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A Hypergraph Approach to Distributed Broadcast

Qi Cao, Yulin Shao, Fan Yang

Abstract—This paper explores the distributed broadcast prob-
lem within the context of network communications, a critical
challenge in decentralized information dissemination. We put
forth a novel hypergraph-based approach to address this issue,
focusing on minimizing the number of broadcasts to ensure
comprehensive data sharing among all network users. A key
contribution of our work is the establishment of a general lower
bound for the problem using the min-cut capacity of hypergraphs.
Additionally, we present the distributed broadcast for quasi-trees
(DBQT) algorithm tailored for the unique structure of quasi-
trees, which is proven to be optimal. This paper advances both
network communication strategies and hypergraph theory, with
implications for a wide range of real-world applications, from
vehicular and sensor networks to distributed storage systems.

Index Terms—Distributed broadcast, hypergraph, index cod-
ing, distributed storage, coded caching.

I. INTRODUCTION

In the dynamically advancing field of network communica-

tions, efficiently distributing information across various nodes

without centralized oversight presents a significant challenge

[1]–[4]. As networks grow in complexity and size, the de-

mand for cutting-edge solutions capable of managing the high

demands of information dissemination both efficiently and

reliably becomes increasingly crucial.

This paper explores the critical issue of distributed broad-

cast, a scenario in which each network user holds a segment

of the total data and must broadcast this information to their

peers. The primary challenge is determining the minimal

number of broadcasts necessary to ensure that all participants

acquire the complete dataset, thus achieving comprehensive

network-wide information sharing. The importance of solving

the distributed broadcast problem is underscored by its appli-

cations in diverse fields such as vehicular ad hoc networks

[5], large-scale sensor networks [6], [7], distributed storage,

and coded caching [2], [8]. In these contexts, the ability to

swiftly and reliably broadcast information to all network users

in a decentralized manner is crucial. This capability not only

enhances network efficiency but also plays a significant role in

strengthening the resilience of communication strategies used

in modern distributed systems.

The distributed broadcast problem bears similarities to the

well-established index coding problem [9]–[11], which in-

volves a single server and multiple receivers. The server must

satisfy all receivers’ demands via broadcast in minimal time.

Unlike our distributed setting, the index coding problem is
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centralized, and each receiver demands only one unknown

message, rather than all messages. While the index coding

framework provides foundational insights, it does not directly

apply to the decentralized demands of our study.

Building upon index coding, the authors in [4] introduced

the embedded index coding (EIC) problem, which involves

multiple nodes functioning both as senders and receivers. In

EIC, each node seeks a subset of messages it lacks, mirroring

the distributed nature of our study yet differing in the partial

data demands by each user. This characteristic complicates the

problem, making existing algorithms from EIC less effective

due to their high complexity when applied to distributed

broadcast.

Earlier attempts to tackle the distributed broadcast problem,

such as those in [12], have established preliminary bounds on

the number of necessary broadcasts and proposed algorithms

for the issue. However, the results from these efforts remain

rudimentary, and both the lower bounds and algorithm perfor-

mances fall short when compared to the methods and findings

presented in this paper.

The main contributions of this paper are threefold.

• We formulate the distributed broadcast problem and put

forth a new hypergraph approach to solve it. Our ap-

proach not only addresses the complexities inherent in

distributed broadcast but also advances hypergraph theory

itself. This includes the introduction of new definitions

and the derivation of hypergraph properties that facilitate

efficient solutions to the problem.

• We establish a general lower bound for the distributed

broadcast problem using the min-cut capacity of hyper-

graphs, providing a benchmark for evaluating the efficiency

of any coding and broadcast strategy.

• We focus on a specific class of hypergraphs – the quasi-

trees – and introduce the distributed broadcast for quasi-

trees (DBQT) algorithm. This algorithm is tailored to

exploit the unique structure of quasi-trees, and is proven

to achieve the established lower bound, confirming its

optimality.

