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Abstract

In this article we introduce a new class of weighted sequence spaces of

Sobolev type and prove several compact embedding theorems for them.

In all cases our proofs are based on the existence of a Schauder basis that

spans all of the spaces under consideration. Our choice of spaces is primar-

ily motivated by earlier work on infinite-dimensional dynamical systems

of hyperbolic type arising in non-equilibrium statistical mechanics. We

also prove a theorem of Pitt’s type asserting that under some conditions

every linear bounded transformation from one weighted sequence space of

the class into another is compact.
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1 Outline and main results

The essential role played by compact embeddings of Sobolev spaces of various
kinds in the analysis of initial- and boundary-value problems for ordinary and
partial differential equations is well known (see, e.g., [1] or [7] and the numerous
references therein). Of equal importance are certain Hilbert spaces of sequences
and their relation to Sobolev spaces of periodic functions as in [3]. In this
article we introduce a new scale of weighted sequence spaces of Sobolev type
and prove compact embedding results for them. In all cases our arguments are
based on the existence of a Schauder basis in the spaces under consideration,
while the choice of the scale is primarily motivated by earlier investigations
of some initial-value problems for master equations arising in non-equilibrium
statistical mechanics (see [4], [5] and [12]). We also prove a Pitt’s type theorem
asserting that under some restrictions, every linear bounded operator between
two spaces of the scale is necessarily compact. We refer the reader to [11] for
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the original statement involving a linear bounded operator acting between two
spaces of summable sequences, to [6] and [8] for much shorter proofs thereof
and to Theorem 2.1.4 in [2] or Proposition 2.c.3 in [10] for yet more condensed
arguments.

Thus, with s ∈ [1,+∞), k ∈ R and w = (wm)m∈Z a sequence of weights

satisfying wm > 0 for every m, let us consider the separable Banach space h
k,s
C,w

of Sobolev type consisting of all complex sequences p = (pm) endowed with the
usual algebraic operations and the norm

‖p‖k,s,w :=

(

∑

m∈Z

wm (1 + |m|s)
k
|pm|

s

)
1

s

< +∞. (1)

If k = 0 we simply write ls
C,w := h

0,s
C,w and

‖p‖s,w :=

(

∑

m∈Z

wm |pm|
s

)
1

s

(2)

for the corresponding norm. We may refer to s as the degree of summability
of p and to k as its generalized order of differentiability, a terminology justified
by the analogy with the usual Sobolev space theory and its relation to Fourier
analysis on Rd (see, e.g., Chapter VI in [13]). Unless s = 1, the spaces hk,s

C,w are
reflexive and it is also easily determined by means of the parallelogram law that
h
k,s
C,w is a Hilbert space if and only if s = 2, in which case (1) is related to the

sesquilinear form

(p, q)k,2,w :=
∑

m∈Z

wm

(

1 +m
2
)k

pmq̄m

in the usual way. We then write hk
C,w := h

k,2
C,w, noting also that the role of

the sequence of weights (wm) generally speaking amounts to making certain
initial-value problems self-adjoint, as was the case in the last two aforementioned
references on statistical mechanics.

As already mentioned, our proofs of various compactness criteria for the
space h

k,s
C,w rest in an essential way on the existence of a very concrete and

simple Schauder basis therein (for the definition and various properties of such
bases see, e.g., [2] and [10]). Thus, for any m ∈ Z we define em by (em)n = δm,n

for every n ∈ Z so that em ∈ h
k,s
C,w for each m with

‖em‖
k,s,w

= w
1

s
m (1 + |m|

s
)

k
s .

Cauchy’s criterion then shows that every p =(pm) ∈ h
k,s
C,w may be expanded as

the norm-convergent series

p =
∑

m∈Z

pmem, (3)
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a fact that will be crucial in what follows. As a preliminary remark we note
that if k ≤ k′, there exists the continuous embedding

h
k′,s
C,w → h

k,s
C,w (4)

by virtue of the obvious inequality

‖p‖sk,s,w =
∑

m∈Z

wm (1 + |m|s)
k
|pm|

s ≤
∑

m∈Z

wm (1 + |m|s)
k′

|pm|
s = ‖p‖sk′,s,w .

