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Abstract

The generalized Lefschetz thimble method is a promising approach that attempts to

solve the sign problem in Monte Carlo methods by deforming the integration contour

using the flow equation. Here we point out a general problem that occurs due to

the property of the flow equation, which extends a region on the original contour

exponentially to a region on the deformed contour. Since the growth rate for each

eigenmode is governed by the singular values of the Hessian of the action, a huge

hierarchy in the singular value spectrum, which typically appears for large systems,

leads to various technical problems in numerical simulations. We solve this hierar-

chical growth problem by preconditioning the flow so that the growth rate becomes

identical for every eigenmode. As an example, we show that the preconditioned flow

enables us to investigate the real-time quantum evolution of an anharmonic oscillator

with the system size that can hardly be achieved by using the original flow.
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1 Introduction

In theoretical physics, we are often faced with a system which cannot be solved analytically.

In that case, we have to either perform perturbative calculations by taking some limits in

the parameter space, or make some plausible simplifications so that the system becomes

analytically tractable. Such approximations, however, quite often obscure the physics we

are most interested in. In this regard, numerical simulation is of particular importance

since it provides us with a powerful tool to investigate various systems nonperturbatively

from first principles without such approximations.

Here we are concerned with numerical simulation of multi-variable integrals with some

weight, where the number of variables N representing the system size is large. In the

case with a positive-definite weight such as the Boltzmann weight that appears in classical

statistical mechanics, the numerical integration can be realized by Monte Carlo (MC) sim-

ulation based on the importance sampling, where we interpret the weight as the probability

distribution. However, we often encounter a weight w = e−S with a complex action S,

which cannot be interpreted as the probability distribution. A naive prescription is the

so-called reweighting, where we interpret the absolute value of the weight as the probabil-

ity distribution, and take into account the phase factor when we take the average of the

observables. This does not really work for large systems since the phase factor oscillates vi-

olently depending on the generated configurations, which leads to huge cancellations among

them. Thus, in order to obtain the correct expectation value, one needs a huge number

of configurations, which typically grows exponentially with the system size N . This is the

notorious sign problem, which has been hindering nonperturbative studies of various im-

portant systems, such as finite density QCD, theories with a θ-term, strongly correlated

electron systems, and the Lorentzian path integrals for the real-time quantum evolution.

In the last decade, various new approaches have been developed to overcome the sign

problem. In particular, within the framework of MC methods, two promising approaches,

the complex Langevin method [1, 2] and the Lefschetz thimble method [3, 4, 5, 6] have been

studied intensively1. A common feature of these two approaches is that one complexifies

the variables and extends the weight and the observables as holomorphic functions of the

complexified variables. In the complex Langevin method, one generates complexified config-

urations using the Langevin equation with the drift term given by the gradient of the action.

1As a promising approach without MC simulation, the tensor renormalization group has been developed

[7, 8, 9, 10, 11]. The basic idea is to rewrite the integral as a network of tensors and to perform a coarse-

graining procedure iteratively using the singular value decomposition. Since there is no need to interpret

the weight as the probability distribution, the method is free from the sign problem from the outset.
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While the cost of this method is O(N) as in typical MC simulation, it is applicable only to

a limited class of systems due to the conditions for justification [12, 13, 14, 15, 16, 17, 18].

On the other hand, the Lefschetz thimble method is based on the Picard-Lefschetz

theory, in which one deforms the integration contour in the complex space to a set of

steepest descent paths emanating from some saddle points of the action. These paths are

called the Lefschetz thimbles (or thimbles in short). The phase of the complex weight

is constant along each thimble, and the sign problem is solved as far as the phase factor

coming from the integration measure can be taken into account by reweighting [6].

In practice, the contour deformation can be realized by solving the so-called anti-

holomorphic gradient flow equation for the variables [19], where the amount of flow (the

flow time) plays the role of the deformation parameter. While the Lefschetz thimbles are

obtained in the long flow time limit, one can also use a deformed contour obtained at finite

flow time of the order of logN , which is expected to be long enough to solve the sign prob-

lem for the system size N . This is called the generalized thimble method (GTM), which

has a big advantage over the original Lefschetz thimble method in that it does not require

prior knowledge of the Lefschetz thimbles. (See Ref. [20] for a review.)

When there are more than one thimbles that contribute to the integral, the GTM suffers

from an ergodicity problem for a large flow time due to the infinite potential barriers between

different thimbles. For a relatively small system, one can just choose the flow time long

enough to solve the sign problem but not too long so that the ergodicity problem can be

avoided [19]. The range of the flow time that can avoid both problems, however, shrinks as

the system size increases and eventually vanishes. In order to solve both problems even in

that case, one can integrate over the flow time2, which amounts to treating the flow time

as an extra dynamical variable in the simulation [24, 25].

As an efficient algorithm for numerical simulations in general, the Hybrid Monte Carlo

(HMC) algorithm is widely used. In this algorithm, one uses a fictitious Hamilton dynamics

to update the configuration. When one applies this algorithm to the GTM, there are

actually two approaches depending on whether one considers the Hamilton dynamics on

the deformed contour or on the original contour. In the first approach, one has to solve the

Hamilton dynamics of a constrained system in order to make sure that the configuration

remains on the deformed contour [6, 23]. This requires some complicated calculations since

the deformed contour is given only implicitly by solving the gradient flow equation. A big

advantage of this approach, however, is that the probability distribution of the generated

configurations automatically includes the modulus of the Jacobian associated with the flow

2This proposal is a significant improvement over the related ones [21, 22, 23] based on tempering with

respect to the flow time, which requires the calculation of the Jacobian when one swaps the replicas.
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of variables, which is not the case in the second approach as we explain below.

In the second approach, one can just solve the Hamilton dynamics of an unconstrained

system on the real axis, which makes this part of the algorithm much simpler than in the

first approach. The force term of the Hamilton equation has to be calculated by taking

the derivative of the action on the deformed contour with respect to the variables on the

real axis, which is actually possible without large computational cost if one uses the idea of

backpropagation [26]. A drawback of this second approach, however, is that the probability

distribution of the generated configurations does not include the modulus of the Jacobian

associated with the flow of variables, and therefore it has to be included by reweighting

together with the phase of the Jacobian. In fact, the modulus may fluctuate considerably

depending on the generated configurations. In that case, only a few configurations that

have a large modulus of the Jacobian dominate the ensemble, and one cannot increase

the statistics efficiently. This is the so-called overlap problem that can occur in general

when one uses reweighting. In what follows, we call these two approaches the on-thimble

approach3 and the on-axis approach, respectively.

In this paper, we point out a general problem that occurs when the GTM is applied

to large systems. In the GTM, the deformation of the integration contour by the gradient

flow equation is really the key to solve the sign problem. The crucial feature of the gradient

flow equation that makes this possible is that it maps a small region on the real axis to an

exponentially large region on the deformed contour as the flow time becomes longer. The

growth rate of this exponential behavior, however, depends on the eigenmode, and it is

governed by the singular values of the Hessian of the action. As the system size increases,

the singular value spectrum typically exhibits a huge hierarchy. As a consequence, if we

choose the flow time long enough to solve the sign problem associated with the eigenmodes

corresponding to small singular values, the eigenmodes corresponding to large singular

values tend to diverge and easily get out of control4.

We show that this hierarchical growth problem of the GTM can be solved by precondi-

tioning the gradient flow equation. For that, we first point out that we are free to introduce

a Hermitian positive-definite kernel on the right-hand side of the gradient flow equation

without spoiling its property that is necessary to solve the sign problem. One can actu-

ally use this freedom to make the growth rate identical for every eigenmode, which implies

3This is a bit of abuse of the word “thimble” since here it actually represents a deformed contour

obtained by the gradient flow at finite τ .
4This problem should not be confused with the blow-up problem of the flow equation discussed in

Ref. [27], which occurs when the integrand becomes zero at some point in the complexified configuration

space. In fact, we consider that the blow-up problem does not occur if one uses the preconditioned flow

that we propose in this paper as we discuss in Appendix A.
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that the hierarchical growth problem can be solved by the preconditioned flow. Moreover,

when applied to the on-axis approach, the preconditioned flow suppresses the fluctuation

of the Jacobian, which can otherwise cause the overlap problem as we mentioned above.

