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Abstract

In this article we introduce a new class of weighted sequence spaces of
Sobolev type and prove several compact embedding theorems for them.
In all cases our proofs are based on the existence of a Schauder basis that
spans all of the spaces under consideration. Our choice of spaces is primar-
ily motivated by earlier work on infinite-dimensional dynamical systems
of hyperbolic type arising in non-equilibrium statistical mechanics. We
also prove a theorem of Pitt’s type asserting that under some conditions
every linear bounded transformation from one weighted sequence space of
the class into another is compact.
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1 Outline and main results

The essential role played by compact embeddings of Sobolev spaces of various
kinds in the analysis of initial- and boundary-value problems for ordinary and
partial differential equations is well known (see, e.g., [I] or [7] and the numerous
references therein). Of equal importance are certain Hilbert spaces of sequences
and their relation to Sobolev spaces of periodic functions as in [3]. In this
article we introduce a new scale of weighted sequence spaces of Sobolev type
and prove compact embedding results for them. In all cases our arguments are
based on the existence of a Schauder basis in the spaces under consideration,
while the choice of the scale is primarily motivated by earlier investigations
of some initial-value problems for master equations arising in non-equilibrium
statistical mechanics (see [4], [5] and [I2]). We also prove a Pitt’s type theorem
asserting that under some restrictions, every linear bounded operator between
two spaces of the scale is necessarily compact. We refer the reader to [I1] for


http://arxiv.org/abs/2404.17035v1

the original statement involving a linear bounded operator acting between two
spaces of summable sequences, to [6] and [8] for much shorter proofs thereof
and to Theorem 2.1.4 in [2] or Proposition 2.c.3 in [I0] for yet more condensed
arguments.

Thus, with s € [1,400), k € R and w = (wm)mez a sequence of Weights
satisfying wy, > 0 for every m, let us consider the separable Banach space h
of Sobolev type consisting of all complex sequences p = (pm) endowed with the
usual algebraic operations and the norm

1
s\k s :
[Pl = (Z wm (1+[m[*)" |pm| ) < +o0. (1)

meZ

If k = 0 we simply write I, := h¢%, and

Il o = (Z i |pm|5>s @)

meZ

for the corresponding norm. We may refer to s as the degree of summability
of p and to k as its generalized order of differentiability, a terminology justified
by the analogy with the usual Sobolev space theory and its relation to Fourler
analysis on R? (see, e.g., Chapter VI in [13]). Unless s = 1, the spaces h(C are
reﬂexwe and it is also easily determined by means of the parallelogram law that
h C. 18 a Hilbert space if and only if s = 2, in which case () is related to the
sesquilinear form

(P Dm0 = D wen (1+ M) prodim
meZ

in the usual way. We then write héw = h{é’yij, noting also that the role of
the sequence of weights (wm) generally speaking amounts to making certain
initial-value problems self-adjoint, as was the case in the last two aforementioned
references on statistical mechanics.

As already mentioned, our proofs of various compactness criteria for the
space h(]é’iv rest in an essential way on the existence of a very concrete and
simple Schauder basis therein (for the definition and various properties of such
bases see, e.g., [2] and [10]). Thus, for any m € Z we define ey, by (em), = dm;n
for every n € Z so that ey, € h(]é’ju for each m with

1
lemll, .., = we (1+|m[*)*

Cauchy’s criterion then shows that every p =(pm) € hc ., may be expanded as
the norm-convergent series
p= Z Pm€m, (3)

meZ



a fact that will be crucial in what follows. As a preliminary remark we note
that if k£ < k’, there exists the continuous embedding

he = e, (4)
by virtue of the obvious inequality
k K
IPI 0 = D wm (L M) pm]* <D wm (14 M) [pml* = [Pl .00
mEeZ meZ

Our first result is then:
Theorem 1. The following statements hold:
(a) If the strict inequality k < k' holds, then embedding () is compact, in
which case we write ,
hein = he (5)
(b) Let us assume that 0 < k < k', and that the sequence of weights w = (wm)

satisfies the additional constraint wy > 1 for every m. Then if s >t > 1, there
exists the compact embedding

hEot < BES. (6)

In particular, the embedding
W = e

18 compact.

