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Toeplitz Operators on Weighted Bergman
Spaces over Tubular Domains

Lvchang Li ∗, Jiaqing Ding†, Haichou Li ‡

Abstract

In this paper, we mainly study the necessary and sufficient condi-
tions for the boundedness and compactness of Toeplitz operators
on weighted Bergman spaces over a tubular domains by using the
Carlson measures on tubular domains. We also give some related
results about Carlson measures.
Key words: weighted Bergman spaces; Toeplitz operator; tubular
domain; Carleson measure

1 Introduction

Bergman’s book [5] systematically discusses a Hilbert space of square-
integrable analytic functions on a domain for the first time, now known as
the Bergman space defined on a domain. The Bergman space is a closed
subspace of the familiar Lp space. When p = 2, the Bergman space is a
Hilbert space. A useful tool for studying the Bergman space is the repro-
ducing kernel, which plays a very important role. For related theories on
the reproducing kernel, please refer to relevant literatures[4, 5, 10, 18].

Another important tool in the study of operators on function spaces
is the Carleson measure, which was initially introduced by Carleson [6] to
address the Corona problem. Nowadays, Carleson measures play a crucial
role in studying the boundedness and compactness of operators, especially
for Toeplitz operators, see [21, 22]. Regarding the further applications of
Carleson measures in operator theory on function spaces, refer to [3, 7, 11,
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17]. The theory of Toeplitz operators on the unit disk and the unit ball in
the Bergman spaces has been extensively studied by many authors, such as
[21, 22]. Subsequently, many authors have also extended the domains to
bounded symmetric domains[20], strongly pseudoconvex domains[1, 2, 12],
pseudoconvex domains[14], and so on.

However, researches on the theory of the Bergman spaces on unbounded
domains is scarce. In particular, when n=1, the Bergman spaces on the
upper half-plane lacks many good properties of the Bergman spaces over
the unit disk, such as the well-known constant functions and monomial
functions not being in the Bergman spaces over the upper half-plane.

In the present paper, we are interested in the case of the higher dimen-
sional unbounded domains, such as the tubular domains. More specifically,
this paper will mainly study the boundedness and compactness of Toeplitz
operators on a certain class of tubular domains in C

n and their relationship
with Carleson measures. These tubular domains may share some similar-
ities with the well-known second kind of Siegel upper half-space, but the
second kind of Siegel upper half-space are not tubes in Cn. Instead, the
tubes are larger than the second kind of Siegel upper half-space, hence they
have corresponding research value.

Deng et al. [8] computed the reproducing kernel of the Bergman spaces
on such tubes using Laplace transform methods, laying the groundwork
for subsequent theoretical researches. Liu et al. [16] provided some basic
properties of the Bergman spaces on these tubes. Si et al. [15] studied the
boundedness and compactness of Toeplitz operators on the Bergman space
of the second kind of Siegel upper half-space and their relationship with
Carleson measures. This paper will mainly study the theory of Toeplitz op-
erators on the Bergman spaces over tubes with the help of Carleson measure,
which is a powerful tool and an interesting object to study.

The structure of the paper is as follows: The second section provides an
overview of fundamental terminology. The third section presents essential
lemmas and their proofs. In the fourth section, we obtain the characteriza-
tion of Carleson measures on the tubular domains. Moving forward, in the
fifth section, we can find a dense subspace of Bergman spaces over tubu-
lar domains, which is crucial for establishing the boundedness of Toeplitz
operators. Finally, the last section comprehensively explores the characteri-
zations of boundedness and compactness of Toeplitz operators on Bergman
spaces over tubular domains, with detailed discussions on Theorem 6.1 and
Theorem 6.2.
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2 Preliminaries

Let C
n be the n dimensional complex Euclidean space. For any two

points z = (z1, · · · , zn) and w = (w1, · · · , wn) in Cn, we write

z · w̄ := z1w̄1 + · · ·+ znw̄n,

z2 = z · z := z21 + z22 + · · ·+ z2n

and

|z| :=
√
z · z̄ =

√
|z1|2 + · · ·+ |zn|2.

The set Bn = {z ∈ Cn : |z| < 1} will be called the unit ball of Cn.
The tubular domain TB of Cn with base B, is defined as follows:

TB = {z = x+ iy ∈ C
n|x ∈ R

n, y ∈ B ⊆ R
n} ,

where

B =
{
(y′, yn) = (y1, · · · , yn−1, yn) ∈ R

n
∣∣y′2 := y21 + · · ·+ y2n−1 < yn

}
.

We define the spaces Lp
α (TB), which is composed of all Lebesgue mea-

surable functions f on TB, and its norm

‖f‖p,α =

{∫

TB

|f (z)|p dVα (z)

} 1
p

is finite, where dVα(z) = (yn − |y′|2)αdV (z), α > −1, dV (z) denotes the
Lebesgue measure on Cn.

