
Converting High-Performance and Low-Latency SNNs through Explicit
Modelling of Residual Error in ANNs

Zhipeng Huang1∗ , Jianhao Ding2∗ , Zhiyu Pan2 , Haoran Li3 , Ying Fang1† ,
Zhaofei Yu2 and Jian K. Liu4

1Fujian Normal University
2Peking University
3Xidian University

4University of Birmingham
qsx20221313@student.fjnu.edu.cn

Abstract

Spiking neural networks (SNNs) have garnered
interest due to their energy efficiency and supe-
rior effectiveness on neuromorphic chips compared
with traditional artificial neural networks (ANNs).
One of the mainstream approaches to implement-
ing deep SNNs is the ANN-SNN conversion, which
integrates the efficient training strategy of ANNs
with the energy-saving potential and fast inference
capability of SNNs. However, under extreme low-
latency conditions, the existing conversion theory
suggests that the problem of misrepresentation of
residual membrane potentials in SNNs, i.e., the in-
ability of IF neurons with a reset-by-subtraction
mechanism to respond to residual membrane po-
tentials beyond the range from resting potential to
threshold, leads to a performance gap in the con-
verted SNNs compared to the original ANNs. This
severely limits the possibility of practical appli-
cation of SNNs on delay-sensitive edge devices.
Existing conversion methods addressing this prob-
lem usually involve modifying the state of the con-
version spiking neurons. However, these meth-
ods do not consider their adaptability and com-
patibility with neuromorphic chips. We propose
a new approach based on explicit modeling of
residual errors as additive noise. The noise is
incorporated into the activation function of the
source ANN, which effectively reduces the resid-
ual error. Our experiments on the CIFAR10/100
dataset verify that our approach exceeds the pre-
vailing ANN-SNN conversion methods and di-
rectly trained SNNs concerning accuracy and the
required time steps. Overall, our method provides
new ideas for improving SNN performance under
ultra-low-latency conditions and is expected to pro-
mote practical neuromorphic hardware applications
for further development.

*these authors contributed equally
†corresponding author

Spiking IF

Neuron

Quantized

ReLU

with noise

QCFS activation

Conversion gap

Conversion

Additive noise

A
c
ti
v
a
ti
o

n

Post-synaptic potential

θ

Low-latency ANN-SNN conversion

Figure 1: Diagram of our proposed conversion method. State-of-
the-art low-latency conversion methods requiring training ANN with
quantized activation still bring about a conversion gap in activation.
We propose to incorporate additive noise into ANN activation, aim-
ing to compensate for the activation gap.

1 Introduction
Spiking neural networks (SNNs), as third-generation artificial
neural networks [40] have attracted a lot of attention from re-
searchers, mainly due to their significant advantages deploy-
ing on neuromorphic hardware: low power consumption and
high efficiency [32; 33]. Compared with second-generation
artificial neural networks (ANNs) full of float-point multi-
plication computations, SNNs obtain activation of high spar-
sity, in which only discrete spikes representing 0 and 1 can
do the multiplication-free computation. These attributes en-
able efficient neuromorphic designs [34; 37], which make
SNNs a promising candidate for real-time application [38;
13].

Nevertheless, non-differentiable spike information trans-
mission makes training high-performance SNNs not a sim-
ple task compared with ANN training. The current major
SNN training methods include supervised surrogate back-
propagation [35; 6], ANN-SNN conversion [10; 11; 12],
unsupervised spike-timing-dependent plasticity learning [36;
39] as well as some hybrid or online training methods [8;
7; 9; 16]. For deep SNNs, unsupervised learning methods
perform poorly on large-scale datasets. Supervised surrogate
backpropagation requires expansion along the temporal axis

ar
X

iv
:2

40
4.

17
45

6v
1 

 [
cs

.N
E

] 
 2

6 
A

pr
 2

02
4



utilizing surrogate functions [6], which requires huge GPU
resources. The current progress of online training methods
breaks the temporal dependence between spikes of neighbor-
ing time steps, yet requires inference multiple time steps and
still performs worse among supervised methods. Therefore,
in the supervised training domain, ANN-SNN conversion by-
passes the non-differentiable problem by training an ANN
counterpart and is still promising for large-scale networks and
datasets. The key concentration is on reducing the latency
that the network needs. For traditional conversion methods, a
long inference time is required to match the firing rate of the
SNN with the activation value of the ANN [19]. However,
this increases the overhead on neuromorphic chips. Address-
ing the problem of conversion errors at low latency has be-
come an important challenge in current research. Attempts to
lower latency by proposing hybrid methods mixing conver-
sion and surrogate training still fail to decrease the training
cost.

The challenge of low-latency ANN-SNN conversion arises
from conversion errors, which have been identified by previ-
ous studies [29; 1], resulting in a performance gap under low-
latency conditions. To eliminate these errors, Bu et al. [1] em-
ployed quantized QCFS activation in the source ANN from
the assumption of bounded residual membrane potentials.
They didn’t explicitly optimize the so-called “unevenness er-
ror” in their work, thus the performance of QCFS is accept-
able at 8-time steps but poor at ultra-low time steps (e.g., T
≤ 4). Efforts to further eliminate the conversion errors with
low latency include shifting the initial membrane potential
of spiking neurons on the fly [2] and BPTT fine-tuning af-
ter conversion [29]. These methods flaw as they either need
modifications to neuromorphic hardware or run extra surro-
gate training on GPUs. By contrast, eliminating conversion
errors in ANN training is ideal as it introduces no extra cost.
Thus, we propose to further explicitly model residual con-
version errors and incorporate them into ANN training. The
main contributions of this paper are summarised below:

• We find that the conversion loss for low-latency SNN
primarily stems from residual errors between quantized
ANNs and converted SNNs. We experimentally ob-
served the distribution of residual errors in each layer
with low time steps and find that the variance of the
residual error is significant while the mean is rather
small.

