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We study theoretically the nonlinear optical response of disordered electrons in the regime of weak
(anti)localization. Our analytical and numerical calculations reveal that, in orthogonal/symplectic
class systems, two consecutive, phase coherent optical pulses generates an electric current echo
that appears after the second pulse, and at a time equal to the pulse delay time. The current
echo reflects the quantum interference between a self-intersecting electron path and its time reversal
partner, and, therefore, provide a time-domain interferometry of weak (anti)localization. Our results
can be potentially tested on disordered metal films by using terahertz two-dimensional coherent
spectroscopy or ultrafast transport measurements.

I. INTRODUCTION

Weak localization is the quintessential quantum inter-
ference phenomenon that features prominently in two-
dimensional disordered conductors [1–4]. In such sys-
tems, the charge transport is determined by the sum over
electron trajectories. Provided that the time reversal
symmetry is present and the spin-orbit coupling is weak,
a pair of time reversed, self-intersecting trajectories have
equal quantum amplitude, and, therefore, would interfere
constructively [5]. Electron weak localization emerges
from this constructive interference process in that the
latter reduces the electrical conductivity from the Drude
conductivity. In the opposite limit of strong spin-orbit
coupling, the weak antilocalization occurs due to the de-
structive interference of the trajectory pairs, resulting in
an excessive conductivity [6].

A powerful diagnostic for the electron weak localization
is the magnetoresistance [1, 7]. Applying a weak mag-
netic field perpendicular to the conductor film breaks the
time reversal symmetry in a controlled way. The time re-
versed trajectory pair now pick up Aharonov-Bohm (AB)
fluxes that are opposite in sign. The magnetic field sup-
presses the weak localization by partially destroying the
phase coherence between the pair of trajectories. The
suppression results in a characteristic magnetoresistance
curve, from which key physical quantity such as the elec-
tron phase coherence length can be extracted.

The magnetoresistance has been the canonical diagnos-
tic for electron weak localization since the latter’s dis-
covery. Yet, other mechanisms for magnetoresistance,
such as the Coulomb interaction [8, 9], the supercon-
ducting fluctuation [10], as well as their interplay with
weak localization, can significantly complicate the anal-
ysis of experimental data. Therefore, it is desirable to
develop alternative diagnostics, which may allow for a
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cross examination of the data from independent exper-
imental probes, thereby offering a more comprehensive
view on the weak localization phenomenon.

In this work, we address the above problem by propos-
ing that the terahertz nonlinear optical response is up
for the task. It has long been recognized that the non-
linear optical response and the quantum interference are
deeply linked [11–13]. We thus anticipate that the non-
linear optical response from disordered electrons may de-
velop unique signatures tied to the weak localization.
Meanwhile, the terahertz frequency window matches well
the time scale for electron weak localization, namely the
phase coherence time τϕ, which is on the order of a few
picoseconds at a temperature ∼ O(10) Kelvin [1, 14].

Specifically, we analyze the nonlinear electric current
generated by two consecutive, phase coherent terahertz
pulses, with polarization parallel to the conductor film
(Fig. 1a). The two pulses are separated by a delay time τ .
For the sake of simplicity, we omit the electron-electron
and electron-phonon interactions at the outset. Their im-
pact on weak localization are subsumed in a phenomeno-
logical electron phase coherence time τϕ added by hand.
We focus on two prototypical symmetry classes of the dis-
order [15], the orthogonal class and the symplectic class,
which describe a disordred metal in the limit of zero and
strong spin orbit coupling, respectively.

Our field theory analysis, as well as numerical simula-
tions, reveal that the nonlinear current, measured as a
function of time tg after the second pulse (dubbed the
gating time), exhibits a peak (Fig. 1b). Crucially, the
peak appears at the gating time tg = τ . As the pulse
delay time τ increases, the peak appears later and later.
This echo behavior originates from the interference of
time reversed trajectory pairs, the very same process re-
sponsible for weak localization. Heuristically, the first
pulse launches electron trajectories at time 0. Among
them, those self-intersect at tg + τ contribute to the non-
linear current at the time of measurement. For each tra-
jectory, there is a time reversed trajectory that also con-
tributes. When tg ̸= τ , the electrons are at different
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FIG. 1. (a) Two linearly polarized, phase coherent terahertz
pulses (Ea and Eb) with delay time τ generates a nonlinear
electric current (j) in the disordered metal film. (b) j ex-
hibits an echo at gating time tg = τ . (c) The current echo
arises from the interference between a pair of time-reversed
trajectories (blue and yellow). When tg ̸= τ , the trajectory
pair acquire different dynamical phases as the electrons are
at different locations when Eb kicks in. The loss of phase co-
herence suppresses weak localization. The weak localization
is reinstated when tg = τ , which produces the echo.

positions when the second pulse kicks in. As a result,
the time reversed pair would pick up different dynamical
phases, thereby suppressing the weak localization. How-
ever, when tg = τ , the weak localization reemerges due to
the restoration of time reversal symmetry. This revival
of weak localization gives rise to the echo.

The current echo signal, which is also on the picosec-
ond scale, can be potentially detected by the terahertz
two-dimensional coherent spectroscopy [16, 17]. In this
kind of experiment, one uses two phase coherent tera-
hertz pulses to excite the metal film, and measures the
terahertz electromagnetic field radiated by the nonlin-
ear current. Alternatively, the nonlinear current may be
generated and measured on chip by using the latest time-
resolved transport measurement techniques [18, 19].

The nonlinear optical response utilizes the delay time
τ and the gating time tg as knobs to control the co-
herence between the pair of time reversed trajectories.
Therefore, it works as a time-domain interferometry for
electron weak localization, which complements the mag-
netoresistance measurement since the latter, employing
the AB effect, can be viewed as a space-domain interfer-
ometry.

Similar to the magnetoresistance, the nonlinear optical
response provides a means to probe electron phase de-
coherence in disordered conductors. Inelastic scatterings
due to electron-electron and electron-phonon interactions
results in the phase decoherence. Consequently, the cur-
rent echo fades away exponentially when the pulse delay
time τ increases. In particular, the echo must disappear
when τ is much larger than the electron phase coherence
time τϕ as the interference is no longer viable. One may
then extract τϕ by carefully monitoring the echo decay.

