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Dynamical systems can be analyzed as computational devices capable of performing information
processing. In coupled oscillators, enlarged capabilities are expected when the set of units is formed
by subsets with collective behaviour within them but weak correlation between the subsets. A
system of non-linear oscillators weakly coupled in the phase approximation is studied. The infor-
mational distance maps show different regimes of collective behaviour, ranging from independent,
local, and global, as the control parameters of the system are changed. This rich set of behaviours
happens despite the simple nature of the model used. Complex hierarchies between oscillators can be
identified near the edge of chaos region in the informational distance dendrograms. We identify the
emergence of local collective regimes, further corroborated by the spatiotemporal maps. Correlation
diagrams also exhibit non-trivial dependence for the system at the edge of chaos.
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Introduction. Non-linear coupled oscillators have been used to model several natural phenomena [1, 2]. They ex-
hibit a wide range of behaviours from trivial periodic dynamics to chaotic, including instances with all the fingerprints
of a complex system [3–7].
Defining complexity remains an elusive task despite the considerable literature on the subject. One of many possible

approaches is to consider the emergence of global dynamics in systems composed of many interacting elements, each
simple when isolated [5]. However, everyone seems to agree that lasting correlations along the components of the
system are a necessary feature [8]. Such correlations can be recognized by the emergence of patterns persistent in time,
yet it still allows for unpredictability or randomness. The interaction between randomness and structured dynamics
makes optimal prediction of the system time evolution a formidable task [9] but always better than mere guessing.
Related, but not quite a measure of complexity, is Kolmogorov or algorithmic complexity [10] K(s). The idea is

to measure randomness by the length of the smallest algorithm s∗ that, in a Universal Turing Machine (UTM), can
reproduce the system’s output s (K(s) = |s∗|). Appealing to a UTM makes this measure absolute up to a constant
or, at most, a slowing increasing function of the system size [11]. Finding the smallest algorithm is undecidable, a
consequence of the halting problem [11], but it is unnecessary in many cases. For most evaluations, it suffices to learn
how the length of the shortest algorithm scales with system size, a rate equivalent to the Kolmogorov-Sinai entropy or
entropy density h of a system [12]. h measures the unpredictability of the system’s output or the ability to generate
new information [13].
Kolmogorov complexity is, therefore, a measure of disorder, not complexity. However, it is the starting point for

the formal derivation of other magnitudes that measure correlations and are better suited for quantifying complexity
in some way. One of these magnitudes is the effective complexity (E) introduced by Grassberger [8], also known
as excess entropy [14]. E measures the amount of correlation in a system at all scales. Formally, it is the mutual
information between the two halves of a bi-infinite one-dimensional output [14].
From a computational point of view, several related but different approaches can be taken to recognize complexity.

The degree of complexity of a dynamical system is related to the class of computational tasks that it can perform
[15]. In this approach, the system is seen as a computational device capable of performing effective computations.
Computation, as used in this context, must not be considered an anthropocentric concept. Effective computation
in nature can include but is not limited to human understandable algorithmic perspective, such as that involved in
computer programming as understood in computer science. However, a broader scope is to consider that any system
capable of generating, modifying, transmitting, and storing information in some way is a computational device.
The increasing evolution of neural networks has accommodated the use of computational devices in the sense

explained above, where they are not viewed as algorithmic programable devices but as entities with information
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processing and storage ability [16]. This greatly increases the interest in finding and characterizing such systems.
The degree of universality in the ability to compute goes through answering the question of how adaptable the

system is to a change in the initial input conditions. Suppose a system is indifferent to the initial conditions, not
changing its behaviour as the input dramatically changes. In that case, it has a limited computational capacity, i.e.,
it always performs the same task regardless of the initial stimulus. On the other extreme, if it has a widely varying
behaviour with small changes in the initial conditions, its reliability as a computational device is questionable, as
its robustness against noise is rather weak. Between those two extreme cases, the most universal type of computing
occurs.
Another important consideration is the ability of the system to correlate its components in such a way as to enhance

