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Characterizing the emergence of chaotic dynamics of complex networks is an essential task in
nonlinear science with potential important applications in many fields such as neural control en-
gineering, microgrid technologies, and ecological networks. Here, we solve a critical outstanding
problem in this multidisciplinary research field: The emergence and persistence of spatio-temporal
chaos in complex networks of damped-driven nonlinear oscillators in the significant weak-coupling
regime, while they exhibit regular behavior when uncoupled. By developing a comprehensive theory
with the aid of standard analytical methods, a hierarchy of lower-dimensional effective models, and
extensive numerical simulations, we uncover and characterize the basic physical mechanisms con-
cerning both heterogeneity-induced and impulse-induced emergence, enhancement, and suppression
of chaos in starlike and scale-free networks of periodically driven, dissipative nonlinear oscillators.

PACS numbers:

Introduction.−Controlling the dynamical state of a
complex network is a fundamental problem in science
[1-5] with many potential applications, including neu-
ronal [6] and ecological [7] networks. While most of
these works consider networks of linear systems [2,5],
only lately has the generic and richer case of networks of
nonlinear systems [1,4] started to be investigated. Also,
the majority of studies of coupled nonlinear systems sub-
jected to external excitations focused on either local (ho-
mogeneous) diffusive-type or global (all-to-all) coupling.
However, little attention has been paid to the possible
influences of a heterogeneous connectivity on both the
emergence and strength of chaos in complex networks of
nonautonomous nonlinear systems. Here we characterize
the emergence and persistence (in parameter space) of
chaos in heterogeneous networks of damped-driven non-
linear systems when the complex network presents a non-
chaotic state in the absence of coupling, while a stable
chaotic state emerges after coupling the same nonau-
tonomous nodes. Specifically, we study the interplay
among heterogeneous connectivity, driving period, and
impulse transmitted by a homogeneous (non-harmonic)
periodic excitation in the emergence and persistence of
spatio-temporal chaos in complex networks in the sig-
nificant weak-coupling regime. For the sake of clarity,
the findings are discussed through the analysis of star-
like networks (SNs) of N + 1 damped-driven two-well
Duffing oscillators. This system is sufficiently simple to
obtain analytical predictions while retaining the univer-
sal features of a dissipative chaotic system. The complete

model system reads

..
xH = (1− λN)xH − x3

H − δ
.
xH + γf (t) + λ

N∑

i=1

yi,

..
yi = (1− λ) yi − y3i − δ

.
yi + γf (t) + λxH , (1)

i = 1, ..., N , where f(t) is a unit-amplitude T -periodic ex-
citation and λ is the coupling. These equations describe
the dynamics of a highly connected node (or hub), xH ,
and N linked oscillators (or leaves), yi. For concreteness,
we shall consider the elliptic excitation f(t) = fellip(t) ≡
A(m) sn(4Kt/T ) dn (4Kt/T ) [8] (see Fig. 1(a) and Sup-
plemental Material (SM) [9] for a detailed characteriza-
tion of fellip(t)). In this Letter, we concentrate on the rel-
evant (typically asynchronous) case of sufficiently small
coupling, λ, external excitation amplitude, γ, and damp-
ing coefficient, δ, such that the dynamics of the leaves
may be decoupled from that of the hub on the one hand,
and may be suitably described as a periodic orbit around
one of the potential minima on the other. Specifically, we
assume λ = O

(
γ2

)
throughout this work.

Effective model.−Equations (1) for the leaves become

..
yi = yi − y3i − δ

.
yi + γfellip (t) , (2)

i = 1, ..., N . After using the properties of the Fourier se-
ries of fellip (t) (see SM [9] for analytical details) and ap-
plying standard perturbation methods [10] for the main
resonance case, one obtains

yi (t → ∞) ∼ ξi +
γa0 (m)

2− ω2
sin (ωt) , (3)

where ω ≡ 2π/T , ξi = ±1 depending on the initial
conditions, while the first Fourier coefficient of fellip (t),
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FIG. 1: (a) External excitation fellip(t) = A(m) sn(4Kt/T ) dn (4Kt/T ) vs t/T , where T is the period and A(m) ≡
1/ {a+ b/ [1 + exp ({m− c} /d)]}, with a ≡ 0.43932, b ≡ 0.69796, c ≡ 0.3727, and d ≡ 0.26883, for three values of the
shape parameter: m = 0 (sinusoidal pulse), m = 0.72 ≃ mmax (nearly square-wave pulse), and m = 0.999 (double-humped
pulse). Inset: The normalized impulse I (m) /I (m = 0) (solid line) and the Fourier coefficient a0(m) (dashed line; see the text).
Chaotic threshold function U (ω, λN,m) [cf. Eq.(7)] vs (b) ω and λN for m = 0.65 ≃ ma0

max, (c) λN and m for ω = 0.65, and
(d) ω and m for λN = 0.45. The solid blue lines indicate the chaotic boundary corresponding to γ/δ = 0.29 [cf. Eq.(7)].