• Based on the observation, we propose to explicitly
model the residual error as a Gaussian noise with a zero
mean and integrate the noise into the quantized activa-
tion of the source ANN during training, aiming to com-
pensate for the gap between the source ANN and the
converted SNN.

• Due to the difficulty of predicting and estimating resid-
ual errors after conversion, we induct the noise intensity
from a small validation set and apply a layer-wise error-
compensating strategy while training.

• We demonstrate the effectiveness of our method on
CIFAR10/100. Under low-latency conditions, our
method outperforms previous state-of-the-art methods
and shows improvement in performance with low time

steps. For example, we attain an outstanding top-1 accu-
racy of 93.72% on CIFAR-10 with just 2 time steps.

2 Related Work
The core idea of ANN-SNN conversion is to combine the
computational efficiency of ANNs and the biological ratio-
nality of SNNs to accomplish specific AI tasks. This ap-
proach avoids the huge computational consumption associ-
ated with directly training SNNs [48] and is a feasible solu-
tion for training deep SNNs. Cao et al. [10] found the equiva-
lence between ReLU activation and the fire rate of the IF neu-
ron, laying the foundation for ANN-SNN conversion based
on spike firing rate. Subsequently, various weight-threshold
balance methods have been popular in reducing the infer-
ence delay (denoted as T ) to typically up to hundreds [11;
12; 19; 17; 21], yet the delay is still unacceptable for large-
scale architectures. To further improve the performance,
some works have introduced methods to modify neurons,
such as burst spikes [22] and symbolic signed neurons [23;
24]. However, they destroy the binary property of spiking
neurons, making it difficult to apply to neuromorphic chips.

Recent advances in ANN-SNN conversion call for low-
latency conversion, where conversion error reduction be-
comes the focus of research. The conversion error is the gap
between the ANN activation and the firing rate of SNN. Deng
et al. [18] proposed ThreshRelu and found that the conver-
sion error can be optimized layer by layer. Later, quantiza-
tion clip-floor-shift (QCFS) activation proposed by [1] simu-
lates the characteristics of SNNs as much as possible and has
already achieved good performance under low-latency condi-
tions (T ≤ 8). However, there is still a performance gap be-
tween ANN and SNN when the latency is lower. The funda-
mental reason is that the so-called ”unevenness error” pointed
out by the authors has not been effectively solved. This is pre-
cisely an important challenge. To resolve this error, Hao et al.
proposed SRP [47] and OffsetSpikes methods [2]. However,
these methods include restricting the converted SNN to re-
lease and move the initial membrane potential, increasing the
overhead in deployment. Wang et al. [29] considered mod-
ifying the initial membrane potentials and fine-tuning them
by surrogate training in the converted SNN to solve the un-
evenness error. While these methods improve performance
under low latency compared to previous methods, they do not
consider the usability of the methods in neuromorphic hard-
ware chips. The goal of ANN-SNN conversion is to take ad-
vantage of GPU training of ANNs to create a well-trained,
low-latency SNN model without introducing complex opera-
tions. The paper aims to further examine the conversion error
and reduce the performance gap between ANNs and SNNs
at low latency by modeling the error in the activation func-
tion of the source ANN. This approach will help improve the
performance of SNNs on neuromorphic hardware chips.

3 Preliminaries
3.1 Neuron Model
ANN neurons. For traditional ANNs, the input tensor is fed
into the ANN and processed layer by layer through weighted
summation and the continuous nonlinear activation function



f(·) to produce output activation. The forward propagation
for neurons in layer l in an ANN can be expressed as:

al = f
(
W lal−1

)
, l = 1, 2, . . . ,M (1)

where al−1 and al are the pre-activation and post-activation
vectors of the l-th layer, W l is the weight matrix, and f(·) is
usually set to the ReLU activation function.

SNN neurons. Unlike ANNs, SNNs introduce a tempo-
ral dimension and employ non-differentiable spike activation.
For deep SNNs, the inputs are usually repeated over T time
steps during forward propagation for the purpose of better
performance, which can produce the final mean output as log-
its [14; 15]. We deployed the integrate-and-fire (IF) neuron
model [27] as reported in previous studies of ANN-SNN con-
version [10; 11]. The overall discrete kinetics of the IF neuron
can be expressed as follows:

vl(t) = vl(t− 1) + I l(t)− sl(t− 1)θl, (2)

I l(t) = W lsl−1(t)θl−1 = W lxl−1(t). (3)

Here, vl(t) and I l(t) denote the membrane potential and
the input current of layer l at time step t, respectively. W l

is the synaptic weight, and θl is the firing threshold. sl(t)
indicates whether the spike is triggered at time step t. For
the ith neuron, the neuron fires a spike if the potential after
charging ul

i(t) = vli(t−1)+I li(t) exceeds the firing threshold
θl. The subscript i denotes the ith element of the vector unless
otherwise specified. This firing rule can be described by the
following equation:

sli(t) = H
(
ul
i(t)− θl

)
=

{
1, ul

i(t) ≥ θl

0, ul
i(t) < θl

(4)

where H(·) is the Heaviside step function. xl−1(t) =
sl−1(t)θl−1 denotes the post-synaptic potential of neurons in
layer l−1 as introduced by Bu et al. [1]. In addition, to mini-
mize information loss during inference, neurons in SNN em-
ploy a reset-by-subtraction mechanism in Eq. 2, that is, once
a spike is triggered, the membrane potential after the spike
needs to be subtracted by the firing threshold θl.