its collective strength beyond some trivial manner. It is well known that it is in the collective dynamics of neurons
that thought emerges [17]. Also, in terms of memory, the system must be able to retain, even in a modified way,
some of the initial or the generated information during its evolution. Again, memory is known to be a result of the
collective behaviour of neurons.
It is clear by now that measuring non-trivial correlations between the units of a system is an important step toward

understanding it as a computational device.
The fact that non-linear coupled oscillators have been used to model to some degree the brain activity [17, 18] is

a statement of the kind of complex behaviour such systems can simulate. Nevertheless, it is unclear a priori which
specific instance of coupled oscillators is capable of what degree of computation.
A rich set of behaviours has been found in a simple model of locally coupled non-linear oscillators [3, 5, 19]. By

changing the control parameters of the system, the set of coupled oscillators can exhibit trivial, chaotic, and complex
behaviour. More interesting is the claim that enhanced computation capability can be seen right in the border between
the chaotic and the complex region, the so-called edge of chaos (EOC) region [20].
The edge of chaos hypothesis refers to the emergence, in non-linear systems of different nature [5, 20–22], of a surge

in self-organization along the transition between order and chaos, a region well-defined and fundamentally unstable,
with a stark competition between order and disorder [23]. Some authors even link this hypothesis to the so-called
”criticality” under which the brain seems to operate [24], or evolution and life itself [25, 26].
In this contribution, we use informational distance [27] to study the correlation between oscillators. The informa-

tional distance is based on how innovative two sequences s and p are, one with respect to the other in a symmetrical
way, in terms of pattern production, when the other is taken into account

d =
max{K(s|p),K(p|s)}
max{K(s),K(p)} , (1)

where K(x|y) is the Kolmogorov complexity of x conditioned in knowing y (the length of the shortest algorithm
reproducing x, if the shortes algorithm reproducing y, is given). The normalized distance d is between 0 and 1.
This distance is not a Hamming-type distance because it does not measure the number of different bits between

the sequences but how far they are in algorithmic space.
As defined in (1), the distance is uncomputable for the same reason as the algorithmic complexity. Therefore, an

estimation procedure is needed. There have been several approaches to such estimation, but we will be following [28]
(See the methods section for details).
As already stated, entropy density

h = lim
|s|→∞

H [s]

|s| ,

where H [s] is the Shannon block entropy of the string s, and effective complexity measure

E =

∞
∑

L=1

(h(L)− h),

with h(L) = H [s(1, L)] − H [s(1, L − 1)], will be used as a measure of randomness and the levels of correlation at
different scales in the system, respectively.
h(L) can be taken as a finite-size estimate of h, and therefore, h(L)− h quantifies how much we are overestimating

the actual randomness of the sequence when only correlations only at scales smaller than L are accounted for. There
are several interpretations for the effective measure complexity [8, 14], and the reader is encouraged to read the
relevant literature. It will suffice to say that it measures the amount of patterns in a signal when noise has been
accounted for. In this sense, knowing that is the mutual information between past and present, equivalently, between
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two halves of a bi-infinite sequence, it measures the persistence of structural features in a sequence at all time (length)
scale. As with any other single magnitude, it can not capture the full scope of what we understand by complexity,
but together with the other entropic magnitudes; it moves in the direction of characterizing it quantitatively.
First, we show the emergence of local collective behaviour in the EOC region. The local nature of the collective

behaviour indicates a complex scenario where different groups of oscillators interact. Second, we show that the local
collective behaviour emerging at the EOC changes as the system parameters change towards the interior of the needle
region, gaining in scope until nearly global informational coherence is achieved.
It is also interesting to notice that, despite being such a simple model, dynamics expected in more involved models

already emerge in this simple setup.
We should expect very limited computational capacity when each oscillator is independent of the others, and no

collective behaviour is seen. Conversely, the computational capacity should also be reduced if all oscillators are
synchronized in a phase-lock regime. For rich processing capability, one should expect that some local correlation
between the oscillator must be present while global synchronization is not attained. The interaction between those
local subsets and collective behaviour can lead to higher information processing capacity.
The model. Let us consider a system of locally coupled Adler-type oscillators. Each oscillator in isolation is