The Bergman spaces Ap
α (TB) on tube TB is a set composed of all holo-

morphic functions in Lp
α (TB).

Since the valuation functional is bounded, so the Bergman space Ap
α (TB)

is the closed subspace of Lp
α (TB). At the same time, we know that when

1 ≤ p < ∞ the space Ap
α (TB) is a Banach space with the norm ‖·‖p,α. In

particular, when p = 2, A2
α (TB) is a Hilbert space.

An very important orthogonal projection Pα from L2
α (TB) to A2

α (TB) is
the following integral operator:

Pαf (z) =

∫

TB

Kα (z, w) f (w) dVα (w),

with the Bergman kernel

Kα (z, w) =
2n+1+2αΓ (n+ 1 + α)

Γ (α + 1)πn

((
z′ − w′

)2 − 2i (zn − wn)
)−n−α−1

.
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For convenience, we introduce the following notation:

ρ (z, w) =
1

4

((
z′ − w′

)2 − 2i (zn − wn)
)

and let ρ (z) := ρ (z, z) = yn − y′2.
With the above notion ρ (z, w), the weighted Bergman kernel of TB be-

comes

Kα (z, w) =
Γ (n + α + 1)

2n+1πnΓ (α + 1) ρ (z, w)n+α+1 .

Recall ρ (z) = yn − y′2 and let ∂TB := {z ∈ Cn : ρ (z) = 0} denote the
boundary of TB. Then

T̂B := TB ∪ ∂TB ∪ {∞}

is the one-point compactification of TB.
Also, let ∂T̂B := ∂TB ∪ {∞} . Thus, z → ∂T̂B means ρ (z) → 0 or

|z| → ∞.
We denote by C0 (TB) the space of complex-valued continuous functions

f on TB such that f (z) → 0 as z → ∂T̂B .
For a positive Borel measure µ on TB, we define a function µ̃ on TB by

µ̃ (z) :=

∫

TB

|kz (w)|2 dµ (w), z ∈ TB,

where, for fixed z ∈ TB,

kz(w) := K(z, w)/
√

K(z, z), w ∈ TB.

For z ∈ TB and r > 0, we define the averaging function

µ̂r (z) :=
µ (D (z, r))

Vα (D (z, r))
.

Let µ be a positive Borel measure on TB and p > 0. We say that µ is
Carleson measure for the Bergman Space Ap

α(TB), if there exists a positive
constant C > 0 such that

∫

TB

|f(z)|p dµ(z) ≤ C‖f‖pp,α

for every f ∈ Ap
α(TB).

A positive Borel measure µ as a vanishing Carleson measure, if for any
bounded sequence fk in Ap

α(TB) that converges uniformly to 0 on every
compact subset of TB, we have

lim
k→∞

∫

TB

|fk|p dµ = 0.

4



First, we review the Bergman metric on domains in C
n. Let K(z, w) be

the kernel of TB. We define the complex matrix

B(z) = (bij(z))1≤i,j≤n =
1

n+ 1

(
∂2

∂z̄i∂zj
lnK(z, z)

)

1≤i,j≤n

as the Bergman matrix of TB.
For a smooth curve γ : [0, 1] → TB, we define

l(γ) =

∫ 1

0

〈B(γ(t))γ′(t), γ′(t)〉 dt.

Based on the definition of l(γ), we can define the Bergman metric β on
TB as follows:

β(z, w) = inf{l(γ) : γ(0) = 1, γ(1) = w}.
Let D (z, r) denote the Bergman metric ball at z with radius r, that is

D(z, r) = {w ∈ TB : β(z, w) < r} .
We will use the important transform Φ : Bn → TB given by

Φ(z) =

( √
2z′

1 + zn
, i

1− zn
1 + zn

− i
z′ · z′

(1 + zn)2

)
, z ∈ Bn

and it is not hard to calculate that

Φ−1(w) =

(
2iw′

i+ wn +
i
2
w′ · w′

,
i− wn − i

2
w′ · w′

i+ wn +
i
2
w′ · w′

)
, w ∈ TB.

The mapping Φ is a biholomorphic map from Bn to TB and also a key tool
for this paper.

In Krantz’s book [13], there is the following proposition [13, proposition
1.4.12]:

Let Ω1, Ω2 ⊆ Cn be domains and f : Ω1 → Ω2 a biholomorphic map-
ping. Then f induces an isometry of Bergman metrics:

βΩ1 (z, w) = βΩ2 (f (z) , f (w))

for all z, w ∈ Ω1.
Hence, taking Ω1 = TB and Ω2 = Bn, we have:

βTB
(z, w) = βBn

(
Φ−1 (z) ,Φ−1 (w)

)
= tanh−1

(∣∣ϕΦ−1(z)

(
Φ−1 (w)

)∣∣) .
A computation shows that

βTB
(z, w) = tanh−1

√
1− ρ(z)ρ(w)

|ρ(z, w)|2 .