Actual implementation of this preconditioned flow can be done by using the techniques

developed for Rational Hybrid Monte Carlo algorithm, which is widely used in numerical

simulation. In order to demonstrate how the preconditioning works, we apply the GTM

to the real-time quantum evolution of an anharmonic oscillator5. In particular, we show

that the preconditioning enables us to simulate a large system that cannot be achieved

otherwise. We also show that the computational cost for generating configurations grows

only linearly with the system size N for a local system if we implement the preconditioning

in the flow appropriately. Preliminary discussions on the precondition flow are presented

in our previous paper [33] and a proceedings article [34], where we establish a new picture

of quantum tunneling in the real-time path integral using the GTM.

The rest of this paper is organized as follows. In Section 2, we discuss the hierarchical

growth problem of the original flow due to the hierarchy in the singular value spectrum of

the Hessian. In particular, we show that the problem becomes severer when the system

size increases using a simple example of a harmonic oscillator. In Section 3, we explain

our proposal of the preconditioned flow equation, and discuss how it can be implemented

in practice. In Section 4, we demonstrate how the preconditioning solves the hierarchical

growth problem of the flow as well as the overlap problem in the on-axis approach by

applying the GTM to the real-time quantum evolution of an anharmonic oscillator. Section

5 is devoted to a summary and discussions. In Appendix A, we discuss the absence of the

so-called blow-up problem in the preconditioned flow. In Appendix B, we show that the

preconditioned flow actually changes the thimble and yet it solves the sign problem using

a simple example. In Appendix C, we provide a brief review on the application of the

HMC to the GTM based on the on-axis approach. In Appendix D, we discuss how the idea

of backpropagation for calculating the force term in the HMC algorithm works with the

preconditioned flow. In Appendix E, we present the parameters of the GTM used in our

simulations.

2 The hierarchical growth problem in the GTM

In this section, we discuss the crucial properties of the gradient flow equation that make

it possible to solve the sign problem. In particular, we show that it maps a region on the

5See also Refs. [28, 29, 30, 31, 32] for calculations of the real-time quantum evolution using the GTM

based on the Schwinger-Keldysh formalism, which actually simplifies the simulation [30].
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real axis to a region on the deformed contour, which becomes exponentially large with the

flow time. Moreover the growth rate for each eigenmode is governed by the singular value

spectrum of the Hessian of the action. When the system size N is large, the growth rate

tends to exhibit a large hierarchy, which is the hierarchical growth problem.

2.1 Hierarchical growth property of the flow equation

Let us consider a partition function with a complex action S(x) ∈ C defined by

Z =

∫
RN

dNx e−S(x) . (2.1)

In the GTM, one deforms the integration contour by using the gradient flow equation

dzj(σ)

dσ
=
∂S(z(σ))

∂zj
. (2.2)

By solving this equation from σ = 0 to σ = τ with the initial condition zj(0) = xj, we obtain

a map x 7→ z(x, τ) ≡ z(τ). Then the deformed contour is defined by Στ = {z(x, τ)|x ∈ RN},
where τ is the so-called flow time. Due to Cauchy’s theorem, the partition function can be

rewritten as

Z =

∫
Στ

dNz e−S(z) . (2.3)

The crucial property of the flow equation is

dS(z(σ))

dσ
=
∂S(z(σ))

∂zj

dzj(σ)

dσ
=

∣∣∣∣∂S(z(σ))∂zj

∣∣∣∣2 > 0 , (2.4)

which implies that ReS(z(σ)) increases monotonically with increasing σ, while ImS(z(σ))

remains constant. In the infinite flow time limit τ = ∞, the deformed contour Σ∞ is

composed of a set of Lefschetz thimbles. Each thimble can be obtained by the flow from

some saddle point (defined by ∂S(z)
∂zj

= 0), and hence ReS(z(σ)) increases monotonically

keeping ImS(z) constant as one flows away from the saddle point. This implies that the

sign problem is solved on each thimble as far as the phase factor coming from the integration

measure dNz in (2.3) can be treated by reweighting [6]. The key mechanism for solving the

sign problem here is that there is some point P on RN which flows into a saddle point in

the τ → ∞ limit, and the thimble associated with that saddle point is obtained by mapping

an infinitesimal vicinity of the point P using the flow. This property of the flow, together

with the fact that ImS(z) is kept constant along the flow, makes it possible to solve the
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sign problem. In fact, the sign problem can be solve even at finite τ as far as τ is large

enough to suppress the fluctuation of ImS(z).

Here we discuss in more detail how a small region on the original contour RN is extended

in the deformed contour. For that, let us consider two points x and x + δx on the real

axes, which differ only by some infinitesimal displacement δx. The displacement ζ(σ) ≡
z(x+ δx, σ)− z(x, σ) of the two points after some flow time σ is given by the equation

dζj(σ)

dσ
= Hjk(z(σ)) ζk(σ) (2.5)

with ζj(0) = δxj, where H is the Hessian of the action defined by

Hij(z) =
∂2S(z)

∂zi∂zj
. (2.6)

In order to solve (2.5), let us rewrite it as

d

dσ

(
ζ(σ)

ζ̄(σ)

)
= H(σ)

(
ζ(σ)

ζ̄(σ)

)
, (2.7)

where we use the vector notation ζ = (ζ1, · · · , ζN)⊤, ζ̄ = (ζ̄1, · · · , ζ̄N)⊤ and define the

2N × 2N Hermitian6 matrix H(σ) as

H(σ) =

(
H(z(σ))

H(z(σ))

)
. (2.8)

Thus the solution to the differential equation (2.5) can be written down formally as(
ζ(τ)

ζ̄(τ)

)
= P exp

(∫ τ

0

dσH(σ)

)(
δx

δx

)
, (2.9)

where δx = (δx1, · · · , δxN)⊤ and P exp represents the path-ordered exponential, which

ensures that H(σ) with smaller σ comes on the right after Taylor expansion.

In order to understand the behavior of the solution (2.9), let us diagonalize the Hermitian

matrix H(σ). For that, we consider the singular value decomposition (SVD) of the Hessian

Hij(z(σ)) given as7

H(z(σ)) = U⊤(σ) Λ(σ)U(σ) , (2.10)

6Note that the Hessian is symmetric H⊤ = H and hence H̄ = H†.
7This is known as the Takagi decomposition, which is the SVD for a complex symmetric matrix.
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where U is a unitary matrix and Λ = diag(λ1, · · · , λN) is a real diagonal matrix with

positive8 entries λj > 0. Using Λ(σ) and U(σ), we can diagonalize H(σ) as

H(σ) = U †(σ)

(
Λ(σ)

−Λ(σ)

)
U(σ) , (2.11)

U(σ) = 1√
2

(
1N 1N

−1N 1N

)(
U(σ)

U(σ)

)
. (2.12)

This implies that the displacement grows exponentially with σ for a small region of σ, in

which Hjk(z(σ)) can be regarded as constant. Moreover, the growth rate is governed by the

singular values of the Hessian H(z), and it depends on the eigenmode ζ
(i)
E = Re(Uijζj) ∼

eλiσ. When the singular value spectrum has a large hierarchy, the growth rate becomes very

different for different eigenmodes. Since the flow time τ is common to all the eigenmodes,

if we choose τ in such a way that the sign problem is solved for the eigenmodes ζ
(i)
E with

small λi, the eigenmodes ζ
(i)
E with large λi tend to diverge.

This problem is severer in the on-axis approach since one has to update the configuration

on the real axis. In order to avoid the hierarchical growth problem, one has to choose a

very small step size in solving the Hamilton dynamics of the HMC algorithm, which makes

the simulation extremely slow. In the case of the on-thimble approach, one updates the

configuration on the deformed contour directly, but the problem may occur when one solves

the flow equation to ensure that the updated configuration is still on the deformed contour.

(See Section 5 for further discussions.)

2.2 Example of a harmonic oscillator

In this section, we show that the hierarchical growth problem discussed in the previous

section indeed occurs in a simple example of a harmonic oscillator. This example provides a

clear understanding of the problem since the gradient flow equation can be solved explicitly.

