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ON THE GROTHENDIECK DUALITY FOR THE SPACE OF

HOLOMORPHIC SOBOLEV FUNCTIONS

ARKADII LEVSKII AND ALEXANDER SHLAPUNOV

Abstract. We describe the strong dual space (Os(D))∗ for the spaceOs(D) =
Hs(D)∩O(D) of holomorphic functions from the Sobolev space Hs(D), s ∈ Z,

over a bounded simply connected plane domain D with infinitely differential
boundary ∂D. We identify the dual space with the space of holomorhic func-
tions on Cn \ D that belong to H1−s(G \ D) for any bounded domain G,

containing the compact D, and vanish at the infinity. As a corollary, we ob-
tain a description of the strong dual space (OF (D))∗ for the space OF (D) of
holomorphic functions of finite order of growth in D (here, OF (D) is endowed
with the inductive limit topology with respect to the family of spaces Os(D),
s ∈ Z). In this way we extend the classical Grothendieck-Köthe-Sebastião e
Silva duality for the space of holomorphic functions.

One of the first dualities in the spaces of holomprphic functions was discovered in
1950-’s independently by A.Grothendieck [1], G. Köthe [2] and J. Sebastião e Silva
[3], who described the strong dual (O(D))∗ for the space of holomorphic functions
O(D) (endowed with the standard Frechét topology) in a bounded simply connected
domain D ⊂ C:

(0.1) (O(D))∗ ∼= O(Ĉ \D),

whereO(Ĉ\D) is the space of holomorphic functions on neighborhoods of the closed
set C\D, vanishing at the infinity, endowed with the standard inductive limit topol-
ogy of holomorphic functions on closed sets. One of the most general results, de-
scribing the duality for the spaces of solutions to elliptic differential operators with
the topology of uniform convergence on compact sets, belong to A. Grothendieck,
see [4, Theorems 3 and 4]; it is similar in a way to (0.1). Another general scheme of
producing dualities for (both determined and overdetermined) elliptic systems was
presented in [5]. It involves the concept of Hilbert space with reproducing kernel
and the constructed pairings are closely related to the inner products of the used
Hilbert spaces. However it works easily for formally self-adjoint strongly elliptic
operators, while in general case the application of the scheme depends on the very
subtle information regarding the properties of the reproducing kernel that is not
always at hands. Actually, similar results (with the use of classical Bergmann re-
producing kernel and pairing induced by the inner product of the Lebesgue space
L2(D)) was obtained by E. Straube [6, §3] for harmonic and holomorphic functions
of finite order of growth of many complex variables. Paper [5] contains also descrip-
tion of a Grothendick type duality for spaces of solutions of finite order of growth
to strongly elliptic systems.
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In the present short note we describe a Grothendick type duality for the spaces
Os(D) of holomorphic Sobolev functions and OF (D) of holomorphic functions of
finite order of growth over a bounded simply connected plane domain D with in-
finitely differential boundary ∂D with the use the pairing induced by the inner
product of the Lebesgue space L2(∂D).

1. Duality for the space of Sobolev holomorphic functions

Let L2(D) be the Lebesgue space and Hs(D), s ∈ N, be the Sobolev space of
functions over plane domain D, endowed with the standard inner products. As it
is known the scale extends to all values s > 0, as the Sobolev-Slobodetskii scale.
We denote by H−s(D), s > 0, the strong dual for the space Hs

0(D) (i.e. for the
closure of smooth functions with compact support in D in Hs

0(D)); the related
pairing between elements of H−s(D) and Hs(D) is induced by the inner product
in the Lebesgue space L2(D). Denote by h(D) the space of harmonic functions in
D, set hs(s) = Hs(D)∩ h(D) and, similarly, Os(s) = Hs(D)∩O(D), s ∈ Z, where
O(D) the space of holomorhic functions in D. By the standard a priori estimates
for harmonic functions, hs(s) and Os(s) are closed subspaces of Hs(D), s ∈ Z, see,
for instance, [6, p. 568]. We note that a holomorphic function is harmonic and then
Os(D) is a closed subspace in hs(D). According to [6, Corollary 1.7], any element
u ∈ hs(D) has a weak boundary value u|∂D on ∂D belonging to Hs−1/2(∂D),
s ∈ Z. Of course, u|∂D coincides with the usual trace of u on ∂D if s ∈ N. It
tollows immediately from [6, Corollary 1.7] that for each u ∈ hs(D) the functional
‖u|∂D‖Hs−1/2(∂D) defines a norm on hs(D) that is equivalent to the standard one.