Throughout the paper we use C to denote a positive constant whose value
may change from line to line but does not depend on the functions being
considered. The notation A . B means that there is a positive constant C
such that A ≤ CB, and the notation A ≃ B means that A . B and B . A.
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3 Main lemmas

To prove our main results, we need the following key lemmas, where
Lemmas 3.1-3.6 are from [16]. They play a crucial role as instrumental
lemmas in the present paper.

Lemma 3.1 There exists a positive integer N such that for any 0 < r ≤ 1
we can find a sequence {ak} in TB with the following properites:

(1) TB =
⋃∞

k=1D (ak, r);
(2) The sets D(ak, r/4) are mutually disjoint;
(3)Each point z ∈ TB belongs to at most N of the sets D(ak, 2r).

Lemma 3.2 For any r > 0, the inequalities

|ρ (z, u)| ≃ |ρ (z, v)|

hold for all z, u, v ∈ TB with β(u, v) < r.

Lemma 3.3 For any z ∈ TB and r > 0 we have

Vα (D (z, r)) ≃ ρ (z)n+α+1 .

Lemma 3.4 Let a, b and c ∈ R, 1 6 p < ∞ and

Tf (z) = ρ (z)a
∫

TB

ρ (w)b

ρ (z, w)c
f (w) dV (w)

and

Sf (z) = ρ (z)a
∫

TB

ρ (w)b

|ρ (z, w)|c f (w) dV (w).

Then the following conditions are equivalent for any real α.
(1) The operator S is bounded on Lp

α (TB) .
(2) The operator T is bounded on Lp

α (TB) .
(3) The parameters satisfy −pα < α+1 < p(b+1) and c = n+α+b+1.

When p = ∞, condition (3) should be a > 0, b > −1, and c = n+ a+ b+1.

Lemma 3.5 Let r, s > 0, t > −1, and r + s− t > n+ 1, then

∫

TB

ρ(w)t

ρ(z, w)rρ(w, u)s
dV (w) =

C1(n, r, s, t)

ρ(z, u)r+s−t−n−1

for all z, u ∈ TB, where

C1(n, r, s, t) =
2n+1πnΓ(1 + t)Γ(r + s− t− n− 1)

Γ(r)Γ(s)
.
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In particular, let s, t ∈ R, if t > −1, s− t > n+ 1, then

∫

TB

ρ (w)t

|ρ (z, w)|sdV (w) =
C1 (n, s, t)

ρ (z)s−t−n−1 ,

Otherwise, the above equation is infinity.

Lemma 3.6 The following properties hold for holomorphic mappings from
Bn to TB:

(1) The real Jacobian of Φ at z ∈ TB is

JR(Φ(z)) =
2n+1

|1 + zn|2(n+1)
.

(2) The real Jacobian of Φ−1 at z ∈ TB is

(JRΦ
−1)(z) =

1

4 |ρ(z, i)|2(n+1)
.

(3) The identity

1−
〈
Φ−1(z), Φ−1(w)

〉
=

ρ(z, w)

ρ(z, i)ρ(i, w)

holds for all z, w ∈ TB, where i = (0′, i).
And moreover,

1−
∣∣Φ−1(z)

∣∣2 = ρ(z)

|ρ(z, i)|2
, 1 + [Φ−1(z)]n =

1

ρ(z, i)
.

(4) The identity

ρ(z, w) = ρ(Φ(ξ), Φ(η)) =
1− 〈ξ, η〉

(1 + ξn)(1 + ηn)

holds for all z, w ∈ TB, where ξ = Φ−1(z), η = Φ−1(w).

Proof: The properties mentioned above are derived from [16], and here we
only present the unproven property (2).

Simple calculations show that

ρ(z, i) =
1

4
(z′2 − 2izn + 2),
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so

(
JCΦ

−1
)
(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

2ρ(w,i)−w2
1

2ρ(w,i)2
−w1w2

2ρ(w,i)2
· · · −w1wn−1

2ρ(w,i)2
iw1

2ρ(w,i)2

−w2w1

2ρ(w,i)2
2ρ(w,i)−w2

2

2ρ(w,i)2
· · · −w2wn−1

2ρ(w,i)2
iw2

2ρ(w,i)2

...
...

. . .
...

...
−wn−1w1

2ρ(w,i)2
−wn−1w2

2ρ(w,i)2
· · · 2ρ(w,i)−w2

n−1

2ρ(w,i)2
iwn−1

2ρ(w,i)2

−w1

2ρ(w,i)2
−w2

2ρ(w,i)2
· · · −wn−1

2ρ(w,i)2
i

2ρ(w,i)2

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
i

2ρ (z, i)n+1 .

