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ABSTRACT
Approximate 𝐾-Nearest Neighbor (AKNN) search in high-

dimensional spaces is a critical yet challenging problem. The effi-

ciency of AKNN search largely depends on the computation of dis-

tances, a process that significantly affects the runtime. To improve

computational efficiency, existing work often opts for estimating

approximate distances rather than computing exact distances, at

the cost of reduced AKNN search accuracy. The recent method

of ADSampling has attempted to mitigate this problem by using

random projection for distance approximations and adjusting these

approximations based on error bounds to improve accuracy. How-

ever, ADSampling faces limitations in effectiveness and general-
ity, mainly due to the suboptimality of its distance approximations
and its heavy reliance on random projection matrices to obtain error
bounds. In this study, we propose a new method that uses an opti-

mal orthogonal projection instead of random projection, thereby

providing improved distance approximations. Moreover, our

method uses error quantiles instead of error bounds for approxi-

mation adjustment, and the derivation of error quantiles can be

made independent of the projection matrix, thus extending
the generality of our approach. Extensive experiments confirm the

superior efficiency and effectiveness of the proposed method. In

particular, compared to the state-of-the-art method of ADSampling,

our method achieves a speedup of 1.6 to 2.1 times on real datasets

with almost no loss of accuracy.
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1 INTRODUCTION
The problem of 𝐾-Nearest Neighbor (KNN) search in high-

dimensional spaces aims to identify the top-𝐾 data points in a

database 𝑆 that are closest to a query point 𝑞. KNN search is of
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great importance in information retrieval [26], data mining [7], rec-

ommendation systems [33], and large language models [24]. While

effective solutions (such as R-trees) for KNN search exist in low-

dimensional spaces, the curse of dimensionality [21] makes exact

KNN search prohibitively time-consuming in high-dimensional

spaces. As a result, researchers have resorted to a relaxed version

of the problem, called Approximate 𝐾-Nearest Neighbor (AKNN)

search, which trades accuracy for efficiency.

Given the importance of AKNN, a variety of AKNN algorithms

have been proposed. These algorithms mainly include inverted file-

based [3, 22], graph-based [10, 11, 25, 28, 29, 31], tree-based [5, 8, 32],

and hash-based [12, 15, 19, 20, 34, 37] methods. Conceptually,

to search for the AKNN of a query point 𝑞 in a database 𝑆 ,

AKNN algorithms can be abstracted into a candidate generation-
verification framework: (1) Candidate generation: This involves
selecting a subset of points from 𝑆 as a superset of the returned

AKNN. (2) Verification: This involves identifying the top-𝐾 points

closest to 𝑞 among the candidates to be returned as the AKNN.

Interestingly, the distinction between different AKNN algorithms

lies mostly in the candidate generation phase. For example, inverted

file-based methods (such as IVF) use clustering, while graph-based

methods (such as HNSW [29]) use greedy traversal to obtain candi-

dates. Yet, the verification phase of the AKNN algorithms is largely

similar across the board. This phase maintains a result queue 𝑄

(which can be implemented as a max-heap) to preserve the data

points closest to the query point 𝑞, thereby yielding the final result.

Specifically, for a given candidate point 𝑝 , if the distance from this

point to the query point 𝑞 is less than the maximum distance 𝜏

recorded in 𝑄 , the result queue is updated; otherwise, the vertex

is ignored. Thus, distance computation is critical and demanding

during the verification phase. In fact, distance computation is the
most time-consuming part of AKNN algorithms. For example,

for graph-based methods such as HNSW [29], distance computation

accounts for 80% of the total time of AKNN search; for inverted

file-based methods such as IVF, distance computation accounts

for 90% of the total time cost [13]. Thus, speeding up the distance

computation becomes the key to speeding up the AKNN search.

Approximate Distance Computation. To compute the (exact)

distance between two points in a 𝐷-dimensional space, one could

scan each dimension sequentially, resulting in a time complexity

of 𝑂 (𝐷). To speed up the distance computation and thus increase

the efficiency of the AKNN search, an intuitive idea is to com-

pute approximate distances instead of exact distances. Among

these, projection and product quantization [22] are two typical ap-

proaches to computing approximate distances, each with its own

suitable application scenarios. Specifically, projection methods (e.g.,
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Figure 1: A comparison of search efficiency (Qps) and accuracy (Top 1-
Recall) on the SIFT1M dataset. HNSWuses exact distance calculation,
while HNSWPQ uses Product Quantization (PQ) and HNSWPCA uses
PCA (with 𝑑 = 32) for approximate distance calculation.

PCA) transform the original 𝐷-dimensional space into a new 𝑑-

dimensional space (where 𝑑 < 𝐷), thus reducing the time complex-

ity of distance computation to𝑂 (𝑑); Product quantization methods,

on the other hand, divide the original space into𝑀 subspaces, each

of which has a dimension 𝑑 smaller than the original dimension

𝐷 . By merging the results of the subspaces via a distance look-up

table, the time cost of 𝑂 (𝑀) is achieved.
These two approximate distance computation methods can be

combined with any AKNN algorithm. However, using approximate

distances instead of exact distances greatly reduces the accuracy of

the search result. The reason is that during the verification phase,

incorrect approximate distances are likely to eject the true KNN

points out of the result queue 𝑄 , causing the final returned data

points (i.e., AKNN) to differ significantly from the actual results

(i.e., KNN). For example, on the SIFT
1
dataset with one million data

points, using projection methods (e.g., PCA) and product quantiza-

tion methods to compute approximate distances results in a huge

decrease in the recall of the top-1 result, as shown in Fig. 1.

Existing Solution. To address the shortcomings of existing dis-

tance computation methods in AKNN search, ADSampling [13]

was introduced. ADSampling first computes an approximation
distance between two points by random projection and obtains

an error bound from the projection matrix. The advantage of AD-

Sampling lies in its ability to use error bounds to analyze whether

the use of current approximate distances in the verification phase

of the AKNN search is sufficient. If not, more accurate distances

are computed incrementally until finally an exact distance is cal-

culated. ADSampling has achieved a good balance between speed

and accuracy in AKNN search through adjustment by error bounds,

and experimental results have confirmed its effectiveness. However,

there is still significant room for improvement in its effectiveness

and generality.

Effectiveness. ADSampling uses a projection method to obtain ap-

proximate distances. Specifically, ADSampling uses a random pro-

jection matrix to compute these approximate distances. Yet, within

projection methods, a random projection matrix cannot guaran-
tee the minimization of the error between approximate and

exact distances. Note that if the approximate distance is sufficiently

accurate, then ADSampling does not need to incrementally perform

1
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the more time-consuming precise distance calculations. Thus, it is

necessary to compute a more accurate approximate distance.

Generality. The error bound plays a critical role in ADSampling

because it can determine when the calculation of approximate dis-

tances needs to be replaced by exact distance calculations to ensure

accuracy. Unfortunately, obtaining the error bound for ADSam-

pling is highly dependent on the random process of generating the

projection matrix. This makes ADSampling highly dependent
on the random projection matrix, which makes it inapplicable

to approximate distances obtained by methods other than random

projection.

Our Idea. To address the shortcomings in the effectiveness of AD-

sampling, we propose new distance computation methods in this

paper. Specifically, we decompose the approximate (projected) dis-

tance to elucidate the relationship between the projection matrix

and the error term (i.e., the gap between the exact distance and

the approximate distance). By minimizing the error term, we find

that using the optimal orthogonal projection rather than the ran-
dom projection (as used by ADsampling) results in a theoretically

optimal approximate distance. Therefore, we choose to use the or-

thogonal projection to obtain approximate distances to improve

effectiveness.