The path integral that describes the real-time quantum evolution of a harmonic oscillator

is given by (2.1) with the action

S = −i
N∑
j=0

ϵ

{
1

2

(
xj+1 − xj

ϵ

)2

− 1

2
m2

x2j+1 + x2j
2

}
, (2.13)

where we fix x0 = xN+1 = 0 for simplicity and treat x1, · · · , xN as variables. The path

integral (2.1) then represents the transition amplitude from the origin to the origin in time

T = ϵ(N + 1) up to some known normalization factor.

8Here we assume that there are no zero singular values for simplicity. However, our idea can be easily

extended to the case in which this assumption does not hold. See footnote 13.
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In this example, the Hessian H(z) of the action defined by (2.6) is a constant matrix,

which does not depend on the complexified configuration zj. Furthermore, it is not only

symmetric but also pure imaginary. Therefore, we can diagonalize it as

H = −i O⊤ Λ̃O , (2.14)

where O ∈ SO(N) and Λ̃ is a real diagonal matrix Λ̃ = diag(λ̃1, · · · , λ̃N) with

λ̃j = ϵ

{
4

ϵ2
sin2 πj

2(N + 1)
−m2

}
. (2.15)

Note that λ̃j can be negative in general, and the singular values9 are given by λj = |λ̃j|.
Using the Hessian H and its diagonalized form (2.14), the action can be written as

S =
1

2
xjHjkxk = − i

2

N∑
j=1

λ̃j(yj)
2 , (2.16)

where we have defined the variables yj = Ojkxk. Thus the integral (2.1) is rewritten as

Z =

∫
RN

dNy exp

(
i

2

N∑
j=1

λ̃j y
2
j

)
. (2.17)

The flow equation for the complexified variables zj(y, τ) is given by

∂zj(y, σ)

∂σ
= iλ̃jzj(y, σ) , (2.18)

zj(y, 0) = yj , (2.19)

whose solution can be readily obtained as

zj(y, σ) =
{
cosh(λ̃jσ) + i sinh(λ̃jσ)

}
yj . (2.20)

Note that the gradient flow magnifies the displacement δyj on the real axis by a factor of

Rj(σ) ≡
√
cosh2(λ̃jσ) + sinh2(λ̃jσ) =

√
cosh(2λ̃jσ) ∼ eλjσ , (2.21)

which grows exponentially with σ, and the growth rate is given by the singular value

λj = |λ̃j| as suggested by the general discussion in the previous section.

9The singular value decomposition (2.10) of H = U⊤ ΛU is given by U = V O, where V is a diagonal

unitary matrix with the entries given by either e
π
4 i or e−

π
4 i depending on whether the corresponding

eigenvalue λ̃j is negative or positive, respectively.
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Using (2.20), the integral on the deformed contour is written as

Z =

∫
Στ

dNz exp

(
i

2

N∑
j=1

λ̃j z
2
j

)
(2.22)

=

∫
RN

dNy det J exp

(
−1

2

N∑
j=1

λ̃j

{
sinh(2λ̃jτ)− i

}
y2j

)
. (2.23)

Here the Jacobi matrix J associated with the deformation of the contour is given by

Jjk =
∂zj(y, τ)

∂yk
= {cosh(λ̃jτ) + i sinh(λ̃jτ)} δjk , (2.24)

which is independent of y and hence can be factored out of the integral.

From (2.23), one can see how the sign problem is solved by increasing τ . The real part

of the argument of the exponential function implies that the region of yj that contribute to

the integral is |yj| ≲ ∆j, where

∆j =
{
λ̃j sinh(2λ̃jτ)

}−1/2

. (2.25)

In that region, the phase factor of the integrand is close to unity as far as

1

2
|λ̃j|(∆j)

2 ≪ π . (2.26)

Combining (2.25) and (2.26), the sign problem associated with the eigenmode j is solved if

τ ≫ 1

2λj
arcsinh

(
1

2π

)
. (2.27)

Thus, in order to solve the sign problem of the whole system, one has to satisfy (2.27) for

the smallest singular value λmin. In that case, the magnification factor (2.21) for the largest

singular value λmax becomes

Rmax(τ) ∼ exp

(
c
λmax

λmin

)
, (2.28)

c≫ 1

2
arcsinh

(
1

2π

)
∼ 0.08 . (2.29)

When the singular value has a large hierarchy λmax

λmin
≫ 1, Rmax(τ) can easily diverge, which

is nothing but the hierarchical growth problem.

The ratio η(H) ≡ λmax

λmin
represents the condition number of the matrixH. Let us evaluate

this quantity explicitly in the case of a harmonic oscillator using (2.15). For mT < π, all

9
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Figure 1: The condition number η(H) given by (2.30) in the case of a harmonic oscillator

is plotted against N for m2 = 1 and T = 2, which shows quadratic growth at large N .

the eigenvalues become positive λ̃j > 0 for sufficiently large N . In that case, η(H) can be

easily evaluated as

η(H) =
4(N + 1)2 sin2 Nπ

2(N+1)
− (mT )2

4(N + 1)2 sin2 π
2(N+1)

− (mT )2
(2.30)

∼ 4

π2 − (mT )2
N2 , (2.31)

in the N → ∞ limit with fixed m2 and T , which corresponds to the continuum limit. In

Fig. 1, we plot η(H) against N for m2 = 1 and T = 2. By plugging these values in (2.28),

one finds that Rmax is as large as 2.4×109 even for N = 20 used in our numerical simulation

in Section 4.4.

Let us also note that the Jacobian that appears in (2.23) has a modulus that can be

written in terms of the magnification factor Rj(σ) defined in (2.21) as

|det J | =
N∏
j=1

Rj(τ) ∼ eΛτ , (2.32)

where Λ =
∑N

j=1 λj grows quadratically with N in the continuum limit. In the present

example of a harmonic oscillator, the Jacobian is a constant that does not depend on the

variables yj, which simply factors out of the integral in (2.23) as we already mentioned.

This is not the case in a general system, however. The Jacobian with a huge modulus

depending on the configuration can cause an overlap problem in the on-axis approach as

we discussed in the Introduction.
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In the example discussed above, the origin of the large η(H) is the ratio of the momenta

in the UV and IR regions as one can see from (2.30). This is closely related to the recent

discussion that the flow equation in the continuum theory does not allow a well-behaved

solution due to the high frequency modes [35]. In order to solve this problem, it was

proposed to modify the real part of the action that appears on the right-hand side of the

flow equation in the vicinity of the saddle points.

As we have seen in Section 2.1, a similar problem occurs generally in a discretized theory

with a large number N of variables, which typically exhibits a large hierarchy in the singular

value spectrum of the Hessian. We solve this problem by modifying the flow equation so

that the growth rate of each mode becomes identical, while keeping the crucial property of

the flow intact.

3 A solution to the hierarchical growth problem

Our basic strategy to solve the hierarchical growth problem is to normalize the growth rates

at each step of the flow. For instance, in the example of a harmonic oscillator discussed in

the previous section, we can replace (2.18) by

∂zj(y, σ)

∂σ
= i

λ̃j

|λ̃j|
zj(y, σ) , (3.1)

without spoiling the crucial property (2.4) of the flow equation. Thus the hierarchical

growth problem can be completely solved. What we aim to do here is to generalize this

prescription to an arbitrary system.

3.1 Preconditioned gradient flow equation

Let us first note that the crucial property (2.4) of the gradient flow equation holds for more

general flows described by10

dzj
dσ

= Ajk(z, z̄)
∂S

∂zk
, (3.2)

with A(z, z̄) being an arbitrary positive-definite hermitian matrix, which is not necessarily

a holomorphic function of z. This can be proved easily as

dS(z(σ))

dσ
=
∂S

∂zj
Ajk(z, z̄)

∂S

∂zk
> 0 . (3.3)

10Recently, it has been found that introducing a kernel in the complex Langevin equation is useful in

stabilizing simulations in the CLM for real-time quantum evolution [36, 37, 38].
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Note that A changes not only the deformed contour Στ but also the thimbles Σ∞. However,

since the crucial property of the flow is kept intact, ImS is constant on each thimble, which

implies that the sign problem can be solved in the same way. We discuss this point in

Appendix B with an explicit example.