The study of nonlinear optical response of disordered
electrons has a rich and dynamic history [20–22]. It is

therefore necessary to put our work in appropriate con-
text. The current echo in the nonlinear optical response
of an Anderson insulator, namely the strong localiza-
tion regime, was revealed in Ref. 23 by drawing anal-
ogy with an ensemble of molecules subject to inhomo-
geneous environment. The echo mechanism in this case
is quite different from the weak localization regime. It
is most easily understood in one dimension, where the
strong disorder effectively breaks the conductor up into
disconnected segments. Each segment can be viewed as
a molecule, whose energy spectrum is drawn from a dis-
tribution. The echo then arises from the dephasing and
rephasing processes triggered by the pulses akin to the
Hahn echo [24, 25]. Apparently, this mechanism requires
no time reversal symmetry since it does not rely on the
interference of time reversed electron trajectory pairs.
Much closer to the spirit of this work is Ref. 26, where

an echo spectroscopy for weak localization was first pro-
posed in the context of cold atoms in optical lattices.
It was shown that the breaking and restoration of the
time reversal symmetry by a time dependent perturba-
tion can lead to echo phenomenon. Yet, Ref. 26 focuses
on physical observables such as position correlation or
momentum distribution, which are natural in cold atoms
experiment [27] but challenging to access with solid state
experimental tools. A main message of the present work,
therefore, is that the echo from the electron weak localiza-
tion can be directly observed through ultrafast nonlinear
optical response.
The rest of the manuscript is organized as follows. In

Sec II, we describe the problem set up and the main re-
sults, and provides a quick, heuristic derivation of these
results. We give a more rigorous derivation of the re-
sults based on the nonlinear sigma model in Sec. III. In
Sec. IV, we test our analytical predictions by numerical
simulations. Finally, we discuss issues with experimental
feasibility and a few important open questions in Sec. V

II. MAIN RESULTS

In this section, we present the main results from our
analytical calculations. We first present a general ex-
pression for the electric current response to an arbitrary
electric field in Sec. II A. We then specialize to the case of
two consecutive optical pulses, and analyze the resulted
current echo in Sec. II B. Finally, in Sec. II C, we give a
heuristic derivation of the results.

A. Nonlinear current response

We set the stage by first describing the setup used in
this work (Fig. 1a). It is sufficient for our purpose to
consider a dirty metal film consisting of non-interacting
electrons. The interaction effects on weak localization
are absorbed into a phenomenological constant, the elec-
tron phase coherence time τϕ. We assume the following
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hierarchy of time scales, ℏ/EF ≪ τe ≪ τϕ, where EF is
the Fermi energy and τe the elastic scattering time. Note
the time scale of the terahertz pulse is less or compara-
ble with τϕ but much greater than τe. In this diffusive
metal regime, we may focus on the universal behavior of
the weak localization as described by the nonlinear sigma
model.

We set the metal film in the xOy plane. The film is
infinite in both the x and y directions and has zero thick-
ness in the z direction. The linearly polarized, terahertz
pulses propagate in z with their polarization ∥ x. The
electric field, measured on the film, is denoted by E(t).
This electric field generates an current, which is ∥ x and
uniform in the xOy plane. We denote the sheet current
density by j(t).
With this set up, the current density j(t) is given by:

j(t) = σDE(t)− η
G0

2π

∫ t

−∞

e
−f(t,t′)− t−t′

τϕ

t− t′
E(t′)dt′. (1)

Here, σD is the Drude conductance. The second term de-
scribes the weak localization correction. The parameter
η encodes the underlying symmetry class [6]:

η =

{
1 (orthogonal)
− 1

2 (symplectic)
. (2)

η reflects the weak localization and antilocalization in the
limit of zero and strong spin-orbit coupling, respectively.
G0 = 2e2/h is the conductance quantum.

The coherence factor f(t, t′) captures the suppression
of the weak localization by a dynamical electric field:

f(t, t′) =
De2

ℏ2

∫ t

t′
[A(s) +A(t+ t′ − s)− 2A]2ds, (3a)

where

A =
1

t− t′

∫ t

t′
A(s)ds. (3b)

Here, A is the vector potential in the Coulomb gauge,
namely E = −∂A/∂t. A is the “moving average” of the
vector potential over the time window (t′, t). It is easy to
check that f is gauge invariant in the sense that shifting
A(t) by an arbitrary constant does not change its value.
D is the electron diffusion constant of the metal.

Eq. (1) is applicable to arbitrary electric field E(t) so
long as its time scale is much larger than the elastic scat-
tering time τe. In the limit of E(t) → 0, f → 0. Eq. (1)
reduces to the familiar expression for the weak localiza-
tion conductivity in the time domain. Said differently,
the nonlinear response to a strong electric field is en-
coded in the coherence factor f . Furthermore, the effect
of a dynamical electric field is non-perturbative in the
sense that expanding j(t) in powers of E yields secular
terms. For instance, expanding exp(−f) to the first or-
der in f results in a third-order nonlinear conductivity
σ(3), whose magnitude grows with its time arguments,

FIG. 2. (a) Nonlinear current density jab as a function of the
pulse delay time τ and the gating time tg for the orthogonal
class (η = 1) and Dirac-δ pulses. (b)(c) The real and imag-
inary parts of the two-dimensional coherent spectrum, ob-
tained by Fourier transforming the time domain data shown
in (a). Only the first and fourth quadrants are shown as the
spectrum in the other half plane is related by complex conju-
gation. (d) tg scan of the time domain data for representative
values of τ . Dashed line traces the peaks of the current echo.
Note the data in (a-c) are in arbitrary units, whereas (d)
shows the original data without any rescaling.

invalidating the naive perturbative expansion in E. Cru-
cially, f depends on the temporal profile of A as well as
its time reversal with respect to (t + t′)/2. This struc-
ture is responsible for the echo phenomenon described in
Sec. II B.