Notations: We use boldface lowercase letters to represent

column vectors (e.g., s), boldface uppercase letters to represent

matrices (e.g., A), and calligraphy letters to represent sets

(e.g., A). The cardinality of a set A is denoted by |A|. IR is

the sets of real numbers, and N
+ is the set of positive integers.

[V ] , 1, 2, 3, ..., V .

II. PROBLEM FORMULATION

This section provides a rigorous formulation of the dis-

tributed broadcast problem.
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Data segments: Assume there are W segments of data,

where each segment sw, w ∈ [W ], is of uniform size and

represented as a vector. That is, sw ∈ IRL, where L is the

size of each segment and L > W . Let W , [s1, s2, . . . , sW ]
be the matrix that contains all these segments. The W data

segments representing unique messages and are independent

of each other. Therefore, the columns of W are linearly

independent.

Users: Consider V users, each storing a subset of the data

segments, ensuring collectively that all segments are stored

across these users. For any user v ∈ [V ], let Av denote

the set of segments stored by user v. By writing Av as

{si1 , si2 , ..., si|Av |
}, where i1 < i2 < ... < i|Av|, we define an

L× |Av| matrix Av to represent the specific segments stored

by v:

Av , [si1 , si2 , ..., si|Av |
].

Broadcast and Collision Channels: Time is segmented into

discrete slots. During each slot, only one user can broadcast a

message of length L to all other users. Concurrent broadcasts

by multiple users result in a collision.

The primary objective of the distributed broadcast problem

is to develop a coding and broadcast strategy that ensures

all data segments are transmitted to all users with the fewest

possible number of broadcasts. In this paper, we focus exclu-

sively on linear coding schemes for the broadcast process.

Specifically, each message broadcast by a user is a linear

combination of the user’s own data segments and the messages

acquired in previous slots.

As the broadcast process progresses, each user accumulates

an increasing number of messages, enabling the decoding of

more data segments:

• At the beginning of time slot t, we denote by A
(t)
v the

matrix whose column vectors are the data segments already

known to the v-th user, and Ã
(t)
v the matrix whose column

vectors are both the data segments and the messages re-

ceived in previous slots by the v-th user.

• During slot t, suppose that the broadcasting user is v(t) ∈
[V ], and denote by z(t) the vector broadcasted. Given the

linear coding approach, there exists a column vector d(t)

such that z(t) = Ã
(t)

v(t)d
(t).

To ease exposition, we further define a matrix C̃
(t)
v such that

Ã
(t)
v = WC̃

(t)
v . When t = 0, the initial storage Ã

(0)
v = A

(0)
v ,

hence the columns of C̃
(0)
v are one-hot vectors, indicating the

positions of individual data segments stored by user v. As time

progresses (t > 0), we apply elementary column operations

to C̃
(t)
v to transform as many columns as possible into one-

hot vectors. These one-hot vectors are then grouped into a

submatrix denoted by C
(t)
v . This submatrix represents the data

segments that have been successfully decoded by user v by the

end of the t-th slot, thus A
(t)
v = WC

(t)
v .

For any user v ∈ [V ],

Ã
(t+1)
v =

[
Ã

(t)
v , z(t)

]
,

C̃
(t+1)
v =

[
C̃

(t)
v , C̃

(t)

v(t)d
(t)
]
.

In particular, if Ã
(t)
v and z

(t) are linearly independent, we

have A
(t+1)
v = WC

(t+1)
v by elementary column operations;

otherwise, we have C
(t+1)
v = C

(t)
v and A

(t+1)
v = A

(t)
v .

Based on the above framework, determining the minimum

number of broadcasts, denoted as T ∗
A

, involves identifying

the optimal sequence of broadcasting users and their corre-

sponding coding schemes {v(t), z(t)}
T∗
A
−1

t=0 such that, at the

conclusion of these broadcasts, all users have successfully

decoded all data segments:

T ∗
A
= min

T
{T : rank(Ã(T )

v ) = W, ∀v}. (1)

III. A HYPERGRAPH REPRESENTATION

To effectively address the complexity of the distributed

broadcast problem and provide a robust analytical frame-

work, this section introduces a hypergraph representation [13].