As Os(D) ⊂ hs(D), we prefer to endow Os(D) with the norm ‖u|∂D‖Hs−1/2(∂D).

In any case, Os(s), s ∈ Z, is a Hilbert space (because ‖ · ‖Hs−1/2(∂D) posesses

parallelogram property) and we immediately have the standard Riesz duality with
the pairing related to the corresponding inner product:

(1.1) (Os(D))∗ ∼= Os(D).

However we want to produce a Grothendieck type duality for Os(D). With this

purpose, denote by Os(Ĉ \D), s ∈ Z, the space of holomorphic functions in C \D
vanishing at the infinity that belong to Hs(G \ D) for any bounded domain G,

containing the compact D. By the discussion above, any element v ∈ Os(Ĉ \ D)
has a weak boundary value v|∂D on ∂D belonging toHs−1/2(∂D). Then, taking into
the account the connection between the interior and exterior Dirichlet problems for

the Laplace operator, for each v ∈ Os(Ĉ \D) functional ‖v|∂D‖Hs−1/2(∂D) defines

a norm on Os(Ĉ \D) and, by the discussion above, Os(Ĉ \D) is Hilbert space.

Theorem 1.1. Let D be a bounded simply connected domain with C∞-smooth

boundary. Then for each s ∈ Z we have an isomorphism of Banach spaces:

(1.2) (Os(D))∗ ∼= O1−s(Ĉ \D).

Proof. We begin with the description of the related pairing. First, we note that
since ∂D is a compact, then Hs′(∂D) = Hs′

0 (∂D) for each s′ ∈ R. Hence there is a
natural duality

(1.3) H−s′(∂D) ∼= Hs′(∂D), s′ ∈ R,

with the pairing

〈·, ·〉∂D,s′ : H
−s′(∂D)×Hs′(∂D) → C,
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induced by the inner product in L2(∂D). In particular,

(1.4) |〈u, v〉∂D,s′ | ≤ ‖u‖Hs′(∂D)‖v‖H−s′ (∂D) for all v ∈ H−s′(∂D), u ∈ Hs′(∂D).

For the sake of notations we drop the index s′ in the pairing.
Thus, for each s ∈ Z we obtain a natural pairing

(1.5) 〈u|∂D, v|∂D〉∂D : Os(D)×O1−s(Ĉ \D) → C,

inducing a continuous (conjugate-) linear mapping

(1.6) O1−s(Ĉ \D) ∋ v → fv ∈ (Os(D))∗, fv(u) = 〈u|∂D, v|∂D〉∂D.

As (1.3) is an isomorphism of normed spaces, we see that

‖fv‖(Os(D))∗ = ‖v|∂D‖Hs−1/2(∂D).

Now we note that the integral Cauchy formula may be extended to the elements of
the space Os(D) with the use of the notion of the weak boundary values. Namely,
for a distribution u0 ∈ Hs−1/2(∂D) denote by Ku0 its integral Cauchy transform:

(Ku0)(z) =
1

2πι
〈(· − z)−1, u0〉∂D, z 6∈ ∂D,

where ι is the imaginary unit. Of course, Ku0(z) is just the Cauchy integral for u0

if s ∈ N. Then for any u ∈ Os(D) we have

(1.7) (Ku|∂D)(z) =

{

0, z 6∈ D,

u(z) z ∈ D;

see, for instance, [7], [8] even for the Martinelli-Bochner integral in C
n. Similarly,

taking into the account the behaviour at the infinity and the orientation of the

curve ∂D, for elements v ∈ O1−s(Ĉ \D) we have

(1.8) −(Kv|∂D)(z) =

{

0, z ∈ D,

v(z) z 6∈ D.

It follows from (1.8) that if fv(u) = 0 for all u ∈ Os(D) then, as the kernel (ζ−z)−1

is holomorphic in D with respect to ζ for all z 6∈ D, we conclude that

0 = 〈(· − z)−1, v|∂D〉∂D = 2πι (Kv|∂D)(z) = 2πι v(z) for all z 6∈ D,

i.e. mapping (1.6) is injective.
To finish the proof we have to show that mapping (1.6) is surjective. As we

noted above, the space Os(D) can be treated as a closed subset of the Hilbert space
Hs−1/2(∂D). Then, by Hahn-Banach theorem and Riesz theorem on functionals
on Hilbert spaces, for any functional f ∈ (Os(D))∗ there is a function v0 = v0(f) ∈
H1/2−s(∂D) such that

f(u) = 〈u|∂D, v0〉∂D for all u ∈ Os(D).