Furthermore, inspired by the error bounds of ADsampling, we

use error quantiles to adjust the approximate distance during the

AKNN search. Compared to error bounds, error quantiles contain

more information and thus achieve a better balance between speed

and efficiency. Also, we decouple the acquisition of error quantiles

from the projection matrix and propose a numerical method to

compute error quantiles directly. Thanks to the decoupling, our
method can now be adapted to arbitrary approximated distances

(such as those obtained from product quantization), thereby endow-

ing our proposed approach with the generality that ADsampling

lacks.We also discuss how to incorporate the proposed approximate

distances and error quantiles into the AKNN search’s verification

phase in order to implement a specific AKNN algorithm.

Contributions.We summarize our contributions as follows:

Problem Analysis of the State-of-the-art. We investigated the limita-

tions of the cutting-edge AKNNmethod, ADSampling. In particular,

the use of random projection for ADSampling to compute approx-

imate distances reduces its effectiveness. Furthermore, the error

bound used in ADSampling is highly dependent on the random pro-

jection matrix used, rendering it difficult to adapt to other approxi-

mate distance computation methods and thus losing generality.

A New Projection-Based Distance Computation Method. To obtain

the approximate distance, we found that using an optimal orthogo-

nal projection rather than random projections (as in ADSampling)

produces the smallest approximation error. In addition, inspired by

the use of error bounds in ADSampling, we use a more informa-

tive error quantile to indicate when to compute exact distances to

ensure accuracy. The adoption of a novel approach for obtaining

approximate distance plus the utilization of error quantiles consti-

tutes our new projection-based distance computation method. This

method can be integrated with any AKNN algorithm.

A New General Distance Computation Method. We propose a gen-

eral method for computing distances. Unlike ADSampling, which

2



Table 1: A Summary of Notations

Notation Description

𝑆 A set of points

𝐷 The dimensionality of 𝑆

R The projection(rotate) matrix

R𝑑 𝑑-dimensional Euclidean space

𝑑𝑖𝑠,𝑑𝑖𝑠′ precise and approximate distance

𝑁 𝑒𝑓 HNSW search parameter

𝑁𝑝𝑟𝑜𝑏 IVF search parameter

∥𝑢, 𝑣 ∥ The Euclidean distance between 𝑢 and 𝑣

𝜏 The distance threshold

𝐿 The linear classifier

is only applicable to approximate distances obtained via random

projection, our method does not impose any restrictions on how

approximate distances are obtained to ensure generality. Specifi-

cally, we propose to derive error quantiles from data distributions

and use a learning-based approach during the validation phase

to decide whether it is necessary to compute precise distances to

maintain accuracy in the AKNN search. In addition, we discuss how

our general distance computation method can be integrated with

existing AKNN algorithms to improve their efficiency.

Extensive Experimental Analysis. We have conducted extensive ex-

periments on a large number of real datasets to validate our meth-

ods. The experimental results show that our methods can achieve

an acceleration of 1.6 to 2.1 times compared to the state-of-the-

art ADSampling. Moreover, our methods show stable performance

under different parameter settings, which further illustrates the

effectiveness of our methods.

Due to space limitations, some proofs have been omitted and

can be found in the technical report [35].

2 PRELIMINARIES
Section 2.1 introduces AKNN search problem and algorithms. Then,

Section 2.2 discusses the issue of distance computation, an essential

component of AKNN search.

2.1 The AKNN Search
Given a dataset 𝑆 containing 𝑛 points/vectors in 𝐷-dimensional

space, that is, 𝑆 = {𝑝1, 𝑝2, ..., 𝑝𝑛}, where 𝑝𝑖 ∈ R𝐷 . We use the

squared Euclidean distance
2
to compute the distance 𝑑𝑖𝑠 (𝑝, 𝑞) be-

tween two points 𝑝 and 𝑞, where 𝑑𝑖𝑠 (𝑝, 𝑞) = ∥𝑝 − 𝑞∥2. The time

complexity of computing 𝑑𝑖𝑠 (𝑝, 𝑞) is 𝑂 (𝐷) by scaning each dimen-

sion sequentially. The problem of the 𝐾-Nearest Neighbor (KNN)
search is to find the data points in 𝑆 that are among the top-𝐾 small-

est distances to a query point 𝑞 ∈ R𝐷 . Note that there are other
widely adopted distance metrics, such as cosine similarity and inner

product, that can be transformed into Euclidean distance through

simple transformations [13]. Table 1 summarizes the commonly

used notation.

AKNN Algorithms. Due to the complexity of KNN search, the

problem of its relaxed version —Approximate 𝐾-Nearest Neigh-
bors (AKNN) search — has been proposed. Given a query point 𝑞,

2
squaring does not affect the order of distances

o1
o2
o3
o4

o5
o6

o7
o8
o9
o10

o11
o12
o13

data centroid

IVF-Index HNSW-Index

Figure 2: Example of IVF and HNSW

the AKNN search does not require the returned points to be the ex-

act𝐾 closest points to𝑞, thus sacrificing accuracy for computational

efficiency. Currently, AKNN algorithms can be divided mainly into

four categories: tree-based [8], hash-based [12, 15, 19, 20, 34, 37], In-

verted File-based[3, 22], and graph-based [10, 11, 18, 25, 27, 29, 31].

Inverted File-based Algorithms. The basic idea behind Inverted File-

based algorithms (see Fig. 2) is to use clustering to divide the points

in a dataset 𝑆 into multiple clusters. This is then used to speed up the

AKNN search. Specifically, during the indexing process, IVF uses

the 𝑘-means algorithm
3
to cluster the data points in 𝑆 , constructs a

bucket for each cluster, and assigns the data points contained in that

cluster to the corresponding bucket. During the query process, for

a given query point 𝑞, IVF first selects the nearest 𝑁𝑃𝑟𝑜𝑏𝑒 clusters

based on the distance from 𝑞 to the cluster centroids, retrieves all

data points in the corresponding buckets of these nearest clusters

as candidates, and then identifies the 𝐾 nearest neighbors among

these candidates. Here, 𝑁𝑃𝑟𝑜𝑏𝑒 is a user parameter that controls

the trade-off between time and accuracy: as 𝑁𝑃𝑟𝑜𝑏𝑒 increases, more

clusters are considered, thus improving accuracy at the cost of

increased computation time.

Graph-based Algorithms. Graph-based algorithms for approximate

nearest neighbor (ANN) search rely on the construction of a navi-

gable graph structure where nodes represent data points and edges

connect nodes that are considered nearest neighbors. Hierarchi-

cal Navigable Small World (HNSW), a state-of-the-art graph-based

algorithm (see Fig. 2), has been recognized for its superior perfor-

mance in terms of search speed and accuracy. To index HNSW,

data points are inserted into a multi-layered graph structure with

each layer representing the data in increasingly fine-grained de-

tail. During insertion, each point is connected to a fixed number

of closest neighbors, ensuring that each layer retains a navigable

small-world network property. In the query process, the search

begins by navigating down from the top layer, leveraging the hier-

archical small-world structure to efficiently converge on the region

closest to the query point. Once reaching the base layer, the al-

gorithm navigates precisely through the neighborhood graph to

identify the approximate nearest neighbors to the query point.