By defining and incorporating new definitions specific to

distributed broadcasting, we can interpret our broadcasting

challenge in the language of hypergraph. This interpretation

allows us to explore lower bounds and sophisticated strategies

and achieve deeper insights into the optimal sequencing and

coding techniques required for efficient data dissemination.

A. Hypergraph

To lay the groundwork for defining the hypergraph structure,

we first reformulate the system model using set-based termi-

nology. In our current system model, we have established that

Av denotes the set of segments stored by user v. Consequently,

let A , {A1,A2, ...,AV } represent the storage topology,

illustrating how data is distributed among users. Additionally,

we define W = {s1, s2, ..., sW } as the comprehensive set of

all data segments, where W =
⋃

v∈[V ] Av.

For any subset S ⊆ W, the complement is denoted by

S
c = W \ S, representing the segments not included in S.

Similarly, for any set e ⊆ {1, 2, . . . , V }, the complement is

written as e
c = {1, 2, . . . , V } \ e, indicating the users not

encompassed by e.

Definition 3.1. For any e ⊆ {1, 2, . . . , V }, we define

Ae ,
⋃

v∈e

Av,

Se ,

(
⋂

v∈e

Av

)
\

(
⋃

v∈ec

Av

)
=

(
⋂

v∈e

Av

)
⋂
(
⋂

v∈ec

A
c
v

)
,

where Se denotes the set of segments that are commonly held

by the users in e are not available to any users in e
c.

Definition 3.2. Let H = (V,E, w) be a weighted hypergraph

representing the initial storage topology A with cardinality V
such that

V(H) = {1, 2, . . . , V },

E(H) = {e ⊆ V(H) : Se 6= ∅, 1 < |e| < V },



and the weight w : E(H) → N
+. In particular, for any subset

E
′ ⊆ E, with slight abuse of notation, we define w(E′) =∑
e∈E′ w(e).

Combining Definitions 3.1 and 3.2, it becomes evident that

∀e ∈ E(H), w(e) = |Se|. Let A(t) , {A
(t)
1 ,A

(t)
2 , ...,A

(t)
V }

be the sets of data segments known to each user in the begin-

ning of slot t. A(t) can also be represented as a hypergraph

H
(t) = (V,E(t), w(t)). In this model, any edge e is removed

from E if and only if the segments in Se become known to

all users, reflecting the collective updating of segments across

the network.

Given this hypergraph representation, the minimum number

of broadcasts, denoted by T ∗
H

, is determined by

T ∗
H

= T ∗
A
= min

T
{E(T ) = ∅}. (2)

B. Definitions

In addressing the challenges in (2), we now introduce

several new definitions specifically tailored to our problem to

facilitate the identification of optimal user selection and coding

strategies. Examples are given later in Section III-C.

1) Partial Hypergraph & Induced Subhypergraph: A hy-

pergraph (V′,E′, w) is called a partial hypergraph of H =
(V,E, w) if V

′ ⊆ V and E
′ ⊆ E. Moreover, if E′ = {e :

e ∈ E,e ⊆ V
′}, HV′ , (V′,E′, w) is called the largest

partial hypergraph of H dictated by V
′. For any partial

hypergraph (V′,E′′, w) of H, we have E
′′ ⊆E

′.

A hypergraph (V′,E′, w′) is called induced subhypergraph

of H = (V,E, w) if

• V
′ ⊆ V;

• E
′ = {e ∩V

′ : e ∈E and |e ∩V
′| ≥ 2};

• ∀e′ ∈E
′, w′(e′) = w ({e ∈E : e ∩V

′ = e
′}) .

We will also say that H̃V′ , (V′,E′, w′) is the subhypergraph

of H induced by V
′.

