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We study the critical behaviors of the ground and first excited states in the one-dimensional
nonreciprocal Aubry-André-Harper model using both the self-normal and biorthogonal fidelity sus-
ceptibilities. We demonstrate that fidelity susceptibilities serve as a probe for the phase transition
in the nonreciprocal AAH model. For ground states, characterized by real eigenenergies across the
entire regime, both fidelity susceptibilities near the critical points scale as N2, akin to the Hermitian
AAH model. However, for the first-excited states, where PT transitions occur, the fidelity suscep-
tibilities exhibit distinct scaling laws, contingent upon whether the lattice consists of even or odd
sites. For even lattices, both the self-normal and and biorthogonal fidelity susceptibilities near the
critical points continue to scale as N2. In contrast, for odd lattices, the biorthogonal fidelity sus-
ceptibilities diverge, while the self-normal fidelity susceptibilities exhibit linear behavior, indicating
a novel scaling law.

I. INTRODUCTION

Non-Hermitian systems have become a prominent fo-
cus of physics research in recent years, thanks to their
distinctive physical properties without the counterparts
in Hermitian systems [1, 2]. The well-known fascinat-
ing phenomena are non-Hermitian skin effects [3–19], ex-
ceptional points [20–31], and continuous quantum phase
transition without gap closing [32, 33]. Recent findings
have demonstrated that the eigenstates of non-Hermitian
systems exhibit distinct behaviors [34–37], highlight-
ing the crucial importance of understanding phases and
phase transitions within this realm.

The Aubry-André-Harper (AAH) model is an intrigu-
ing simple model employed for studying the phase tran-
sition from the extended to localized phases [38–40]
or topological phases [41] in Hermitian systems. Re-
cently, the AAH model has been extended to incorporate
non-Hermitian systems [35, 42–57], providing a platform
for exploring the interplay between non-Hermiticity and
quasiperiodicity, where the phase transition between de-
localization and localization [35, 42] as well as the topo-
logical phases [43] persist. Moreover, a PT transition is
expected to take place within the non-Hermitian AAH
model [35, 42]. Nevertheless, it has been observed that
certain eigenstates, such as the ground state, can remain
real [34–37] even as they cross the critical points (ex-
ceptional points) of the PT transitions. A fundamental
question arises: Can the eigenstate, characterized by the
real eigenenergies across the entire regime of a parameter,
adequately describe the PT transition?

The exploration of phase transitions in non-Hermitian
systems has emerged as a significant focus in recent years
within non-Hermitian research. Consequently, charac-
terizing these transitions is critically important within
this domain. A simple method for studying quantum
phase transitions in Hermitian systems involves analyz-
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FIG. 1. (a) Sketch of the one-dimensional nonreciprocal AAH
model with the numbers of the lattice N = 8. (b) The phase
transition in PBCs with respect to g and λ, the circle symbols
and the solid line denote the numerical results of the critical
points and analytical critical line λ = eg, respectively. (c)
The real part of energies with respect to λ for N = 987 at
g = 1. (d) The imaginary part of energies with respect to
λ for N = 987 at g = 1. The red solid lines represent the
ground state of the AAH model.

ing the fidelity susceptibility [58–68], facilitated by the
advancements in quantum information science. Fidelity
susceptibility, a proven valuable tool for studying quan-
tum phase transitions in Hermitian systems, has recently
been extended to non-Hermitian systems as well [32, 69–
73]. In particular, fidelity susceptibility has been em-
ployed to characterize transitions from delocalization to
localization [74–77], wherein the system is argued to seg-
regate into three subsequences [75, 77] contingent upon
the odd/even lattice structure. An intriguing question
arises: Can fidelity susceptibility effectively character-
ize phase transitions of the non-Hermitian AAH model?
Moreover, should fidelity susceptibility be segmented into
three subsequences?
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Motivated by these questions, we study the quantum
criticality, particularly at the exceptional points, of non-
Hermitian AAH model using both the self-normal and
biorthogonal fidelity susceptibilities of the ground state
and the first-excited state. We find that the fidelity sus-
ceptibility exhibits smooth changes when the energies are
real, yet undergoes significant alterations when the en-
ergy of the system transitions from real to complex. Con-
sequently, for ground states, it is found that both fidelity
susceptibilities near the critical points scale as N2, indi-
cating a second-order phase transition. For first-excited
states, where PT transitions occur, the fidelity suscep-
tibilities exhibit distinct scaling laws. The self-normal
fidelity susceptibilities scale as N2 for even lattices, but
exhibit linear behaviors for odd lattices, indicating a new
scaling law.