a0 (m), presents a single maximum at m = ma0
max ≃ 0.65

[see Fig 1(a), inset]. Since the initial conditions are ran-
domly chosen, this means that the quantities ξi behave
as discrete random variables governed by Rademacher
distributions. After inserting Eq. (3) into Eq. (1), the
resulting equation for the hub reads

..
xH = (1− λN)xH − x3

H − δ
.
xH + Γ sin(ωt) + λΞ, (4)

where Ξ ≡ ∑N
i=1 ξi, Γ ≡ γa0 (m)

[
1 + λN/

(
2− ω2

)]
+

O
(
γ3a20 (m)

)
. For finite N , the quantity Ξ behaves as

a discrete random variable governed by a binomial dis-
tribution with zero mean and variance N , while for suf-
ficiently large N one may assume that Ξ behaves as a
continuous random variable governed by a normal dis-
tribution. Although the hub’s dynamics are generally
affected by spatial quenched disorder through the term
λΞ, one expects that it may be neglected in the present
case of weak coupling (WC) (1 ≫ λ ≳ 0) according to the
above assumptions (see SM [9] for a comparison of the
cases with and without the term λΞ). Thus, the net-
work described by Eq. (1) can be effectively replaced
by a hierarchy of reduced networks in which a hub is
coupled to M effective leaves, each of which represents
nj randomly chosen identical leaves (i.e., leaves having
exactly the same initial conditions) such that the condi-

tion
∑M

j=1 nj = N is satisfied, in the WC regime and for
values of m sufficiently less than 1:

..
xH = (1− λN)xH − x3

H − δ
.
xH + γa0(m) sin (ωt)

+ λ
M∑

j=1

njyL,j ,

..
yL,j = (1− λ) yL,j − y3L,j − δ

.
yL,j + γa0(m) sin (ωt) + λxH ,

(5)

j = 1, ...,M , where yL,j represents the common leaf asso-
ciated with each group (cluster) of identical leaves. Equa-
tion (4) indicates that the possibility of heterogeneity-
induced emergence of chaos in the hub’s dynamics is
now expected from the lowering of the potential barrier’s

height h ≡ (1− λN)
2
/4 as N is increased on the one

hand, and the presence of the additional resonant excita-
tion γa0 (m)λ

[
N/

(
2− ω2

)]
sin (ωt) on the other. Notice

that the amplitude of this coupling-induced resonant ex-
citation effectively depends upon the impulse transmitted
by fellip (t) through the Fourier coefficient a0 (m). Quan-
titatively, this expectation can be deduced with the aid
of the Melnikov method (MM) [11,12]. Indeed, the ap-
plication of MM to Eq. (2) provides an estimate of a
necessary condition for the emergence of chaos:

γ

δ
⩾ U (ω, λN = 0,m) ≡ 2

√
2 cosh (πω/2)

3πωa0(m)
, (6)

where U (ω, λN,m) is the chaotic threshold function. As-
suming that N satisfies the condition 0 < λN < 1 in
order to preserve the existence of an underlying separa-
trix for all N , the application of MM to Eq. (4) after
dropping the term λΞ = O

(
γ2

)
provides an estimate of

the corresponding necessary condition for the emergence
of chaos:

γ

δ
⩾ U (ω, λN,m) ≡

2
√
2 (1− λN)

3/2
cosh

(
πω

2
√
1−λN

)

3πωa0(m)
(
1 + λN

2−ω2

)