Our first result is then:

Theorem 1. The following statements hold:
(a) If the strict inequality k < k′ holds, then embedding (4) is compact, in

which case we write
h
k′,s
C,w →֒ h

k,s
C,w. (5)

(b) Let us assume that 0 ≤ k < k′, and that the sequence of weights w = (wm)
satisfies the additional constraint wm ≥ 1 for every m. Then if s ≥ t ≥ 1, there
exists the compact embedding

h
k′,t
C,w →֒ h

k,s
C,w. (6)

In particular, the embedding

h
k′,t
C,w →֒ lsC,w

is compact.

Proof. Let K be a bounded set in h
k′,s
C,w and let κ > 0 be the radius of a

ball centered at the origin of hk′,s
C,w and containing K. Then for each ε > 0 there

exists m∗ ∈ Z+ such that for every |m| ≥ m
∗ we have

1

(1 + |m|
s
)
k′−k

≤
( ε

2κ

)s

since k′ − k > 0. Therefore, for every p ∈ K we obtain
∑

|m|≥m∗

wm (1 + |m|
s
)
k
|pm|

s

=
∑

|m|≥m∗

1

(1 + |m|
s
)
k′−k

wm (1 + |m|
s
)
k′

|pm|
s

≤
( ε

2κ

)s ∑

m∈Z

wm (1 + |m|
s
)
k′

|pm|
s
≤
( ε

2κ

)s

κs =
(ε

2

)s

,

that is,




∑

|m|≥m∗

wm (1 + |m|
s
)
k
|pm|

s





1

s

≤
ε

2
. (7)
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Now let K̄ be the closure of K in h
k,s
C,w. In order to show that K̄ is compact it is

necessary and sufficient to show that K̄ is totally bounded or, equivalently, that
there exists a finite-dimensional subspace Sε,κ ⊂ h

k,s
C,w such that the distance of

every p ∈ K̄ to Sε,κ satisfies

dist (p,Sε,κ) := inf
q∈Sε,κ

‖p− q‖k,s,w ≤ ε

(see, e.g., Proposition 2.1 in [3], or [9]). To this end we choose

Sε,κ = span {e−m∗ , ..., em∗}

where em is as in (3). Furthermore, having (3) in mind we define

pm∗ : =
∑

|m|<m∗

pmem.

Then pm∗ ∈ Sε,κ and for every p ∈ K we obtain

dist (p,Sε,κ) ≤ ‖p− pm∗‖k,s,w =





∑

|m|≥m∗

wm (1 + |m|
s
)
k
|pm|

s





1

s

≤
ε

2
(8)

according to (7). Finally, for every p ∈ K̄�K there exists pε ∈ K such that
‖p− pε‖s,w ≤ ε

2
so that we obtain

dist (p,Sε,κ) ≤
ε

2
+ inf

q∈Sε,κ

‖pε−q‖s,w ≤ ε

as a consequence of (8), which proves Statement (a).
In order to prove Statement (b), we only consider s > t since the case s = t

has already been dealt with. Since s
t
> 1 we have successively

∑

m∈Z

wm (1 + |m|
s
)
k
|pm|

s

=
∑

m∈Z

(

w
t
s

m

(

1 +
(

|m|
t
)

s
t

)
kt
s

|pm|
t

)

s
t

≤

(

∑

m∈Z

w
t
s

m

(

1 +
(

|m|
t
)

s
t

)
kt
s

|pm|
t

)

s
t

≤

(

∑

m∈Z

wm

(

1 + |m|
t
)k

|pm|
t

)
s
t

where the last inequality indeed requires wm ≥ 1 and k ≥ 0. This gives

‖p‖k,s,w ≤ ‖p‖k,t,w

so that the embedding
h
k,t
C,w → h

k,s
C,w (9)
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is continuous. Therefore, (6) may be viewed as the composition

h
k′,t
C,w →֒ h

k,t
C,w → h

k,s
C,w

where the first embedding is compact according to Statement (a). �

It is interesting to note the interlacing properties of ls
C,w with respect to h

k′,s
C,w

and h
k,s
C,w as functions of the signs of k and k′:

Corollary 1. The following statements hold:
(a) If k < k′ ≤ 0, we have the embeddings

lsC,w → h
k′,s
C,w →֒ h

k,s
C,w (10)

where the first one is continuous and the second one compact. In particular, the
embedding

lsC,w →֒ h
k,s
C,w

is compact.
(b) If k ≤ 0 < k′, the above chain of embeddings is changed into

h
k′,s
C,w →֒ lsC,w → h

k,s
C,w (11)

where the first embedding is compact and the second one continuous.
(c) If 0 ≤ k < k′, the chain of embeddings becomes

h
k′,s
C,w →֒ h

k,s
C,w → lsC,w

where the first embedding is compact and the second one continuous.