3.2 ANN-SNN Conversion
The idea behind ANN-SNN conversion is to create a map-
ping from spiking neurons’ postsynaptic potential in SNN to
ReLU activation in ANN. Denote that ϕl(T ) =

∑T
t=1 xl(t)

T is
the average post-synaptic potential during T time steps. The
average post-synaptic potential of neurons in the neighboring
layers is related as follows:

ϕl(T ) = W lϕl−1(T )− vl(T )− vl(0)

T
. (5)

The derivation of Eq. 5 can be found in the work of Bu et
al. [1]. It is obvious that ϕl(T ) is in the range of [0, θl]
and only takes discrete values due to xl(t) = sl(t)θl. Since
ϕl(T ) > 0, one can build the equivalent mapping from ANN
activation al to ϕl(T ) by constraining al into discrete val-
ues and setting a specific upper bound for al. If T → ∞,

0.5 0.0 0.5
Residual error

0
1
2
3
4
5

De
ns

ity

: 0.001

: 0.053

Layer10

0.5 0.0 0.5
Residual error

0
1
2
3
4
5 : 0.007

: 0.097

Layer13

1 0 1
Residual error

0
1
2
3
4
5 : 0.005

: 0.150

Layer15

Figure 2: The distribution of the residual error of ANN output and
the average postsynaptic potential for SNN. We calculate the resid-
ual error of some activation layers during the training of VGG16 on
the CIFAR10 dataset.

(vl(0) − vl(T ))/T → 0, in this case, lossless ANN-SNN
conversion can be achieved. Nevertheless, a large value of
T significantly increases the cost of the application of effi-
cient SNN hardware, which calls for low-latency conversion.
When T is small, (vl(0) − vl(T ))/T is not approaching 0,
which indicates the existence of conversion errors.

To address the low-latency conversion, Bu et al. [1] pro-
posed a concept based on the finite residual membrane po-
tential assumption v(T ) ∈ [0, θl] and derived the QCFS acti-
vation function as a substitute for the commonly used ReLU
activation function in source ANNs:

al = QCFS
(
zl
)
= λlclip

(
1

L

⌊
zlL

λl
+ 0.5

⌋
, 0, 1

)
, (6)

where L indicates the activation quantization step, zl =
W lal−1. λl is the trainable threshold for layer l in ANN.
When one performs a conversion, λl should be copied as θl

in SNN. Such that given the same average input zl as ANN,
when T = L, vl(0) is set to 0.5 · θl, and vl(T ) ∈ [0, θl], the
converted average postsynaptic potential can be expressed as:

ϕ′l(T ) = θlclip

(
1

T

⌊
zlT + vl(0)

θl

⌋
, 0, 1

)
. (7)

It is proven that such a source ANN activation function can
more accurately approximate the SNN’s activation function
and eliminate quantization error in expectation. Other work,
such as [24; 3] also shared a similar quantization framework.
After applying quantization to ANN, the low-latency perfor-
mance has significantly improved. However, this work still
incurs unresolved conversion errors, which we will brief in
the following section.

4 Residual Error in Low-Latency Conversion
In this section, we discuss three potential errors that occurred
in the process of converting ANN to SNN, i.e., clipping er-
ror, quantization error, and residual error, which contribute to
the performance gap between source ANNs and target SNNs.
Moreover, we examine the distribution of the residual error.

4.1 Clipping and Quantization error
Clipping and quantization errors bear a certain resemblance
as they are both due to the difference between al and ϕl(T ),
where al is the ANN quantized activation of layer l and ϕl(T )



is the average postsynaptic potential from layer l in con-
verted SNN. Clipping error arises from the difference in value
ranges. In Eq. 6, if λ̂l is the actual maximum value of output
al and larger than θl, then the unbounded activation larger
than θl cannot be exactly expressed after conversion. This
may cause clipping errors.

Quantization error arises from differences in distribution.
Output al in ANN is continuous values spread all over the
range of [0, almax], while ϕl(T ) can be distributed only on
discrete values like θl

T , 2θl

T , 3θl

T , · · · , thus they cannot be per-
fectly matched.

Reducing clipping and quantization errors can be achieved
by modifying the activation functions of the source ANN to
quantized ones [25]. Besides, adding the trainable thresholds
is proven to be effective as it can reduce the clipping error
to zero by directly mapping the trainable upper bound of the
activation to the threshold of the SNN [21].

4.2 Residual error
Previous studies have noticed one error beyond clipping and
quantization errors, which usually attribute to neuronal dif-
ferences. These errors are used to considered as transient dy-
namics [12], temporal jitter of spike trains [28], or uneven-
ness error [1]. We deem that these studies do not accurately
reflect the cause of the error. Here, we refer to this type of
error as residual error. Firstly, the primary reason leading to
this error is that IF neurons with reset-by-subtraction mecha-
nisms fail to respond to residual membrane potentials outside
the range of [0, θ]. Besides, when the quantization parameter
L mismatches the inference time step T , the average postsy-
naptic membrane potential also mismatches the activation.

Residual error seriously affects the performance of SNNs
under low-latency conditions. Here, we would like to give the
form of residual error denoted as gl(T ) for layer l. IF neurons
in layer l receive weighted input ẑl = W lϕl−1(T ), and their
initial membrane potential is denoted as vl(0). Then we can
reformulate Eq. 5 into:

ϕl(T ) = θl clip

(
1

T

⌊
ẑlT + vl(0)

θl

⌋
, 0, 1

)
+ gl(T ). (8)

Eq. 8 now is not related to the source ANN and gl(T ) is
not properly modeled. For QCFS conversion, when T = L,
vl(0) = 0.5 · θl, and vl(T ) ∈ [0, θl], al in Eq. 6 matches
ϕ′l(T ) in Eq. 7. And we have ϕl(T ) = ϕ′l(T ) + gl(T ).
However, these ideal conditions are too harsh; in fact, we can
only obtain:

ϕl(T ) = ϕ′l(T ) + g′l(T ), (9)

= al + g′l(T ), (10)

where g′l(T ) absorbs the original residual error gl(T ) and
other errors caused by vl(T ) /∈ [0, θl] or T ̸= L. According
to Eq. 10, we can observe the distribution of g′l(T ) based on
the source ANN activation and converted SNN postsynaptic
potential. Specifically, we train an ANN with QCFS activa-
tion on CIFAR-100 for VGG-16, and convert it to an SNN by
fixing T = L. Please refer to Fig. 2. We find that the stan-
dard deviation of the distribution of g′l(T ) is large while the