(7)
(see SM [9] for a derivation of Eqs. (6) and (7)). Now,
the following remarks may be in order. First, the chaotic
threshold function for the hub, Eq. (7), reduces to that
of the leaves, Eq. (6), when λN → 0, i.e., for the lim-
iting case of isolated nodes (λ = 0) and, in the present
WC regime, for the limiting case of homogeneous con-
nectivity (N = 1), as expected. Second, having fixed the
ratio γ/δ and the coupling λ, the possibility of chaotic
behaviour is predicted to be greater for the hub than for
the leaves over wide ranges of ω, while this difference
strongly depends on N [cf. Eqs. (6) and (7); see Fig.
1(b)]. Third, having fixed the coupling λ and the angu-
lar frequency ω, the chaotic threshold function presents
a single minimum in the λN − m parameter plane at
N = Nmin ≡ Nmin(ω) and m = mmin ≃ ma0

max ≃ 0.65
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(irrespective of the driving period), which means that
the possibility of chaotic behaviour is predicted to be
higher when the impulse transmitted is maximum and
for intermediate values of λN than for the limiting cases
λN → 0, 1 [cf. Eq. (7); see Fig. 1(c)]. And fourth,
having fixed the coupling λ and the number of leaves N ,
the chaotic threshold function presents a single minimum
in the ω − m parameter plane at ω = ωmin ≡ ωmin(N)
and m = mmin ≃ ma0

max ≃ 0.65 (irrespective of the driv-
ing period), which means again that the possibility of
chaotic behaviour is predicted to be greater when the
impulse transmitted is maximum and for intermediate
values of ω than for the limiting cases ω → 0,∞ [cf.
Eq. (7); see Fig. 1(d)]. Therefore, depending on the
remaining parameters, one could expect a heterogeneity-
induced (impulse-induced) route to chaos starting from a
regular SN with a few leaves (low-impulse excitation) by
solely increasing their number (the excitation impulse)
on the one hand, and a heterogeneity-induced (impulse-
induced) route to regularity starting from a chaotic SN
with many leaves (high-impulse excitation) by further in-
creasing (decreasing) their number (excitation impulse)
on the other.

Extensive numerical simulations of the complete sys-
tem [Eq. (1)] and the effective model system [Eq. (5)]
confirmed an overall good agreement with these expecta-
tions even for quite small values of M . Specifically, one
can compare the theoretical predictions and Lyapunov
exponent (LE) calculations [14] of both systems [Eqs. (1)
and (5)] [15]. Illustrative examples are shown in Figs. 2
and 3 for N = 138 and values of δ, γ that are clearly be-
yond the perturbative regime (compare Figs. 1(b), 1(c),
1(d) with Figs. 2(b), 2(a), 2(c), respectively).

Typically, one finds for both systems [Eqs. (1) and
(5)] a similar resonancelike emergence of chaos in the
λN − m, ω − λN , and ω − m parameter planes, which
in its turn confirmed the effectiveness of model Eq. (5),
as is clearly seen when comparing Figs. 2(a), 2(b), 2(c)
with Figs. 2(d), 2(e), 2(f), respectively. As expected,
the extent of the chaotic regions is smaller in the case
of the harmonic approximation a0(m) sin (ωt), which is
due to the absence of the effects of higher harmonics of
fellip (t). Remarkably, we found that the emergence of
chaos is attenuated and slightly distorted in the parame-
ter planes by decreasing the number M of effective leaves
fromM = N , as for the caseM = 24 shown in Figs. 3(d),
3(e), 3(f). This suppressory effect occurs because the uni-
form initial randomness of the SN for M = N is broken
asM decreases from N due to the formation of clusters of
identical leaves of different cardinality, giving rise to an
increase in network desynchronization [16] which in turn
makes it difficult to reach a synchronized chaotic state.
But, on restoring the uniformity of the initial random-
ness, an increase in chaotic behaviour is observed even
for quite small values of M , such as for M = 2 in which
we took n1 = n2 [cf. Figs. 3(a), 3(b), 3(c)].

Scale-free networks.−Next, we discuss the possibility
of extending the results obtained for an SN to Barabási-

Albert (BA) networks [17] of the same Duffing oscillators.
The system is given by

..
xi = xi − x3

i − δ
.
xi + γfellip (t)− λLijxj , (8)

i = 1, ..., N , where Lij = κiδij − Aij is the Laplacian
matrix of the network, κi =

∑
j Aij is the degree of node

i, and Aij is the adjacency matrix with entries of 1 if i is
connected to j and 0 otherwise. Since in a BA network a
highly connected node can be thought of as a hub of a lo-
cal SN with a certain degree κ picked up from the degree
distribution (P (κ) ∼ κ−α), one could expect the above
scenario for SNs to remain valid to some degree. Indeed,
for each hub with a sufficiently high (depending on the
remaining parameters) degree κi, one systematically ob-
serves that the bifurcation diagram of its velocity