Other AKNN Algorithms. Other AKNN algorithms include tree-

based and hash-based methods, among others. Tree-based methods

3
The number 𝑘 of clusters in k-means algorithm and the number 𝐾 of neighbors in

KNN do not need to match.
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Figure 3: Example of random projection and quantization

identify candidate points through tree routing, while hash-based

methods generate candidate points through hash codes, then fur-

ther identify the result points as AKNN. It is important to note that

in practice, these methods are not more appealing than the Inverted

File- and graph-based methods due to performance.

2.2 Existing Distance Computation Methods
From the introduction of AKNN algorithms, it is clear that although

these algorithms use different approaches to obtain AKNN, they

all follow the same candidate generation-verification framework in

the query process: In the candidate generation phase, the AKNN

algorithms collect a superset of points in 𝑆 as candidates. In the

verification phase, they identify the top-𝐾 closest points to a query

point 𝑞 from the candidates as the result to be returned. Note that

the methods for generating candidate points differ significantly and

thus form different categories of AKNN algorithms, e.g., IVF uses

clustering, while HNSW uses traversal to find candidates. How-

ever, the verification phase of generating result points from the

candidates is actually the same for different AKNN algorithms.

The Verification Phase. To find the 𝐾 result points from the

candidates, current AKNNAlgorithms oftenmaintain a set of points

using a queue 𝑄 (usually organized as a max-heap). They examine

each candidate point sequentially; for each candidate point 𝑝 , they

check whether its distance to the query vertex 𝑞 is not greater than

the maximum threshold 𝜏 recorded in 𝑄 . If so, the new candidate 𝑝

is inserted into 𝑄 and 𝑄 is updated; otherwise, 𝑝 is ignored.

Approximate Distance Computation. The time to compute dis-

tances dominates the runtime of the AKNN search, accounting

for 80% of the time complexity in IVF and 90% in HNSW. To im-

prove efficiency, an intuitive idea is to use approximate distances

instead of exact distances for the verification phase of the AKNN

search. Existing work has proposed two methods for computing

approximate distances: projection and product quantization (see

Fig. 3). Recall that computing distances by successively scanning

dimensions leads to a linear time cost in the dimensionality𝐷 of the

dataset 𝑆 , these two methods use different approaches to reduce the

dimensionality of the data to improve efficiency, and each method

has its own appropriate application scenarios.

Projection. Projectionmethods (such as PCA) map high-dimensional

data to a lower-dimensional space, mitigating the curse of di-

mensionality and facilitating efficient data processing and stor-

age. Specifically, we generally achieve dimensionality reduction

by multiplying the vectors in the original space by an orthogonal

projection matrix. The advantage of projection methods is that

they are relatively easy to implement, involving the construction

of projection matrices for matrix multiplication, and allow for the

processing of large, high-dimensional data sets in a comparatively

short amount of time.

Product Quantization. Product quantization methods (such as

OPQ [22]) arewidely used for dimensionality reduction and efficient

similarity search in large databases, especially for high-dimensional

data. Unlike projection-based methods, which transform data into

a lower-dimensional space through the projection matrix. Product

quantization takes a different approach, decomposing the high-

dimensional space into a Cartesian product of lower-dimensional

subspaces. The original high-dimensional vectors are then rep-

resented by a combination of quantized vectors from these sub-

spaces. The advantages of product quantization over projection

include: • Storage efficiency. product quantization represents high-

dimensional data using a combination of indices from its quantized

subspaces, which often requires less memory than storage with

projection-based methods; • Computational Speed. Due to its quan-

tized nature and the use of a codebook, product quantization can

speed up the distance lookup search process, making it effective

for distance computing.

Remark. Both the projection and product quantization methods

can accelerate the computation of distances. However, employing

approximate distances as direct substitutes for exact distances in the

verification phase of the ANN algorithms may result in decreased

search accuracy. To explain, suppose that𝐾 = 1 and we want to find

the nearest neighbor of a query point 𝑞. If the approximate distance

of some candidate point 𝑝 to query 𝑞 is less than the approximate

distance of 𝑞’s nearest neighbor, the AKNN algorithm cannot return

an exact result.

3 PROBLEM ANALYSIS
To mitigate the loss of accuracy associated with the direct inte-

gration of approximate distances into existing AKNN algorithms,

ADSampling has been proposed to optimize distance computations.

The core idea of the ADSampling method is to use not only ap-

proximate distances but also an error bound for the adjustment.

By using an error bound, ADSampling can effectively determine

whether the current approximate distance is sufficient for the veri-

fication phase of the AKNN search. If not, then performing more

precise distance calculations can compensate for the inadequacy of

the approximate distances. In particular, the introduction of addi-

tional accurate calculations allows ADSampling to prevent loss of

accuracy.

Approximate Distance. ADSampling uses the random projection

distance as the approximate distance. The relation between the

random projection distance 𝑑𝑖𝑠′ and the original distance 𝑑𝑖𝑠 can

be bounded by the following lemma:

Lemma 1. For a given object x ∈ R𝐷 a random projection 𝑃 ∈
R𝑑×𝐷preserves its Euclidean norm with a multiplicative error 𝜖 bound
with the probability of.

P

{�����
√︂
𝐷

𝑑
∥𝑃x∥ − ∥x∥

����� ≤ 𝜖 ∥x∥
}
≥ 1 − 2𝑒−𝑐0𝑑𝜖

2

(1)
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Error Bound. From Lemma 1, the error bound between the approx-

imate distance 𝑑𝑖𝑠′ and the exact distance 𝑑𝑖𝑠 is bounded by 𝜖 · 𝑑𝑖𝑠
with a small error probability (2 exp(−𝑐0𝑑𝜖2)).
How ADSampling Works. ADSampling can be incorporated into

any AKNN algorithm. Specifically, in the verification phase of an

AKNN algorithm, ADSampling proposes a hypothesis testing frame-

work based on the distance bound above that is designed to address

the problem of using the approximate distance directly. That is, if

𝑑𝑖𝑠′ > (1 + 𝜖) · 𝜏 , where 𝜏 is the maximum distance (threshold) of

a queue 𝑄 , ADSampling concludes with sufficient confidence that

𝑑𝑖𝑠 > 𝜏 under a preset significance 𝑝 = 2 exp(−𝑐0𝜖2
0
), where 𝜖0 is

a parameter to be tuned empirically. In this case, it is sufficient to

use the approximate distance. Otherwise, the approximate distance

is not sufficient to determine whether a point should be included

in the quorum 𝑄 . We can sample more dimensions and compute a

more precise approximate distance to conclude 𝑑𝑖𝑠 > 𝜏 or 𝑑𝑖𝑠 ≤ 𝜏 .
Limitations. ADSampling has two limitations. (1) ADSampling

uses random projection to compute the approximate distance. How-

ever, in projection methods, a random projection matrix cannot

guarantee that the error between the approximate and exact dis-

tances will be minimized. This raises the possibility that the approx-

imate distances computed using a random projection matrix may

differ significantly from the exact distances. Note that ADSampling

requires incremental approximate distance calculations until the

current (approximate) distance can ensure whether or not a can-

didate point is ignored during the verification phase of the AKNN

search. Consequently, improving the accuracy of the approximate

distance estimation may allow ADSampling to stop calculating

distances for a candidate point sooner, thus speeding up the calcu-

lation process. (2) The error bound provided by Lemma 1 is only

applicable when the projection matrix is random and thus lacks a

more general framework to adapt to more efficient approximate

distances such as quantized distance.