B. Current echo

We apply Eq. (1) to the case of two consecutive optical
pulses. We illustrate the echo phenomenon by assuming
the optical pulses are sufficiently short so that they may
be modeled as Dirac-δ functions:

E(t) = Ea∆δ(t) + Eb∆δ(t− τ). (4)

Here, Ea,b and ∆ are respectively the peak electric field
strength and the pulse duration. The pulse A arrives at
the film at time 0 and the pulse B at time τ . The vector
potential is given by:

A(t) = −Ea∆Θ(t)− Eb∆Θ(t− τ). (5)

Substituting the above into Eq. (1), we find the nonlinear
current measured at the time τ + tg:

jab(τ + tg) = −ηG0

2π

∆

tg + τ
e
−f(τ+tg,0)−

τ+tg
τϕ Ea. (6)
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Here, jab is the nonlinear current that depends on both
Ea and Eb, i.e the cross effect of the two pulses. We
have dropped terms that depend on Ea or Eb alone. The
coherence factor is given by:

f(τ + tg, 0) =
2De2E2

b∆
2

ℏ2
|τ − tg|
τ + tg

min{tg, τ}. (7)

min{tg, τ} refers to the lesser of the two arguments.
Fig. 2c shows jab calculated from Eq. (6) for the or-

thogonal class (η = 1). Results for the symplectic class
(η = −1/2) can be obtained by multiplying the corre-
sponding results by a factor of −1/2. We use repre-
sentative material and pulse parameters: D = 1cm2/s,
τϕ = 10ps, Ea = Eb = 1kV/cm, and ∆ = 1ps. For fixed
pulse delay time τ , we observe a peak in the current
response at tg = τ . This peak is the current echo sig-
nal described in Sec. I. Mathematically, this peak stems
from the coherence factor: When |tg − τ | is large, f ≫ 1,
which, in turn, suppresses jab exponentially. However,
when τ = tg, f = 0, thereby exposing the contribution
due to weak localization.

The maximum of jab, located at tg = τ , is given by:

jab(2τ) = −ηG0

2π

∆

2τ
e−2τ/τϕEa. (8)

We see that the height of the peak traces the electron
decoherence. As the pulse delay τ increases, the peak
appears later and later; meanwhile, its magnitude de-
creases. The peak eventually vanishes when τ ≫ τϕ.
Thus, we may extract the coherence time τϕ by carefully
monitoring how the echo fades away with τ .

The width of the peakW can be tuned by the pulse pa-
rameters Eb and ∆, namelyW ∝ 1/(Eb∆)2. Specifically,
stronger pulse makes the peak sharper. Experimentally,
one may choose appropriate Eb such that the width of
the peak matches the time resolution of the instrument.

The echo signal can be measured by using the terahertz
two-dimensional coherent spectroscopy [16, 17]. The ex-
perimental set up is identical to the one considered in
this section. The spectroscopy detects the current echo
through the latter’s terahertz electromagnetic radiation.
Scanning both tg and τ produces a two-dimensional plot
for the nonlinear signal (Fig. 2a). The echo manifests
itself as the diagonal feature extending up to τϕ. The
two-dimensional spectrum is then obtained by Fourier
transforming the time domain data (Fig. 2b&c). The
echo appears as a highly anisotropic peak in the fourth
quadrant. The width of the peak in the anti-diagonal
direction is approximately proportional to 1/τϕ, whereas
the width of the peak in the diagonal direction is con-
trolled by 1/W .
Having illustrated the current echo phenomenon, we

now show that the phenomenon is robust with more real-
istic pulse profiles. To this end, we use single-cycle pulses:

E(t) = Eae
− t2

2∆2 cos(ω0t) + Ebe
− (t−τ)2

2∆2 cos[ω0(t − τ)].
Fig. 3 shows the nonlinear current jab obtained by nu-
merical integration of Eq. (1). We set the central fre-
quency ω0 = 1THz. Ea = Eb = 1kV/cm. ∆ = 1ps. The

FIG. 3. Nonlinear current density jab as a function of gating
time tg (solid lines) induced by single-cycle pulses (inset) for
representative values of pulse delay time τ

material parameters are identical to that of Fig. 2. The
current echo peak is clearly visible, but the overall mag-
nitude of the signal is weaker than that of the Dirac-δ
pulses. This is due to the fact that the single-cycle pulse
with the same value of Ea and ∆ has less area under the
pulse.

C. Heuristic derivation

We derive Eq. (1) heuristically by adapting the semi-
classical treatment of Ref. [2] to the problem at hand. We
consider the orthogonal class (η = 1) for simplicity. To
this end, we consider the probability density for the elec-
tron to start at time t′ from some position and return
to the same position at later time t, dubbed W (t, t′).
W (t, t′) may be expressed as a double path integral:

W (t, t′) =

∫
Dr′Dre

i
ℏ (S[r]−S[r′]), (9)

where r and r′ respectively correspond to the forward
and backward time evolution. r(t) = r(t′) = 0, and the
same holds for r′. S is the action:

S[r] =

∫ t

t′
[
mṙ2

2
− V (r) + eAα(s)ṙα(s)]ds, (10)

where V (r) represents the disorder potential. Aa(s) is
the time dependent, spatially uniform vector potential
due to the terahertz pulse. α = x, y labels the Cartesian
components.
Due to the disorder potential, the paths r and r′ are

phase incoherent except for two special cases. The first
case is r(s) = r′(s), i.e. the forward and backward paths
are identical. They are always in phase because S[r] =
S[r′]. Responsible for the weak localization is the second
case, r(s) = r′(t + t′ − s), i.e. the two trajectories are
time reversal partners. We have:

i(S[r]− S[r′]) = ie

∫ t

t′
Aα(s)[ṙα(s)− ṙ′α(s)]ds

= ie

∫ t

t′
[Aα(s) +Aα(t+ t′ − s)]ṙα(s)ds. (11)
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Therefore, they are almost in phase barring the dynami-
cal vector potential. We may express its contribution to
W as:

W̃ (t, t′) = ⟨ei e
ℏ
∫ t
t′ [A

α(s)+Aα(t+t′−s)]ṙα(s)ds⟩, (12)

where the average is over closed paths r. W̃ is a measure
of weak localization correction to electron transport [2].

As the electron essentially undergoes random walk due
to disorder potential scattering, we may well approximate
r as Brownian motion. We discretize the time evolution
into slices. Over a time slice dt, the electron displacement
is given by drα, where drα is a Gaussian random vector
with variance ⟨drαdrβ⟩ = 2Ddtδαβ , D being the electron
diffusion constant. We thus have:

W̃ (t, t′) = ⟨δ(
∑
s

drs)e
i e
ℏ
∑

s(A
α(s)+Aα(t+t′−s))drαs ⟩. (13)

The average is now over dras . The Dirac-δ function en-
forces the constraint that r starts from and returns to
the same location. It can be replaced by an integration
over the Lagrange multiplier qα:

W̃ (t, t′) = ⟨
∫

d2q

(2π)2
ei

∑
s[q

α+ e
ℏ (Aα(s)+Aα(t+t′−s))]drαs ⟩

=

∫
d2q

(2π)2
e−D

∫ t
t′ [q

α+ e
ℏ (Aα(s)+Aα(t+t′−s))]2ds. (14)

In the second line, we average over drαs and then take the
continuous limit dt→ 0. Integrating over qα, we obtain:

W̃ (t, t′) =
e−f(t,t′)

4πD(t− t′)
, (15)

where f is the coherence factor Eq. (3). Up to a con-

stant prefactor, W̃ is essentially the same as the weak
localization part of Eq. (1). The phase coherent time τϕ
in Eq. (1) is added by hand.