0 0.25λl 0.5λl 0.75λl λl

zl

0

2θl

T

4θl

T

6θl

T

θl

A
ct

iv
at

io
n

va
lu

e

L = 4 T = 8

φl(T )

al

0 0.25λl 0.5λl 0.75λl λl

zl

0

2θl

T

4θl

T

6θl

T

θl

A
ct

iv
at

io
n

va
lu

e

L = 4 T = 8

φl(T )

al

Figure 3: Comparison of SNN output ϕl(T ) and ANN output al

with the same input zl. The figure shows two activation functions
for source ANNs: quantization clip-floor-shift (QCFS) activation
(left) and our proposed Noisy Quantized activation with residual er-
ror noise modeling (right).

mean is comparably small (close to 0). The distribution is al-
most symmetric around 0. This suggests that the distribution
of g′l(T ) will be highly dispersed around 0.

5 Methods
In this section, we come up with an explicit modeling method
and improve activation functions by adding Gaussian noise
to lessen the error between ANN and converted SNN. We
manage to improve the low-latency conversion performance
by adding a fixed noise for all layers. Finally, we propose a
layer-wise error-compensating strategy to set the noise inten-
sity more accurately for each activation layer.

5.1 Explicit Modeling of Residual Error
Since the distribution of g′l(T ) is almost symmetric around
0 and has a significant standard deviation, we consider using
δl ·G as an approximate alternative to g′l(T ), where Gi is the
ith item in G, Gi ∼ N(0, 1), and δl ·Gi is sampled from an
i.i.d. Gaussian distribution for each neuron i in layer l.

g′li (T ) ≈ δl ·Gi, (11)

where g′li (T ) is the ith item in g′l(T ). In this case, δl ·Gi ∼
N(0, δl

2
) for each neuron i. With such an approximate, by

combining Eq. 9 and Eq. 11, we update a more accurate esti-
mation expression for ϕl in the SNN:

ϕl(T ) ≈ ϕ′l(T ) + δl ·G. (12)

We consider the additional Gaussian noise as compensation
for the residual error. According to Eq. 9, we propose to in-
troduce an quantized activation function with a parameterized
noise model of the residual error to train the ANN:

al = NQ
(
zl
)
= λl clip

(
1

L

⌊
zlL

λl
+ 0.5

⌋
, 0, 1

)
+ δl ·G

(13)
We name this activation Noisy Quantized activation (NQ). In
Eq. 13, considering that the effect of quantization error cannot
be offset in the case of T ̸= L, we adopt a treatment similar to
that of [1], i.e., introducing a shift term of 0.5 in the activation
function. Note that Eq. 13 degenerates to a QCFS activation
function when δl = 0.



1 2 4 8 16 32 64
Time step

60

70

80

90
Ac

cu
ra

cy
(%

)
CIFAR10+ResNet20

= 0.00
= 0.01
= 0.05
= 0.10
= 0.15
= 0.20

1 2 4 8 16 32 64
Time step

50
55
60
65
70
75

Ac
cu

ra
cy

(%
)

CIFAR100+VGG16

= 0.00
= 0.01
= 0.05
= 0.10
= 0.15
= 0.20

Figure 4: The effect of noise intensity. Adding a certain amount
of noise to the activation function benefits inference performance at
short time steps.

Based on the NQ activation and the average postsynaptic
potential of the converted SNN activation in Eq. 5, we can
derive the conversion error ϵl between the ANN and the SNN:

ϵl = W lϕl−1(T )− vl(T )− vl(0)

T
− NQ(zl). (14)

With the definition of conversion error above, we show The-
orem 1, which proves that under some conditions, the expec-
tation of the conversion error is zero.

Theorem 1. Given an ANN using our proposed NQ activa-
tion in Eq. 13, the trained ANN is converted to an SNN with
IF neurons with the same weights and satisfying θl = λl for
each layer. Assume that vl(0) = θl

2 , vl(T ) ∈ [0, θl] where
vl(T ) is the membrane potential at time T . Then we have:

∀T, L, δl Ez(ϵ̃) = 0. (15)

The proof of Theorem 1 given in the Appendix. Theorem 1
shows that for any δl, even if L ̸= T , the additional introduc-
tion of δlG in the NQ activation function modeled is com-
plementary to the quantization and clipping error. δlG does
not affect the expected value of the conversion error. These
nice properties ensure the feasibility of our high-performance
converted SNN at ultra-low inference time steps.

5.2 Minimizing the Gap Between ANN and SNN
Determining the appropriate Gaussian noise intensity δl in
real training is a critical task. Initially, we consider manu-
ally setting a fixed noise intensity for all activation layers. To
evaluate the effect of adding noise to the activation on the
performance of ANN-SNN conversion, we conduct experi-
ments for VGG16 on the CIFAR10 dataset and ResNet20 on
the CIFAR100 dataset. The experimental results are shown
in Fig. 4. Specifically, we add a fixed and shared zero-mean
Gaussian distribution to all activation layers during the train-
ing of the ANN, where δl = δ for each layer. We try differ-
ent settings of the noise intensity δ. The experimental results
in Fig. 4 show that different settings of the noise intensity
will directly affect the conversion performance. In the case
of adding less noise, the performance of the converted SNN
is improved for all time steps, but there is still room for fur-
ther improvement. However, when the noise intensity is too
large, we observe that the converted SNN fails to converge to
a higher accuracy. We believe that this is due to the fact that
the noise introduces randomness that affects the accuracy of

the ANN and further affects the accuracy of the SNN. To ob-
tain a fixed noise setting that is most beneficial for ANN-SNN
conversion usually requires a lot of experimentation and tun-
ing for different datasets and network structures. In addition,
according to our observation on residual error across differ-
ent layers in Fig. 2, it can be seen that the error distributions
across layers are not consistent. Therefore, personalizing the
noise setting for each activation layer would be a more rea-
sonable way.