Next, denote by (Kv0)
− the restriction of the integral Cauchy transform to D and

(Kv0)
+ its restriction to C \D. Then theorems on the boundedness of potentials,

see [9, §2.3.2.5], and the structure of the Cauchy kernel yield (Kv0)
− ∈ O1−s(D),

(Kv0)
+ ∈ O1−s(Ĉ \D). Now, by the weak jump theorem of the Cauchy transform,

see [8], we have in the sense of weak boundary values:

(Kv0)
−
|∂D − (Kv0)

+
|∂D = v0 on ∂D.
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Clearly, by the definition of the weak boundary values and the classical Cauchy
theorem, we have

〈u|∂D, (Kv0)
−
|∂D〉∂D = 0 for all u ∈ Os(D).

Therefore
f(u) = −〈u|∂D, (Kv0)

+
|∂D〉∂D for all u ∈ Os(D),

and then mapping (1.6) is surjective (i.e. v = v(f) = −(Kv0)
+ ∈ O1−s(Ĉ\D)). �

2. Holomorphic functions of finite order of growth

One says that a function u ∈ h(D) has a finite order of growth near ∂D, if for
each point z0 ∈ ∂D there are positive numbers γ, C and R such that

|u(z)| ≤ C|z − z0|
−γ for all z ∈ D, |z − z0| < R.

The space of such functions we denote by hF (D). E. Straube [6] proved that

hF (D) = ∪s∈Z h
s(D)

and hence we may endow the space with the inductive limit topology with respect
to the family {hs(D)}s∈Z of Banach spaces, see, for instance, [10, §6]. Again, as
O(D) ⊂ h(D), we obtain

(2.1) OF (D) = ∪s∈Z O
s(D);

we endow this space of holomorphic functions of finite order of growth near ∂D

with the same topology as hF (D). According to [10, Ch. 4, Exercise 24e], OF (D)
is a DF-space and then its dual is expected to be a Fréchet space, see [10, Ch. 4,

Exercise 24a]. Thus, we denote by O(Ĉ \D) the space of holomorphic functions in
C \D vanishing at the infinity. By the Sobolev Embedding Theorem,

(2.2) O(Ĉ \D) ∩ C∞(C \D) = ∩s∈ZO
s(Ĉ \D).

We endow the space with the projective limit topology with respect to the family

{Os(Ĉ\D)}s∈Z of the Banach spaces, see [6, Ch. I, §5]. Thus, O(Ĉ\D) is a Fréchet
space, see [6, Ch. II, §6, Corollary 1].

Theorem 2.1. Let D be a bounded simply connected domain with C∞-smooth

boundary. Then we have a topological isomorphism:

(2.3) (OF (D))∗ ∼= O(Ĉ \D) ∩ C∞(C \D).

Proof. It follows almost immediately from Theorem 2.1. Indeed, as v|∂D ∈ C∞(∂D)

for each O(Ĉ \D) ∩ C∞(C \D), formulae (2.1) and (2.2) imply that (1.5) defines
a sesquilinear pairing

(2.4) 〈u|∂D, v|∂D〉∂D : OF (D)×O(Ĉ \D) ∩C∞(C \D) → C.

Again, taking into the account the topologies of the space and inequality (1.4), we
may define continuous mapping

(2.5) O(Ĉ \D) ∩ C∞(C \D) ∋ v → fv ∈ (OF (D))∗, fv(u) = 〈u|∂D, v|∂D〉∂D.

Its injectivity and surjectivity follow by the same arguments as in the proof of
Theorem 2.1. Finally, the continuity of the inverse mapping follows from the Closed
Graph Theotem for Fréchet-spaces, see [10, Ch. 3, Theorem 2.3]. �

Similarly, we obtain the following statement.
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Theorem 2.2. Let D be a bounded simply connected domain with C∞-smooth

boundary. Then we have a topological isomorphism:

(2.6) (O(D) ∩ C∞(D))∗ ∼= OF (Ĉ \D).
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