.
xi vs

coupling λ presents, essentially, the same overall chaotic
window over the range 0 < λκi < 1, in accordance with
the predictions from the above SN scenario (see Figs.
4(b)). This is reflected in both the global chaos of the
BA network, as shown in Fig. 4(a), and the number of
chaotic nodes of the network, Nchaos, as shown in Fig.
4(c). When λκi ⩾ 1, the potential associated with each
hub of degree κi undergoes a topological change, thus
preventing the emergence of homoclinic chaos in such a
hub. Therefore, for λ values sufficiently far from the WC
regime, the emergence of chaos in the BA network is no
longer possible, as is confirmed by LE calculations (see
Fig. 4(c) and SM [9] for additional examples).

Conclusion.−Basic physical mechanisms have been
discussed concerning both heterogeneity-induced and
impulse-induced emergence, enhancement, and suppres-
sion of chaos in complex networks of periodically driven,
dissipative nonlinear systems in the significant weak-
coupling regime. With the aid of a hierarchy of
lower-dimensional effective models and extensive numer-
ical simulations, we have characterized the resonance-
like interplay among heterogeneous connectivity, impulse
transmitted by a homogeneous periodic excitation, and
its driving period in the emergence and persistence of
spatio-temporal chaos in starlike and scale-free networks
of bistable oscillators. In view of the simplicity and gen-
erality of this multiple resonancelike scenario and the
great robustness and scope of the physical mechanisms
involved, we expect it to be quite readily testable by ex-
periment, for instance in the context of nonlinear elec-
tronic circuits. Finally, we hope our results can serve
as an important step towards understanding emergence
of chaos in complex networks of interconnected damped-
driven nonlinear systems in the case of time-varying con-
nections [18], while the exploration of both the effective-
ness of local application of additional chaos-suppressing
excitations and of the effects of different coupling func-
tions [19] represent exciting next steps for future re-
search.
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FIG. 2: Maximal LE distribution in the (a), (d) λN −m, (b), (e) ω − λN , and (c),(f) ω −m parameter planes for (a), (b), (c)
the complete system [Eq. (1)] and (d), (e), (f) the effective model system [Eq. (5) with M = 138, nj = 1, j = 1, ..., 138] for
(a), (d) ω = 0.65, (b), (e) m = 0.65 ≃ ma0

max, and (c), (f) λ = 0.00326. Fixed parameters: N = 138, γ = 0.29, δ = 1. The black
lines indicate the chaotic boundary corresponding to γ/δ = 0.29 [cf. Eq.(7)].

FIG. 3: Maximal LE distribution in the (a), (d) λN −m, (b), (e) ω− λN , and (c),(f) ω−m parameter planes for the effective
model system [Eq. (5)] for (a), (d) ω = 0.65, (b), (e) m = 0.65 ≃ ma0

max, (c), (f) λ = 0.00326, and two values of the number

of effective leaves: (a), (b), (c) M = 2 and (d), (e), (f) M = 24. The values of nj were randomly chosen while
∑M

j=1 nj = N .
Fixed parameters as in Fig. 2.

Acknowledgments

R.C. acknowledges financial support from the
Ministerio de Ciencia e Innovación (MICINN,
Spain) through Project No. PID2019-108508GB-
I00/AEI/10.13039/501100011033 cofinanced by FEDER
funds. P.J.M. acknowledges financial support from
the Ministerio de Ciencia e Innovación (MICINN,
Spain) through Project No. PID2020-113582GB-
I00/AEI/10.13039/501100011033 cofinanced by FEDER
funds and from the Gobierno de Aragón (DGA, Spain)

through Grant No. E36 23R.



5

FIG. 4: (a) Maximal LE distribution in the λ−m parameter plane for a scale-free network [Eq. (8)] with N = 500, α = 2.7,
γ = 0.29, δ = 1, T = 2π/0.65. (b) Bifurcation diagrams for the velocities

.
xi of its three main hubs (κ1 = 138, κ2 = 61, κ3 = 27,

from top to bottom) vs coupling λ (logarithmic scale) for m = 0.65 ≃ ma0
max. (c) Number of chaotic nodes Nchaos (logarithmic

scale) vs coupling λ (logarithmic scale) for two sets of parameters (γ, δ, T ): (0.2, 0.154, 2π/0.5) (top) and (0.29, 1, 2π/0.65)
(bottom), and the remaining parameters as in (a) (grey regions denote Nchaos = 0).
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[18] P. Holme and J. Saramäki, Temporal Network Theory

(Springer, Cham, 2019); Y. Zhang and S. H. Strogatz,
Nat. Commun. 12, 3273 (2021).