We propose a hierarchical error compensation strategy to
optimize the ANN-SNN conversion during ANN training.
Since it is difficult to predict and estimate the residual er-
ror before conversion, we infer the converted SNN on a small
validation set and decide the noise intensity for each layer.
Specifically, before training, we split a small portion of the
training dataset as the validation dataset. For the first epoch,
we choose to train using NQ by setting δl = 0 for all l. After
training one epoch of the training set, we successively pro-
cess the validation set with the training ANN with NQ ac-
tivation and the corresponding SNN. During the validation
process, we first calculate the output of each activation layer
of the ANN and then the average postsynaptic potential of
the corresponding SNN neuron layer at T = τ . After obtain-
ing vectors from ANN and SNN, we calculate the standard
deviation of the difference between the two vectors. Subse-
quently, we set the noise intensity δl of each activation layer
to the standard deviation obtained, respectively. That is, in
each epoch, we adjust the noise intensity δl according to the
statistics obtained from the previous epoch on the validation
set. Such a procedure ensures that the additive noise is in-
dependent within the different activation layers, allowing a
more precise compensation of the effects caused by residual
error.

In addition, we find that the ANN accuracy and SNN ac-
curacy on the testing set are not always optimal at the same
epoch during the training process due to the introduction of
the additive noise. We record the accuracy of VGG16 archi-
tecture of ANN and ANN on the CIFAR10 dataset and the
CIFAR100 dataset during training and display the accuracy
curve in Fig. 5. As can be seen from the results in Fig. 5,
if we save the model with the best ANN performance during
training, we will miss the best epoch when SNN have the best
performance. Therefore, during training, we choose to eval-
uate the converted SNN model with T time steps rather than
the model that is optimal for the ANN.

6 Experiments
In this section, we use the image classification task to evaluate
the effectiveness and performance of our proposed method on
the CIFAR-10 and CIFAR-100 datasets. We use the widely
adopted VGG-16, ResNet-18, and ResNet-20 network struc-
tures as source ANNs for conversion.

6.1 Experimental Setting
For ANN training, we use the SGD training optimizer and a
cosine decay scheduler to tune the learning rate. The initial
learning rate is set to 0.1 for CIFAR-10 and 0.05 for CIFAR-
100. Besides, we set the weight decay to 5 × 10−4 for both



350 360 370 380 390 400
Epoch

93.8
94.0
94.2
94.4
94.6
94.8
95.0
95.2

Ac
cu

ra
cy

(%
)

CIFAR10+VGG16
ANN
SNN

350 360 370 380 390 400
Epoch

72.5

73.0

73.5

74.0

74.5

75.0

Ac
cu

ra
cy

(%
)

CIFAR100+VGG16
ANN
SNN

Figure 5: Accuracy curves of ANN and SNN on the testing dataset
during the training process

Baseline =2 =4 =8
0
5

10
15
20
25
30

Ti
m

e 
co

st
 (s

/e
po

ch
)

Baseline
Cost from noise induction

Figure 6: Comparison of training overhead of ANN

datasets. We train all models for 400 epochs. Our setting of
the quantization step L is consistent with Bu et al. [1]. When
training on the CIFAR-10 dataset, L is set to 4. When train-
ing VGG-16 and ResNet-18 on the CIFAR-100 dataset, L is
set to 4. When training ResNet-20 on the CIFAR-100 dataset,
L is set to 8. When applying the layer-wise strategy, we sug-
gest that the noise-induction time step τ be consistent with
L. Please refer to the Appendix for a detailed experimental
setting.

6.2 Comparison With the State-of-the-Art
Conversion Methods

We compare our method with the state-of-the-art ANN-
SNN conversion methods, including RMP [17], RTS [18],
RNL [20], OPI [26], SNNC-AP [25], TCL [21], QCFS [1]
and SNM [23]. Table 1 shows the performance of our pro-
posed method. Our model almost outperforms all the other
conversion methods when 2 ≤ T ≤ 8. On the CIFAR-10
dataset, for VGG-16, we achieve an accuracy of 94.80%, very
close to the accuracy of its ANN counterpart (95.21%) with
only 4 time steps. For ResNet-18, the accuracy of the con-
verted SNN is 18.28% higher than the current SOTA QCFS
SNN at T = 2 and 4.94% higher than the QCFS SNN
at T = 4. Besides, on CIFAR-100, the proposed method
achieves 60.93% top-1 accuracy at 8 time steps for ResNet-
20, which is 37.84% and 5.56% higher than OPI and QCFS,
respectively. For VGG-16, we achieve 74.57% top-1 ac-
curacy when T = 4, which is 4.95% higher than QCFS
(69.62%) at the same time step and 14.08% higher than OPI
at T = 8 (60.49%).

1 2 4 8 16 32 64
Time step

82
84
86
88
90
92
94
96

Ac
cu

ra
cy

(%
)

CIFAR10+VGG16

Baseline
= 2
= 4
= 8
= 16

1 2 4 8 16 32 64
Time step

60

70

80

90

Ac
cu

ra
cy

(%
)

CIFAR10+ResNet20

1 2 4 8 16 32 64
Time step

55
60
65
70
75
80

Ac
cu

ra
cy

(%
)

CIFAR100+VGG16

1 2 4 8 16 32 64
Time step

10
20
30
40
50
60
70

Ac
cu

ra
cy

(%
)

CIFAR100+ResNet20

Figure 7: Effect of noise-induction time step τ

6.3 Comparison With Other SNN Training
Methods

Table 2 presents the results between our proposed method and
recent advanced SNN training methods on the CIFAR10/100
dataset, involving STBP-tdBN [14], TET [45], TEBN [46],
Diet-SNN [30], Dual-Phase [29], RecDis-SNN [31] under
the low latency condition. The accuracy achieved by our
method when T = 4 exceeds the accuracy of other SNN
training methods using the same or even longer time step. It is
worth emphasizing that our proposed method does not need
to consume as much memory and computational resources
as other SNN training methods to achieve high performance
with very low inference latency. In addition, our method does
not require any other additional operations or optimizations
on the converted SNNs. This advantage enhances the useful-
ness of ANN-SNN conversion algorithms in neuromorphic
chips.