For the generalized flow (3.2), we find that the displacement ζ(σ) ≡ z(x+δx, σ)−z(x, σ)
of the two points after some flow time σ is given by the equation

d

dσ
ζi(σ) = AikHkl(z(σ)) ζl(σ) +

(
∂Ail

∂zk
ζk(σ) +

∂Ail

∂z̄k
ζk(σ)

)
∂S(z(σ))

∂zl
, (3.4)

instead of the original one (2.5). Let us here assume that the first term is dominant11 in

(3.4). Then the solution to (3.4) can be written formally as (2.9) with H(σ) replaced by12

H̃(σ) =

(
AH(z(σ))

ĀH(z(σ))

)
. (3.5)

Recalling the singular decomposition (2.10) of H(z(σ)), we can choose

A = U(σ)† Λ−1(σ)U(σ) , (3.6)

so that the problematic hierarchy of singular values in H(z(σ)) is completely eliminated as

ĀH(z(σ)) = U⊤(σ)U(σ) . (3.7)

In this case, the 2N×2N matrix H̃(σ) is again Hermitian and it has N eigenvalues of 1 and

−1, respectively; namely the growth rate of each eigenmode becomes identical. (See (2.11).)

From this point of view, (3.6) can be regarded as the optimal choice for the “preconditioner”

A in the generalized flow equation (3.2).

In order to implement this idea in practice, let us note that (3.6) can be written as13

A(z(σ), z(σ)) =
{
H†(z(σ))H(z(σ))

}−1/2

=
{
H(z(σ))H(z(σ))

}−1/2

. (3.8)

Here we use the rational approximation

x−1/2 ≈ a0 +

Q∑
q=1

aq
x+ bq

, (3.9)

11This assumption is valid when z(σ) is close to a saddle point, for instance. Otherwise, it should be

simply regarded as a working hypothesis.
12Note that H̃(σ) is not Hermitian in general unlike H(σ).
13When H has zero singular values, the preconditioner A has to be regularized, for instance, as A =

(H̄(z̄)H(z) + ε)−1/2 with a small positive ε. This is needed when one treats a system with symmetries.

While the deformed contour changes with ε, the integral remains unaltered.
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which can be made accurate for a wide range of x > 0 with the real positive parameters aq

and bq generated by the Remez algorithm. Thus we obtain

A(z, z̄) ≈ a0 1N +

Q∑
q=1

aq

{
H(z)H(z) + bq 1N

}−1

. (3.10)

The matrix inverse (H̄H + bq1N)
−1 does not have to be calculated explicitly since it only

appears in the algorithm as a matrix that acts on some vector, which allows us to use

an iterative method for solving a linear equation such as the conjugate gradient (CG)

method. The factor of Q in the computational cost can be avoided by the use of a multi-

mass CG solver [39, 40]. These techniques are well known in the so-called Rational HMC

algorithm [41, 42], which is widely used in QCD with dynamical strange quarks [43] and

supersymmetric theories such as the BFSS and IKKT matrix models (See Refs. [44, 45, 46],

for example.).

3.2 Calculation of the Jacobian

In the GTM, one has to calculate the Jacobian associated with the change of variables

defined by the gradient flow. In the on-thimble approach, only the phase factor of the

Jacobian has to be reweighted, while in the on-axis approach, not only the phase factor

but also the modulus has to be reweighted. The calculation of the Jacobian gets modified

when one introduces the preconditioner to the flow equation. In this subsection, we discuss

how this can be done efficiently.

Let us note first that the flow of the Jacobi matrix is given by14

d

dσ
Jij(σ) = AikHkl(z(σ)) Jlj(σ) +

(
∂Ail

∂zk
Jkj(σ) +

∂Ail

∂z̄k
Jkj(σ)

)
∂S(z(σ))

∂zl
, (3.11)

for the preconditioned flow equation (3.2). (The corresponding flow for the original flow

equation (2.2) can be retrieved by setting A to an identity matrix.) Using the expression

(3.10), the derivative of A in (3.11) can be calculated as

∂A
∂zk

= −
Q∑

q=1

aq(H̄H + bq1N)
−1H̄

∂H

∂zk
(H̄H + bq1N)

−1 ,

∂A
∂z̄k

= −
Q∑

q=1

aq(H̄H + bq1N)
−1∂H

∂zk
H(H̄H + bq1N)

−1 . (3.12)

14The flow equation (3.4) for the displacement can be obtained from (3.11) by using ζj(σ) = Jjk(σ) δxk.
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Note that the matrix inverse (H̄H + bq1N)
−1 appears twice in the above expressions. In

order to use the idea of the multi-mass solver, which enables us to avoid repeating the CG

procedure Q times (See the explanation below Eq. (3.10).), we have to apply the matrix

inverse to some different vectors separately. For that, we regard the matrix equation (3.11)

as a set of vector equations for i = 1, · · · , N . We can calculate the right-hand side of

the vector equation for a particular i = I by multiplying a unit vector e
(I)
i = δiI to the

right-hand side of (3.11). Thus the matrix inverse (H̄H+ bq1)
−1 that appears in (3.12) can

be applied to the two vectors e
(I)
i and ∂lS separately.

In fact, the expressions (3.12) have to be used also when we compute the force term

in the HMC algorithm in the on-axis approach. (See Appendix C for a brief review.) In

that case, too, we can apply the idea of the multi-mass solver thanks to the structure of

calculations in the backpropagation as we discuss in Appendix D.

The calculation of the Jacobi matrix that we discussed above requires O(N2) compu-

tational cost for a local action since it involves multiplications of a sparse matrix to a

dense matrix15. On the other hand, the calculation of its determinant requires O(N3)

computational cost, which is not affected by the preconditioning at all. These calcula-

tions appear only in the reweighting procedure, which can be done off-line after generating

configurations, and the procedure can be parallelized trivially without any overhead due

to communications. On the other hand, all the calculations for generating configurations

require only O(N) computational cost for a local action even after implementing the pre-

conditioner in the gradient flow equation since it just involves multiplications of a sparse

matrix to a vector.

In passing, let us also mention that there is actually a cheaper preconditioner, which can

be obtained by considering only the free part of the action when we calculate the Hessian

H to be used in (3.8). Since the preconditioner A(z, z̄) in this case becomes a constant

matrix independent of the configuration, we only have to compute A and diagonalize it

once and for all. The rational approximation (3.10) is not needed any more. This cheaper

preconditioner works efficiently in the weak coupling regime, and the computational cost

can be reduced typically by an order of magnitude compared to the full preconditioner.

4 Demonstration of the preconditioned flow

In this section, we demonstrate how the preconditioned flow equation works in the appli-

cation of GTM to the real-time quantum evolution of an anharmonic oscillator. Here we

15For a non-local action, the cost increases by a factor of O(N) since the sparseness is lost.
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use the on-axis approach for the HMC algorithm, where the force term is calculated by the

backpropagation [26]. In particular, we show that the long autocorrelation in the gener-

ated configurations is drastically reduced by preconditioning the flow. We also show that

the preconditioning drastically reduces the modulus of the Jacobian and its fluctuations,

thereby solving the overlap problem in the on-axis approach.

4.1 Simulation setup

The system we deal with in this section is the same as (2.13) except that we consider an

anharmonic potential

V (x) =
1

4!
λx4 . (4.1)

Here we introduce the initial wave function

ψi(x) ∝ exp

{
−1

4
γ (x− xi)

2

}
, (4.2)

and calculate the time-evolved wave function ψf(x) after some time T , which is given by

the path integral (2.1) up to some known normalization factor using the action

S(x;xf , xi) =− i
N∑
j=1

ϵ

{
1

2

(
xj+1 − xj

ϵ

)2

− V (xj+1) + V (xj)

2

}
+

1

4
γ (x1 − xi)

2 , (4.3)

where T = Nϵ and xN+1 ≡ xf . Similar calculations have been done using the original flow

in Ref. [26] although N had to be restricted to small values such as N = 9. The main point

here is that the preconditioned flow enables us to increase N without any problems.