[19] T. Stankovski, T. Pereira, P. V. E. McClintock, and A.
Stefanovska, Rev. Mod. Phys. 89, 045001 (2017).



Supplemental Material

Universal resonancelike emergence of chaos in starlike networks of

damped-driven nonlinear systems

Ricardo Chacón1 and Pedro J. Mart́ınez2

1Departamento de F́ısica Aplicada, E.I.I., Universidad de Extremadura,

Apartado Postal 382, E-06006 Badajoz, Spain,

and Instituto de Computación Cient́ıfica Avanzada (ICCAEx),

Universidad de Extremadura, E-06006 Badajoz, Spain and

2Departamento de F́ısica Aplicada, E.I.N.A.,

Universidad de Zaragoza, E-50018 Zaragoza,

Spain and Instituto de Nanociencia y Materiales de Aragón (INMA),

CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain

I. THEORETICAL METHODS

A. Fourier expansion of the periodic elliptic excitation

In our study we consider the elliptic excitation

f(t) ≡ A sn (4Kt/T ) dn (4Kt/T ) , (S1)

in which sn (·) ≡ sn (·;m) and dn (·) ≡ dn (·;m) are Jacobian elliptic functions of parameter m

(K ≡ K(m) is the complete elliptic integral of the first kind) [1] and

A = A(m) ≡
[
a+ b

(
1 + exp

{
m− c

d

})−1
]−1

, (S2)

is a normalization function (a ≡ 0.43932, b ≡ 0.69796, c ≡ 0.3727, d ≡ 0.26883) which is introduced

for the elliptic excitation to have the same amplitude, 1, and period T , for any waveform (i.e.,

∀m ∈ [0, 1]). When m = 0, then f (t)m=0 = sin (2πt/T ), i.e., one recovers the standard case of

an harmonic excitation, while for the limiting value m = 1 the excitation vanishes. The effect of

renormalization of the elliptic arguments is clear: with T constant, solely the excitation’s impulse
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is varied by increasing the shape parameter m from 0 to 1. Note that, as a function of m, the

elliptic excitation’s impulse per unit of period

I = I(m) ≡ N (m)

2K (m)
(S3)

presents a single maximum at m = mimpulse
max ≃ 0.717 (see Fig. S1).

The Fourier expansion of the elliptic excitation (Eq. S1) reads

f(t) =
∞∑

n=0

an(m) sin

[
(2n+ 1)

(
2πt

T

)]
, (S4)

an(m) ≡ π2A(m)(n+ 1
2)√

mK2(m)
sech

[
(n+ 1

2)πK(1−m)

K(m)

]
, (S5)

in which its Fourier coefficients satisfy the properties: i) limm→1 an(m) = 0, ii) an(m) exhibits

a single maximum at m = mmax (n) such that mmax (n+ 1) > mmax (n), n = 0, 1, ..., iii) the

normalized functions a0(m)/a0(m = 0) and I(m,T )/I(m = 0, T ) ≡ π A(m)/(2K(m)) present, as

functions of m, similar behaviours while their maxima verify that mmax (n = 0) ≃ 0.642 is very

close tomimpulse
max ≃ 0.717 (see Fig. S1), and iv) the Fourier expansion (Eq. S4) is rapidly convergent

over a wide range of values of the shape parameter. The following remarks may now be in order.

First, regarding analytical estimates, the properties (iii) and (iv) are relevant in the sense that they

allow us to obtain an useful effective estimate of the chaotic threshold in parameter space from

Melnikov method (MM) [2,3] by solely retaining the first harmonic of the Fourier expansion (Eq.

S4):

f(t) ≈ a0(m) sin (ωt) , (S6)

ω ≡ 2π/T . Second, regarding numerical simulations, we considered the entire Fourier expansion

of the elliptic excitation in order to obtain useful information concerning the effectiveness of the

approximations used in the theoretical analysis.