6.4 Effect of Noise-Induction Time Step
We further explored the effect of the noise-induction time step
τ . Fig. 7 shows the accuracy of VGG16 and ResNet20 on
CIFAR-10 and CIFAR-100 for different τ values. The set-
tings of L are the same as those in the experimental setup.
When τ = L, the noise intensity delta mainly represents the
effect of residual error during the validation process. When
τ ̸= L, delta represent the effect of both quantization error
from τ ̸= L and residual error from τ = L. We find that
when τ = L, for VGG16, SNN achieves better performance
than the baseline at almost all time steps. For ResNet20, when
τ = L, the accuracy of SNN outperforms baseline at shorter
time steps (T ≤ τ ). However, when T > τ , the accuracy of
SNN falls short of baseline. In short, the setting of τ = L
can estimate the residual error more accurately, thus improv-
ing the performance of SNN with low latency (T ≤ L). The
training process may primarily eliminate the performance gap
of low-latency conversion, potentially introducing more noise
and affecting ANN and thus SNN performance when T ≤ τ .
Notably, this degradation problem can be solved by setting a
larger τ . The results in Fig. 7 (purple lines) show that in the



Table 1: Comparison with existing state-of-the-art ANN-SNN conversion methods

Method ANN Architecture T=1 T=2 T=4 T=8 T=16 T=32 T=64
CIFAR-10 Dataset

SNM [23] 94.09% — — — — — 93.43% 94.07%
RMP [17] 93.96% — — — — — 60.30% 90.35%
RTS [18] 95.72% — — — — — 76.24% 90.64%
TCL [21] 94.57% — — — — — 93.64% 94.26%
RNL [20] 92.82% — — — — 57.90% 85.40% 91.15%

SNNC-AP [25] 95.72% — — — — — 93.71% 95.14%
OPI [26] 94.57% — — — 90.96% 93.38% 94.20% 94.45%
QCFS [1] 95.52% 88.41% 91.18% 93.96% 94.95% 95.40% 95.54% 95.55%

Ours 95.21%

VGG16

88.46% 91.93% 94.80% 95.48% 95.70% 95.79% 95.72%
RTS [18] 92.32% — — — — 92.41% 93.30% 93.55%
SNM [18] 95.39% — — — — — 94.03% 94.03%

SNNC-AP [25] 95.46% — — — — — 94.78% 95.30%
OPI [26] 96.04% — — — 75.44% 90.43% 94.82% 95.92%
QCFS [1] 96.04% — 75.44% 90.43% 94.82% 95.92% 96.08% 96.06%

Ours 95.52%

ResNet18

89.64% 93.72% 95.37% 96.21% 96.38% 96.31% 96.36%
OPI [26] 92.74% — — — 66.24% 87.22% 91.88% 92.57%
QCFS [1] 91.77% 62.43% 73.20% 83.75% 89.55% 91.62% 92.24% 92.35%

Ours 85.18%
ResNet20

65.99% 77.30% 84.54% 87.43% 88.26% 88.51% 88.45%
CIFAR-100 Dataset

SNM [18] 74.13% — — — — — 71.80% 73.69%
RTS [18] 77.89% — — — — 65.94% 69.80% 70.35%
TCL [21] 76.32% — — — — — 52.30% 71.17%

SNNC-AP [25] 77.89% — — — — — 73.55% 76.64%
OPI [26] 76.31% — — — 60.49% 70.72% 74.82% 75.97%
QCFS [1] 76.28% — 63.79% 69.62% 73.96% 76.24% 77.01% 77.10%

Ours 74.86%

VGG16

62.27% 69.39% 74.57% 76.73% 77.68% 77.64% 77.66%
RTS [18] 67.08% — — — — 63.73% 68.40% 69.27%

SNNC-AP [25] 77.16% — — — — — 76.32% 77.29%
QCFS [1] 78.80% — 70.79% 75.67% 78.48% 79.48% 79.62% 79.54%

Ours 76.66%

ResNet18

62.35% 70.86% 76.81% 78.85% 79.44% 79.62% 79.46%
RMP [17] 68.72% — — — — — 27.64% 46.91%
OPI [26] 70.43% — — — 23.09% 52.34% 67.18% 69.96%
QCFS [1] 69.94% — 19.96% 34.14% 55.37% 67.33% 69.82% 70.49%

Ours 62.34%

ResNet20

21.78% 33.87% 50.28% 60.93% 64.73% 65.43% 65.35%

Table 2: Comparison with other SNN training methods

Method Type Arch Acc T
CIFAR-10 Dataset

STBP-tdBN BPTT ResNet19 93.16 6
TET BPTT ResNet19 94.50 6

TEBN BPTT ResNet19 94.71 6
Ours ANN2SNN ResNet18 95.37 4

CIFAR-100 Dataset
Diet-SNN Hybrid VGG16 69.67 5

Dual-Phase Hybrid VGG16 70.08 4
RecDis-SNN BPTT VGG16 69.88 5

Ours ANN2SNN VGG16 74.57 4

case of τ ≥ L, our method maintains a good generalization
ability.

6.5 Training Overhead
To assess the possible computational overhead associated
with the inclusion of the validation process, we calculate the
average training time per epoch of the CIFAR-100 dataset
during the training of VGG16 and display the results in Fig. 6.
The noise induction operation introduced to automatically ad-

just the noise intensity does not lead to a significant addi-
tional computational overhead, which shows that our training
method is efficient and has potential practical applications.