Proof. The continuity of the first embedding in (10) is a consequence of
the inequality

‖p‖sk′,s,w =
∑

m∈Z

wm

(1 + |m|
s
)
|k′|

|pm|
s ≤

∑

m∈Z

wm |pm|
s = ‖p‖ss,w ,

so that the remaining part of Statement (a) then follows from Theorem 1.
As for Statement (b), the compactness of the first embedding in (11) follows

from (5) with k = 0 while the remaining part of the statement is a consequence
of what has already been proved, as is the case for Statement (c). �

At this point it is worth illustrating some of the above results by mentioning
an example that recently played an important role in [12]. Let us first consider

ĥ
k,s
C,w :=

{

p ∈ h
k,s
C,w : pm = 0 for all m ∈ Z−

}

,

which is a closed subspace of hk,s
C,w and thereby a Banach space for which all

of the above embedding statements hold. With β > 0, let wβ := (wβ,m) be
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the sequence of weights given by wβ,m = exp [βm] for every m ∈ N, and let

us consider the separable Hilbert spaces l̂2
C,wβ

and ĥ1
C,wβ

which, according to

the above definitions and notations, consist of all complex sequences p = (pm)
satisfying

‖p‖2
2,wβ

=
+∞
∑

m=0

wm,β |pm|
2
< +∞

and

‖p‖
2

1,2,wβ
=

+∞
∑

m=0

wm,β

(

1 +m
2
)

|pm|
2
< +∞,

respectively. An application of (5) with k = 0, k′ = 1 and s = 2 then shows
that the embedding

ĥ1
C,wβ

→֒ l̂2C,wβ
(12)

is compact, as is the embedding

ĥ1
C,wβ

→֒ l̂sC,wβ

for every s ∈ (2,+∞) as an application of (6) with k = 0, k′ = 1 and t = 2.
In fact, a stronger result than (12) was proved in the appendix of [12], namely,
that

ĥ1
C,wβ

→֒ l̂1C,w β
2

→ l̂2C,wβ
(13)

where the first embedding is compact and the second one continuous.
Considering again h

k,s
C,w it is then natural to generalize (13), which obviously

calls for embedding properties between spaces whose norms involve different
weights. Thus, we consider another sequence of positive weights ŵ = (ŵm)
related to w by the inequalities

c1 ≤
w

t
s
m

ŵm

≤ c2 (14)

for every m ∈ Z, where the constants c1,2 > 0 are finite, independent of m and
s, t ∈ [1,+∞) as before. Then we have:

Theorem 2. Let us assume that (14) holds with s > t, and that k ∈
(

s−t
st

,+∞
)

. Then there exist the embeddings

h
k,s
C,w →֒ ltC,ŵ → lsC,w (15)

where the first one is compact and the second one continuous.

Proof. We begin by proving the continuity of the first embedding in (15).
Let us set

r :=
st

s− t
(16)
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so that
1

r
+

1

s
=

1

t

and r ∈ (1,+∞). Owing to Hölder’s inequality and the first inequality in (14)
we then get

∑

m∈Z

ŵm |pm|
t

=
∑

m∈Z

(

1

(1 + |m|
s
)

k
s

)t
(

ŵ
1

t
m (1 + |m|

s
)

k
s |pm|

)t

(17)

≤

(

∑

m∈Z

1

(1 + |m|
s
)

kr
s

)
t
r
(

∑

m∈Z

ŵ
s
t
m (1 + |m|

s
)
k
|pm|

s

)
t
s

≤ c−1

1

(

∑

m∈Z

1

(1 + |m|
s
)

kr
s

)
t
r
(

∑

m∈Z

wm (1 + |m|
s
)
k
|pm|

s

)
t
s

.