governed by a law of the type [29]

dθ

dt
= θ̇ = ω + γ cos θ, (2)

where ω is the intrinsic frequency of the oscillator, and γ determines the strength of the self-feedback. Equation (2)
has been the subject of research in the past as an oscillator with an injection of a sinusoidal signal [30], as given by the
θ-dependent feedback term in the right-hand side, that separates it from the harmonic oscillators. The feedback is a
control mechanism to phase-lock the oscillator synchronized to a frequency source. Phase locking refers to the output
phase of the oscillator being related to the input phase, in this case, the injection signal. Adler systems, as described
by equation (2), is just but one of a family of oscillators with injection feedback that can be realized electronically
[30].
Analytical treatment of equation (2) results in critical points θ̇ = 0, given by cos(θ∗) = −ω/γ, which can only

happen if |ω/γ| ≤ 1. Two points of different stability exist if the strict inequality happens, and one marginally
stable critical point when equality happens (|ω/γ| = 1). For ω = γ, oscillations starting with a lower θ phase will
be attracted to the critical point, while those starting above the critical value θ∗ will be repelled. For |ω/γ| < 1, a
saddle-node bifurcation leads to two critical points, one stable and one unstable. In the asymptotic t → ∞ time, the
oscillator settles into sin θ = ±

√

1− (ω/γ)2. When |ω/γ| > 1, the phase speed θ̇ has a θ interval where a slowdown
occurs, whose magnitude is related to the value of |ω/γ|−1. The solution is periodic for all time values with frequency

ωa = 1/2
√

ω2 − γ2.
For the coupled oscillator system, the following local coupling introduced by Alonso [3] will be used

dθi
dt

= θ̇i = ω + γ cos θi + (−1)i (cos θi−1 + cos θi+1) , (3)

which has been thoroughly studied [3, 5, 19] . The coupling is taken to depend on the absolute value of neighbouring
phases, and its alternating sign answers to the local balancing of positive and negative injections. This choice
of coupling differs from the usual Kuramoto coupling based on phase difference and not absolute values. There
is no priory justification for such coupling other than its possible realization as an electronic circuitry. The fact
that it has shown complex structured behaviour in some regions of the parameter space resembling other systems
with computational abilities points to its potential usefulness [19]. Considering an even total number of oscillators
guarantees global balancing of interactions. The overall effect of this balance can be thought of as the absence of a
net injection to the system, thus avoiding the presence of a drift velocity for the entire system in the phase circle.
Equation (3) splits the oscillators into two classes, given by the sign of the neighbourhood feedback. The parameter

space of this system shows regions of periodic, chaotic, and complex behaviour. It is especially noteworthy that it
has been reported, in one of the borders between the chaotic and the needle complex region (figure 1a), a surge in
magnitudes such as E, for some initial conditions [20] (See figure 1c). In this edge of chaos (EOC) border, there is a
drop in entropy density h (figure 1b) as the system enters the complex region, an expected behaviour as the system
moves out of the chaotic regime. The reader can find further details in [3, 5, 19].
Results and discussion. In the region where a drop of the h values and a surge in E values is observed (Figure

1c-d), the correlation among oscillators should exhibit a more involved picture. This is what is shown in figure
1b, where the informational distance matrix or map between oscillators is shown at the EOC (point 2: ω = 2.225,
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γ = 1.200) compared to neighbouring points in the parameter space (ω = 2.225, γ = 1.150, 1.205, 1.210, 1.350, points
1, 3, 4 and 5).
Figure 1b-above shows the distance map among the even oscillators, while figure 1b-below corresponds to the odd