7 Conclusions

This paper improves the low-latency ANN-SNN conversion
by explicitly modeling an additive noise representing the ef-
fect of residual error in source ANNs, allowing the output of
quantized activation to be closer to the average postsynap-
tic potential of spiking neurons. This approach maintains
the expectation of conversion error, resulting in high accu-
racy and ultra-low latency. The method also proposes to ad-
just the noise intensity with low overhead, further reducing
the performance gap between ANNs and SNNs under low-
latency conditions. We evaluate the proposed method on the
CIFAR10/100 dataset and showed that our method improves
performance under low-latency conditions. We believe that
this work will facilitate the further development of neuromor-
phic hardware applications.



References
[1] T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang,

“Optimal ANN-SNN conversion for high-accuracy and
ultra-low-latency spiking neural networks,” in Interna-
tional Conference on Learning Representations, 2022.

[2] Z. Hao, J. Ding, T. Bu, T. Huang, and Z. Yu, “Bridging
the gap between ANNs and SNNs by calibrating offset
spikes,” in International Conference on Learning Rep-
resentations, 2023.

[3] H. Jiang, S. Anumasa, G. De Masi, H. Xiong, and
B. Gu, “A unified optimization framework of ANN-
SNN conversion: towards optimal mapping from acti-
vation values to firing rates,” in Proceedings of the 38th
International Conference on Machine Learning, 2023,
pp. 14 945–14 974.

[4] P. O’Connor, E. Gavves, M. Reisser, and M. Welling,
“Temporally efficient deep learning with spikes,” in In-
ternational Conference on Learning Representations,
2018.

[5] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi,
“Spatio-temporal backpropagation for training high-
performance spiking neural networks,” Frontiers in
Neuroscience, vol. 12, p. 331, 2018.

[6] F. Zenke and T. P. Vogels, “The remarkable robust-
ness of surrogate gradient learning for instilling com-
plex function in spiking neural networks,” Neural com-
putation, vol. 33, no. 4, pp. 899–925, 2021.

[7] A. Tavanaei and A. Maida, “BP-STDP: Approximating
backpropagation using spike timing dependent plastic-
ity,” Neurocomputing, vol. 330, pp. 39–47, 2019.

[8] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training
deep spiking convolutional neural networks with STDP-
based unsupervised pre-training followed by supervised
fine-tuning,” Frontiers in Neuroscience, vol. 12, p. 435,
2018.

[9] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “En-
abling deep spiking neural networks with hybrid conver-
sion and spike timing dependent backpropagation,” in
International Conference on Learning Representations,
2020.

[10] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolu-
tional neural networks for energy-efficient object recog-
nition,” International Journal of Computer Vision, vol.
113, pp. 54–66, 2015.

[11] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu,
and M. Pfeiffer, “Fast-classifying, high-accuracy spik-
ing deep networks through weight and threshold balanc-
ing,” in International Joint Conference on Neural Net-
works. IEEE, 2015, pp. 1–8.

[12] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C.
Liu, “Conversion of continuous-valued deep networks
to efficient event-driven networks for image classifica-
tion,” Frontiers in Neuroscience, vol. 11, p. 682, 2017.

[13] R. Massa, A. Marchisio, M. Martina, and M. Shafique,
“An efficient spiking neural network for recognizing
gestures with a dvs camera on the loihi neuromorphic
processor,” in International Joint Conference on Neural
Networks. IEEE, 2020, pp. 1–9.

[14] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going
deeper with directly-trained larger spiking neural net-
works,” in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, vol. 35, 2021, pp. 11 062–11 070.

[15] Q. Xu, Y. Li, J. Shen, J. K. Liu, H. Tang, and G. Pan,
“Constructing deep spiking neural networks from arti-
ficial neural networks with knowledge distillation,” in
Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 7886–7895.

[16] M. Xiao, Q. Meng, Z. Zhang, D. He, and Z. Lin, “On-
line training through time for spiking neural networks,”
Advances in Neural Information Processing Systems,
vol. 35, pp. 20 717–20 730, 2022.

[17] B. Han, G. Srinivasan, and K. Roy, “RMP-SNN: Resid-
ual membrane potential neuron for enabling deeper
high-accuracy and low-latency spiking neural network,”
in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2020, pp. 13 558–13 567.

[18] S. Deng and S. Gu, “Optimal conversion of conventional
artificial neural networks to spiking neural networks,” in
International Conference on Learning Representations,
2021.

[19] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Go-
ing deeper in spiking neural networks: VGG and resid-
ual architectures,” Frontiers in neuroscience, vol. 13,
p. 95, 2019.

[20] J. Ding, Z. Yu, Y. Tian, and T. Huang, “Optimal ANN-
SNN conversion for fast and accurate inference in deep
spiking neural networks,” in International Joint Confer-
ence on Artificial Intelligence, 2021.

[21] N.-D. Ho and I.-J. Chang, “TCL: an ANN-to-SNN con-
version with trainable clipping layers,” in 2021 58th
ACM/IEEE Design Automation Conference. IEEE,
2021, pp. 793–798.

[22] Y. Li and Y. Zeng, “Efficient and accurate conversion of
spiking neural network with burst spikes,” in Interna-
tional Joint Conference on Artificial Intelligence, 2022.

[23] Y. Wang, M. Zhang, Y. Chen, and H. Qu, “Signed neu-
ron with memory: Towards simple, accurate and high-
efficient ANN-SNN conversion,” in International Joint
Conference on Artificial Intelligence, 2022.

[24] C. Li, L. Ma, and S. Furber, “Quantization framework
for fast spiking neural networks,” Frontiers in Neuro-
science, vol. 16, p. 918793, 2022.

[25] Y. Li, S. Deng, X. Dong, R. Gong, and S. Gu, “A
free lunch from ANN: Towards efficient, accurate spik-
ing neural networks calibration,” in Proceedings of the
38th International Conference on Machine Learning.
PMLR, 2021, pp. 6316–6325.