2) Degree & weighted degree: Given H = (V,E, w),
∀v ∈ V, let H[v] denote the set of edges connecting v:

H[v] , {e : v ∈ e,e ∈E}.

The degree of v is defined as dH(v) , |H[v]| and the weighted

degree of v is defined as d̃H(v) , w(H[v]).

3) Path & Loose Path: An alternating sequence

(v1,e1, v2,e2, . . . , vn,en, vn+1)

of vertices v1, v2, . . . , vn and edges e1,e2, . . . ,en, satisfying

that vi, vi+1 ∈ ei ∈ E for 1 ≤ i ≤ n, is called a walk

connecting v1 and vn+1, or, a (v1, vn+1)-walk. A walk is

called a path if all edges and vertices are distinct, in which

case we call it a (v1, vn+1)-path. A path is a cycle if and only

if v1 = vn+1. A path is a loose path if ei ∩ ej+1 = ∅ for

1 ≤ i ≤ n,ei ∩ ei+1 = vi, and 1 ≤ i < j ≤ n− 1.

v1

v2
v3

v4

v5

v6

Figure 1. An example of a hypergraph H = (V,E, w) .

4) Connected, Tree, Quasi-tree: A hypergraph is connected

if for any two distinct vertices, there is a walk connecting these

two vertices. A connected hypergraph with no cycles is called

a tree.

Definition 3.3. Given a connected hypergraph H =
(V,E, w), if any partial hypergraph (V,E′, w) of H is not

connected, where E
′ ⊂E, then H is called a quasi-tree.

A tree is a quasi-tree, yet a quasi-tree is not necessarily a

tree. For any two distinct vertices in a tree, there must be a

loose path connecting them.

5) Cut: Given H = (V,E, w), let X1,X2, ...XI , I ∈ N

and I ≥ 2, be a sequence of nonempty subsets of V. Denote

the set of edges connecting these subsets by

H[X1,X2, ...,XI ] , {e ∈ E(H) : e ∩Xi 6= ∅, ∀i ∈ [I]}

A cut of H is defined as Ḣ[X] ,H[X,V \X], where X

is nonempty and X ⊂ V. The weight of the cut is defined as

δH(X) , w(Ḣ[X]). A min-cut of a hypergraph H is a cut

with the minimum weight. The min-cut capacity of H is the

weight of a min-cut of H, and is denoted by

∆H , min
X⊂V(H)

X 6=∅

δH(X).

C. Examples

Fig. 1 gives an example of a hypergraph H = (V,E, w),
where V = {v1, v2, v3, v4, v5, v6} , E = {{v1, v2, v3},
{v2, v3}, {v1, v4}, {v4, v5}, {v3, v5, v6}}, and the weights of

edges are all 1.

If V
′ = {v1, v2, v3}, the largest partial hypergraph of

H dictated by V
′ is HV′ = (V′,E′, w), where E

′ =
{{v1, v2, v3}, {v2, v3}}. If V

′′ = {v2, v3, v6}, the subhy-

pergraph of H induced by V
′′ is H̃V′′ = (V′′,E′′, w′′),

where E
′′ = {{v2, v3}, {v3, v6}}, w′′({v2, v3}) = 2, and

w′′({v3, v6}) = 1.

For user v1, the set of edges connecting v1 is H[v1] ,

{{v1, v2, v3}, {v1, v4}}. The degree of v1 is dH(v1) , 2 and

the weighted degree of v1 is d̃H(v) , 2.



v1

v2
v3

v4

v5

v6

Figure 2. The partial hypergraph of H, denoted by H
′, is a quasi-tree.

The hypergraph H in Fig. 1 is connected, but it is not a tree

because there is a (v2, v3)-cycle. For a connected hypergraph,

we can generate the partial hypergraphs by removing one or

more edges. For example, by removing the edge {v1, v2, v3}
in H, we can get a partial hypergraph of H denoted by H

′,

as shown in Fig. 2. This hypergraph is still connected, so H

is not a quasi-tree.