In order to avoid the ergodicity problem concerning multiple thimbles, we integrate over

the flow time [24] as described in Ref. [26] in the on-axis approach. The Hamiltonian to be

used in the fictitious Hamilton dynamics of the HMC algorithm is given by

H =
1

2m2(τ)

N∑
j=1

p2j +
1

2m̃2
p2τ +ReS(z(x, τ)) +W (τ) , (4.4)

where pj and pτ are the conjugate momenta corresponding to xj and the flow time τ ,

respectively. The function m(τ) and the parameter m̃ are introduced for optimization as

we explain shortly. The total time sf and the step size ∆s for the fictitious Hamilton

dynamics are the parameters of the HMC algorithm that can be optimized in a standard

manner. In all our simulations, we choose sf = 1 and ∆s = 0.05, and the number of time

steps for solving the flow equation is set to Nτ = 10.
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Figure 2: The distribution of the phase of the integrand of (2.3) and the flow time τ

obtained by simulations is shown for the original flow (Left) and the preconditioned flow

(Right) in the case of N = 6, T = 2, λ = 1, xi = 1, γ = 1 and xf = 0. The color indicates

the number of configurations in each bin. The total number of configurations is 50000, and

we have 50 bins in both the horizontal and vertical directions.

The parameter m̃ > 1 in (4.4) is introduced only for simulations with the original flow

in order to avoid the force in the τ -direction getting too large depending on x, which causes

the drop of the acceptance rate. We have increased m̃ from unity until the acceptance rate

becomes reasonably high.

On the other hand, the function m(τ) in (4.4) is chosen to be the typical largest singular

value of the Jacobi matrix J(x, τ) based on the discussion in Section 2 so that the eigenmode

with the largest growth rate does not diverge.16 Then the hierarchical growth problem

manifests itself as long autocorrelation due to the modes with small growth rate.

The functionW (τ) in (4.4) is determined so that the distribution of τ becomes flat within

the region τ ∈ [τmin, τmax], where τmax has to be chosen to be large enough to solve the sign

problem and τmin has to be chosen to be small enough to solve the ergodicity problem.

The actual form of the function W (τ) as well as that of m(τ) is determined iteratively by

improving them step by step using the results obtained by the previous simulation.

Let us discuss how we determine the optimal region [τmin, τmax] of τ to be used in the

simulation, which actually depends on whether we use the preconditioned flow or not. In

Fig. 2, we show the distribution of the phase of the integrand in (2.3) including the phase

coming from the Jacobian for the original flow (Left) and the preconditioned flow (Right)

in the case of N = 6, T = 2, λ = 1, xi = 1, γ = 1 and xf = 0.

16In Ref. [26], m(τ) was chosen to be the typical value of |det J(x, τ)| 1
N , which corresponds to taking the

geometric average of the growth rate. However, the effective stepsize in this case becomes too large for the

eigenmode with the largest growth rate, which causes divergence during simulations at large N .
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Figure 3: The autocorrelation of x is plotted against the number of separation using 50000

configurations obtained by simulations with N = 6, T = 2, λ = 1, xi = 1, γ = 1 and xf = 0.

The blue solid line and the orange dashed line represent the results obtained by the original

flow and the preconditioned flow, respectively.

The sign problem is solved in the region of τ that exhibits some non-uniformity in the

distribution of the phase. However, in order to avoid the ergodicity problem, one should

also sample the region of τ in which the distribution of the phase is almost uniform. Based

on these criteria, we choose the range of τ to be [0.02, 0.2] for the original flow, and [0.4, 0.8]

for the preconditioned flow in this case.

See Appendix E for the choice of the parameters m̃, τmin, τmax, m(τ) and W (τ) deter-

mined in the way described above for each case.

4.2 Reduction of the autocorrelation

Let us first show that the autocorrelation is drastically reduced by preconditioning the flow

equation. We define the autocorrelation in the generated configurations x = (x1, · · · , xN)
as follows. Let x(k) (k = 1, · · · , n) be the k-th configuration. We denote the average of the

n configurations as x = 1
n

∑n
k=1 x

(k). Then the autocorrelation can be defined as

C(k) ≡ 1

v

1

n− k

n−k∑
m=1

(x(m) − x) · (x(m+k) − x) , (4.5)

where v is the variance defined by

v = x · x− x · x . (4.6)

In Fig. 3, we show the autocorrelation of x = (xj) obtained by simulations with the

same parameters as in Fig. 2. The region of τ is chosen to be [0.02, 0.2] and [0.4, 0.8] for the
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Figure 4: (Left) The scattered plots of the modulus |detJ | of the Jacobian obtained by

simulations is shown for various N (4 ≤ N ≤ 20) in the case of T = 2, λ = 1, xi = 1,

γ = 1 and xf = 0. The blue crosses and the orange circles represent the results for

the original flow and the preconditioned flow, respectively. For each N , we have used 30

configurations obtained within 10000 trajectories. (Right) Similar plots for the normalized

modulus |detJ |/⟨|detJ |⟩ of the Jacobian are shown for various N .

original flow and the preconditioned flow, respectively. We find that the autocorrelation is

reduced by a factor of 10 for the preconditioned flow, which suggests that the hierarchical

growth problem is avoided.

4.3 Reduction of the modulus of the Jacobian

Next we discuss the Jacobian associated with the change of variables by the gradient flow,

which can typically have a large modulus as we mentioned below (2.32) in Section 2.2. This,

in particular, causes the overlap problem in the on-axis approach. We will see below that

the preconditioned flow reduces the modulus of the Jacobian and its fluctuation drastically,

thereby solving this problem as well as the hierarchical growth problem.

In Fig. 4 (Left), we show the scattered plot of log10 |detJ | obtained by simulations for

various N (4 ≤ N ≤ 20) with T = 2, λ = 1, xi = 1, γ = 1 and xf = 0. We have fixed

the range of τ as [0.02, 0.2] and [0.4, 0.8] for the cases with and without preconditioning,

respectively. The blue crosses and the orange circles represent the results for the original

flow and the preconditioned flow, respectively. Our results show that the preconditioning

reduces the values of |detJ | drastically as expected. Furthermore, from Fig. 4 (Right), we

find that the preconditioning suppresses the fluctuation of |detJ | drastically, which suggests

that it can also solve the overlap problem in the on-axis approach.

Without preconditioning, it was not even possible to perform simulations for N > 16
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Figure 5: The quantity (4.7) derived from the time-evolved wave function is shown for

N = 20, T = 2, λ = 30, xi = 0.3 and γ = 4. The blue circles and the orange triangles

represent the real part and the imaginary part, respectively. Each point is obtained by

taking an average over 30000 configurations generated by an independent simulation using

xf = x. The blue solid line (real part) and the orange dashed line (imaginary part) represent

the results obtained by solving the Schrödinger equation with Hamiltonian diagonalization.

since the typical magnitude of the HMC force in the τ -direction changes too much with

x, and we were not able to control it by the x-independent potential W (τ). This may be

viewed as another manifestation of the hierarchical growth problem. Such behaviors were

not seen in simulations with the preconditioned flow.

4.4 Result for the time-evolved wave function

Finally we show that the preconditioned flow enables us to obtain results for the time-

evolved wave function ψf(xf) even at large N and at strong coupling (large λ). As has been

done in Ref. [26], we calculate

∂

∂xf
log(ψf (xf)) = −

〈
∂S

∂xf

〉
=

〈
i

(
xf − xN

ϵ
− ϵ

2
V ′(xf)

)〉
, (4.7)

which is directly accessible by calculating the expectation value on the right-hand side. In

Fig. 5, we show our results for N = 20, T = 2, λ = 30, xi = 0.3 and γ = 4. For each xf ,

we have determined the range of τ as presented in Appendix E. Our results are in good

agreement with the results obtained by solving the Schrödinger equation with Hamiltonian

diagonalization.
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In Ref. [26], it was difficult to obtain reliable results as one goes beyond N = 9 because

of the overlap problem even at λ = 1. Here we are able to obtain results for N = 20 even

at strong coupling λ = 30 without any problems.