Proof. Let K be a bounded set in h(]é:;j and let k > 0 be the radius of a

ball centered at the origin of hg;j and containing IC. Then for each € > 0 there
exists m* € Z* such that for every [m| > m* we have

= (5)
(1+ [m[?)" " A2
since k' — k > 0. Therefore, for every p € K we obtain

s\k s
> wm (14 [m[")" [pm|

[m|>m*
=Y ) ol
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that is,

w =

s\k s
D wm (L4 [m) |pml* | <

Im|>m*

e
5



Now let K be the closure of K in hé’fﬂ. In order to show that K is compact it is

necessary and sufficient to show that K is totally bounded or, equivalently, that
there exists a finite-dimensional subspace S, ,; C h{é’ij such that the distance of

every p € K to Se,. satisfies

dist (p,Se,x) == inf [[p—qllg . <€
qES: x "

(see, e.g., Proposition 2.1 in [3], or [9]). To this end we choose
Se =span{e_m«, ..., em= }

where eq, is as in ([B]). Furthermore, having (@) in mind we define
Pm= 1 = Z Pm€m.
[m|<m*
Then pm+ € S, and for every p € K we obtain

. s\ k s
dist (,Sz.x) <P =Pl = | D wm (L4 m[))" |pa|* | < (8)

[m|>m*

N ™

according to (7). Finally, for every p € I@\IC there exists p. € K such that
Ip = P.|l, < 5 so that we obtain

. € .
dist (paSs,n) < 5 + qelgf,,{ Hps_q”&w <e
as a consequence of (8), which proves Statement (a).

In order to prove Statement (b), we only consider s > ¢ since the case s = ¢
has already been dealt with. Since £ > 1 we have successively

s\k s
D wm (14 [m|")" |pm]

meZ

= 5 (i (1 (m)) )
meZ

< (S (1 () ) < (S (1)
meZ meZ

where the last inequality indeed requires wy, > 1 and k > 0. This gives

1Pl s0 < Pkt 00

so that the embedding
W = b (9)



is continuous. Therefore, (@) may be viewed as the composition
k't k,t k,
hew = helw = hely
where the first embedding is compact according to Statement (a). W

It is interesting to note the interlacing properties of I¢ ., with respect to h(]g’j

and h(]é’fu as functions of the signs of k and k'

Corollary 1. The following statements hold:
(a) If k <k’ <0, we have the embeddings

80— he s > hES, (10)

where the first one is continuous and the second one compact. In particular, the
embedding
18 = heS,

18 compact.
(b) If k <0<k, the above chain of embeddings is changed into

K, k,
hew = 1w = hely (11)
where the first embedding is compact and the second one continuous.
(c) If 0 <k <k, the chain of embeddings becomes
B = B =
where the first embedding is compact and the second one continuous.

Proof. The continuity of the first embedding in ([I0) is a consequence of
the inequality

w
||P||Z/,s,w = Z me lpm|” < Z Wi [pml® = Hsz,uﬂ

mez ( |m|s) mez

so that the remaining part of Statement (a) then follows from Theorem 1.

As for Statement (b), the compactness of the first embedding in ([I) follows
from (B with k¥ = 0 while the remaining part of the statement is a consequence
of what has already been proved, as is the case for Statement (c). W

At this point it is worth illustrating some of the above results by mentioning
an example that recently played an important role in [I2]. Let us first consider

h{é’s {théjﬂ : pm =0 forallmeZ” },

w T

which is a closed subspace of h{é’ju and thereby a Banach space for which all

of the above embedding statements hold. With 8 > 0, let wg = (wgm) be



the sequence of weights given by wgm = exp[fm] for every m € N, and let
us consider the separable Hilbert spaces l%ywﬁ and hc%:,wﬁ which, according to

the above definitions and notations, consist of all complex sequences p = (pm)
satisfying