For the connected hypergraph H
′, the partial hypergraph

obtained by removing any edge in H
′ is no longer connected.

Thus, H′ is a quasi-tree. Furthermore, H′ is also a spanning

quasi-tree of H .

Moveover, in the hypergraphH, let X = {v4, v5, v6}. Then,

a cut of H is Ḣ[X] , {{v1, v4}, {v3, v5, v6}}, the weight of

which is δH(X) , 2. The min-cut of H is ∆H , 1.

D. A lower bound

Leveraging the definitions and hypergraph model estab-

lished above, this section develops a lower bound for the

minimum number of broadcasts.

Lemma 3.1. Given a hypergraph H = (V,E, w), for any

nonempty set X ⊂ V, we have

E = Ḣ[X] ∪E(HX) ∪E(HV(H)\X). (3)

Moreover, these three sets Ḣ[X], E(HX) and E(HV(H)\X)
are disjoint, and thus

δH(X) + w(E(HX)) + w(E(HV(H)\X)) = W. (4)

Theorem 3.2. The minimum number of broadcasts T ∗
H

is

bounded by

T ∗
H

≥ W −∆H. (5)

Proof. We first consider a disconnected hypergraph H. Since

H is disconnected, there exists a nonempty subset X ⊂
V(H) such that Ḣ[X] = ∅. By Lemma 3.1, we have

w(E(HX)) + w(E(HV(H)\X)) = W.

The users in X store w(E(HX)) segments, and thus they

need to receive W − w(E(HX)) times at least to receive the

remaining segments. Likewise, the users in V(H) \ X also

needs to receive w(E(HX)) times at least. Therefore,

T ∗
H ≥ w(E(HX)) +W − w(E(HX)) = W.

Thus, T ∗
H

= W if H is disconnected.

Now we consider a connected hypergraph H = (V,E, w).
Let δH(X) be a min-cut of H. Clearly H

′ , (V,E \
δH(X), w) is a disconnected hypergraph. We can further

obtain T ∗
H′ = w(E) − w(δH(X)) = W − ∆H . Therefore,

T ∗
H

≥ T ∗
H′ = w(E \ δH(X)) = W −∆H . �

The lower bound established by Theorem 3.2 is demon-

strably tighter than that in [12]. While Lemma 1 in [12]

asserts that T ∗
H

≥ W − min{w(H [v]) : v ∈ V}, H [v] is

also a cut of the hypergraph H. Thus, we have W −∆H ≥
W − min{w(H [v]) : v ∈ V}, indicating that our theorem

provides a more restrictive lower bound.

IV. DISTRIBUTED BROADCAST FOR QUASI-TREE

The hypergraph representation equips us with a powerful

analytical framework, greatly enhancing our ability to examine

the complexities of the distributed broadcast problem. In this

paper, we specifically focus on a distinct class of hypergraph

structures – the quasi-trees, as defined in Definition 3.3.

We present the distributed broadcast for quasi-trees (DBQT)

algorithm, which is meticulously crafted to complement the

structural nuances of quasi-trees and is proven to be optimal.

Considering a quasi-tree T = (V,E, w), the schematic

of our DBQT algorithm is summarized in Algorithm 1. We

first determine the sequence of broadcasting users by means

of ordered representative vertices (Section IV-A). Following

this ordered sequence, each designated broadcaster constructs

a coding matrix and transmits coded messages sequentially

(Section IV-B). Finally, we will show that this structured

approach ensures that all necessary data segments are dissem-

inated optimally across the network.

A. Ordered representative vertices

To start with, we first determine the optimal sequence of

broadcasting users based on the concept of ordered represen-

tative vertices.

Definition 4.1. For a connected hypergraph H = (V,E, w),
a vertex set V∗ ⊆ V of size V ∗ is a representative vertex set

of H if

•
⋃

v∈V∗ H[v] =E,

• H̃V∗ is connected.