This paper is organized as follows. In Sec.II, we in-
troduce the one-dimensional nonreciprocal AAH model
and provide a brief discussion of its characteristics. In
Sec.III, we present the definitions of the self-normal and
biorthogonal fidelity susceptibility of non-Hermitian sys-
tems. In Sec.IV, we study the ground-state and the first-
excited phase transitions using both the self-normal and
biorthogonal fidelity susceptibility. In Sec.V, we summa-
rize our results.

II. MODEL

In the following, we consider the one-dimensional non-
reciprocal AAH model as shown in Fig.1(a). The Hamil-
tonian is given by [35, 42],

H =

N∑
j=1

−
(
JLc

†
jcj+1 + JRc

†
j+1cj

)
+ 2λ cos(2παj)c†jcj ,

(1)

where c†j and cj represent the fermionic creation and an-
nihilation operators at the jth lattice site respectively.
Here, N denotes the length of the chain; JL = Je−g

and JR = Jeg are the left and right hopping integrals
between two adjacent lattices, which are nonreciprocal
hopping terms introducing a non-Hermiticity; λ is the
amplitude of the chemical potential. The quasiperiodic-
ity is imposed by the irrational number α, referred to as
the golden rate (

√
5 − 1)/2. In a finite lattice, the ratio

of fibonacci series Fn−1/Fn can substitute for the golden
rate α when the lattice size is N = Fn.

When g = 0, the system in Eq.(1) is the conven-
tional Hermitian AAH model, which undergoes a phase
transition from the extended phase to the localized
phase at λ = 1 [c.f. Fig.1(b)]. Interestingly, the sys-
tem can be divided into three subsequences, F3n =
8, 34, 144, 610, 2584, ..., F3n+1 = 13, 55, 233, 987, ..., and
F3n+2 = 21, 89, 377, 1597, ..., dependent on the odd/even
properties of the denominators Fn in the irrational num-
ber α. The subsequence F3n is even, while the other
two subsequences are odd. When g ̸= 0, the system in
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FIG. 2. Finite-size scalings of ground-state fidelity
susceptibilities. (a)(b) The self-normal fidelity suscepti-
bility per site χS

F0
/N and the biorthogonal fidelity sus-

ceptibility per site χB
F0

/N as functions of λ for N =

34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584. (c)(d) Data col-
lapses of

[
χS,B
F0

(λm)− χS,B
F0

(λ)
]
/χS,B

F0
(λm) as a function of

N (1/v) (λ− λm), where ν = 1.014 and ν = 1.016 for χS
F0

are
obtained from odd and even lattices; ν = 0.995 and ν = 1.011
for χB

F0
are obtained from odd and even lattices. (e)(f) The

finite-size scaling behaviors of ln(χS
F0

(λm)) and ln(χB
F0

(λm)),
where ν = 1.008 and ν = 1.015 for χS

F0
are derived from odd

and even lattices; ν = 1.014 and ν = 1.012 for χB
F0

are derived
from odd and even lattices.

Eq.(1) represents the non-Hermitian AAH model due to
the nonreciprocal hopping, undergoing a phase transition
from the extended phase to the localized phase at λ = eg.
Throughout the paper, we investigate the characteristics
of the nonreciprocal AAH model by employing fidelity
susceptibility with J = 1 under periodic boundary con-
ditions (PBCs).