4 AN IMPROVED PROJECTION-BASED
DISTANCE COMPUTATION METHOD

This section primarily addresses the first problemwith ADSampling:

the inaccuracy of the approximate distance estimation. We also

propose the use of more informative error quantiles to replace error

bounds (used in ADSampling), thereby ensuring earlier termination

of (incremental) distance computations when verifying a candidate

point. Our discussion in this section assumes the use of projection

methods to obtain approximate distances, and we will explore the

use of more general methods to obtain approximate distances in

the following section.

4.1 Accurate Approximate Projection Distance
We investigate the projection matrices that yield approximate dis-

tances closely aligned with the true distances under projection

methods. By decomposing the approximate (projected) distances,

we find that PCA projection matrices produce the optimal approxi-

mate distances.

Probabilistic Model and Project Distance. Suppose the x, q is

the 𝐷-dimension database vector and the query vector. We can

view these vectors in a transformed coordinate system that is only

an orthonormal matrix away. We denote the transformed (aka,

rotated) vectors x𝐷 and q𝐷 , respectively. Then we consider a simple

model in which we randomly sample data points 𝑥 from the dataset

according to a fixed but unknown distribution 𝑈 . We consider a

global rotation parameterized by the matrix R. The rotated vector

Rx is then decomposed into x𝑑 and x𝑟 . In this new coordinate

system, we group dimensions into two groups: those consisting

of the first 𝑑 dimensions and the rest. Then we can denote x𝐷 as

(x𝑑 , x𝑟 ), where x𝑑 is x𝐷 truncated to the first 𝑑 dimensions and x𝑟
the rest. Similarly, q𝐷 = (q𝑑 , q𝑟 ).

The square Euclidean distance can be computed by

∥x − q∥2 = ∥x𝐷 − q𝐷 ∥2 = ∥x∥2 + ∥q∥2 − 2 · ⟨q, x⟩
= ∥x𝑑 ∥2 + ∥q𝑑 ∥2 + ∥x𝑟 ∥2 + ∥q𝑟 ∥2

− 2 · (⟨q𝑑 , x𝑑 ⟩ + ⟨q𝑟 , x𝑟 ⟩).
(2)

Note that ∥x𝑑 ∥2 + ∥x𝑟 ∥2 can be precomputed offline. The ∥q𝑑 ∥ +
∥q𝑟 ∥2 only needs to be computed once for a given query. Let

𝐶1 B ∥x𝑑 ∥2 + ∥q𝑑 ∥2 + ∥x𝑟 ∥2 + ∥q𝑟 ∥2 and 𝐶2 B ⟨q𝑑 , x𝑑 ⟩ (whose
computation cost during the query processing is𝑂 (𝑑)). The approx-
imate distance can be computed as 𝑑𝑖𝑠′ = 𝐶1 − 𝐶2 and the error

term compared to the precise distance is −2 · ⟨q𝑟 , x𝑟 ⟩.
Minimize Residual Variance.We can derive a concentrated in-

equality for pruning precise distance computations based on the

variance of error terms and the well-known Chebyshev’s inequality.

Initially, we address the computation of the variance associated

with the error term. Let 𝜎2
𝑖
represent the variance of the 𝑖-th dimen-

sion in distribution 𝑈 . Upon receiving a query, the variance of the

inner product for the residual dimension is 𝜎2
𝑖
𝑞2
𝑖
. In the case where

we use orthogonal projection, the covariance of each dimension

after rotation (rotate) is zero. Consequentlys, the variance of the

error term is computed as:

𝑉𝑎𝑟 (−2 · ⟨q𝑟 , x𝑟 ⟩) = 4 ·
𝑖≤𝐷∑︁
𝑖=𝑑+1

(q𝑖𝜎𝑖 )2

Following this, we explore all orthogonal projection matrices

to reduce the variance of the error term and we get the following

theorem 1.

Theorem 1. For a given vector dataset 𝑆 , the PCA projectionmatrix
maximizes the projected dimension variance which also minimizes
the residual dimension variance.

The PCA projection matrix is well-suited to address our prob-

lem, where the PCA projection maximizes the projection variance.

We show that the PCA also minimized the variance in residual

dimension. We investigate the distribution of error terms on real

datasets and the differences among various projection matrices.

For the DEEP1M dataset (256 dimensions) and a given query q,

we plot the distribution of ⟨q𝑟 , x𝑟 ⟩. As illustrated in Fig. 4a, with a

residual dimension of 128, the PCA projection matrix demonstrates

a more concentrated distribution compared to the random projec-

tion. Furthermore, as shown in Fig. 4b, with increasing projection

dimensions and decreasing residual dimensions, the error gradually

converges to 0. Then we study the error bound of the projection

distance error.
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Figure 4: Example of PCA Error and Random Projection Error Dis-
tribution in Deep1M Dataset
4.2 More Informative Error Quantiles
Inspired by the role of error bounds in ADSampling, we introduce

the concept of error quantiles. Compared to error bound, error

quantiles contain more information, thus more likely to enable

early determination whether a candidate point can be disregarded

in the verification phase of AKNN search.

Base on the project distance decomposition we can get the fol-

lowing deterministic inequality

∥x𝐷 − q𝐷 ∥2 = 𝐶1 −𝐶2 − 2 · ⟨q𝑟 , x𝑟 ⟩ ≥ 𝐶1 −𝐶2 − 2 · ∥q𝑟 ∥ · ∥x𝑟 ∥ (3)

The inequality is due to the Cauchy–Schwarz inequality, where

⟨q𝑟 , x𝑟 ⟩ ≤ ∥q𝑟 ∥ · ∥x𝑟 ∥

Remark. In fact, we can also apply the Hölder’s Inequality, which

states that for 𝑝 and 𝑞 such that
1

𝑝 +
1

𝑞 = 1.

Therefore, we have two choices:

•We can use the RHS of Equation (3) to prune candidates using

𝑂 (𝑑) cost spent mainly to compute ⟨q𝑑 , x𝑑 ⟩ (assuming the offline

precomputed and loaded ∥x𝑟 ∥ and ∥x𝑑 ∥, on-the-fly and computed-

once ∥q𝑑 ∥ and ∥q𝑟 ∥).
• Or, we can leverage a concentration inequality to prune the

distance computation, akin to our focus on approximate nearest

neighbor search.

Error Distribution. The Cauchy–Schwarz inequality achieves

no false negative inequality. As we focus on the approximate
nearest neighbor search, we can do better with the study of the

distribution of the error which we set as 𝜖 = 𝑑𝑖𝑠′ − 𝑑𝑖𝑠 . With 𝑂 (𝑑)
computation, the approximate distance 𝑑𝑖𝑠′ = 𝐶1 −𝐶2, the precise
distance𝑑𝑖𝑠 = 𝐶1−𝐶2−2·⟨q𝑟 , x𝑟 ⟩ and the error 𝜖 = 2·⟨q𝑟 , x𝑟 ⟩. For𝐶1
part, The ∥x𝑑 ∥2+∥x𝑟 ∥2 can precompute and store, the ∥q𝑑 ∥2+∥q𝑟 ∥2
only need compute once for a single query. Remaining the 𝐶2 part

for𝑂 (𝑑) cost. As wementioned before, we can leverage the variance

of the error 𝜎2𝑒 = 𝑉𝑎𝑟 (−2 · ⟨q𝑟 , x𝑟 ⟩) and Chebyshev’s inequality
4

to obtain a bound and utilize it to prune distance calculations as

below:

𝑃 ( | − 2 · ⟨q𝑟 , x𝑟 ⟩ | ≥ 𝑘𝜎𝑒 ) ≤
1

𝑘2

Or we can do better with the Gaussian distribution assumption.