This heuristic derivation shows that the coherence fac-
tor captures the suppression of the phase coherence be-
tween a pair of time reversed electron trajectories by a
time dependent electric field. Specializing to case consid-
ered in Sec. II B, we may compare the dynamical phases
picked up by r(s) and its time reversal partner r(τ+tg−s)
(Fig. 1b) [26]. For the former path, the dynamical phase
due to the pulse B is given by e

∫
Aα(s)ṙα(s)ds/ℏ ∼

eℏ
∫
rα(s)Eα(s)ds/ℏ = ex(τ)Eb/ℏ. For the latter path,

the phase is ex(tg)Eb/ℏ. Therefore, the two paths ac-
cumulate different phases when tg ̸= τ . However, when
tg = τ , the two paths acquires the same dynamical phase.
The loss and reinstatement of phase coherence leads to
the suppression and resurgence of the weak localization,
which, in turn, produces the current echo.

III. FIELD THEORY

In this section, we justify Eq. (1) by field theory [28].
Although it can be anticipated from the classic analysis

of Ref. [29], the present treatment provides a systematic
derivation from the perspective of effective action. We
illustrate the procedure for the orthogonal class. Since
the calculations for the symplectic class are largely in
parallel, we refer the interested reader to Appendix A for
a brief discussion on this class.
In the orthogonal class, it is sufficient to consider spin-

less electrons because spin up and down states are de-
coupled. The starting point is the nonlinear sigma model
defined by the action (we use ℏ = e = 1 in this section):

iS[Q] =
πNF

2
Tr(∂̌tQ̌− D

4
∇α

AQ̌∇α
AQ̌), (16)

NF is the density of states per spin at the Fermi level.
Tr denotes the trace over all the matrix indices as well
as integration over space.
Q̌(r) is the 4Nt × 4Nt matrix field in the time-reversal

⊗ Keldysh space, where Nt is the number of time slices.
Q̌ is subject to the following constraints:

Q̌2 = Ǐ; Q̌† = Q̌; Y̌ Q̌Y̌ = −Q̌T ; Y̌ ≡
(

0 Î

−Î 0

)
. (17)

We use the convention that M̌ stands for a 4Nt × 4Nt

matrix in the time-reversal ⊗ Keldysh space, whereas M̂
stands for a 2Nt ⊗ 2Nt matrices in the Keldysh space.
Furthermore, M̌ts refers to the 4 × 4 block of M̌ with
designated time arguments t and s, whereas M̂ts refers
to the 2× 2 block of M̂ .
∂̌t is the time derivative matrix written in the time-

reversal space: ∂̌t ≡ diag(∂t, ∂t,−∂t,−∂t). ∇α
AQ̌ is the

gauge covariant derivative, ∇α
AQ̌ ≡ ∇aQ̌ − i[Ǎα, Q̌]−,

where [·, ·]− stands for the matrix commutator. Ǎα ≡
diag(Aα, Aα,−Aα,−Aα). We use the Coulomb gauge,
∇αAα = 0.
We seek the effective action Γ[Q̌0], where Q̌0 stands for

the expectation value of Q̌. This strategy is motivated
by the observation that the charge density is related to
Q̌0 through the following relation:

ρ(r, t) =
πNFNs

4
tr[γ̌qQ̌0,tt(r)]. (18)

Here, Ns = 2 is the number of spin species. γ̌q is the 4×4
charge density vertex: γ̌q = diag(τ̂1, τ̂1), where τ̂1 is the
first Pauli matrix. As a result, the stationary point of
the effective action, δΓ[Q̌0]/δQ̌0 = 0, encodes the charge
transport equation. In what follows, we illustrate the
procedure step by step.

A. Parametrizing the stationary point

We write the stationary point as:

Q̌0(r) = Ř(r)Λ̌Ř(r)−1. (19a)

Λ̌ ≡ diag(I,−I, I,−I) is a constant matrix. Ř(r) is a
block diagonal matrix parametrizes the stationary point:

Ř(r) = diag[R̂(r), R̂(r)T,−1], (19b)
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where the block R̂, in turn, is given by:

R̂(r) =

(
I 0

Z(r) I

)(
I F (r)
0 −I

)
. (19c)

F (r) and Z(r) are Nt × Nt matrix fields parametrizing
the stationary point. F plays the role of distribution
function, whereas Z describes the deviation of Q̌0 from
the causal form. When Z = 0, Q̌0 is causal.

We bring in the fluctuations by writing:

Q̌(r) = Ř(r) exp(
i

2
Ǧ(r))Λ̌ exp(− i

2
Ǧ(r))Ř(r). (20)

Ǧ generates soft fluctuations about the stationary point.
The constrains on Q̌, as well as the requirement that Ǧ
must induces non-trivial rotations on Λ̌, fixes Ǧ to the
following form:

Ǧ(r) =


0 d(r) 0 c(r)

d(r)† 0 c(r)T 0
0 c(r)∗ 0 −d(r)∗

c(r)† 0 −d(r)T 0

 , (21)

where c(r) and d(r) are Nt×Nt matrix fields correspond-
ing to the diffuson and Cooperon, respectively.

B. Finding the stationary point

We substitute Eq. (20) and Eq. (21) into the action,
and expand it to quadratic order in c and d:

iS[Q̌] = iS0[F,Z] + iS1[F,Z, c, d] + iS2[F,Z, c, d]. (22)

iS0[F,Z] is the value of the action at the stationary point.
S1 and S2 are, respectively, linear and quadratic in c, d.
At one loop, the effective action is given by [30]:

iΓ[F,Z] = iS0[F,Z] + log

∫
DcDdeiS2[F,Z,c,d]. (23)

The first term is the tree level contribution; the second
term is the one loop correction.