Therefore JR (Φ (z)) = |JC (Φ (z))|2 = 1

4|ρ(z,i)|2(n+1) .

The following lemma plays a key role in estimating the inequality.

Lemma 3.7 For any z, w ∈ TB, we have

2 |ρ (z, w)| ≥ max {ρ (z) , ρ (w)} .

Proof: Let δt(w) = (tw′, t2wn) be the nonisotropic dilation for t > 0,
w ∈ TB.

For any w ∈ TB and each fixed z ∈ TB, consider the holomorphic map-
ping

hz (w) :=

(
w′ − z′, wn − Rezn − iw′z′ +

i |z′|2
2

+
iz′ · z′

4
+

iw′ · z′
4

)
.

It is evident that hz(w) is a holomorphic automorphism of TB. Thus, the
mapping σz := δ

ρ(z)−
1
2
◦ hz is a holomorphic automorphism of TB. Simple

calculations reveal that σz(z) = i := (0′, i) and

(JCσz)(w) = ρ(z)−
n+1
2 ,

where (JCσz)(w) denotes the complex Jacobian of σz at w.
Hence, we obtain

Kα (z, w) = (JCσz) (z)Kα (σz (z) , σz (w)) (JCσz) (w)

= Kα (i, σz (w)) ρ (z)−n−1 .

It’s worth noting that

|Kα (i, w)| ≤
Γ (n+ α + 1) 2α

πnΓ (α + 1)
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for all w ∈ TB. By substituting the expression for Kα (z, w) into the above
inequality, considering the arbitrariness of α and n, and rearranging the
positions of z and w, we arrive at the desired result.

The following lemma 3.8 is commonly encountered in the operator theory
on function spaces, illustrating that the growth of functions in Bergman
spaces is controlled.

Lemma 3.8 On the Bergman space Ap
α (TB), every valuation functional is

a bounded linear functional. Specifically, for each function f ∈ TB, we have

|f (z)|p ≤ C

ρ (z)n+α+1

∫

D(z,r)

|f (w)|p dVα (w),

where 0 < p < ∞, α > −1, r > 0 and C is a positive constant .

Proof: Let f ∈ H (TB). Then f ◦ Φ ∈ H (Bn). Note that D (i, r) =
Φ (B (0, R)) with R = tanh (r). By the subharmonicity of |f |p and variable
transformation, we have

|f (Φ (0))|p ≤ 1

Vα (D (0, R))

∫

B(0,R)

|f (Φ (ξ))|pdVα (ξ)

=
1

Vα (D (0, R))

∫

D(i,r)

|f (w)|p 1

|ρ (w, i)|2(n+α+1)
dVα (w) .

Since f (Φ (0)) = f (i) and 2ρ (w, i) ≥ 1, there exists a positive constant
C such that

|f (i)|p ≤ C

∫

D(i,r)

|f (w)|p dVα (w).

Replacing f by f ◦ σ−1
z in the above inequality, we obtain

|f (z)|p ≤ C

ρ (z)n+α+1

∫

D(z,r)

|f (w)|p dVα (w).

This completes the proof of the lemma.

As is well known, the reproducing kernel is an element of the Bergman
space Ap

α(TB), hence its norm is finite. Lemma 3.9 below clarifies the size
of the reproducing kernel.

Lemma 3.9 For 1 < p < ∞ and α > −1, for each z ∈ TB, the Bergman
kernel function Kα,z(w) belongs to Ap

α(TB), and its norm is Cρ (z)−(n+α+1)/p′,
where p′ is the conjugate exponent of p and C is a positive constant depend-
ing only on n, α and p.
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Proof: The above conclusion can be obtained through straightforward cal-
culation and the lemma 3.5, so we omit the proof.

The following lemma 3.10 provides an equivalent condition for weak
convergence of functions in Bergman spaces. Although it is well-known, its
proof has not been found, thus, we provide one below.

Lemma 3.10 Suppose {fj} is a sequence in Ap
α (TB) with 1 < p < ∞.

Then fj → 0 weakly in Ap
α (TB) as j → ∞ if and only if {fj} is bounded in

Ap
α (TB) and converges to 0 uniformly on each compact subset of TB.

Proof: (1) We first prove the necessary part of the lemma.
Suppose {fj} converges to 0 weakly in Ap

α (TB) as j → ∞, then {fj} is
bounded in Ap

α (TB) according to the uniform boundedness principle.
Based on the above lemma 3.8, {fj} is uniformly bounded on every

compact subset of Ap
α (TB) and thus is a normal family.

Note that {fj} converges to 0 pointwise according to the property of the
reproducing kernel as j → ∞, so {fj} converges uniformly to 0 on every
compact subset of TB as j → ∞.