Error Quantiles. Assume that the data follow the Gaussian dis-

tribution x ∼ N(0, Σ). When query q is given, the distribution of

error can be regarded as a linear accumulation of multiple Gaussian

distributions. Consider the error item 𝜖 = −2 · ⟨q𝑟 , x𝑟 ⟩ in Equa-

tion 2 of the 𝑂 (𝑑) time complexity compute projection distance in

4
We centralized the data to yield a mean of zero.

Algorithm 1: BSAres algorithm
Input: Threshold 𝜏 , Multiplier𝑚, Project dim 𝑑 , Transformed

query q, Transformed data x
Output: Result: 0 with precise distance 𝑑𝑖𝑠 or 1 with approximate

distance 𝑑𝑖𝑠′

1 𝐶1 ← ∥x∥2 + ∥q∥2; // Precompute Once For Single Query

2 𝐶2 ← 2 · ⟨x𝑑 , q𝑑 ⟩; // Compute On the Fly

3 𝜎𝑟 ←
√︃
4 ·

〈
q2𝑟 , 𝜎2

𝑟

〉
; // Precompute Once For Single Query

4 if 𝐶1 − 𝐶2 −𝑚 · 𝜎𝑟 > 𝜏 then
5 return 1 with 𝑑𝑖𝑠′ = (𝐶1 − 𝐶2 ) ;
6 else
7 𝐶3 ← 2 · ⟨x𝑟 , q𝑟 ⟩; // Compute On the Fly

8 return 0 with 𝑑𝑖𝑠 = (𝐶1 − 𝐶2 − 𝐶3 ) ;

a 𝑑-dimensional space. Since x follows a zero mean, then for each

dimension 𝑥𝑖 ∼ N(0, (q𝑖𝜎𝑖 )2) where 𝜎𝑖 is the standard deviation

in each dimension. Then we can get

−2 · ⟨q𝑟 , x𝑟 ⟩ ∼ N (0, 4 ·
𝑖≤𝐷∑︁
𝑖=𝑑+1

(q𝑖𝜎𝑖 )2) . (4)

The variance of error only needs to be computed once for a single

query q. Then we rewrite the distribution as 𝜖 ∼ N(0, 𝜎2). From
the empirical rule of Gaussian distribution, 99.7% of the values lie

three standard deviations from the mean, which we can obtain an

error quantile based on the accumulation of standard deviation(3 ·𝜎
for 99.7% quantile).

4.3 Implementaion
We then explore the integration of the projection method and the

error quantiles into current AKNN algorithms, for utilization in the

search process.

Deriving Data Distribution from Training Data. To minimize

the residual dimension error and obtain the standard deviation

of the error from the data distribution. We utilize training data

with the same distribution to the queries for the generation of data

distribution. Based on this distribution, we perform PCA projection

and estimate the standard deviation of the residual dimensions.

To get the distance bound, we employ the approximate distance

𝑑𝑖𝑠′ = 𝐶1−𝐶2minus𝑚 times the error standard deviation, resulting

in a high probability that the precise distance will be greater than

the distance bound within the training data generate distribution.

The entire process of BSAres is summarized in Algorithm 1. For

the problem that the distribution of data changes under different

search parameters, we perform PCA on the dataset points as an

approximation. For the standard deviation, we can consider the

KNN distribution of the query, because it will not change with the

search parameters and directly affects search accuracy.

Incremental Computation. A significant advantage of projection

methods lies in the capability to compute the projection dimensions

incrementally to achieve a more accurate approximation of distance

up until the exact distance. Similar to ADSampling where sample

projection dimensions are progressively increased BSAres also sup-

ports the incremental addition of computational dimensions. Specif-

ically, for the current approximate distance 𝑑𝑖𝑠′, if BSAres prunes
6



Algorithm 2: Incremental-BSAres
Input: Threshold 𝜏 , Multiplier𝑚, Incremental Project dim Δ𝑑 ,

Transformed query q, Transformed data x
Output: Result: 0 with precise distance 𝑑𝑖𝑠 or 1 with approximate

distance 𝑑𝑖𝑠′

1 𝐶1 ← ∥x∥2 + ∥q∥2; // Precompute Once For Single Query

2 while 𝑑 < 𝐷 do
3 𝐶2 ← 𝐶2 + 2 ·

〈
xΔ𝑑 , qΔ𝑑

〉
; // Incremental Compute

4 𝑟 ← 𝐷 − 𝑑 ;

5 𝜎𝑟 ←
√︃
4 ·

〈
q2𝑟 , 𝜎2

𝑟

〉
; // Load Precompute Variance

6 if 𝐶1 − 𝐶2 −𝑚 · 𝜎𝑟 > 𝜏 then
7 return 1 with 𝑑𝑖𝑠′ = (𝐶1 − 𝐶2 ) ;
8 else
9 𝑑 ← 𝑑 + Δ𝑑 ;

the computation of the exact distance for the current point, the

computation halts. Conversely, if BSAres does not prune the precise
distance computation for the current point, the computation pro-

ceeds by incrementally adding dimensions. Subsequently, the new

approximate distance is utilized to continue pruning the precise

computation until the accumulated dimensions reach the original

dimensionality or it is pruned and stopped earlier. We summarize

the method of using incremental BSAres in Algorithm 2.

5 A GENERAL DISTANCE COMPUTATION
METHOD

This section mainly addresses the lack of generality associated with

ADSampling. Follow the same idea as from BSAres of using training
data to get a distance quantile for pruning the distance computa-

tion. We propose the quantile-driven framework that BSAres can be

regarded as an instance of it. Building on this foundation, we pro-

pose a learning-based approach as a new instance that is applicable

to various approximate distances and offers parameter selection

tailored to different AKNN search precision requirements. Note

that our method does not impose any requirements on how to ob-

tain approximate distances, which allows for broader applicability

compared to ADSampling.

5.1 Quantile-Driven Framework
We encapsulate the core idea of the BSAres algorithm in Section 4

within a quantile-driven framework. The essence of this approach

lies in leveraging a training set that shares the distribution with the

queries to obtain the error distribution of approximate distances

during the querying process. Subsequently, the approximate dis-

tance minus the upper quantile of the error is used as the distance

bound to prune distance computations. We summarize it as the

BSA framework, as shown in Figure 5.

The BSA framework is utilized to determine the distribution of

this error by calculating both the precise and approximate distances.

Training data with a distribution analogous to the query is used

to generate the search data distribution. To determine the error

quantile, the BSAres instance uses the multiplier and the standard

deviation of the error to get the error quantile 𝜖𝑞 . Given the error

quantile 𝜖𝑞 , the inequality 𝑑𝑖𝑠 > 𝑑𝑖𝑠′ − 𝜖𝑞 ensures a manageable

Database Vector Error Distribution

Training Vector

Minimize Error

Error Quantile

Prune Computation

Figure 5: The Process of Quantile-Driven Framework

probability of error occurrence in the training data. Thus, the cri-

terion 𝑑𝑖𝑠′ − 𝜖𝑞 > 𝜏 can be utilized to determine whether reliance

on the approximate distance is adequate or if a precise distance

computation is required.