In principle, we may find the stationary point by first
computing iΓ[F,Z] and then taking derivatives with re-
spect to F,Z. Here, we take a short cut. Setting Z = 0,
the stationary point is causal, and consequently all closed
loops vanish. This fact implies iΓ[F, 0] = 0 for any F .
We deduce that the stationary point is located at (F, 0),
with F being determined by:

i
δΓ

δZ

∣∣∣∣
Z=0

= 0. (24)

Substituting Eq. (23) into the above equation, we obtain:

i
δS0

δZ

∣∣∣∣
Z=0

+

〈
i
δS2

δZ

∣∣∣∣
Z=0

〉
c,d

= 0. (25)

The average is performed with respect to the fluctuations
in c and d, which are governed by the action S2[F,Z =
0, c, d].
We now need the explicit expression for iS0 and iS2 to

progress further. After some algebra, we find:

iS0 = 2πNFTr([∂t, Z]−F −D(∇α
AF )(∇α

AZ)). (26a)

iS2 = −πNF

2
Tr(c†[∂t, c]+ +Dc†(−∇′

A)
2c

−2D(∇α
AZ)c(∇α

AF )
T c∗) + · · · . (26b)

We have dropped from S2 terms that do not contribute to
the kinetic equation. [·, ·]+ denotes the anti-commutator.
∇′α

A ≡ ∇α − i[A, ·]+ is the covariant derivative for the
Cooperon field.
Substituting the above expressions into the stationary

point condition Eq. (25), we obtain the kinetic equation,

[∂t, F (r)]− +∇α
AJ

α
F (r) = 0. (27a)

Jα
F can be interpreted as a current associated to the dis-

tribution function:

(Jα
F (r))t1t′1 = −D(∇α

AF (r))t1t′1 +
D

πNF

∫
dt2dt

′
2

(∇α
AF (r))t2t′2Ct1t′2,t2t′1(r, r). (27b)

The first term comes from the classical action iS0; the
second arises from the correction due to the fluctua-
tions in the Cooperon field, namely i⟨δS2/δZ⟩c,d. The
Cooperon propagator

Ct1t′1,t2t′2(r1, r2) ≡
πNF

2
⟨ct1t′1(r1)c

∗
t2t′2

(r2)⟩ (28)

It obeys the Cooperon equation [29]:

(∂t1 − ∂t′1 +D(−i∇α −Aα(r1, t1)−Aα(r1, t
′
1))

2

+
1

τϕ
)Ct1t′1,t2t′2(r1, r2) = δt1t2δs1s2δr1r2 . (29)

Eq. (29) can be read off from the kernel of the quadratic
action iS2. Here, we have added a mass term 1/τϕ by
hand to account for electron decoherence effects.

C. Charge transport equation

The next step is to extract a charge transport equation
from the kinetic equation Eq. (27). It is convenient to
perform a change of time variables to the central time
T = (t1 + t′1)/2 and the time difference s = t1 − t′1 [29].
The Cooperon propagator is diagonal in T :

CTT ′

ss′ ≡ CT+ s
2 ,T− s

2 ;T
′+ s′

2 ,T ′− s′
2
= CT

ss′δ
TT ′

. (30)

The superscripts (subscripts) correspond to the central
times (time differences). The Cooperon equation now
acquires a simplified form:

(2∂s +D(−i∇α −Aα,T
s (r))2 +

1

τϕ
)CT

ss′ = δss′δrr′ . (31)
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The short hand notation Aα,T
s (r) = Aα(r, T + s/2) +

Aα(r, T − s/2). Meanwhile, the kinetic equation reads:

∂TF
T
s + (∇α

AJ
α
F (r))

T
s = 0, (32a)

(Jα
F (r))

T
s = −D(∇α

AF )
T
s +

2D

πNF

∫
dT ′

(∇α
AF (r))

T ′

s C
T+T ′

2

T−T ′+s,T ′−T+s(r, r). (32b)

To make contact with the charge density, we substitute
Eq. (19) (with Z = 0) into Eq. (18):

ρ(r, T ) = πNFNsF
T
s=0(r). (33)

Therefore, the charge density is given by the s = 0 com-
ponent of the distribution function FT

s . We observe that
s appears as a parameter in the kinetic equation. Setting
s = 0, and massaging the equations a little, we obtain the
charge conservation law,

∂tρ+∇αjα = 0. (34a)

The electric current ja obeys a generalized Fick’s law:

jα(r, t) = −
∫
Dtt′(r)(∇αρ−NFNsE

α)(r, t′)dt′. (34b)

The nonlocal diffusion constant is given by:

Dtt′(r) = Dδtt′ −
2D

πNF
C

t+t′
2

t−t′,t′−t(r, r). (34c)

Eq. (34) is the key results of this section.
Finally, we apply Eq. (34) to the case considered in

Sec. II. ∇αρ = 0 because the electric field E is spatially
uniform. The electric current reads:

j(t) = σDE(t)− 2NsD

π

∫
C

t+t′
2

t−t′,t′−t(r, r)E(t′)dt′. (35)

σD = NFNsD is the Drude conductance. Solving the
Cooperon equation by a spatial Fourier transform, we
find the equal-position Cooperon propagator:

C
t+t′

2

t−t′,t′−t(r, r) = θ(t− t′)
e−(t−t′)/τϕ

8πD(t− t′)
e−f(t,t′), (36)

where f(t, t′) is the coherence factor Eq. (3). Substituting
the above into the expression for the current, we obtain
Eq. (1) for the orthogonal class after restoring ℏ and e.

IV. NUMERICAL TESTS

In this section, we test the analytic predictions from
Sec. II by a direct numerical simulation. We describe our
numerical methodology in Sec. IVA. The numerical re-
sults are presented in Sec. IVB. Throughout this section,
we use the natural units ℏ = e = 1.

A. Model and method

We model the disordered electrons by a tight binding
model on L×L square lattice subject to periodic bound-
ary conditions:

H = −
∑

⟨mn⟩σ

R(m,n)σσ′c†mσcnσ′ +
∑
nσ

hnc
†
nσcnσ. (37)

cnσ (c†nσ) annihilates (creates) an electron with spin σ on
site i. ⟨mn⟩ labels the oriented nearest neighbor bonds
on the square lattice. We rescale the unit of energy such
that the hopping amplitude is 1. hn describes the onsite
disorder potential; it is drawn uniformly from [−V, V ].
R(m,n) ≡ R(n,m)† is a 2 × 2 matrix in the spin

space [31]. Its form depends on the symmetry class:

R(m,n) = eiAmn(t) ×
{

I (orthogonal)
g ∈ SU(2) (symplectic)

. (38)

g is a random SU(2) matrix drawn uniformly from the
Haar measure. Amn(t) = Aα(t)(rαm − rαn) is the time de-
pendent vector potential on the bond mn, through which
the electromagnetic field pulse acts on the electrons.