(2) Now we prove the sufficiency part of the lemma.
Suppose supj‖fj‖p,α < ∞ and {fj} converges uniformly to 0 on every

compact subset of TB as j → ∞. For any ε > 0 and any g ∈ Aq
α (TB) (where

1
p
+ 1

q
= 1), there exists a compact subset K of TB such that

(∫

TB\K

|g (z)|q ρ (z)α dV (z)

) 1
q

<
ε

2M
.

Then, through the Holder inequality, we have

|(fj , g)| ≤
∣∣∣∣
∫

K

fj (z) g (z)ρ (z)
α dV (z)

∣∣∣∣

+

∣∣∣∣
∫

TB\K

fj (z) g (z)ρ (z)
α dV (z)

∣∣∣∣

≤ V (k)
1
p ‖g (z)‖q,α sup

z∈K
|fj (z)|

+ ‖fj (z)‖p,α
(∫

TB\K

|g (z)|q ρ (z)α dV (z)

) 1
q

.

Since {fj} uniformly converges to 0 on K as j → ∞, there exists N > 0
such that when j ≥ N , the second term of the above formula is less than
ε/2.

Therefore, (fj , g) → 0 holds when j → ∞, and then {fj} converges
weakly to 0 in Ap

α (TB) as j → ∞. The proof is complete.
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Lemma 3.11 As |z| approaches infinity, ρ (z, i) also tends to infinity.

Proof: We consider two cases.
Case 1: When zn is fixed and |zk| → ∞ for k = 1, 2, . . . , n− 1, we have

4 |ρ (z, i)| ≥ 4Reρ (z, i)

=

n−1∑

k=1

Rez2k + 2Imzn + 2

≥
n−1∑

k=1

Rez2k + 2

n−1∑

k=1

(Imzk)
2 + 2

=

n−1∑

k=1

(Rezk)
2 +

n−1∑

k=1

(Imzk)
2 + 2

=

n−1∑

k=1

|zk|2 + 2.

This implies |ρ (z, i)| → ∞ as |zk| → ∞ for k = 1, 2, . . . , n− 1.
Case 2: When the previous n− 1 variables are fixed (assuming they are

all zero without loss of generality), then

2 |ρ (z, i)| ≥ |zn| − 1,

which shows that |ρ (z, i)| → ∞ as |zn| → ∞.
Therefore, from cases 1 and 2, we can obtain that |ρ (z, i)| → ∞ as

|z| → ∞, which completes the proof.

In the Bergman spaces on the unit disk, it is known that as |z| approaches
the boundary, the normalized reproducing kernel weakly converges to 0 in
Ap

α (TB), as referenced in [22]. The following lemma 3.12 informs us that
in the Bergman spaces on tubes, the normalized reproducing kernel also
possesses this property.

Lemma 3.12 For 1 < p < ∞ and α > −1, we have Kα,z‖Kα,z‖−1
p,α → 0

weakly in Ap
α (TB) as z → ∂T̂B .

Proof: According to Lemma 3.10, our proof is to demonstrate the uniform
convergence to 0 of Kα,z‖Kα,z‖−1

p,α on each Qj := D (i, j).
By applying Lemma 3.9 and Lemma 3.2, we can establish the existence

of a constant C > 0 such that

sup
w∈Qj

∣∣∣∣
Kα,z (w)

‖Kα,z‖p,α

∣∣∣∣ ≤ C
ρ (z)(n+α+1)/p′

|ρ (z, i)|n+α+1
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for all z ∈ TB. Given that 2ρ (z, i) = 1
2
|z′2 − 2izn + 2| ≥ 1 for all z ∈ TB,

we deduce

sup
w∈Qj

∣∣∣∣
Kα,z (w)

‖Kα,z‖p,α

∣∣∣∣ ≤ Cρ (z)(n+α+1)/p′ ,

which indicates that Kα,z‖Kα,z‖−1
p,α → 0 uniformly on Qj as z → ∂TB .

Furthermore, through the utilization of Lemma 3.7 and Lemma 3.11, we
ascertain that

sup
w∈Qj

∣∣∣∣
Kα,z (w)

‖Kα,z‖p,α

∣∣∣∣ ≤
C

|ρ (z, i)|(n+α+1)/p
→ 0,

which demonstrates that Kα,z‖Kα,z‖−1
p,α → 0 uniformly on Qj as |z| → ∞.

Thus, the lemma is successfully proven.

4 Carleson measures on TB

As mentioned in the introduction, the importance of Carleson measures
in studying the analytical properties of Toeplitz operators is significant. In
the following, we will introduce two important theorems related to Carleson
measures, which provide powerful support for the proof of the main results
theorem 6.1 and 6.2.

The following theorem 4.1 presents some equivalent characterizations of
Carleson measures on tubes, and this theorem is derived from [16].