[26] T. Bu, J. Ding, Z. Yu, and T. Huang, “Optimized po-
tential initialization for low-latency spiking neural net-
works,” in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, vol. 36, 2022, pp. 11–20.

[27] W. Gerstner and W. M. Kistler, Spiking neuron mod-
els: Single neurons, populations, plasticity. Cambridge
University Press, 2002.

[28] J. Wu, Y. Chua, M. Zhang, G. Li, H. Li, and K. C.
Tan, “A tandem learning rule for effective training and
rapid inference of deep spiking neural networks,” IEEE
Transactions on Neural Networks and Learning Sys-
tems, 2021.

[29] Z. Wang, Y. Zhang, S. Lian, X. Cui, R. Yan, and
H. Tang, “Toward high-accuracy and low-latency spik-
ing neural networks with two-stage optimization,” IEEE
Transactions on Neural Networks and Learning Sys-
tems, 2023.

[30] N. Rathi and K. Roy, “DIET-SNN: A low-latency spik-
ing neural network with direct input encoding and leak-
age and threshold optimization,” IEEE Transactions on
Neural Networks and Learning Systems, 2021.

[31] Y. Guo, X. Tong, Y. Chen, L. Zhang, X. Liu, Z. Ma, and
X. Huang, “RecDis-SNN: Rectifying membrane poten-
tial distribution for directly training spiking neural net-
works,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2022, pp. 326–335.

[32] E. Z. Farsa, A. Ahmadi, M. A. Maleki, M. Gholami, and
H. N. Rad, “A low-cost high-speed neuromorphic hard-
ware based on spiking neural network,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 66,
no. 9, pp. 1582–1586, 2019.

[33] Y. Liu, Y. Chen, W. Ye, and Y. Gui, “FPGA-NHAP:
A general FPGA-based neuromorphic hardware accel-
eration platform with high speed and low power,” IEEE
Transactions on Circuits and Systems I: Regular Papers,
vol. 69, no. 6, pp. 2553–2566, 2022.

[34] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu,
G. Wang, Z. Zou, Z. Wu, W. He et al., “Towards artifi-
cial general intelligence with hybrid tianjic chip archi-
tecture,” Nature, vol. 572, no. 7767, pp. 106–111, 2019.

[35] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Di-
rect training for spiking neural networks: Faster, larger,
better,” in Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 33, 2019, pp. 1311–1318.

[36] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and
T. Masquelier, “STDP-based spiking deep convolu-
tional neural networks for object recognition,” Neural
Networks, vol. 99, pp. 56–67, 2018.

[37] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao,
S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain
et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–
99, 2018.

[38] S. Kim, S. Park, B. Na, and S. Yoon, “Spiking-YOLO:
spiking neural network for energy-efficient object detec-
tion,” in Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 2020.

[39] P. U. Diehl and M. Cook, “Unsupervised learning of
digit recognition using spike-timing-dependent plastic-
ity,” Frontiers in Computational Neuroscience, vol. 9,
p. 99, 2015.

[40] W. Maass, “Networks of spiking neurons: the third gen-
eration of neural network models,” Neural networks,
vol. 10, no. 9, pp. 1659–1671, 1997.

[41] L. Bottou, “Stochastic gradient descent tricks,” in Neu-
ral Networks: Tricks of the Trade: Second Edition.
Springer, 2012, pp. 421–436.

[42] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradi-
ent descent with warm restarts,” in International Con-
ference on Learning Representations, 2017.

[43] T. DeVries and G. W. Taylor, “Improved regularization
of convolutional neural networks with Cutout,” arXiv
preprint arXiv:1708.04552, 2017.

[44] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and
Q. V. Le, “Autoaugment: Learning augmentation strate-
gies from data,” in Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 2019, pp.
113–123.

[45] S. Deng, Y. Li, S. Zhang, and S. Gu, “Temporal ef-
ficient training of spiking neural network via gradient
re-weighting,” in International Conference on Learning
Representations, 2022.

[46] C. Duan, J. Ding, S. Chen, Z. Yu, and T. Huang, “Tem-
poral effective batch normalization in spiking neural
networks,” Advances in Neural Information Processing
Systems, vol. 35, pp. 34 377–34 390, 2022.

[47] Z. Hao, T. Bu, J. Ding, T. Huang, and Z. Yu, “Reducing
ANN-SNN conversion error through residual membrane
potential,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2023, pp. 11–21.

[48] W. Zhang and P. Li, “Temporal spike sequence learning
via backpropagation for deep spiking neural networks,”
Advances in Neural Information Processing Systems,
vol. 33, pp. 12 022–12 033, 2020.

[49] Y. Bengio, N. Léonard, and A. Courville, “Esti-
mating or propagating gradients through stochastic
neurons for conditional computation,” arXiv preprint
arXiv:1308.3432, 2013.

[50] N.-D. Ho and I.-J. Chang, “Mice: an ann-to-snn conver-
sion technique to enable high accuracy and low latency,”
IEEE Journal on Emerging and Selected Topics in Cir-
cuits and Systems, 2023.

[51] B. Wang, J. Cao, J. Chen, S. Feng, and Y. Wang, “A
new ann-snn conversion method with high accuracy,
low latency and good robustness,” in Proceedings of the
Thirty-Second International Joint Conference on Artifi-
cial Intelligence, IJCAI-23, 2023, pp. 3067–3075.


	Introduction
	Related Work
	Preliminaries
	Neuron Model
	ANN-SNN Conversion

	Residual Error in Low-Latency Conversion
	Clipping and Quantization error
	Residual error

	Methods
	Explicit Modeling of Residual Error
	Minimizing the Gap Between ANN and SNN

	Experiments
	Experimental Setting
	Comparison With the State-of-the-Art Conversion Methods
	Comparison With Other SNN Training Methods
	Effect of Noise-Induction Time Step
	Training Overhead

	Conclusions