5.2 A Learning-Based Instance
The BSAres approach aims to minimize the error quantile, thereby

improving the query efficiency. However, the BSAres approach can-

not be easily adjusted to other approximate distances, since it is

difficult to guarantee that the error follows the Gaussian distribu-

tion. Meanwhile, BSAres still needs to manually set the standard

deviation multiplier to meet the AKNN’s accuracy requirement.

Therefore, in this section, our objective is to solve these two prob-

lems with the learned-based method, which can easily adapt to any
approximate distance and provide auto parameter configuration for

any search accuracy requirement.

For the generation of training data, we still follow the same

process as with the BSAres instance, but since we consider arbitrary
approximate distances, we cannot rely solely on projection methods

to minimize error. Instead, we use a linear model to replace the

minimization of errors. Specifically, we use features related to the

approximate distance to reconstruct the precise distance, achieving

higher pruning efficiency. To achieve an efficient classifier, we use

the approximate distance 𝑑𝑖𝑠′ and the threshold 𝜏 as features,
and then we learn the weight of two features and the intercept that

can be used to classify whether 𝑑𝑖𝑠 is greater than 𝜏 . The linear

model can be written as:

𝐿 = 𝑠𝑖𝑔𝑛(𝑤1𝑑𝑖𝑠
′ +𝑤2𝜏 + 𝑏 > 0)

= 𝑠𝑖𝑔𝑛(𝑚1𝑑𝑖𝑠
′ + 𝛽 > 𝜏)

where Label 0: 𝑑𝑖𝑠 ≤ 𝜏 and Label 1: 𝑑𝑖𝑠 > 𝜏 . We employ a straight-

forward linear model with Binary Cross-Entropy (BCE) as the loss

function to implement our model. From our practical experiments

and experience, using BCE as the reconstruction loss results in a

more stable performance compared to other linear reconstruction

methods, such as using Least Squares to minimize the MSE (Mean

Squared Error) of distance approximation.

With the reconstruction distance 𝑚1𝑑𝑖𝑠
′ + 𝛽 , we can use the

numerical method such as binary search for the intercept term

𝛽′(work same as error quantile) to ensure 𝑑𝑖𝑠 > 𝑚1𝑑𝑖𝑠
′ + 𝛽′ with

a manageable small failure probability. However, the failure prob-

ability of equation 𝑑𝑖𝑠 > 𝑚1𝑑𝑖𝑠
′ + 𝛽′ cannot directly affect search

accuracy. We are expected to obtain the 𝛽′ corresponding to the

recall target for a specific AKNN search accuracy. As we take the
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Figure 6: Example of Linear Models with PCA as Approximate Distance

BCE as the loss function, we can set the threshold 𝜏 as the 𝑘-NN

distance of query where Label 0 data becomes the KNN of query.

Then we can binary search 𝛽′ to ensure that the learned instance

achieves the target recall 𝑟 on Label 0 in the training dataset to

achieve auto parameter configuration.

Remark. The learning-based instance is comparable to the

BSAres approach of Section 4 by taking 𝑚1 = 1 and 𝛽 = 𝑚 · 𝜎 .
The difference is that the learned-based method is capable of any

approximate distance which is more general.

5.3 Implementation

Approximate Distance and Feature Select. For projection-based
approximate distance, we use the simple PCA projection as the

approximate distance without taking the decomposition by Equa-

tion 2 for the general case denoted as BSApca . For another popular
approximate method, the product quantization distance, we utilize

the distance to quantized centroids of the query 𝑞 to the database

point 𝑢 known as the Asymmetric Distance Computation (ADC), as

the approximate distance 𝑑𝑖𝑠′. Following the same idea as PCA, we

use OPQ [14] as our final quantized approximate distance method,

which also uses an orthogonal matrix to rotate the space for a more

precise approximate distance and denote as BSAopq . More accurate

quantification methods, such as AQ [2], CompQ [36], LSQ [30], and

other additional quantification methods are no longer within the

scope of our consideration due to their low efficiency of the lookup

table. For quantization methods, we can also utilize the distance

from 𝑢 itself to the quantized centroid as an additional feature.
This multi-feature approach can further enhance the effectiveness

of the linear model. Moreover, we noticed that product quantization

has different optimizations with different hardware environments.

In our experiments, we additionally analyzed the inference effi-

ciency of using the PQ-scan[1] as an approximate distance with

the SIMD-SSE instruction.

Multiple Linear Model.We can also use multiple linear models

with the same idea in ADSampling or Algorithm 2, denoted as

𝐿1, .., 𝐿𝑛 , each corresponding to a unique projection dimension as

shown in figure 6, with an associated error probability 𝑒1, .., 𝑒𝑛 on

Label 0 classification. If the𝑑𝑖𝑠′ for the current projection dimension

is classified as Label 0 by the current linear model 𝐿𝑖 , we continue to

increase the projection dimension. This process continues until the

project dimension equals the original dimension, at which point we

obtain an accurate distance. If this distance is less than the threshold

𝜏 , we update the result queue.

To achieve the target recall 𝑟 for Label 0, we need to consider

the number of false positives (FP) for each linear model. A straight-

forward strategy is to set the recall target for each of the 𝑛 linear

models as 𝑟𝑖 = (1−(1−𝑟 )/𝑛). This approach ensures that the overall
recall target still satisfies the recall constraint for label 0. With the

same idea as ADSampling, we also set a corresponding classifier 𝐿𝑖
for every Δ𝑑 dimension. At the same time, the target recall for each

classifier is set as 𝑟𝑖 = (1− (1− 𝑟 )/(𝐷/Δ𝑑 )). If the current classifier
result is 0, we continue to calculate the projection distance and use

the next classifier until the exact distance is computed. Otherwise,

we prune this candidate. It is worth noting that we do not use mul-

tiple linear classifiers with BSAopq . This is because of the use case
of SIMD Instruction, which computes 4 or 8 quantized distances in

one operation. Early stopping of one quantized distance will not

improve performance unless all quantized distances stop early.

6 TIME AND SPACE ANALYSIS
6.1 Projection Distance
We first study the time complexity of the BSAres and BSApca based
on the PCA projection. For the case without incremental computa-

tion, the expected time complexity of a single inference is highly

dependent on the pruning rate, the ratio of the pruned cases to all

distance comparison operations. For PCA as an approximate dis-

tance, as the projection dimension is 𝑑 and the pruning rate 𝜂 with

the corresponding BSApca instance. The expected time complexity

of a single inference is𝑂 (𝑑 ·𝜂 + (𝐷 −𝑑) · (1−𝜂)). Another benefit of
the projection distance is that the project process can be regarded

as rotating the space, and we can continue to add dimensions until

we obtain the precise distance. This approach does not require ex-

tra space usage and reuses the approximate distance, potentially

enhancing efficiency. The BSAres and BSApca methods introduce

additional time for rotating the space. For a single query, we require

a time complexity of 𝑂 (𝐷2) to perform matrix multiplication to

project (rotate) the query. Furthermore, for the BSAres method, we

incur an extra time cost of 𝑂 (𝐷) to calculate the variance of the

residual dimension by accumulating the product of the variance

of each dimension and the corresponding query dimension. We

also need 𝑂 (𝐷) time to compute the square sum of query 𝑞. For

the BSAres method, we further require an additional 𝑂 (𝑛) space to
store the square of the square sum of each vector.

Then we consider the multi-linear model with the PCA method.