oscillators. The split between odd and even oscillators was made to take into account that each class has a different
sign feedback, given by the (−1)i term, as shown in equation (3). In the chaotic regime (point 1, γ = 1.150), the
oscillators are essentially free in their behaviour, and no collective dynamics are found. This is shown in the distance
map and the spatiotemporal plot of figure 2, where the evolution of the oscillators’ phase at discrete time steps is
shown as a colour map. This is in clear contrast with the distance matrix of the EOC region (point 2, γ = 1.200),
where non-trivial correlations between oscillators emerge and can be seen in the patterns formed in the distance map.
The spatiotemporal diagram of figure 2 also shows the formation of patterns persistent in time and travelling along
the oscillators: collective behaviour has emerged. Yet, the presence of incoherent boundaries between the coherent
oscillators points to the local character of this coherency. Another interesting feature is that collective regions do not
necessarily come from the oscillators’ initial (random) phase values, as coherent regions can emerge or die during time
evolution: the emergence and persistence of patterns is a finite time event.
For points 3 and 4, near the EOC but more into the needle region, the distance map shows less patterning (figure

1b), while well into the needle region (point 5), decoherence seems to be lost for any oscillator and coherence has
become global. The spatiotemporal maps support this picture; as the system moves from the EOC region into the
needle region, coherence becomes increasingly global and persistence in time becomes longer, which can be seen in
figure 2 for γ = 1.205, 1.210, and γ = 1.350 it already shows a complete pattern driven spatiotemporal behaviour.
The dendrogram from the distance matrix (Figure 1e) further emphasizes the above analysis. Whereas for the

chaotic region (point 1), the corresponding tree is shallow, with all pairs of oscillators showing a maximum distance
between them, well within the needle region (point 5), the dendrogram shows that within a given oscillator class (odd
or even, according to the sign of (−1)i in equation (3), the distance between oscillators has decreased significantly.
This decrease in distance points to global correlations between the oscillators. In contrast, at or near the EOC (points
2, 3, 4), the dendrogram shows complex hierarchies among the oscillators, with several levels of deepness in the tree
within a class of oscillators. Local communities of oscillators can be identified as sub-trees in the dendrogram for these
three points. Enhancement is not a property just of the EOC at point 2, although it seems to be an optimal value
as shown by the surge in E. Suboptimal improvement, with respect to the neighbouring regions, is still a feature for
points 3 and 4, as can be seen by the fact that the dendrogram (figure 1e) at points 2, 3 and 4, shows no qualitative
difference and just slight quantitative ones, (e.g., the mean distance between odd oscillators shown in figure 1 are,
respectively, 0.797, 0.826 and 0.843. In contrast, for point 5 is 0.391). Fine-tuning the control parameters to a very
tight interval of control parameter values is unnecessary. Of course, this could be related to the finite number of
oscillators far from any thermodynamic limit, yet infinity is never achieved in real systems.
Simulations were performed with several initial phase values, random and non-random. The distance matrix shows

an evident dependence on the initial condition, a feature of an adaptable computational device (See supplementary
material).
Figure 3 shows the plots of the average value of ∆hij = |hi − hi+2j | and ∆Eij = |Ei − Ei+2j |, averaged over i as

a function of j, for odd and even oscillators. For independent oscillators, both magnitudes should be constant with
j, the observed behaviour for the chaotic region γ = 1.150. A constant behaviour should be observed for globally
coupled oscillators, such as all oscillators in phase. This is almost the functional dependence seen for γ = 1.210, 1.350.
The fact that there is a weak dependence with j between the oscillators indicates that complete phase lock has not
been attained. For locally collective behaviour, with decoupling between these regions of collective oscillators, a more
involved functional dependence of ∆hij and ∆Eij should be expected, and this is the case for γ = 1.205, even more so
for the EOC point, γ = 1.200. For the EOC plot, it must be noted that the non-trivial function of both magnitudes
includes monotonicity changes and plateaus, indicating some correlation between oscillators that are not necessarily
close to each other. ∆hij and ∆Eij vs j is, for γ = 1.200, a result of the balance between pattern or collective
behaviour and unpredictability or lack of correlation.
At EOC, the value of E for the oscillators is between 4 and 10, while the entropy density h is between 0.1 and