Furthermore we have
∑

m∈Z

1

(1 + |m|
s
)

kr
s

< +∞ (18)

since kr > r s−t
st

= 1 by virtue of the hypothesis and (16), and therefore

∑

m∈Z

ŵm |pm|
t ≤ ck,s,t

(

∑

m∈Z

wm (1 + |m|s)
k
|pm|

s

)
t
s

for some constant ck,s,t > 0 depending solely on k, s and t. Consequently,
changing the value of ck,s,t as necessary we have

‖p‖t,ŵ ≤ ck,s,t ‖p‖k,s,w (19)

for every p ∈ h
k,s
C,w, which is the desired continuity.

As for compactness, if K is a bounded set in h
k,s
C,w and if κ > 0 is the radius

of a ball centered at the origin of hk,s
C,w and containing K, then for each ε > 0

there exists m∗ ∈ Z+ such that

∑

|m|≥m∗

1

(1 + |m|s)
kr
s

≤

(

εc
1

t

1

2κ

)r

because of (18), where c1 > 0 is chosen to be the constant that appears in (14)
or on the right-hand side of the last inequality in (17). Consequently, from an
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estimate similar to (17) we obtain for every p ∈ K the inequalities

∑

|m|≥m∗

ŵm |pm|
t

≤ c−1

1





∑

|m|≥m∗

1

(1 + |m|
s
)

kr
s





t
r (

∑

m∈Z

wm (1 + |m|
s
)
k
|pm|

s

)
t
s

≤ c−1

1

(

εc
1

t

1

2κ

)t

κt =
(ε

2

)t

,

that is,




∑

|m|≥m∗

ŵm |pm|
t





1

t

≤
ε

2
.

Compactness of the first embedding in (15) then follows from an argument
entirely similar to that set forth in the proof of Theorem 1, based on the existence
of the Schauder basis (em)m∈Z

. The second embedding is an easy consequence
of the second inequality in (14), for we have successively

∑

m∈Z

wm |pm|
s

=
∑

m∈Z

(

w
t
s
m |pm|

t
)

s
t

≤

(

∑

m∈Z

w
t
s
m |pm|

t

)
s
t

≤

(

c2
∑

m∈Z

ŵm |pm|
t

)
s
t

= cs,t

(

∑

m∈Z

ŵm |pm|
t

)
s
t

with an obvious choice for cs,t > 0. �

As the preceding result remains true for ĥk,s
C,w, l̂

t
C,ŵ and l̂s

C,w, that is,

ĥ
k,s
C,w →֒ l̂tC,ŵ → l̂sC,w, (20)

it is clear that it is sufficient to choose s = 2, t = 1 and k = 1 in order
to get (13) since the exponential weights wβ,m = exp [βm] and ŵβ,m := wβ

2
,m

obviously satisfy (14). Similarly, Theorem 3.1 in [3] is also a particular case of
(15) corresponding to the same values of s, t and k, but with wm = ŵm = 1 for
every m ∈ Z.

We complete this article by proving a result of Pitt’s type for the spaces
h
k,s
C,w. Recall that if C denotes any linear bounded operator from ls

C
into lt

C

with s > t ≥ 1, where ls
C
carries the norm (2) with wm = 1 for every m, then
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C is necessarily compact (see the aforementioned references on this theme).
Remembering that embedding (9) holds we then have:

Theorem 3. Let us assume that s > t ≥ 1. Then every linear bounded
operator T : hk,s

C,w → h
k,t
C,w is compact.

Proof. Let us define Jk,s,w : hk,s
C,w → ls

C
by

(Jk,s,wp)m := w
1

s
m (1 + |m|

s
)

k
s pm

for every m ∈ Z. It is then plain that Jk,s,w is an isometric isomorphism with

Jk,s,w

(

h
k,s
C,w

)

= ls
C
and J−1

k,s,w (ls
C
) = h

k,s
C,w, so that

C := Jk,t,wTJ
−1

k,s,w

is a linear bounded operator from ls
C
into lt

C
, hence compact as a consequence

of Pitt’s theorem. Therefore

T = J−1

k,t,wCJk,s,w

is also compact as the composition of C with linear bounded operators. �

Remark. An interesting open problem is that of extending the results of
this article to appropriate scales of weighted sequence spaces of Orlicz-Sobolev
type by invoking the generalization of Pitt’s result to certain classes of Orlicz
sequence spaces set forth in Section 4.b of Chapter 4 in [10].
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