III. FIDELITY SUSCEPTIBILITY

In a quantum system, two states can exhibit a simi-
larity within the same phase, even when the interval of
the controlled parameter between them is large. Around
the critical point of the phase transition, despite a small
parameter gap between the two states, they can exhibit
an increased overlap enhanced by the quantum criticality
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FIG. 3. Finite-size scalings of the first-excited state fidelity
susceptibilities for even lattices. (a)(b) The self-normal fi-
delity susceptibility χS

F1
/N and the biorthogonal fidelity sus-

ceptibility χB
F1

/N as functions of λ for N = 34, 144, 610, 2584.

(c)(d) Data collapses of
[
χS,B
F1

(λm)− χS,B
F1

(λ)
]
/χS,B

F1
(λm) as

functions of N (1/v) (λ− λm), where ν = 1.015 for χS
F1

and
ν = 0.996 for χB

F1
. (e)(f) The finite-size scaling behaviors of

ln(χS
F1

(λm)) and ln(χB
F1

(λm)), where ν = 1.007 and ν = 1.015

are obtained for χS
F1

and χB
F1

, respectively.

[78]. For a non-Hermitian system, quantum fidelities are
characterized by two definitions: the self-normal fidelity
and the biorthogonal fidelity, depending on the usage of
the eigenstates [72].

The self-normal fidelity is defined as the overlap be-
tween two right eigenstates corresponding to distinct pa-
rameters,

FS
n (λ, δλ) =

〈
ψR
n (λ) | ψR

n (λ+ δλ)
〉
, (2)

where |ψR
n (λ)⟩ is the nth right eigenstate of the AAH

model at λ. The biorthogonal fidelity is defined as the
inner product of both the left and the right eigenstates
corresponding to two distinct parameters [71, 72],

FB
n (λ, δλ) =

〈
ψL
n (λ) | ψR

n (λ+ δλ)
〉 〈
ψL
n (λ+ δλ) | ψR

n (λ)
〉
,

(3)
where |ψL

n (λ)⟩ is the nth left eigenstate of the AAH model
at λ. The values of the fidelities FS

n (λ, δλ) and FB
n (λ, δλ)

dependent on the controlled parameters λ and δλ. In the
Taylor expansion of the fidelity, the main contribution

originates from the second derivative term, and the co-
efficient associated with this term is termed the fidelity
susceptibility, defined as:

χF (λ) = lim
δλ→0

−2 ln |F (λ, δλ)|
(δλ)2

(4)

For second-order transitions, the fidelity susceptibility
scales as [74],

χF (λ) = L2/νΦ((λ− λm)L1/ν), (5)

from the finite-size scaling theory, where ν is the corre-
lation length critical exponent and λm denotes the peak
position of the fidelity susceptibility. Moreover, the fi-
delity susceptibility also exhibits a scaling law [64–67],

χF (λm) ∝ N2/ν , (6)

near the critical point. Thus one can simply determine
the correlation length critical exponent ν from Eq.(6).
However, the scaling laws of fidelity susceptibility are less
known for the PT transitions.

In the following, we primarily employ the self-normal
fidelity susceptibility χS

Fn
and the biorthogonal fidelity

susceptibility χB
Fn

of the ground state and the first-
excited state to investigate phase transitions, especially
the PT transitions, of the one-dimensional nonreciprocal
AAH model as described in Eq.(1).

IV. PHASE TRANSITIONS

We employ exact diagonalization to explore the non-
reciprocal AAH model, unveiling the phase diagram de-
picted in Fig.1(b). The phase diagram is derived from the
real-complex transition [c.f. Fig.1(c)(d)], thereby char-
acterizing it as a PT transition. As illustrated in Fig.1,
the system demonstrates non-zero imaginary components
within the energy spectrum around λc ≈ 2.71, slightly
deviating from the analytical value λc = eg at g = 1 due
to the finite-size effect. As the system size increases, the
critical point tends toward λc = e.

