, Scalable, and Secure Trackers

	Methodology
	Probabilistic Tracker Management
	Formalizing Tracker Management Policies
	Probabilistic Tracker Management Policies (PROTEAS)
	Probabilistic Sampling to Limit Tracker Thrashing
	Random Replacement Policy for Diversity in Tracking
	Putting it all together: PROTEAS
	Sizing the Probabilistic Tracker

	Combining PROTEAS with RFM for Scalability
	Results
	Evaluation Methodology
	Comparing Maximum Disturbance of PROTEAS
	Comparing Average Disturbance of PROTEAS 
	Sensitivity of PROTEAS to Tracker Eviction Policy
	Performance Overheads of PROTEAS
	Sensitivity of Performance to Blast Radius
	Storage Overheads of PROTEAS
	Energy Overheads of PROTEAS

	Related Work
	Deterministic Aggressor-Row Trackers
	Alternative Rowhammer Mitigation Mechanisms
	Cryptographic Detection of Rowhammer Bit-Flips

	Conclusion
	Appendix A: Analytically Deriving Optimal Sampling Rates
	References