Lemma 4.1. Let V∗ be a representative vertex set of H. There

exists an ordered sequence of vertices v∗1 , v
∗
2 , ..., v

∗
V ∗ such that

H̃{v∗
1 ,v

∗
2 ,...,v

∗
i
} is connected ∀i ∈ [V ∗]. We call this sequence

an ordered representative vertices of H.

Proof. Let Vi = {v∗1 , v
∗
2 , ..., v

∗
i } for i = 1, 2, ..., V ∗. When

i = V ∗, obviously, H̃V∗
i
= H̃V∗ is connected. Now we only

need to prove that for any i, H̃V∗
i

is connected implies that

there exists a v∗i such that H̃Vi\{v∗
i
} is also connected.



Algorithm 1 distributed broadcast for quasi-trees (DBQT)

Input: A quasi-tree T = (V,E, w).
Initialization:

Find an ordered representative vertices v∗1 , v
∗
2 , ..., v

∗
V ∗

Compute ∆T , the weights of a min-cut of T

t = 0
E = {e1, e2, ..., e|E|}
Execution:

for i = 1, 2, . . . , V ∗: do

Zi = Av∗
i
\
⋃i−1

j=1 Av∗
j

if i > 1 then

Randomly pick an edge ei in T[v∗1 , v
∗
2 , ..., v

∗
i−1] ∩

T[v∗i ]
Randomly pick a set S̃ei

⊂ Sei
of cardinality ∆T

(such a subset always exist, since T̃v∗
1 ,v

∗
2 ,...,v

∗
i

is

connected and |Se| ≥ ∆T for any e ∈ E )

Zi = Zi ∪ S̃ei

Zi = [si1 , si2 , ..., si|Zi|
]. Here si1 , si2 , ..., si|Zi|

are the

segments in Zi

for τ = 1, 2, ..., |Zi| −∆T do

v(t) = v∗i
z(t) = Zi(1

τ−1, 2τ−1, ..., (Ti +∆T)τ−1)T

Let vj1 ,ej1 , vj2 ,ej2 , . . . , vj(n−1)
,ej(n−1)

, vjn be a path with

the longest length n − 1 in H̃Vi
, where 1 ≤ jn ≤ i and

n ≤ i. Now we consider H̃Vi\{vj1}
. Let e′j = ej \ {vj1}

for j = j2, j3, ..., j(n−1). We can see that |e′j| ≥ 2 and thus

vj2 ,e
′
j2
, vj3 . . . , vj(n−1)

,e′
j(n−1)

, vjn is a walk in H̃Vi\{vj1}
,

i.e., vj2 , vj3 , ..., vjn are still connected in H̃Vi\{vj1}
. If any

other vertex in Vi is connected with vj2 , then by letting v∗i =

vj1 , H̃Vi\{vj1}
is a connected hypergraph. So the lemma is

proved. Otherwise, there exists a vertex v0 not connected with

vj2 in H̃Vi\{vj1}
. Since v0 is connected with vj2 in H̃Vi

, it

must be connected with vj1 . Thus,

v0 /∈

j(n−1)⋃

j=j1

ej

and there exists a (v0, vj1 )-path. Note we have a (vj1 , vjn)-

path of length n − 1 in H̃Vi
. Then we can get a (v0, vjn)-

path whose length is larger than n − 1. Obviously, the path

contradicts that vj1 ,ej1 , vj2 ,ej2 , . . . , vj(n−1)
,ej(n−1)

, vjn is a

path with the longest length in H̃Vi
. Therefore, H̃Vi\{vj1}

is a

connected hypergraph. �

The procedures to find an ordered representative vertices for

any connected hypergraph H = (V,E, w) are as follows:

1) Find a vertex v1 such that for any other vertex v′,
H[v1] 6⊂ H[v′]. Then, put this vertex v1 into the

representative vertex set V∗. Define a representative edge

set E∗, and let E∗ =H[v1] and i = 2.