5 Summary and discussions

In this paper we have pointed out a problem in the gradient flow equation, which is used

in the GTM to deform the integration contour into the complex plane. The property of

the flow that plays an important role in solving the sign problem is that it maps a small

region on the real axis to a region on the deformed contour which becomes exponentially

large with the flow time. The problem is that the growth rate for each mode typically has

a huge hierarchy when the system size becomes large. If one chooses the flow time to be

large enough to solve the sign problem associated with the slowly growing modes, the fast

growing modes tend to diverge.

In order to solve this hierarchical growth problem, we have proposed to modify the flow

equation by the preconditioner, which makes the growth rate equal without spoiling the

crucial properties of the flow equation. This preconditioner can be implemented practically

in the GTM with the standard techniques used in the Rational HMC algorithm.

We applied this method to the real-time quantum evolution of an anharmonic oscillator

using the on-axis approach with backpropagation for calculating the HMC force [26]. In

the on-axis approach, the hierarchical growth problem manifests itself in the long auto-

correlation time since one cannot choose the parameters in the HMC algorithm for each

mode separately. Our results indeed show that the auto-correlation time is reduced dras-

tically. Moreover, the modulus of the Jacobian, which has to be taken into account by

reweighting, is also reduced drastically. This solves the overlap problem in reweighting,

which is caused by large fluctuations of the modulus of the Jacobian. Thus we were able

to simulate the system with the size N that was not accessible without preconditioning the

flow [26]. Note also that this is achieved with a very strong coupling λ = 30 in the quartic

potential (4.1), which makes the flow equation highly non-linear.

As a side remark, the preconditioned flow solves yet another problem of the original

gradient flow, which occurs when the integrand has zeroes [27]. In that case, there are

points on the real axis that flow into the zeroes within finite flow time, and the right-

hand side of the flow equation blows up as one approaches the zeroes. A practical solution

proposed in Ref. [27] is to add some regulator to the flow equation, which modifies the flow

only in the vicinity of the zeroes. We consider that this problem does not occur for the

preconditioned flow since the preconditioner cancels the divergence of the right-hand side
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that occurs as one approaches the zeroes. See Appendix A for discussions on this issue.

While we focused on the on-axis approach in this paper, the hierarchical growth prob-

lem of the flow may also affect the on-thimble approach. There, we have to solve a set of

equations iteratively by Newton’s method in order to make sure that the updated config-

urations are constrained on the deformed contour. This procedure appears at every step

of the fictitious time evolution in the HMC algorithm. The coefficient matrix of these

equations involves the Jacobian, which has a huge condition number for the original flow.

Therefore, the solution of the equations may suffer from large numerical errors and/or slow

convergence when the system size becomes large. The preconditioned flow may be useful

in solving such problems. (See Ref. [47] for a new proposal related to this issue.)

As we have shown in this paper, the preconditioned flow enables us to apply the GTM

to much larger systems than those accessible with the original flow. In particular, it gives

us an access to the continuum limit and to the strong coupling regime, which enabled us

to establish a new picture of quantum tunneling in the real-time path integral formalism

[33]. We expect that there are many other applications awaiting us to explore.
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A The absence of the blow-up problem

Here we discuss a problem that occurs when the integrand of the partition function has

zeroes. In such a case, the gradient flow can reach the zeroes within finite flow time and

the right-hand side of the flow equation blows up. This is the blow-up problem of the

GTM, which was discussed in Ref. [27]. Let us first emphasize that this problem occurs

although the partition function is totally well defined. The deformed contour one obtains

at sufficiently long flow time is nothing but a set of contours connected at the zeroes17 . It

is therefore just a technical problem of how to deal with the divergence that occurs while

17See Ref. [48] for recent discussions on this case.
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solving the flow equation. Here we argue that this problem is naturally avoided in the

preconditioned flow since it slows down the flow as one approaches the zeroes.

To simplify the argument, we consider a single-variable case N = 1 in (2.1) with real

S(x). In this case, the original flow equation (2.2) reads

dx(σ)

dσ
= S ′(x(σ)) , (A.1)

whereas the preconditioned flow (3.2) with (3.8) reads

dx(σ)

dσ
=

S ′(x(σ))

|S ′′(x(σ))|
, (A.2)

where ′ represents the derivative with respect to x.

For instance, let us consider the case with

S(x) =
1

2(n+ 1)
x2(n+1) , n = 1, 2, · · · , (A.3)

which gives e−S(x) → 0 for x→ ±∞. The saddle point is x = 0, and there are flows towards

the singularities at x = ±∞. Solving the original flow equation (A.1), one obtains

x(σ) =

{
{x(0)−2n − 2nσ}−

1
2n for x(0) > 0 ,

−{x(0)−2n − 2nσ}−
1
2n for x(0) < 0 ,

(A.4)

which reaches the singularities within finite flow time σ = 1
2n
x(0)−2n. However, for the

preconditioned flow (A.2), one obtains

x(σ) = x(0) eσ/(2n+1) , (A.5)

which reaches the singularities only in the σ → ∞ limit.

Next we consider the case with18

S(x) = − log(x2n) , n = 1, 2, · · · , (A.6)

which gives e−S(x) → 0 for x→ 0. The saddle point is x = ±∞, and there are flows towards

the singularity at x = 0. Solving the original flow equation (A.1), one obtains

x(σ) =

{ √
x(0)2 − 4nσ for x(0) > 0 ,

−
√
x(0)2 − 4nσ for x(0) < 0 ,

(A.7)

18Strictly speaking, the partition function is not finite in this case. In order to make it finite, one can

add a term like 1
2ϵx

2 in the action, which clearly does not affect the flow near the singularity x = 0.
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which reaches the singularity within finite flow time σ = 1
4n
x(0)2. However, for the precon-

ditioned flow (A.2), one obtains

x(σ) = x(0) e−σ , (A.8)

which reaches the singularity only in the σ → ∞ limit.

Thus the preconditioning (A.2) makes the singularities unreachable within finite flow

time. While we have discussed a single variable case with a real action for simplicity, this

property of the preconditioned flow is considered to be quite general. For instance, the

quantum mechanical system with the anharmonic potential (4.1) suffers from a blow-up

problem for sufficiently long flow time if one uses the original flow equation similarly to the

example (A.3). We consider that the preconditioned flow naturally avoids this problem. A

more careful study on this issue shall be left for future investigations.

B Modification of the thimbles by preconditioning

The preconditioning of the gradient flow equation changes the deformed contour. In fact,

it also modifies the Lefschetz thimbles, which appear as the deformed contour in the long

flow time τ → ∞ limit. On the other hand, the preconditioning does not alter the saddle

points, which are defined by ∂S(z)
∂z

= 0 independently of the flow. In this section, we discuss

these points using a simple example.

Let us consider an integral (2.1) with N = 2 variables, where the action is given by

S(z) =
1

2
(z1

2 − iz2
2) . (B.1)

The saddle point is given by z1 = z2 = 0. The original flow equations read

dz1
dσ

= z̄1 ,
∂z2
∂σ

= iz̄2 , (B.2)

which is linear. Using the real-variable notation z1 = x1 + iy1, z2 = x2 + iy2, the flow

equation (B.2) can be rewritten as

d

dσ


x1

y1

x2

y2

 =M


x1

y1

x2

y2

 , M =


1

−1

1

1

 . (B.3)
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The Lefschetz thimble Σ∞ is spanned by the eigenvectors of the matrix M corresponding

to positive (degenerate) eigenvalue 1, which are given by

v1 =


1

0

0

0

 , v2 =


0

0

1

1

 . (B.4)

Next we consider the generalized flow (3.2) with a preconditioner19

A =

(
5 1

1 5

)
. (B.5)

The preconditioned flow equations are given by

∂z1
∂σ

= 5z̄1 + iz̄2 ,
∂z2
∂σ

= z̄1 + 5iz̄2 . (B.6)

Using the real-variable notation, the preconditioned flow equation (B.6) becomes

d

dσ


x1

y1

x2

y2

 = M̃


x1

y1

x2

y2

 , M̃ =


5 1

−5 1

1 5

−1 5

 . (B.7)

The Lefschetz thimble Σ̃∞ is spanned by the eigenvectors of the matrix M̃ corresponding

to positive eigenvalues 4
√
2 and 3

√
2, which are given, respectively, by

ṽ1 =


5 + 4

√
2

5− 3
√
2

1 + 5
√
2

7

 , ṽ2 =


5 + 3

√
2

5− 4
√
2

1− 5
√
2

−7

 . (B.8)

Thus we find that the thimble Σ̃∞ is different from the original one Σ∞. Note, how-

ever, that both thimbles are embedded in a real 3-dimensional hypersurface defined by

{(x1 y1 x2 y2) | ImS = 2x1y1 − x22 + y22 = 0} ∈ R4, and therefore the sign problem is solved

in both cases.