Theorem 4.1 [16] Suppose 0 < p < ∞, r > 0, α > −1 and µ is a positive
Borel measure on the TB. Then the following conditions are equivalent.

(1) µ is a Carleson measure for Ap
α (TB) .

(2) There exists a constant C > 0 such that

∫

TB

ρ (z)n+α+1

|ρ (z, w)|2(n+α+1)
dµ (w) ≤ C

for all z ∈ TB

(3) There exists a constant C > 0 such that

µ (D (z, r)) ≤ Cρ (z)n+α+1

for all z ∈ TB.
(4) There exista a constant C > 0 such that

µ (D (ak, r)) ≤ Cρ (ak)
n+α+1

for all k ≥ 1, where {ak} is an r-lattice in the Bergman metric.
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The proof of Theorem 4.1 has been provided in [16], and we will not
repeat it here.

Following that, we provide some equivalent characterizations of vanish-
ing Carleson measures. These characterizations illustrate the property of
being a vanishing Carleson measure for Ap

α (TB), which depends neither on
p nor on r in the following theorem 4.2.

Theorem 4.2 Suppose 1 < p < ∞, r > 0, α > −1 and µ is a positive Borel
measure on the TB. Then the following conditions are equivalent.

(1) µ is a vanishing Carleson measure for Ap
α (TB) .

(2) The measure µ satisfies

lim
a→∂T̂B

∫

TB

ρ (a)n+α+1

|ρ (z, a)|2(n+α+1)
dµ (z) = 0.

(3) The measure µ has the property that

lim
a→∂T̂B

µ (D (a, r))

ρ (a)n+α+1 = 0.

(4) For {ak} an r-lattice in the Bergman metric, we have

lim
k→∞

µ (D (ak, r))

ρ (ak)
n+α+1 = 0.

Proof:

(1) ⇒ (2): According to Lemmas 3.9 and 3.12, take

ga(z) =

(
ρ (a)n+α+1

|ρ (z, a)|2(n+α+1)

)1/p

.

By Lemma 3.9 and 3.12, we see that ga(z) converges weakly to 0 in Ap
α (TB)

as a → ∂T̂B . Therefore,

∫

TB

ρ (a)n+α+1

|ρ (z, a)|2(n+α+1)
dµ (z) = C

∫

TB

|ga (z)|p dµ (z) → 0

as a → ∂T̂B , which shows that (2) holds.

(2) ⇒ (3): Obviously, the following equation holds:

lim
a→∂T̂B

∫

TB

ρ (a)n+α+1

|ρ (z, a)|2(n+α+1)
dµ (z) = 0.

13



By Lemma 3.2, |ρ (z, a)| and ρ (z) are comparable when z ∈ D (a, r). There-
fore, µ has that protery.

(3) ⇒ (4): We know that ak → ∂T̂B as k → ∞ if {ak} is an r-lattice in
the Bergman metric. So the conclusion is trivial.

(4) ⇒ (1): If the equality holds, we show that the inclusion map ip from
Ap

α (TB) into Lp(TB, dµ) is compact.
To this end, we assume that {fj} is a sequence in Ap

α (TB) that converges
to 0 uniformly on compact subsets of TB and ‖fj‖p,α ≤ M for some positive
constant M .

By assumption, given ε > 0 there exists a positive integer N0 such that

µ (D (ak, r))

ρ (ak)
n+α+1 < ε, k ≥ N0.

By Lemma 3.1, there is a constant C > 0 such that

∞∑

k=N0

∫

D(ak,r)

|fj (z)|p dµ (z)

≤ C

∞∑

k=N0

µ (D (ak, r))

ρ (ak)
n+α+1

∫

D(ak ,2r)

|fj (z)|p dVα (z)

≤ εCN

∫

TB

|fj (z)|p dVα (z) ≤ εCNMp

for all j, where C,N and M are all independent of ε. Since

lim
j→∞

N0−1∑

k=1

∫

D(ak,r)

|fj (z)|p dµ (z) = 0,

we have

lim
j→∞

sup

∫

TB

|fj (z)|p dµ (z)

≤ lim
j→∞

sup

[
N0−1∑

k=1

∫

D(ak ,r)

|fj (z)|p dµ (z) +

∞∑

k=N0

∫

D(ak ,r)

|fj (z)|p dµ (z)

]

≤ εCNMp.