The quantity of interest is the the electric current den-
sity generated by the time dependent electric field:

jα(t) =

∫
dϵnf (ϵ)tr(U(t)†Jα(t)U(t)δ(ϵ−H0)). (39)

nf (ϵ) is the Fermi-Dirac distribution function. Jα(t) and
U(t) are respectively the current density operator and the
time evolution operator in the one-electron state space.
H0 is the initial Hamiltonian before the impact of the
electric field.

We employ the kernel polynomial method to evalu-
ate Eq. (39) [32]. To this end, we rescale the Hamilto-
nian such that its entire spectrum falls inside the interval
[−1, 1]. Expanding the Dirac-δ function in Eq. (39) by
Chebyshev polynomials, we obtain:

jα(t) =

M∑
n=0

cngnµn(t)

∫
dϵ

nf (ϵ)

π
√
1− ϵ2

Tn(ϵ). (40)

Here, M is the maximal expansion order. cn = 1/(1 +
δn,0). gn is a coefficient due to the Jackson kernel. Tn(ϵ)
is the n-th Chebyshev polynomial of the first kind. µn is
the n-th Chebyshev moments:

µn(t) = Tr(U(t)†Jα(t)U(t)Tn(H0))

=
1

R

∑
r

⟨r|U(t)†Jα(t)U(t)Tn(H0)|r⟩. (41)

In the second line, we have replaced the trace by an av-
erage over random vectors |r⟩, whose components are
drawn independently from complex Gaussian distribu-
tion with variance 1. R is the number of random vec-
tors used. The state |r′⟩ = Tn(H)|r⟩ can be computed
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FIG. 4. (a) Numerically computed current density jx(t) as
a function of the pulse delay time τ and the gating time
tg in the orthogonal class. The stronger linear response at
short times is color saturated in order to reveal the current
echo. (b)(c) The real and imaginary parts of two-dimensional
Fourier transform of the data in (a). (d) tg scan of the data
in (a). The solid and dashed lines show respectively the nu-
merical data and the analytical results Eq. (6). The shaded
area denotes the error bar.

efficiently using the recursion relation. Meanwhile, we
compute the unitary evolution of the state U(t)|r⟩ and
U(t)|r′⟩ by using another Chebyshev expansion:

e−iH(t)ϵ |ψ⟩ =
M ′∑
n=0

(−i)ncnJn(ϵ)Tn(H(t))|ψ⟩. (42)

|ψ⟩ is a state vector. cn is the same as in Eq. (40). Jn(t)
is the Bessel function of the first kind. ϵ is a small time
interval. The above expansion converges rapidly when ϵ
is small. The action of Tn(H(t)) on |ψ⟩, again, can be
computed efficiently by using the recursion relation.

In practice, we use Dirac-δ pulses with EA∆ = EB∆ =
1 for simplicity. The electric field is polarized along the
x direction. The strength of the onsite disorder potential
V = 2 in the orthogonal class, whereas V = 1 in the sym-
plectic class. The system size L = 1000. As the Hilbert
space dimension is 2×106, R = 1 is sufficient for comput-
ing the trace. We use M = 50 moments for computing
the current density and M ′ = 10 for time evolution with
ϵ = 1. We average over 500 disorder samples to obtain
good statistics for jx(t).

B. Numerical results

Fig. 4 shows the numerically computed electric current
generated by two consecutive Dirac-δ pulses. We set the

FIG. 5. Similar to Fig. 4 but for the symplectic class.

temperature to 0 and the chemical potential EF to the
representative value −0.6. As the echo signal is indepen-
dent of the polarization of the B pulse, we symmetrize
our data with respect to Eb and −Eb to remove unde-
sired nonlinear responses. The current echo is clearly
seen as the diagonal feature in the two-dimensional plot
of the current as a function of the pulse delay time τ and
the gating time tg (Fig. 4a), in qualitative agreement
with the analytical results shown in Fig. 2. The two-
dimensional spectrum also resembles its analytic coun-
terpart (Fig. 4b&c).

Fig. 4d shows a quantitative comparison between the
numerical data (solid lines) and the analytic predictions
(dashed lines). To this end, we fit Eq. (6) to the numer-
ical data by adjusting the electron diffusion constant D,
which is the only free parameter. We find D ≈ 1.04 re-
sults in a good fit. We note Eq. (6) predicts a cusp in
the current echo peak, which is rounded off in the nu-
merical data. This difference is likely due to the details
of electronic structure that is not captured by the field
theory.

We find the same good agreement between the numer-
ical data and the analytic predictions in the symplectic
class (Fig. 5). Here, we set temperature to 0 and the
chemical potential EF = −0.57. Compared with the or-
thogonal class, the echo in the symplectic class reduces
by half in its magnitude and changes the sign. A fit of
the analytic result Eq. (6) to the numerical data indicates
that the diffusion constant D ≈ 1.37.

We further corroborate our analytic results by inves-
tigating the behavior of the echo in the presence of an
external magnetic field perpendicular to the film. We ex-
pect the magnetic field suppresses the echo as it breaks
the time reversal symmetry. In the presence of the mag-
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FIG. 6. The current echo in the presence of a perpendicu-
lar magnetic field. (a) The orthogonal class. The solid line
represents the numerical data for three representative mag-
netic field strengths, measured in units of flux per plaquette
Φ. The dashed line denotes the analytic result from Eq. (43).
The shaded area marks the error bar. (b) Similar to (a) but
for the symplectic model.

netic field B, the nonlinear current reads:

jab(B, τ + tg) = ϕ(2BD(τ + tg)) jab(0, τ + tg), (43)

where ϕ(x) ≡ x/ sinh(x). jab(0, τ + tg) is the nonlin-
ear current in the absence of the magnetic field given by
Eq. (6). Note Eq. (43) omits the magnetic field’s Zee-
man coupling to the electron spin as its impact on the
weak localization is negligible compared with the orbital
effect. We derive Eq. (43) by solving the Cooperon equa-
tion in the presence of magnetic field, and plugging the
resulted Cooperon propagator in Eq. (34). The details of
the calculation is provided in Appendix B.

Eq. (43) indicates that the magnetic field results in
the suppression of the nonlinear current response. The
mechanism is the same as that of the magnetoresistance,
namely the time reverse electron trajectory pairs pick up
opposite AB phases. Fig. 6 shows the current echo as a
function of the magnetic field, measured in units of the
magnetic flux per plaquette, for fixed pulse delay time
τ . The model parameters are the same as in those for
Fig. 4 (orthogonal class) and Fig. 5 (symplectic class).
We see that the echo diminishes as the magnetic field
increases for both symmetry classes. Furthermore, we
find good agreement between the numerical data (solid
lines) and analytic results (dashed lines) with the same
fitting parameter, namely D = 1.04 for the orthogonal
class and D = 1.37 for the symplectic class.