B. Chaotic threshold from Melnikov method

Melnikov introduced a function (now known as the Melnikov function (MF), M (t0)) which

measures the distance between the perturbed stable and unstable manifolds in the Poincaré section

at t0. Although the predictions from MM are both limited (only valid for motions based at points

sufficiently near the separatrix) and approximate (the MM is a first-order perturbative method),

they are of great interest due to the general scarcity of such analytical results in the theory of
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FIG. S1: Normalized first Fourier coefficient a0(m)/a0(m = 0) (Eq. S5, solid line) and elliptic excitation’s

impulse I(m)/I(m = 0) ≡ π A(m)/(2K(m)) (Eq. S3, dashed line) versus shape parameter m. We can see

that the respective single maxima occur at very close values of the shape parameter: mmax (n = 0) ≃ 0.642

and mimpulse
max ≃ 0.717, respectively.

chaos. Since it has been described many times by distinct authors [3], we do not discuss it in detail

here, but analyze the results obtained from it. Regarding Eqs. (2) and (4) in the main text, note

that keeping with the assumption of the MM, it is assumed that the amplitudes of the dissipation

and excitation terms are sufficiently small (0 < δ, γ ≪ 1). The application of MM to Eq. (2) in

the main text give us the Melnikov function (MF)

M±
0L(t0) = −C ±A sin (ωt0) , (S7)

with

C ≡ 4δ/3,

A ≡
√
2πγa0(m)ω sech (πω/2) , (S8)

where the positive (negative) sign refers to the right (left) homoclinic orbit (of the underlying

conservative system):

yi,0(t) = ±
√
2 sech (t) , (S9)

.
yi,0 (t) = ∓

√
2 sech (t) tanh (t) .

If the MF M±
0L(t0) has a simple zero, then a homoclinic bifurcation occurs, signifying the onset of

chaotic instabilities [3]. Clearly, the MF (S7) has simple zeros when

γ

δ
⩾ U (ω, λN = 0,m) ≡ 2

√
2

3πωa0(m)
cosh (πω/2) , (S10)

where the equals sign corresponds to the case of tangency between the stable and unstable mani-

folds, while U (ω, λN,m) is the chaotic threshold function (Eq. (6) in the main text). Assuming
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that N satisfies the condition 0 < λN < 1 in order to preserve the existence of an underlying

separatrix for all N , the application of MM to Eq. (4) in the main text after dropping the term

λΞ = O
(
γ2

)
yields the MF

M±
0H(t0) = −C ′ ±A′ cos (ωt0) , (S11)

with

C ′ ≡ 4δ (1− λN)3/2 /3,

A′ ≡
√
2πΓω sech

[
πω/

(
2
√
1− λN

)]
. (S12)

The MF M±
0H(t0) has simple zeros when

γ

δ
⩾ U (ω, λN,m) ≡

2
√
2 (1− λN)3/2 cosh

(
πω

2
√
1−λN

)

3πωa0(m)
(
1 + λN

2−ω2

) . (S13)

which is Eq. (7) in the main text. Thus, the chaotic boundary in parameter space is given by

γ

δ
= U (ω, λN,m) . (S14)

II. ADITIONAL NUMERICAL RESULTS

Figure S2 shows the effect of the spatial quenched disorder through the term λΞ [cf. Eq. (4) in

the main text]. One sees an overall agreement between the cases with and without the term λΞ.

FIG. S2: Maximal Lyapunov exponent distribution in the λN − m parameter plane for the case (a) with

and (b) without the term λΞ in Eq. (4) in the main text and N = 138, δ = 1, γ = 0.29, T = 2π/0.65. (c)

Histogram of the quantity Ξ indicating a normal distribution. The data shown is a random sample of 20, 100

points.

Figure S3 shows the maximal Lyapunov exponent of a scale-free network, ΛSF , versus the

coupling λ for the same parameters as in Fig. 4(a) in the main text. One sees that the appearance
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FIG. S3: Maximal Lyapunov exponent of a scale-free network, ΛSF , versus the coupling λ over two ranges:

λ ∈ [0, 0.03] (top) and λ ∈ [0, 0.45] (bottom). Fixed parameters: N = 500, α = 2.7, γ = 0.29, δ = 1, T =

2π/0.65.

of chaos in the network is exclusively due to the emergence of chaos in the most connected hubs

in the weak coupling regime (see Fig. S3(a)), while the broadening of the chaotic windows beyond

the weak coupling regime is due to the activation of chaos in a multitude of lower degree nodes

(see Fig. S3(b)), as expected from the power-law distribution P (κ) ∼ κ−α.
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