Since ε is arbitrary, we know that µ is a vanishing Carleson measure. The
proof of the theorem is complete.
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5 Dense subspaces of Ap
α (TB)

For the case of unit disk D, we know that the space H∞(D) of bounded
analytic functions is dense in the Bergman spaces Ap

α(D). Since the Toeplitz
operator is an integral operator, it is always well-defined, making the Toeplitz
operator densely defined in Ap

α(D).
However, in the case of tubes, there is not dense property as good as

in a unit disk. In order to study the theory of Toeplitz operators on the
Bergman space Ap

α (TB) over tubular domains TB, we have to first find a
dense subspaces of Ap

α (TB), and then obtain the Toeplitz operators densely
defined on Ap

α (TB).
To do this, we first introduce the following definition:
Let M+ be the set of all positive Borel measure µ such that

∫

TB

dµ (z)

|ρ (z, i)|t
< ∞

for some t > 0.
Given t ∈ R, we denote by St the vector spaces of functions f holomor-

phic in TB satisfying

sup
z∈TB

|ρ (z, i)|t |f (z)| < ∞.

Theorem 5.1 If 1 ≤ p < ∞, α > −1, t > n + (α + 1)/p and µ ∈ M+,
then the Toeplitz operator Tµ is densely defined on Ap

α(TB).

Proof: To prove this theorem, we need to find a dense subspace St of
Ap

α(TB), such that for any f ∈ St, the following equation holds:
∫

TB

|Kα (z, w) f (w) |dµ (w) < ∞.

Now we prove the density of St in Ap
α(TB). Let fj = f ·χQj

for j = 1, 2, · · · ,
where Qj = D(i, j) and χQj

is the characteristic function of Qj . Clearly,
‖fj − f‖p,α → 0 as j → ∞. Given λ > −1, let Pλ be the integral operator
given by

Pλg(z) = cλ

∫

TB

ρ(w)λ

ρ(z, w)n+1+λ
g(w)dV (w), z ∈ TB,

where cλ = 2n+1+2λΓ(n+1+λ)
πnΓ(1+λ)

. It was shown in [9, Theorem 3.2] that Pλ is

a bounded projection from Lp
α(TB) onto Ap

α(TB), provided that λ > (α +
1)/p− 1. Taking λ = t− n− 1, by Holder’s inequality, we obtain

|Pt−n−1fj(z)| ≤ ct−n−1‖f‖p,αVα(Qj)
1/p′ sup

w∈Qj

ρ(w)t−n−α−1

|ρ(z, w)|t

15



for all z ∈ TB. Combined with Lemma 3.3, we only need to consider the
upper bound of

sup
w∈Qj

ρ(w)t−n−α−1

|ρ(z, w)|t
.

Since the Qj are fixed, a simple calculation yields

|Pt−n−1fj(z)| ≤
C‖f‖p,α
|ρ(z, i)|t

for all z ∈ TB, where C > 0 is a constant independent of z.
Thus

Pt−n−1fj(z) ∈ St.

Since f ∈ Ap
α(TB) and Pα−n−1 is a bounded projection from Lp

α(TB) onto
Ap

α(TB), we have

‖Pα−n−1fj(z)−f‖p,α = ‖Pα−n−1 (fj(z)− f)‖p,α ≤ ‖Pα−n−1‖‖fj −f‖p,α → 0

as j → ∞. This implies that St is dense in Ap
α(TB).

According to Lemma 3.7, we know that there exists a constant C > 0
such that

∫

TB

|Kα (z, w) f (w) |dµ (w) .
1

ρ (z)n+α+1

∫

TB

|ρ (w, i)|t |f (w)|
|ρ (w, i)|t

dµ (w)

.
1

ρ (z)n+α+1

∫

TB

dµ (w)

|ρ (w, i)|t

< ∞

holds. This completes the proof of the theorem.

6 Characterization of Toeplitz operators

Building on the foundational results previously, we can now to prove the
following result:

Theorem 6.1 Suppose that r > 0, 1 < p < ∞, 0 < q < ∞, α > −1 and
that µ ∈ M+. Then the following conditions are equivalent:

(1) Tµ is bounded on Ap
α(TB).

(2) µ̃ is a bounded function on TB.
(3) µ̂r is a bounded function on TB.
(4) µ is a Carleson measure for Aq

α(TB).
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Proof: (1) ⇒ (2): We have the well-known conclusion

〈Tµkz, kz〉 =
∫

TB

|kz (w)|2 dµ (w) = µ̃ (z) ,

And according to the conditions and lemma 3.9 we have

|〈Tµkz, kz〉| ≤ ‖Tµkz‖p,α‖kz‖p′,α ≤ ‖Tµ‖‖Kz‖p,α‖Kz‖p′,α
K (z, z)

= C‖Tµ‖.

Therefore, µ̃(z) is a bounded function on TB.

(2) ⇒ (3): By the definition of µ̂r and Theorem 4.1, the expected results
are obtained by the following identity

Vα (D (z, r)) = Kρ (z)n+α+1 ,

where K is a constant independent of z.

(3) ⇒ (4): This result can be obtained from the fact that the Carleson
measure in Theorem 4.1 is not dependent on p, so it is trivial.