19Note that the optimal choice is actually A = 1 in the present case. The aim here is to demonstrate

that nontrivial A modifies the thimble.
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C Application of the HMC using the on-axis approach

In this section, we briefly review how one can apply the HMC algorithm to the GTM

using the on-axis approach. The key idea that makes this feasible is the backpropagation

in calculating the force term in the fictitious Hamilton dynamics of the HMC algorithm

[26]. Here we fix the flow time for simplicity, but it is straightforward to implement the

integration over the flow time, which is needed in avoiding the ergodicity problem. (See

Ref. [26] for the details.)

Let us consider the general partition function given by (2.1). The expectation value of

the observable is defined by

⟨O⟩ = 1

Z

∫
RN

dx e−S(x)O(x) . (C.1)

In the GTM, this integral is evaluated by

⟨O⟩ = 1

Z

∫
Στ

dz e−S(z)O(z) , (C.2)

where τ is the flow time and the integration contour Στ is defined by solving the gradient

flow equation (2.2).

When one applies the HMC algorithm to evaluate this integral, one has to define a

fictitious Hamilton dynamics to update the configuration on the deformed contour. In

the on-thimble approach, one defines the Hamilton dynamics on Στ , which is a classical

mechanics of a constrained system. Since the deformed contour Στ is not given explicitly

but has to be determined by solving the flow equation, complicated procedures are necessary

in solving the Hamilton equation in such a way that the configuration is always on Στ .

In the on-axis approach, on the other hand, one rewrites the integral (C.2) as

⟨O⟩ = 1

Z

∫
RN

dx det J(x, τ) e−S(z(x))O(z(x)) , (C.3)

and defines the Hamilton dynamics on the real axis RN . Here J(x, τ) is the Jacobi matrix

associated with the change of variables x 7→ z(x, τ), which obeys the following flow equation

∂

∂σ
Jkl(x, σ) = Hkm(z(x, σ))Jml(x, σ) , (C.4)

where Hkm is the Hessian defined by (2.6).

The fictitious Hamilton dynamics is defined by the Hamiltonian

H =
1

2

N∑
i=1

p2i +ReS(z(x, τ)) , (C.5)
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where pi are the momentum variables conjugate to the coordinate variables xi. Note that

there is no constraint that complicates the Hamilton dynamics unlike the on-thimble ap-

proach. In order to obtain the expectation value of the observables, one uses the reweighting

⟨O⟩ = ⟨O(z(x, τ)) det J(x, τ) e−i ImS(z(x,τ))⟩HMC

⟨det J(x, τ) e−i ImS(z(x,τ))⟩HMC

, (C.6)

where the expectation value ⟨ · ⟩HMC represents an ensemble average over the configurations

generated by the HMC algorithm with the Hamiltonian (C.5).

Note that the force term in the Hamilton equation is given by

Fj = −∂ ReS(x, τ)
∂xj

= −Re (fi(x, τ)Jij(x, τ)) , (C.7)

fi(x, τ) =
∂S(z(x, τ))

∂zi

∣∣∣∣
z=z(x,τ)

. (C.8)

If one naively uses this formula to calculate the force term, the Jacobi matrix Jij(x, τ)

that appears in (C.7) requires the computational cost of O(N2) for a local system since

it involves matrix-matrix products. In fact, this can be completely avoided by using the

backpropagation [26] as we discuss below.

Let us first note that z(x, τ) and hence S(z(x, τ)) can be regarded as functions of z(x, σ)

and z̄(x, σ) (0 ≤ σ ≤ τ) since z(x, σ+ δσ) ≃ z(x, σ) + ∂S(z(x, σ)). We can therefore define

the force at each σ as

Fj(σ) =
∂S(z(x, τ))

∂zj(x, σ)
, F̄j(σ) =

∂S(z(x, τ))

∂z̄j(x, σ)
, (C.9)

which obeys the relation

Fj(σ − δσ) = Fi(σ)
∂zi(x, σ)

∂zj(x, σ − δσ)
+ F̄i(σ)

∂z̄i(x, σ)

∂zj(x, σ − δσ)
. (C.10)

Thus we can calculate Fj = Fj(0) from fj = Fj(τ) by solving (C.10) backward in σ. Note

that this is the same procedure as the backpropagation used in machine learning. Since

this procedure involves the matrix-vector multiplication only, one can calculate the force

term with the computational cost of O(N) for a local system.

D Backpropagation with the preconditioner

As we have seen in the previous section, backpropagation (C.10) is the key idea that makes

the calculation of the force term (C.7) in the HMC algorithm feasible in the on-axis ap-

proach. In this section, we discuss how the backpropagation works with the preconditioned

gradient flow in a way compatible with the idea of the multi-mass solver.
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In the case of the preconditioned flow (3.2), the explicit form of (C.10) is given by

Fj(σ − δσ) = Fj(σ) + δσ Gj(σ) , (D.1)

Gj(σ) = Fi(σ)(∂jAik)∂kS + F̄i(σ)
[
ĀikHkj + (∂jĀik)∂kS

]
. (D.2)

By using the rational approximation (3.10) for A, we can rewrite Gi(σ) in (D.2) as

Gj(σ) =−
Q∑

q=1

aq
(
F⊤(σ)(H̄H + bq1)

−1H̄
)
i
(∂jHik)

(
(H̄H + bq1)

−1∂S
)
k
+ (F̄⊤ĀH)j

−
Q∑

q=1

aq
(
F̄⊤(σ)(H̄H + bq1)

−1
)
i
(∂jHik)

(
H̄(H̄H + bq1)

−1∂S
)
k
. (D.3)

As in the calculation of the Jacobian using (3.12), the matrix inverse (H̄H + bq1)
−1 in the

first line can be applied to the two vectors Fj(σ) and ∂jS separately, and similarly for the

matrix inverse in the second line. Therefore we can avoid the computational cost of O(Q)

by using the idea of the multi-mass solver.

As we discussed in Section 4.1, in order to avoid the ergodicity problem in the GTM, we

have to integrate over the flow time, which implies that we have to treat τ as a dynamical

variable in the simulation. In the HMC algorithm, we therefore have to calculate the force

term for τ as described in Section 4 of Ref. [26]. Below we discuss how this can be done

efficiently even in the presence of the preconditioner in the gradient flow.

Since the flow time is discretized as τ = Nτδτ when we solve the gradient flow equation,

the derivative with respect to τ used in defining the force Fτ (x, τ) for τ is replaced by the

derivative with respect to the spacing δτ . The force Fτ (x, τ) for τ is defined by

Fτ (x, τ) = Re
(
∂jS(x, τ = Nτδτ) żj(x, τ = Nτδτ)

)
, (D.4)

where żj(x, τ = Nτδτ) is defined by the difference equation

(n+ 1) żj(x, (n+ 1) δτ)

= n żj(z, n δτ) +Ajk∂kS

+ n δτ
[
Ajk H̄ki ˙̄zi(x, nδτ) + (∂iAjk) ∂kS żi(x, nδτ) + (∂̄iAjk) ∂kS ˙̄zi(x, nδτ)

]
(D.5)

with the condition żj(z, 0) = 0. Note that the second term on the right-hand side is an

inhomogeneous term, which does not appear in the flow equation (3.11) for the Jacobi

matrix. Nevertheless, we can calculate (D.4) by backpropagation as follows.