+oo
2 2
||P||2,w5 = Z Wi, @ [Pm|” < +00
m=0
and
—+oo
2 2
HP||1,2,wﬁ = Z Wm,B (1 + m2) [pm|™ < +o0,
m=0

respectively. An application of (B) with & = 0, ¥/ = 1 and s = 2 then shows
that the embedding R X
My = o, (12)

is compact, as is the embedding
.1 .
h(c,’wg — lf:,wg

for every s € (2,4+00) as an application of (@) with £ =0, & = 1 and ¢ = 2.
In fact, a stronger result than (I2]) was proved in the appendix of [12], namely,
that

i1 71 72

hc,wg — lC,w% — Z(C,’LUB (13)
where the first embedding is compact and the second one continuous.

Considering again h(]é’iu it is then natural to generalize (I3)), which obviously

calls for embedding properties between spaces whose norms involve different
weights. Thus, we consider another sequence of positive weights @ = ()
related to w by the inequalities

t

tijrh <eo (14)

m

c1 <

for every m € Z, where the constants c¢; 2 > 0 are finite, independent of m and
s,t € [1,400) as before. Then we have:

Theorem 2. Let us assume that (I4) holds with s > t, and that k €
(SS—?, —|—oo). Then there exist the embeddings

W, = o = 1w (15)

where the first one is compact and the second one continuous.

Proof. We begin by proving the continuity of the first embedding in (IH]).

Let us set .
s

= 16

U (16)




so that
1
— + —
r

ot
and r € (1,+00). Owing to Holder’s inequality and the first inequality in (4]
we then get

1 1
S

Z W |pm|t

meZ

1 ! 1
= — B (14 |mf)
%((HW) ) (
<mze:z(1+|m| ) <m

< i (St
meZ 1'+|nﬂ s

Furthermore we have

pml)’ (1)

o |3

s

3w|m

IN

(1+ [m[*) |me5>

Z
( wm (1+|m[%) |me5>
meZ

< 400 (18)

Sl
o

PN
mez (1+|m[") -
since kr > rss—;t =1 by virtue of the hypothesis and (I6]), and therefore

> i [pml <Ckst(zwm (1+ |m|%) |me>

meZ meZ

for some constant cj s; > 0 depending solely on k, s and ¢. Consequently,
changing the value of ¢ s+ as necessary we have

IPlleo < chsit (1Pl s, (19)

for every p € h(]é’ju, which is the desired continuity.
As for compactness, if £ is a bounded set in h(]é’fv and if k > 0 is the radius

of a ball centered at the origin of h(]é’fu and containing K, then for each ¢ > 0
there exists m* € ZT such that

1N T
1 ect
> = = (ﬂ)
mzm+ (14 |m[%)

because of ([I8), where ¢; > 0 is chosen to be the constant that appears in (I4)
or on the right-hand side of the last inequality in (I7)). Consequently, from an



estimate similar to () we obtain for every p € K the inequalities

A t
Z Wm |pm|
[m|>m=

<§Zzum<1+|mf>kmmf>s

meZ
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that is,

o=

N t 3
Z Wm |pm| S§

Im|>m*

Compactness of the first embedding in (&) then follows from an argument
entirely similar to that set forth in the proof of Theorem 1, based on the existence
of the Schauder basis (em),c;- The second embedding is an easy consequence
of the second inequality in ([I4]), for we have successively

Zwm |pm|s

meZ
t A t ‘ i
= Z(wr% |pm| ) < Zwr% |pm|
mezZ meEZ
% %
S <C2 Z wm |pm|t> = Cs,t (Z ’LZ)m |pm|t>
meZ meZ

with an obvious choice for ¢;; > 0. W

As the preceding result remains true for fAL(’é’fU, ZA(’%:@ and l}f}ﬁw, that is,

hen = lbo = B (20)
it is clear that it is sufficient to choose s = 2, ¢t = 1 and & = 1 in order
to get (3] since the exponential weights wg m = exp[fm] and wgm = ws

5

obviously satisfy (I]). Similarly, Theorem 3.1 in [3] is also a particular case of
(@) corresponding to the same values of s, t and k, but with wy, = Wy =1 for
every m € Z.