V. DISCUSSION

In summary, we have analyzed the nonlinear optical
response of a disordered metal in the weak localization
regime. Our main finding is that two consecutive opti-
cal pulses, preferably in the terahertz range, can trigger
a current echo response. This echo reflects the quan-
tum interference between a pair of time reversed electron
trajectories, the same process that produces the weak lo-
calization. In particular, one may measure the electron
coherence time by carefully monitoring the gradual decay
of the echo signal as a function of the pulse delay.
This current echo can be detected by terahertz two-

dimensional coherent spectroscopy [16, 17] or ultrafast
transport measurement [18, 19], thereby offering an ex-
perimental diagnostic for electron weak localization com-
plementary to the magnetoresistance measurement. For
a single layer of disordered metal, the current echo sig-
nal is on the order of j ∼ 1mA/cm with an excita-
tion pulse Ea = 1kV/cm (Fig. 2). The electric field
strength of the terahertz radiation is on the order of
E = Z0j/2 ∼ 0.2V/cm, which is weak but should be
within the reach of available terahertz technology. We
expect that stacking multiple layers would enhance the
signal strength.
On the theory front, our work leaves a couple of inter-

esting open questions. In deriving our results, we have
made the simplifying assumption that the electrons are
non-interacting. It is well known that the Coulomb inter-
action can lead to an anomalous correction to the linear
conductivity; this correction has a functional dependence
on external magnetic field and frequency similar to the
weak localization [8]. These two contributions must be
carefully unravelled in the magnetoresistance measure-
ment. Although we expect that the echo is robust against
the Coulomb interaction, the latter might have a non-
trivial impact on the nonlinear optical response. The ap-
proach presented in Sec. III will prove useful in treating
this problem.
Another interesting open problem is the fate of the cur-

rent echo as the system crossovers from the weak local-
ization to the strong localization. As discussed in Sec. I,
an echo also exists in the strong localization regime, al-
beit due to a very different mechanism. It is likely that,
as the system enters the strong localization regime, the
mechanism discussed in this work gradually subsides as
the second mechanism sets in. Exactly in which manner
this unfolds is unclear at the moment.
In a broader context, our work attests to the profound

connection between the nonlinear response and quantum
interference, which we believe produces rich physics that
calls for further exploration.
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Appendix A: Symplectic class

The derivation of the charge transport equation in the symplectic symmetry class is in the same vein as the
orthogonal class. We therefore focus on the differences between the two classes. In the symplectic case, the spin up
and spin down electrons are mixed by the spin orbit coupling. The action of the corresponding nonlinear sigma model
reads:

iS[Q] = πNFTr(∂̌tQ̌− D

4
∇α

AQ̌∇α
AQ̌). (A1)

Compared with the action for the orthogonal class, there is an extra factor of 2 in front of the action, which reflects the
fact that the spin up and down electrons both enter the action. The matrix field Q̌ is subject to a set of constraints:

Q̌2 = Ǐ; Q̌† = Q̌; X̌Q̌X̌ = Q̌∗; X̌ ≡
(
0 Î

Î 0

)
. (A2)

We see that the third constraint is different from the orthogonal class.
Same as the orthogonal class, we parametrize the stationary point and the fluctuations about it as:

Q̌(r) = Ř(r) exp(i
Ǧ(r)

2
)Λ̌ exp(−i Ǧ(r))

2
)Ř−1(r). (A3)

Here, the definition of Ř and Λ̌ are the same as the orthogonal class. In particular, Ř parametrizes the stationary point
through the matrix fields F and Z. However, the matrix field Ǧ, which describes fluctuations about the stationary
point, acquires a different from due to the different constraint mentioned above:

Ǧ(r) =


0 d(r) 0 c(r)

d†(r) 0 −cT (r) 0
0 −c∗(r) 0 −d∗(r)

c†(r) 0 −dT (r) 0

 . (A4)

Exponentiating Ǧ produces the symmetric space O(4Nt)/[O(2Nt) ⊗ O(2Nt)]. By contrast, exponentiating the Ǧ in
the orthogonal class yields the symmetric space Sp(2Nt)/[Sp(Nt)⊗ Sp(Nt)].

Expanding the action up to quadratic order in c, d, we obtain:

iS0 = 4πNFTr[[∂t, Z]F −D(∇α
AF )(∇α

AZ)], (A5a)

and

iS2 = −πNFTr[c
†[∂t, c]+ +Dc†(−∇′

A)
2c+ 2D(∇α

AZ)c(∇α
AF )

T c∗] + · · · . (A5b)

We suppress terms in S2 that do not contribute to the kinetic equation. Both expressions gain an extra factor of
2 compared to the corresponding expressions in the orthogonal class. More importantly, the sign in front of the
∇α

AZ(∇α
AF )

T term has a plus sign instead of the minus sign. This sign difference is responsible for the weak anti-
localization effect in the symplectic class.

The kinetic equation and the charge transport equation can now be derived in the same vein. We find a slightly
different Diffusion constant:

Dtt′(r) = Dδtt′ +
D

πNF
C

t+t′
2

t−t′,t′−t(r, r). (A6)

Here, the propagator C obeys the same Cooperon equation. We see that the Cooperon correction to the diffusion
constant has an extra factor of η = −1/2 compared to the orthogonal class, which results in the η = −1/2 factor in
the expression for the nonlinear current.
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Appendix B: Nonlinear current response in a perpendicular magnetic field

In this section, we compute the nonlinear current response in the presence of a static magnetic field perpendicular
to the film. In the main text, we have shown that the sheet current density induced by a dynamical electric field
reads:

j(t) = σDE(t)− 4ηG0D

∫
C

t+t′
2

t−t′,t′−t(r, r)E(t′)dt′. (B1)

Here, σD is the Drude conductance. G0 = 2e2/ℏ is the conductance quantum. η = 1 (−1/2) in the orthogonal
(symplectic) class. Crucially, the weak localization is encoded in the Cooperon propagator C, which is governed by
the Cooperon equation:

[2∂s +D(−i∇α − eAα,T
s (r))2 +

1

τϕ
]CT

ss′(r, r
′) = δss′δ

2(r − r′). (B2)

Here, we have used the short hand notation:

Aα,T
s (r) = Aα(r, T +

s

2
) +Aα(r, T − s

2
). (B3)