0.5. Both intervals are intermediate compared to the points outside this region. h interval at EOC is lower than in
the chaotic region and larger than inside the needle region, while the E interval at EOC is above the interval for the
chaotic regime and below the needle region (See supplementary material).
Conclusions. The picture that emerges from the analysis is that, indeed, at the EOC, the surge of E with

the drop of h is witnessing the emergence of complex dynamics. The observed balance between structuring and
unpredictability is precisely the fingerprint of complexity. The non-trivial local collective behaviour discovered by the
patterns in the distance map, the dendrogram, and the spatiotemporal map indicates this complex dynamic. The
reported result argues for enhanced computational power in the EOC region. However, this optimal improvement can
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still be suboptimal for neighbouring points on the side of the needle region.
Current research is being done to see if similar findings hold for other systems of non-linear coupled oscillators.

In other coupled oscillator systems, different coupling forms and topologies are being considered [22, 31], and results
will be reported elsewhere. It should be emphasized that the procedure presented is of general application and is not
limited to the type of systems reported. As long as a time series output can be achieved from a given model, entropic
measures can be estimated, and distance metrics can follow.
Methods. In all cases, integration of the system defined by equation (3) was performed using a fourth-order Runge-

Kutta method as implemented on GNU Scientific Library (GSL). In random instances, the results were compared to
the solution given by the numerical solver of Mathematica [32]; in all cases, both solutions were identical within the
numerical error. Also, different integration steps were used until further refinement of the time step did not change
the reported result.
Since all entropic markers introduced are defined for discrete-state systems, a discretization of the original continuous

activity is needed. For the sake of simplicity, a binary alphabet was chosen. Furthermore, given the bounded nature
of the sin(θ) function, the average activity at any given time becomes a convenient choice for the threshold value.
Binarization was thus carried, assigning a 1 state to all oscillators with activity higher than the mean value and 0
otherwise. This has been done before in similar systems [5, 19]. The question of generating partition is one with no
universal answer; one expects that the chosen discretization keeps sufficient information on the relevant features in
the analyzed system. If the discretization proves to be successful in doing so, it can only be evaluated a posteriori.
In any case, the thresholding procedure does not introduce artefacts in the data processing but merely reduces the
amount of information carried by the data.
Entropy density h was estimated through a Lempel-Ziv factorization as explained in [20]. Briefly, Lempel-Ziv

factorization [33] creates an exhaustive history from the input by defining a factor every time an unseen substring
happens while scanning the input string from left to right.
The LZ76 complexity C(s) of the sequence s is defined as the number of factors in its exhaustive history.
Let the entropy rate be given by

h(s) = lim
N→∞

H [s(1, N)]

N
, (4)

where H [s(1, N)] is the Shannon block entropy [13] of the string s(1, N) ∈ s. Then, defining

c(s) =
C(s)

N/ logN
. (5)

Ziv [34] proved that, if s is the output from an ergodic source, then

lim sup
N→∞

c(s) = h(s). (6)

This is the base of using c(s) as an estimate of h for N ≫ 1.
Equation (6) is valid in the infinite limit; in practical cases, equation (5) is used as an estimate for the entropy

density. Assuming an i.i.d. Gaussian distribution of the word length, the error estimate for the entropy density
estimated by Lempel Ziv can be calculated from [35]

σ = c3/2
ς√

N logN
, (7)

ς is the standard deviation of the word length. For a 104 length sequence, which is the one used in this study,
equation (7) gives an order of magnitude for the error bound around 10−2. Lesne et al. [36] have further discussed
the estimation of error in the use of entropy estimators in short sequences. Using numerical simulations, they showed
that Lempel-Ziv estimators of entropy density show good agreement even for sequences as short as 2×103. As stated,
sequence length will be at least 104, and errors in estimating entropy density should be insignificant.
From the entropy density, a magnitude related to the effective complexity can readily estimated by a random shuffle

algorithm [20].
As Kolmogorov randomness is uncomputable, a practical alternative to equation (1) is needed [28]. K(s|p) is roughly

equal to K(sp)−K(p) (there is a logarithmic correction term which is not significant for long enough sequences), and
sp denotes the concatenation of both strings. The informational distance can then be estimated from

d(s, p) =
K(sp)−min{K(s),K(p)}

max{K(s),K(p)} . (8)
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If s and p have the same length, then we can cast equation (8) in terms of the entropy density

d(s, p) =
h(sp)−min{h(s), h(p)}

max{h(s), h(p)} . (9)