Assume that we have 𝑚 linear models with every Δ𝑑 · 𝑚 = 𝐷

for each linear model. The pruning rate for each linear model is

8



Table 2: Dataset Statistics

Dataset Dimension Size Query Size

SIFT 128 10,000,000 1000

GIST 960 1,000,000 1000

DEEP 256 1,000,000 1000

GLOVE 300 2,196,017 1000

TINY5M 384 5,000,000 1000

WORD2VEC 300 1,000,000 1000

denoted by 𝜂1, ..𝜂𝑚 . Then the expected time complexity for a single

inference is the following.

𝑂 (
𝑖=1∑︁
𝑖≤𝑚

𝑖 · Δ𝑑 ·
𝑗=1∏
𝑗<𝑖

(1 − 𝜂 𝑗 ) · 𝜂𝑖 )

Calculating the above time complexity can also be regarded as

calculating the average scan dimension.

6.2 Quantization Distance
For the quantization method, as OPQ in our approach, the addi-

tional time cost consists of both the query rotation 𝑂 (𝐷2) and the

construction of a lookup table. With OPQ implemented across𝑚

subspaces, each containing 2
𝑛𝑏𝑖𝑡

quantized centroid, the time com-

plexity of constructing a look-up table is 𝑂 (𝐷 · 2𝑛𝑏𝑖𝑡 ). With the

look-up table, the calculation of the asymmetric distance requires

only 𝑚 times the look-up from the table. Unlike the projection

method, the quantized-based approach needs to recompute the dis-

tance if it cannot prune the precise distance computation, rather

than increment the cumulative dimension. With the linear model 𝐿

and the pruning rate 𝜂𝑞 , the expected time complexity for single

inference is𝑂 (𝑚 + (1 − 𝜂𝑞) ·𝐷). The features of the linear model 𝐿

are the approximate distance, the point-to-centroid distance, and

the threshold. Differing from the projection-based method, the use

of quantization brings extra space costs. Considering quantization

across𝑚 subspaces, the extra space cost requires 𝑛 ·𝑚 · 𝑛𝑏𝑖𝑡 bits.
Where the𝑚 is usually taken as 1/4 or 1/8 of origin dimension 𝐷

and the extra space cost is from 1/32 to 1/64 of the dataset’s size
when using 32-bit float vectors.

7 EXPERIMENTS
7.1 Experimental Settings

Datasets. We employ six publicly available datasets of different

sizes and dimensionalities, as outlined in Table 2. These datasets

have been extensively utilized as benchmarks for evaluating AKNN

search algorithms. It is important to note that these publicly

available datasets encompass base vectors and query vectors. For

datasets that provide learning data, such as GIST and DEEP, we

directly utilize the provided learning data. However, for datasets

that do not provide learning data, we randomly sample 100,000

instances from the base data to train the linear model and then

remove them from the base data. Note that all vector data in the

experiment are stored in float32 format.

Performance Evaluation. We employ recall as a metric, quan-

tifying the ratio of successfully retrieved ground truth 𝑘-nearest

neighbors to the total number of 𝑘 neighbors. To gauge efficiency,

we utilize query-per-second (QPS), which measures the number

of queries processed per second, including the end-to-end query

time, product quantization codebook calculation time, and encom-

passing random transformations on query vectors. Additionally,

we evaluate the total number of dimensions scanned by random

projection and PCA. For OPQ we use the pruning rate to evaluate

the efficiency. All the metrics mentioned are averaged over the

entire query set.

Compare Method.We list the compared method below:

• HNSW: HNSW with all precise distances computed.

• HNSW++: HNSW with ADSampling method.

• HNSW-BSAopq : HNSW takes OPQ as the approximate distance

for the learned instance approach.

• HNSW-BSApca : HNSW takes PCA as the approximate distance

for the learned instance approach.

• HNSW-BSAres : HNSW takes residual dimension variance for

pruning.

• IVF: IVF with all precise distances computed.

• IVF++: IVF with ADSampling method.

• IVF-BSAopq : IVF takes OPQ as the approximate distance for the

learned instance approach.

• IVF-BSApca : IVF takes PCA as the approximate distance for the

learned instance approach.

• IVF-BSAres : IVF takes residual dimension variance for pruning.

Training Configuration. For the training of the linear models, we

directly take the KNN of learning data as label 0. For data with label

1, we treat the learning data as the query and generate training

data by recording the visited points and eliminating the KNN(label

0). For all training items, we compute their approximate distance,

threshold, and other features to train the linear classifier with BCE

as the loss. Specifically, we use 10,000 learning vector data for each

dataset as training queries and perform the search algorithm with

a fixed configuration to get the training data. For the search param-

eters used to generate label 1 data, we empirically tune it so that it

can generate enough label 1 data. Our experiments also show that,

as long as the scale of label 1 is sufficient, the model demonstrates

good generalization across different search parameters. We set the

recall target 𝑟 as 0.995 for the time-accuracy tradeoff experiment

and provide a verified recall target experiment as follows.

Index Configuration. We mainly consider the index construc-

tion of two AKNN algorithms, HNSW, and IVF. For HNSW, two

key parameters control the graph construction:𝑀 determines the

number of connected neighbors, and 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 controls the

quality of the approximate nearest neighbors. Following the orig-

inal HNSW work, we set 𝑀 = 16 and 𝑒 𝑓 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 500. For

IVF, as recommended in the Faiss library, the number of clusters

should be around the square root of the database size. We set the

number of clusters to 4,096 as in ADSampling. All C++ code com-

piles with g++ 11.4.0 and -O3 optimization. Python code (used in

indexing and training for linear models, PCA, and OPQ) runs on

Python 3.8. Experiments use an Intel(R) Xeon(R) Platinum 8352V
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Figure 7: Time-Accuracy Tradeoff and Dimensionality (HNSW and IVF)
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CPU @ 2.10GHz with 512GB memory, running in Ubuntu Linux.

We present results with SSE in [35] due to space limit.

Approximate Distance Configuration. For the random projec-

tion approach, we set 𝜖0 = 2.1 and Δ𝑑 = 32 which is recommended

as the best performance in ADSampling. For the PCA approach,

we also set every Δ𝑑 = 32 dimension to construct a linear model

to achieve the same condition as ADSampling. For the OPQ ap-

proach, we set the subspace number as 𝑑/8 for the GIST dataset

and 𝑑/4 for the others since all the dimensions of the dataset can

be divided by 4. The features used for the PCA approach are the

project distance(approximate distance) and the threshold. For the

OPQ approach, we added an additional point-to-centroid distance

as a feature. The target recall is set as 0.995 for the BSApca and
BSAopq methods. For the multiplier𝑚 for BSAres , we set it as 8 for
SIFT, GIST, and DEEP, 12 for TINY and WORD2VEC, and 16 for the

GlOVE dataset. For the case of multiple classifiers, we set the target

recall for each classifier based on Δ𝑑 as 𝑟𝑖 = (1 − (1 − 𝑟 )/(𝐷/Δ𝑑 )).

7.2 Experimental Results

Overall Results.We plot the time accuracy curve with two pop-

ular algorithms HNSW and IVF which the upper right is better.

We denote that the method HNSW++ is the ADSampling method

with the 𝑘-size result queue threshold as illustrated in the figure 7.