2) Find a vertex vi , vi /∈ V
∗ and vi ∈ {v : v ∈ e,e ⊆E

∗}
such that for any other vertex v′, H[vi] 6⊂ H[v′] and

H[v1] 6⊂E
∗. Let V∗ = V

∗ ∪ vi , E∗ =E
∗ ∪H[vi] and

i = i + 1.

3) Repeat step 2 until E∗ = E. Let V ∗ = i − 1. Then we

can get a sequence of vertices v1, v2, . . . , vV ∗ in V
∗.

For any selected vertex vi, 2 ≤ i ≤ V ∗, since vi ∈ {v :
v ∈ e,e ⊆ E

∗}, it is connected with at least one vertex in

{v1, v2, ..., vi−1}. Therefore, H̃{v1,v2,...,vi} is connected ∀i ∈
[V ∗]. The sequence we obtained is an ordered representative

vertices.

As an example, consider the quasi-tree H
′ in Fig. 2. Since

H[v3] is {{v2, v3}, {v3, v5, v6}}, which satisfies H[v1] 6⊂
H[v′] for any other vertex v′, we put v3 into V

∗ and put

{v2, v3} and {v3, v5, v6} into E
∗. Then we find v5, which

satisfies all the conditions in step 2. Therefore, we put v5
into V

∗ and add {v4, v5} into E
∗. Similarly, we can find v4,

which satisfies the conditions in step 2. Therefore, we put v4
into V

∗ and add {v1, v4} into E
∗. At this point, E∗ has all of

the edges in H
′, hence the sequence v3, v5, v4 is an ordered

representative vertices of H′.

B. Coded broadcast

Given the obtained ordered representative vertices v∗1 , v
∗
2 , ...,

v∗V ∗ , DBQT divides the coded broadcast into V ∗ phases. By

Lemma 4.1, T̃{v∗
1 ,v

∗
2 ,...,v

∗
i
} is connected for i = 1, 2, ..., V ∗.

Let ei ∈ T
[
{v∗1 , v

∗
2 , ..., v

∗
i−1}, v

∗
i

]
be arbitrary for i =

1, 2, ..., V ∗. Specially, e1 = ∅ and ei ≥ ∆T for i =
2, 3, ..., V ∗. Let

Zi = S̃ei ∪
(
Av∗

i
\ ∪i−1

j=1Av∗
j

)

be a set of segments broadcasted in Phase i, where S̃ei is

an arbitrary subset of Sei with cardinality min{∆T,Sei}. By

writing Zi as {sj1 , sj2 , ..., sj|Zi|
}, where j1 < j2 < ... <

j|Zi|, we define an L× |Zi| matrix

Zi =
[
sj1 , sj2 , ..., sj|Zi|

]
.

In Phase i, the coded messages sent by User v∗i are the

columns in ZiMi where Mi is a coding matrix of size |Zi|×
(|Zi| −∆T) given by

Mi ,




10 11 · · · 1|Zi|−∆T−1

20 21 · · · 2|Zi|−∆T−1

...
...

. . .
...

|Zi|
0 |Zi|

1 · · · |Zi|
|Zi|−∆T−1


 .

Lemma 4.2. Consider any user storing ∆T segments in Zi,

i = 1, 2, ..., V ∗. Upon receiving the columns in ZiMi, the

user is able to decode all the messages in Zi.

Proof. Let sjk1 , sjk2 , ..., sjk∆T

be the ∆T segments stored by

the user, and α(k) denote a one-hot vector of length |Zi|
whose k-th item is 1. When the users receives the columns in

ZiMi, it stores columns in ZiM
′
i , where

M
′
i = [α(k1),α(k2), ...,α(k∆T

),Mi] .



It suffices to prove that det(M ′
i) 6= 0. Removing the first ∆T

columns and k1, k2, ..., k∆T
-th rows of M

′
i , we can obtain a

new matrix denoted by

M
′′
i =




10 · · · 1|Zi|−∆T−1

...
...