Interestingly, we find that the ground-state energy of
the AAH model changes smoothly and maintains its real
value despite the PT transition occurring. To exam-
ine whether the ground state can accurately depict the
PT transition, we calculate both the self-normal fidelity
susceptibility χS

F0
and the biorthogonal fidelity suscep-

tibility and χB
F0

of the the ground state, as depicted in
Fig.2. As can be seen from Fig.2, both the self-normal
fidelity susceptibility and the biorthogonal fidelity sus-
ceptibility per site increase [c.f. Fig.2(a)(b)], indicating
a phase transition in the ground state. As expected, we
observe that both the self-normal fidelity susceptibility
and the biorthogonal fidelity susceptibility collapse into
two distinct curves [c.f. Fig.2(c)(d)] depending on the
odd/even lattice. The correlation length critical expo-
nent ν ≈ 1 is determined, consistent with the Hermitian
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FIG. 4. First-excited state fidelity and fidelity susceptibility
for odd lattices. (a) The real part of the biorthogonal fidelity
FB
1 as a function of λ for N = 55, 89, 233, 377, 987, 1597. (b)

The scaling behavior of the self-normal fidelity susceptibility
ln(χS

F1
(λm)), with the slope of 0.9744.

AAH model. Additionally, the correlation length critical
exponent (ν = 1) is doubly verified by fitting the maxi-
mum values of both χS

F0
and χB

F0
[c.f. Fig.2(d)(e)]. Our

findings suggest that the ground-state fidelity suscepti-
bility serves as an excellent tool for detecting the phase
transition of the nonreciprocal AAH model. However,
it appears that the ground-state phase transition of the
nonreciprocal AAH model is a second-order phase tran-
sition rather than a PT transition.

To explore the properties of the fidelity susceptibil-
ity around the PT transitions, we focus on studying the
first-excited state. For first-excited states, we observe
that the fidelity susceptibilities display distinct scaling
laws depending on whether the lattice comprises even or
odd sites. For even lattices, the self-normal fidelity sus-
ceptibilities near the critical points persist in scaling as
N2 [c.f. Fig.3]. While, for odd lattices, we find that the
real parts of the biorthogonal fidelities FB

1 become 1/2
at the critical point [c.f. Fig.4(a)] independent on the
lattice sizes, indicating the biorthogonal fidelity suscep-
tibilities χB

F1
would diverge as δλ→ 0 for arbitrary finite

sizes. In contrast, the self-normal fidelity susceptibilities
χS
F1

demonstrate a linear scaling instead [c.f. Fig.4(b)],
with a slope of 0.9744. Our findings thus indicate that
the fidelity susceptibility serves as a reliable tool for de-
tecting the PT transition. Furthermore, it suggests that
it displays a distinct behavior in contrast to the ground-
state fidelity susceptibility, indicating the presence of a
novel scaling law for PT transitions.

V. CONCLUSION

In summary, our investigation focuses on exploring the
quantum criticality and fidelity susceptibility of both the
ground states and first-excited states within the one-
dimensional nonreciprocal AAH model. We show that
the scaling laws of the fidelity susceptibilities in the AAH
model can be divided into two subsequences depend-
ing on the odd/even properties of the denominators in
the irrational number. We demonstrate that the fidelity
susceptibility serves as a reliable tool for characterizing
phase transitions in non-Hermitian systems.

In the ground state of the AAH model, characterized
by real eigenenergies, we observe that the scaling behav-
ior of the fidelity susceptibilities is perfectly consistent
with that of the Hermitian AAH model, exhibiting an
equivalent correlation length critical exponent of ν = 1.
In the first-excited state, where the system has a PT
transition, the fidelity susceptibilities exhibit different
scaling laws for the odd/even sites. For even lattices,
the self-normalized fidelity susceptibilities exhibit a scal-
ing behavior of N2 akin to that observed in the ground
state fidelity susceptibilities. In contrast, on odd lattices,
the self-normalized fidelity susceptibilities follow a linear
scaling law, χS

F1
(λm) ∝ N , while the biorthogonal fidelity

susceptibilities diverge. Exploring whether these scaling
laws persist in the many-body AAH model would be an
intriguing avenue for future investigation.

Note added.- After completing our work, we became
aware of a related research [79] focusing on characterizing
the phase transition of a generalized AAH model using
fidelity susceptibility.
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