The normalized LZ76 complexity is now used to estimate the entropy density,

d(s, p) =
cLZ(sp)−min{cLZ(s), cLZ(p)}

max{cLZ(s), cLZ(p)}
. (10)

For the distance matrix, simulations were performed for 200 oscillators with circular boundary conditions, random
initial phase values were taken, and 6000 time steps, the first 1000 time steps were dropped before the similarity
distance was calculated. Dendrograms were built using the average intercluster dissimilarity as criteria from the
distance matrix. The Dendrogram function of Wolfram Mathematica was used [32].
5000 oscillators were also used with periodic boundary conditions for the spatiotemporal maps. Again, the first

1000 time steps were dropped, and the next 1000 time steps are shown. The 〈∆hj〉 and 〈∆Ej〉 plots were calculated
for 500 oscillators, as before the first 1000 time steps were dropped.
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FIG. 1: (a) Entropy density map in parameter space for the locally coupled oscillators of equation (3). The needle region is
the low h (black) region. Five points have been chosen, all with ω = 2.225, and (1) γ = 1.150, (2) γ = 1.200, (3) γ = 1.205,
(4) γ = 1.210 and (5) γ = 1.350. The high h (red) region is in the chaotic regime, where point (1) is taken. Point (2) is at
the edge of chaos boundary. Points (3) and (4) are in the needle region close to the EOC, while point (5) is well within the
needle region. (b) The distance matrix for a 200 oscillator configuration in all five points described. The distance map is shown
separately for even and odd oscillators. (c) The entropy density h as a function of γ for ω = 2.225, as γ increase the systems
leaves the chaotic region and gets into the needle region, the boundary is seen as a sudden drop in the h value. (d) The effective
complexity measure E as a function of γ, the same conditions as in (c) applies. A surge in the E value can be seen at the EOC
boundary. (e) The dendrogram built from the corresponding distance matrix. In the chaotic region (point 1), oscillators are
independent between them, and the dendrogram is a trivial tree with a shallow deepness; within the needle region (point 5),
the information distance between oscillators has dropped significantly within oscillators of one type (same sign), a more global
collective behaviour has emerged. In the intermediate points (2, 3 and 4), at or near the EOC, a complex dendrogram shows
the emergence of local collective behaviours with non-trivial hierarchies. At the same time, the global coupling is not achieved.
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FIG. 2: Spatio-temporal maps for the five points depicted in figure 1. The activity sin θ values are shown as colours ranging
from black for 0, green for 1/2, and red for 1. Time runs horizontally while the oscillator index runs vertically. On the left is the
whole spatiotemporal map; on the right, the spatiotemporal map is decomposed into odd and even oscillators. For γ = 1.1500,
a salt and pepper contrast shows that each oscillator behaves independently of the others in the chaotic region. No pattern can
be discerned. Collective behaviour as time-persistent patterns emerges from EOC at γ = 1.200 and becomes more dominant
as γ increases to 1.35 where total global coherence can be seen. At EOC, there is a balance between pattern and incoherent
regions in the oscillator dynamics.
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FIG. 3: Plot for the five described points, of the mean value of ∆hij = |hi − hi+2j | (left) and ∆Eij = |Ei −Ei+2j | (right) as a
function of j (averaged over i). For independent oscillators, both magnitudes should not depend on j, the behaviour observed
for γ = 1.150. Global coherence with near-phase locking should also show a slow dependence with j as seen for γ = 1.210, 1.350.
Local coherent regions and incoherent oscillators should show a non-trivial function of j as seen for γ = 1.200, 1.205.
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