Aα is the vector potential in the Coulomb gauge, ∇αAα = 0.
For the specific case considered here, we write the vector potential as:

Aα(r, t) = Aα
1 (t) +Aα

2 (r). (B4)

Aα
1 describes a spatially uniform, linearly polarized electromagnetic field pulse:

Eα(t) = −∂A
α
1

∂t
. (B5)

Aα
2 describes the static magnetic field perpendicular to the film:

Ax
2(x) = −B

2
y; Ay

2(x) =
B

2
x. (B6)

We now need to solve the Cooperon equation for the specific choice of A considered above. The Cooperon equation
has the form of the imaginary time Schrödinger equation with the Hamiltonian:

Ĥ(s) = D(−i∇a − eAα,T
1,s − eAα

2 (r))
2 +

1

τϕ
. (B7)

Note T is merely a parameter. As the Hamiltonian at different times s commute, the Cooperon propagator admits
the following formal solution:

CT
ss′(r, r

′) =
1

2
Θ(s− s′)e

− s−s′
2τϕ ⟨r|e−

D
2

∫ s
s′ (−i∇α−eAα

2 (r)−eAα,T
1,u )2du|r′⟩. (B8)

We simplify the imaginary time evolution operator by expanding the bracket in the Hamiltonian:∫ s

s′
(−i∇α − eAa

2(r)− eAα,T
1,u )2du =

∫ s

s′
(−i∇α − eAα

2 (r)− eAα,T
1,u + eA

α

1 − eA
α

1 )
2du

= (−i∇α − eAα
2 (r)− eA

α

1 )
2(s− s′) + e2

∫ s

s′
(Aα,T

1,u −A
α

1 )
2du. (B9)

Here, A
α

1 is the temporal average of Aα
1 :

A
α

1 =
1

s− s′

∫ s

s′
Aα,T

1,u du. (B10)

Substituting the above back to Eq. (B8), we obtain:

CT
ss′(r, r

′) =
1

2
Θ(s− s′)e−

e2D
2

∫ s
s′ (A

α,T
1,u −A

α
1 )2due

− s−s′
2τϕ ⟨r|e−D

2 (−i∇α−eAα
2 (r)−eA

α
1 )2(s−s′)|r′⟩

=
1

2
Θ(s− s′)e−

e2D
2

∫ s
s′ (A

α,T
1,u −A

α
1 )2due

− s−s′
2τϕ eieA1·(r−r′)⟨r|e−D

2 (−i∇α−eAα
2 (r))2(s−s′)|r′⟩. (B11)
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In the second line, we have performed a gauge transformation to remove the constant vector potential A
a

1 in the
Hamiltonian.

To proceed further, we insert the resolution of identity:

CT
ss′(r, r

′) =
1

2
Θ(s− s′)e−

e2D
2

∫ s
s′ (A

α,T
1,u −A

α
1 )2due

− s−s′
2τϕ eieA1·(r−r′)

∑
λ

ψλ(r)ψ
∗
λ(r

′)e−Dλ(s−s′). (B12)

Here, ψλ is the solution for the Landau level problem:

1

2
(−i∇α − eAα

1 (r))
2ψλ(x) = λψλ(r). (B13)

Compared with the standard Landau level problem, the electron mass is 1, and the magnetic field strength is 2B.
Therefore, the eigenvalues are given by:

λn,m = (n+
1

2
)2B. (B14)

The eigenstates are given by:

ψn,m(z) =
1

2πl2B

1√
n!(n+m)!

(lB
∂

∂z
− z∗

4lB
)n(

z

lB
)n+me

− |z|2

4l2
B . (B15)

The magnetic length lB = 1/
√
2B. z = x+ iy.

We thus have obtained the general expression for the Cooperon propagator. Now, what enters the expression for
the electric current is the equal-space propagator. Owing to the translation invariance of the problem, we may set
r = r′ to the spatial orgin. We note that ψn,m(0) = 0 when m > 0. Therefore, the summation is restricted to the
subset with m = 0:

CT
ss′(r, r) =

1

2
Θ(s− s′)e−

e2D
2

∫ s
s′ (A

α,T
1,u −A

α
1 )2due

− s−s′
2τϕ

∑
n

ψn,0(0)ψ
∗
n,0(0)e

−2DB(n+ 1
2 )(s−s′). (B16)

We now need to evaluate ψn,0(0):

ψn,0(0) =
1

n!

1

2πl2B
(
∂

∂z
)n(z)ne

− |z|2

4l2
B

∣∣∣∣∣
z=0

=
1

n!

1

2πl2B
[(
∂

∂z
)n(z)n] e

− |z|2

4l2
B

∣∣∣∣∣
z=0

=
n!

n!

1

2πl2B
=
B

π
. (B17)

Substituting the above result back, we obtain:

CT
ss′(r, r) =

1

2
Θ(s− s′)e−

e2D
2

∫ s
s′ (A

α,T
1,u −A

α
1 )2due

− s−s′
2τϕ

B

π

∑
n

e−2DB(n+ 1
2 )(s−s′)

= Θ(s− s′)e−
e2D
2

∫ s
s′ (A

α,T
1,u −A

α
1 )2due

− s−s′
2τϕ

B

4π sinh(DB(s− s′))
. (B18)

Setting T = (t+ t′)/2, s = t− t′, s′ = t′ − t, the above expression becomes:

C
t+t′

2

t−t′,t′−t(x, x) = Θ(t− t′)e−f(t,t′)e
− t−t′

τϕ
B

4π sinh(2DB(t− t′))
. (B19)

f(t, t′) is the coherent factor defined in the main text:

f(t, t′) =
e2D

2

∫ t−t′

t′−t

(Aα
1 (
t+ t′ + u

2
) +Aα

1 (
t+ t′ − u

2
)−A

α

1 )du

= e2D

∫ t

t′
(Aα

1 (u) +Aα
1 (t+ t′ − u)− 2

t− t′

∫ t

t′
Aα(u′)du′). (B20)

Plugging the above result into the expression for the current, we find:

j(t) = σDE(t)− η
G0

2π

∫ t

−∞
ϕ(2DB(t− t′))

e
−f(t,t′)− t−t′

τϕ

t− t′
E(t′)dt′. (B21)
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where the function ϕ(x) encodes the impact of the magnetic field:

ϕ(x) =
x

sinh(x)
(B22)

Specializing to the case of two Dirac-δ pulses, we arrive at:

jab(B, τ + tg) = ϕ(2DB(τ + tg))jab(0, τ + tg), (B23)

which is the result given in the main text.
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