...

(k1 − 1)0 · · · (k1 − 1)|Zi|−∆T−1

(k1 + 1)0 · · · (k1 + 1)|Zi|−∆T−1

...
...

...

(k2 − 1)0 · · · (k2 − 1)|Zi|−∆T−1

(k2 + 1)0 · · · (k2 + 1)|Zi|−∆T−1

...
...

...

(k∆T
− 1)0 · · · (k∆T

− 1)|Zi|−∆T−1

(k∆T
+ 1)0 · · · (k∆T

+ 1)|Zi|−∆T−1

...
...

...

|Zi|
0 · · · |Zi|

|Zi|−∆T−1




.

It is evident that

| det(M ′
i)| = | det(M ′′

i )|.

Note that M ′′
i is a Vandermonde matrix, which is full rank.

Therefore, det(M ′
i) 6= 0. �

Theorem 4.3. The DBQT algorithm achieves optimality. It

ensures that all W data segments are known to every user

after T ∗
T
= W −∆T broadcasts.

Proof. The number of broadcasts in DBQT is

T =
∑

i

(|Zi| −∆T)

=|Av∗
1
| −∆T +

V ∗∑

i=2

|Av∗
i
\ ∪i−1

j=1Av∗
j
|

=

∣∣∣∣∣

V ∗⋃

i=1

Av∗
i

∣∣∣∣∣−∆T

=W −∆T .

By Theorem 3.2, we have T ∗ ≥ W − ∆T . Thus, T ≤ T ∗.

Now we only need to prove that each vertex v ∈ V can

decode all the W segments. We first prove that v∗1 can decode

any segment s ∈ W. Let J be the smallest such that s ∈⋃J

j=1 Av∗
j
. (Such a J always exists, since by Definition 4.1,⋃J

j=1 Av∗
j
= W when J = V ∗.) By Lemma 4.1, T̃v∗

1 ,v
∗
2 ,...,v

∗
J

is connected. Thus there exists a (v∗1 , v
∗
J )-path

v∗i1 ,ei2 , v
∗
i2
, . . . , v∗ik−1

,eik , v
∗
ik

in T, where 1 = i1, ik = J and ij is the smallest such that

eij+1 ∈ T[vij ] for j = k − 1, k − 2, ..., 1. Since |S̃ei2
| ≥ ∆T

and S̃ei2
⊆ Av∗

1
∩Zi2 , by Lemma 4.2, User v∗1 can decode

all the messages in Zi2 , including the ∆T segments in S̃e3 .

Thus, it can further decode all the segments in Z3. Repeat this

argument, user v∗1 can finally decode s.

Likewise, we can also prove that any User v can decode

all the messages in v∗1 . Since T is connected, there exists a

(v, v∗1)-path. We can obtain that any other user v ∈ V can

decode the segments stored in user v∗1 . Then we can further

obtain that v can decode all the W segments. �

It is worth noting that the sequence of ordered representative

vertices within DBQT is not unique. Regardless of the specific

sequence of vertices chosen, the fundamental properties and

performance of DBQT are maintained.

V. CONCLUSIONS

This paper formulated and addressed the distributed broad-

cast problem, a challenge with wide-reaching implications

in network communications. We established a structured and

analytical framework using a hypergraph-based representa-

tion of the storage topology. This framework is vital for

comprehending and managing the intricate interdependencies

characteristic of broadcast networks. Our development of the

DBQT algorithm marked a significant achievement, as it

effectively minimized broadcast times for quasi-trees, aligning

with theoretical predictions.

Our contributions lay the groundwork for both theoretical

advancements and practical applications in network commu-

nications, paving the way for future innovations in distributed

systems. Future work will extend our hypergraph approach to

more general hypergraph structures beyond quasi-trees, which

will be detailed in an extended version of this paper.
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