We complete this article by proving a result of Pitt’s type for the spaces
h(]é’ju. Recall that if C' denotes any linear bounded operator from [ into If
with s > ¢ > 1, where [& carries the norm (2 with wm = 1 for every m, then



C' is necessarily compact (see the aforementioned references on this theme).
Remembering that embedding (@) holds we then have:

Theorem 3. Let us assume that s > t > 1. Then every linear bounded
k,s k,t .
operator T': hgo — he ., 18 compact.

Proof. Let us define Jy s : h(]é’iv — 1 by

o |3

L s
(Jr.s,wP)y = win (14 [m|")* pm

for every m € Z. It is then plain that Jj s, is an isometric isomorphism with
Jkﬁm,(h@z) — iz and J; L (I2) = hE°, so that

k,s,w

Ci=JrrwT )
is a linear bounded operator from [ into I%, hence compact as a consequence
of Pitt’s theorem. Therefore

T=1J.}wChsw

k,t,w

is also compact as the composition of C with linear bounded operators. W

REMARK. An interesting open problem is that of extending the results of
this article to appropriate scales of weighted sequence spaces of Orlicz-Sobolev
type by invoking the generalization of Pitt’s result to certain classes of Orlicz
sequence spaces set forth in Section 4.b of Chapter 4 in [10].

Statements and declarations

DECLARATION OF COMPETING INTEREST: The author declares that he has
no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

CONFLICT OF INTEREST: The author states that there is no conflict of
interest regarding the content of this paper.

Acknowledgements. The author would like to thank the Fundagao para
a Ciéncia e a Tecnologia (FCT) of the Portugués Government for its financial
support under grant UIDB/04561/2020.

References

[1] Apams, R. A., FOURNIER, J. J. F., Sobolev Spaces, Pure and Applied
Mathematics Series, Elsevier, Oxford (2003).



2]

[10]

[11]

[12]

[13]

ALBiAc, F., KALTON, N. J., Topics in Banach Space Theory, Graduate
Texts in Mathematics 233, Springer, New York (2006).

BISGARD, J., A compact embedding for sequence spaces, Missouri Journal
of Mathematical Sciences 24, 2, (2012) 182-189.

BOGLI, S., VUILLERMOT, P.-A., A spectral theorem for the semigroup

generated by a class of infinitely many master equations, Acta Applicandae
Mathematicae 178, 4, (2022) 1-28.

BOGLI, S., VUILLERMOT, P.-A.; On the asymptotic behavior of solutions
to a class of grand canonical master equations, Portugaliae Mathematica
80, (2023) 269-289.

DELPECH, S., A short proof of Pitt’s compactness theorem, Proceedings of
the American Mathematical Society 137, 4, (2009) 1371-1372.

EpMUNDS, D. E., Evans, W. D., Spectral Theory and Differential Oper-
ators, Oxford Mathematical Monographs, Clarendon Press, Oxford (1987).

FABIAN, M., ZI1ZLER, V., A "nonlinear” proof of Pitt’s compactness the-
orem, Proceedings of the American Mathematical Society 131, 12, (2003)
3693-3694.

KiriLLov, A . A., GVISHIANI A. D., Theorems and Problems in Func-
tional Analysis, Problem Books in Mathematics, Springer Verlag, New York
(1982).

LINDENSTRAUSS, J., TZAFRIRI, L., Classical Banach Spaces 1: Sequence
Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 92, Springer,
New York (1977).

PrrT, H. R., A note on bilinear forms, Journal of the London Mathemat-
ical Society 11, (1932) 174-180.

VUILLERMOT, P.-A., On the relaxation to equilibrium of a quantum oscil-
lator interacting with a radiation field, arXiv: 2404.11329 (2024).

Yosipa, K., Functional Analysis, Springer, New York (1980).

10



	Outline and main results