Using a 2N -dimensional complex vector ζ(n) = (ż(x, nδτ), ˙̄z(x, nδτ))⊤, (D.5) can be

written formally as

ζ(n+1) = B(n)ζ(n) + β(n) , (D.6)
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where B(n) and β(n) are a 2N × 2N matrix and a 2N -dimensional vector, respectively, both

depending on ζ(n). Then, the force (D.4) for the flow time can be expanded as

2Fτ = V (Nτ )⊤ζ(Nτ )

= V (Nτ )⊤(B(Nτ−1)ζ(Nτ−1) + β(Nτ−1))

= V (Nτ )⊤B(Nτ−1)(B(Nτ−2)ζ(Nτ−2) + β(Nτ−2)) + V (Nτ )⊤β(Nτ−1)

= V (Nτ )⊤
Nτ∑
n=1

(
n−1∏
m=0

B(m)

)
β(Nτ−n) , (D.7)

where we have introduced a 2N -dimensional vector V (Nτ ) = (v(Nτ ), v̄(Nτ ))⊤ with v
(Nτ )
j =

∂jS(x,Nτδτ) and used the initial condition ζ(0) = 0. The product
∏n−1

m=0 in the last line

should be understood as the time-ordered product, in which B(m) with smaller m appears

on the right. Here we define a vector V (n)⊤ ≡ V (Nτ )⊤B(Nτ−1) · · · B(n), which can be obtained

recursively by using the relation

V (n−1)⊤ = V (n)⊤B(n−1) . (D.8)

Then we can obtain the force (D.7) by

2Fτ =
Nτ−1∑
j=0

V (j+1)⊤β(j) . (D.9)

More explicitly, the algorithm to calculate the force for τ can be derived as follows. Let

us represent V (n) as V (n) = (v(n), v̄(n))⊤. From (D.8), we obtain

v
(n)
j =

n

n+ 1

{
v
(n+1)
i

[
δij + δτ(∂jAik)∂kS

]
+ v̄

(n+1)
i δτ

[
ĀikHkj + (∂jAik)∂kS

]}
, (D.10)

v
(Nτ )
j = ∂jS(x,Nτδτ) . (D.11)

Then, the force (D.9) can be obtained as

Fτ (x, τ) = Re
(
f (0)
τ

)
, (D.12)

where f
(0)
τ is given by solving

f (n)
τ = f (n+1)

τ +
1

n+ 1
v
(n+1)
j Ajk∂kS , (D.13)

f (Nτ )
τ = 0 . (D.14)

From (D.10), we find that the computational cost of O(Q) can be avoided by the multi-mass

solver here as well.
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E The parameters of the GTM used in our simulation

In this appendix, we present the parameters chosen for the GTM such as the range [τmin, τmax]

of the flow time as well as m̃, m(τ) and W (τ) that appear in (4.4).

In Table 1, we present the choice of τmin, τmax, m̃ and m(τ), which is parameterized as

m(τ) = exp

(
2∑

j=0

ajτ
j

)
. (E.1)

The symbols O and P in the “flow” column stand for the original and preconditioned flows,

respectively20.

In Table 2, we present the choice of W (τ), which is parameterized as

W (τ) = exp(−15τ) +
6∑

j=1

bjτ
j . (E.2)

The first term is introduced to avoid the dominance of τ = 0 that occurs otherwise. One

can see that the functions m(τ) and W (τ) for the preconditioned flow do not have strong

dependence on N and xf , which implies that we do not need to fine-tune these functions.

20For the preconditioned flow with N = 20 and xf = 0, the region of τ is chosen to be [0.4, 0.8] in Fig. 4

for the sake of comparison with other values of N , whereas it is chosen to be [0.6, 1] in Fig. 5, which turns

out to be more optimal.
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Table 1: Parameters for [τmin, τmax], m̃ and m(τ)

flow N xf τmin τmax m̃ a0 a1 a2

O 4 0 0.02 0.2 3 -0.362471 9.4008 3.33086

O 6 0 0.02 0.2 3 -0.334801 17.7419 -1.32035

O 8 0 0.02 0.2 3 -0.600957 28.5264 -13.1596

O 10 0 0.02 0.2 4 -0.655057 36.2434 -20.7533

O 12 0 0.02 0.2 4 -0.559024 42.8481 -27.0498

O 14 0 0.02 0.2 4 -0.5425 49.8071 -36.6114

O 16 0 0.02 0.2 5 -0.599934 59.8716 -58.5702

P 4 0 0.4 0.8 1 -0.0309437 1.42644 0.405386

P 6 0 0.4 0.8 1 0.00490622 1.06141 0.671549

P 8 0 0.4 0.8 1 0.0200845 0.72403 1.00223

P 10 0 0.4 0.8 1 -0.0561224 0.930633 0.829279

P 12 0 0.4 0.8 1 -0.178908 1.27849 0.521082

P 14 0 0.4 0.8 1 -0.168445 1.24443 0.531839

P 16 0 0.4 0.8 1 -0.168445 1.24443 0.531839

P 18 0 0.4 0.8 1 -0.126564 1.03928 0.560491

P 20 0 0.4 0.8 1 -0.126564 1.03928 0.560491

P 20 -0.8 0.4 1 1 -0.121107 2.53145 0.158009

P 20 -0.6 0.5 1.1 1 -0.0835431 2.40247 0.228994

P 20 -0.4 0.5 1.1 1 -0.11638 2.56039 0.101282

P 20 -0.2 0.6 1 1 -0.128094 2.54973 0.118526

P 20 0 0.6 1 1 -0.126564 1.03928 0.560491

P 20 0.2 0.9 1.3 1 -0.163594 2.69719 0.00834929

P 20 0.4 0.9 1.3 1 -0.110241 2.42494 0.211641

P 20 0.6 0.8 1.3 1 -0.132109 2.56267 0.0664781

P 20 0.8 0.8 1.3 1 -0.12692 2.4658 0.165435
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Table 2: Parameters for W (τ)

flow N xf b1 b2 b3 b4 b5 b6

O 4 0 -91.6818 1328.09 -10070.6 42914.7 -94148.5 82699.2

O 6 0 -73.3069 934.999 -5039.04 15399.9 -25129.1 17155.3

O 8 0 -154.67 2617.17 -17188.6 53938.3 -54440.9 -29989.7

O 10 0 -162.532 3457.74 -27741.1 129678 -367262 516287

O 12 0 86.3215 -907.268 16692.7 -116092 355871 -402478

O 14 0 1464.1 -29301.3 325955 -1942690 5900110 -7172110

O 16 0 6483.54 -144699 1692600 -10685300 34659500 -45355600

P 4 0 -43.3664 161.375 -352.772 437.658 -281.151 72.5656

P 6 0 -43.3664 161.375 -352.772 437.658 -281.151 72.5656

P 8 0 -43.3664 161.375 -352.772 437.658 -281.151 72.5656

P 10 0 -43.3664 161.375 -352.772 437.658 -281.151 72.5656

P 12 0 -43.3664 161.375 -352.772 437.658 -281.151 72.5656

P 14 0 -43.3664 161.375 -352.772 437.658 -281.151 72.5656

P 16 0 -43.3664 161.375 -352.772 437.658 -281.151 72.5656

P 18 0 -43.3664 161.375 -352.772 437.658 -281.151 72.5656

P 20 0 2143.73 -8632.61 18071.1 -20840 12566.2 -3092.1

P 20 -0.8 -93.4087 266.479 -399.747 343.83 -155.337 28.5269

P 20 -0.6 -93.4087 266.479 -399.747 343.83 -155.337 28.5269

P 20 -0.4 -93.7977 266.14 -396.175 336.589 -149.815 27.0416

P 20 -0.2 -89.7574 248.492 -358.03 294.986 -127.833 22.5733

P 20 0 -101.172 250.908 -360.559 300.261 -132.148 23.9199

P 20 0.2 -96.0689 294.63 -466.383 415.773 -193.274 36.3518

P 20 0.4 -105.914 314.982 -488.542 427.174 -194.103 35.5944

P 20 0.6 -103.087 297.241 -447.869 383.163 -171.57 31.2238

P 20 0.8 -93.3297 250.673 -347.381 273.918 -113.639 19.2415
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