(4) ⇒ (1): Since µ is a Carlson measure for Aq
α(TB), and according to

the Carlson measure does not depend on the index we know µ is a Carlson
measure for A1

α(TB). Combining Tµf is well defined on St, there exists a
constant C > 0 such that

∫

TB

|Kα(z, w)f(w)|dµ(w) ≤ C

∫

TB

|Kα(z, w)f(w)|dVα(w)

≤ C

∫

TB

ρ (w)α dV (w)

|ρ (z, w) |n+α+1|ρ (w, i) |t .

According to the holomorphic automorphism from Bn to TB, let

w = Φ (ξ) , z = Φ (η) ,

and make a variable transformation of the above integral. we obtain

∫

TB

ρ (w)α dV (w)

|ρ (z, w) |n+α+1|ρ (w, i) |t

= 2n+1 |1 + ηn|n+α+1

∫

Bn

(
1− |ξ|2

)α
dV (ξ)

|1− 〈η, ξ〉|n+α+1 |1 + ξn|n+α+1−t
.
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By [19, Theorem 3.1], the last integral is dominated by a constant multiple
of

1

|1 + ηn|n+α+1−t

(
1 + log

|1 + ηn|
1− |η|2

)
,

Thus, there exists a constant C > 0 such that

∫

TB

ρ (u)α dV (u)

|ρ (z, u) |n+α+1|ρ (u, i) |t ≤ C|1 + ηn|t
(
1 + log

1

1− |η|2
)

=
C

|ρ(z, i)|t
(
1 + log

|ρ(z, i)|2
ρ(z)

)

holds.
By the elementary inequality log x < xε, where

x > 1, 0 < ε < min{(α + 1) /p, t− (α+ n + 1) /p},

we have

∫

TB

|Tµf(z)|pdVα(z) ≤ C



∫

TB

dVα(z)

|ρ(z, i)|pt +
∫

TB

ρ(z)−pǫ

|ρ(z, i)|p(t−2ǫ)
dVα(z)


 .

This shows that Tµ is densely defined on St and can be extended to be a
bounded operator on Ap

α(TB).
This completes the proof of Theorem 6.1.

The above theorem 6.1 characterizes the boundedness of the Toeplitz
operator Tµ, and now we will characterize the compactness of Tµ in the
following theorem 6.2.

Theorem 6.2 Suppose that r > 0, 1 < p, q < ∞, α > −1 and that
µ ∈ M+. Then the following conditions are equivalent:

(1) Tµ is compact on Ap
α(TB).

(2) µ̃ belongs to C0(TB).
(3) µ̂r belongs to C0(TB).
(4) µ is a vanishing Carleson measure for Aq

α(TB).

Proof: (1) ⇒ (2): Assume that Tµ is a compact operator on Ap
α(TB) for

some p > 1.
Since

|µ̃ (z)| ≤ C‖Tµ

(
Kz

‖Kz‖p,α

)
‖p,α
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for all z ∈ TB. Combining the compactness of Tµ and lemma 3.12, implies
µ̃ ∈ C0(TB).

(2) ⇒ (3): By the definition of µ̂r and Theorem 4.2, the expected results
are obtained by the following identity

Vα (D (z, r)) = Kρ (z)n+α+1 ,

where K is a constant independent of z.

(3) ⇒ (4): This conclusion can be drawn from the fact that the vanish-
ing Carleson measure in Theorem 4.2 is not dependent on p, so it is trivial.

(4) ⇒ (1): Since µ is a vanishing Carlson measure for Aq
α(TB), and

according to the vanishing Carlson measure does not depend on the index
we know µ is a vanishing Carlson measure for Ap′

α (TB). By Theorem 6.1,
we know that Tµ is bounded on f ∈ Ap

α(TB).
For any f ∈ Ap

α(TB), we have

‖Tµf‖p,α = sup{| 〈Tµf, g〉 |
∣∣∣‖g‖p′,α = 1 in Ap′

α (TB)}

= sup





∣∣∣∣∣∣

∫

TB

fgdµ

∣∣∣∣∣∣

∣∣∣‖g‖p′,α = 1 in Ap′

α (TB)





≤ ‖f‖Lp(µ)sup
{
‖g‖Lp′(µ)

∣∣∣‖g‖p′,α = 1 in Ap′

α (TB)
}
,

where the rationality of the second equation uses the Fubini’s theorem.
Since µ is a vanishing Carlson measure on Ap′

α (TB), the second term of the
last inequality is finite.

Now if fj → 0 weakly in Ap
α(TB), then the compactness of the inclusion

mapping implies that ‖f‖Lp(µ) → 0. It follows that ‖Tµfj‖p,α → 0 and hence
Tµ is compact.

This completes the proof of Theorem 6.2.
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