We use HNSW-BSAres , HNSW-BSApca and HNSW-BSAopq to rep-
resent the HNSW with a residual-based classifier, a learned-based

classifier with PCA andOPQ as an approximate distance feature.We

also adapt the split result queue strategy in HNSW++. The IVF++
denotes the ADSampling method with cache level optimization,

and IVF-BSApca represents the PCA approximate method with the

same optimization as IVF++. The IVF-BSAopq method represents

the OPQ approximate methodwithout any cache-level optimization,

but we provide experiments with SIMD instructors implemented

in the Appendix.

To achieve the tradeoff between time-accuracy, we varying 𝑁 𝑒 𝑓

for HNSW, HNSW++, HNSW-BSAopq , HNSW-BSApca , HNSW-

BSAres and 𝑁𝑝𝑟𝑜𝑏𝑒 for IVF, IVF++, IVF-BSAopq , IVF-BSApca , IVF-
BSAres . As the focus of our approach, we consider the high recall(>
85%) as the main scenario that the approximate distance methods

without fast inference cannot achieve. We observe the following

results. (1) From the overall experimental result, the fast inference

method can achieve a large margin speed-up with the IVF-based
method in which DCOs constitute the main time cost. (2) For the

WORD2VEC dataset with the HNSW method, the recall reaches a

bottleneck at 85%(caused by outdegree limitation of HNSW) and

the performance of all fast inference methods including ADSam-

pling has a significant discrepancy compared with other datasets.

For HNSW+, IVF+, and PDScanning methods proposed by ADSam-

pling, that is, methods that do not use split queues, memory layout

optimization, and the incremental distance calculation with the

threshold. The performance of the above methods has a signifi-

cant gap compared to HNSW++ and IVF++, which are no longer

considered in our experiment.

Results of Verified Target Recall. We study the parameter of

target recall with different approximate methods. As we mentioned

in the preliminary, the actual threshold is greater than the threshold
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Figure 8: Parameter Study on Target Recall 𝜏

𝑁 𝑒 𝑓 Proj PCA OPQ

500 6.0% 8.9% 12% + 5.9%

1000 3.9% 5.6% 7.6% + 3.8%

1500 3.0% 3.1% 5.8% + 2.9%

2000 2.5% 2.9% 4.7% + 2.3%

Table 3: Extra Time Ratio on GIST-HNSW

for training. Therefore, target recall is the expected lower bound on

training data. The overall performance of the recall will be better

than the target recall since the update threshold will be larger than

the ground truth threshold(we take the current threshold as the

feature for inference). Moreover, for multiple linear models, we use

the same strategy as union-bound, which will also make the test

recall higher than the target. As in the parameter study of 𝑟 in Fig. 8,

we found that in the case of 𝑟 = 0.995, the search algorithm of both

IVF and HNSW can achieve the best tradeoff between efficiency

and recall loss(less than 0.5%) which is selected as the default target

recall.

Results of Extra Time. A common aspect of ADsampling and

our approach is the transformation of vector data, which incurs

additional time costs. Upon receiving a query, the search algorithm

first executes the transformation, and its cost can be amortized

by all the distance computations involved in answering the same

query. We implement this process via a matrix multiplication opera-

tion(with C++ Eigen Library), which takes𝑂 (𝐷2) time and 0.344ms

with GIST data. Moreover, the OPQ inference requires additional

time cost for the computation of the look-up table, which takes

𝑂 (2𝑛𝑏𝑖𝑡 · 𝐷) time and can be considered as 2
𝑛𝑏𝑖𝑡

times (usually

256) distance calculation, which takes 0.170ms with GIST data. The

ratio between the extra time and the full query time is illustrated

in Table 3.

Results of Scan Dimensions. The ADSampling method and the

PCA inference method can be evaluated by the scan dimensions
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Figure 9: Dimension Scan Rate and Pruned Rate

since the visited point set is the same. We plot the average scan

dimension ratio compared with the naive method plot(red line) to

the ADSampling method(orange line) and BSApca method(green

line) with the left axis in figure 9. For the BSAopq method, we plot

the pruning rate with the right axis and blue line to verify its effi-

ciency. The query performance corresponds to the time-accuracy

tradeoff in Figure 7. It can be observed that the ratio of average

scan dimension decreased as the search algorithm visited more

points(with larger search parameters). With a larger search parame-

ter, the OPQ with 120 subspaces(for the GIST dataset) inference can

achieve a near 100%(≥95%) pruning rate which means that the case

of needed full precise data only consists of a very small portion.

This observation can make our approach more suitable to combine

with disk-based methods.

Results for Evaluating the Distance Approximation. We then

study the method with only approximate distances without error

quantile or bound.We take the OPQwithHNSWand IVF algorithms

notes as HNSWopq and IVFopq. The approximate distance method

with the parameter 120 subspaces for the GIST dataset and 64

subspaces for the DEEP dataset is the same parameters as HNSW-

BSAopq and HNSW-BSAopq . It can be seen that there is about a 7%

to 9% recall gap between the OPQ-only method(HNSWopq, IVFopq)
to the leaned inference one. The approximate distance with PCA

at the same setting will become even worse as the OPQ is more

accurate than PCA in various data settings.

8 RELATEDWORK
8.1 Existing AKNN Algorithms
Existing methods for accelerating the computation of distances

between points/vectors include ADSampling[13] and FINGER[6].

ADSampling relies on the Johnson-Lindenstrauss (JL) lemma[23]

to provide a probabilistic bound and uses it to accelerate distance

calculations. FINGER[6], on the other hand, is a method applicable

solely to graph-based approaches, primarily by estimating angles be-

tween neighboring residual vectors during the graph search stage to
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Figure 10: Recall@1 Time-Accuracy Tradeoff

achieve acceleration. FINGER is exclusively applied to graph-based

methods and is therefore not included in the baseline comparison.

8.2 Learning-Based Methods for AKNN search
Learning-based methods have made significant contributions to the

field of graph-based AKNN search. Notably, several recent studies

have leveraged machine learning techniques to enhance different

aspects of AKNN search. In particular, [4, 9] have applied learning

techniques to predict the next node during graph traversal, enabling

more efficient navigation through the search space.

It is important to note that the majority of these learning-based

approaches primarily focus on improving the index construction

and search processes of AKNN search. They often overlook the

critical aspect of distance calculation, which constitutes a signifi-

cant portion of the overall search time. In contrast, our approach

places a strong emphasis on distance computation, enabling seam-

less integration with the aforementioned methods. By tackling the

computational bottlenecks inherent in distance calculations, our

method provides a comprehensive solution to boost AKNN search

efficiency throughout the search process.

9 CONCLUSION
In this paper, we present an innovative approach that significantly

improves both the accuracy and efficiency of AKNN search. Our

proposed methodology revolves around decomposing the compu-

tation of projection distances, optimizing the projection matrix to

minimize error terms, and employing an error quantile to effectively

prune unnecessary distance computations. Moreover, through a

quantile-driven framework that utilizes learning-based methods

and numerical analysis, our approach demonstrates notable im-

provements in search speed over the current method ADSampling,

especially on datasets of different data types and scales.

In addition, it is necessary to consider similarities beyond Eu-

clidean Space. (1) The cosine-based similarity and inner product

similarity search on given data and query vectors is equivalent to

the Euclidean nearest neighbor search on their normalized data and

query vectors. (2) Otherwise we can directly use the correspond-

ing approximate method such as the product quantization in inner

product space [16, 17] for quantization distances with relatively

low quantization distortion and computation cost. With the more

accurate approximate method, our approach can achieve a higher

efficiency improvement with the accuracy requirement constraint.
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