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Abstract

We find the area between cosn x and cosn kx as k heads to infinity, and we establish

connections between these limiting values, and coefficients from exponential generating

functions involving arcsinx.

1 Introduction

Shown here is the area between cos3 x and cos3 11x over the interval [0, π].
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It is not hard to calculate this area directly. We could write it as

6

33

(
cot

3π

12
+ 9 cot

π

12

)
− 5

33

(
cot

3π

10
+ 9 cot

π

10

)
≈ 1.981887 . . . ,

which has a pleasant symmetry, or we could write it as

1

33

(
144 + 54

√
3− 5

(
19 + 9

√
5
)√

5− 2
√
5

)
≈ 1.981887 . . .

which is not quite so nice. In this article, we are more interested in what happens when we

replace the 11 in cos3 11x with k (giving us cos3 kx) and then find the area between cos3 x

and cos3 kx as k goes to infinity. In this case, the limiting area turns out to be

56

9π
≈ 1.980594 . . .

which is rather surprising (and also fairly close numerically to the two expressions above).

Of course, there is no reason to restrict ourselves to just looking at the third power of

cosine. With this in mind, we define An to be the limiting area (as k → ∞) between cosn x

and cosn kx over the interval [0, π]. In other words, we define

An = lim
k→∞

∫ π

0

∣∣∣ cosn x− cosn kx
∣∣∣ dx.

In what follows, we are able to find formulas for An involving sums with binomial co-

efficients (Theorems 1 and 2). We then find recursive formulas for An involving just An−2

(Theorem 3). Finally, in a rather surprising result, we establish formulas for An that involve

sums with double factorials, and we connect these formulas with two entries in the OEIS

related to the exponential generating functions for arcsin(x)/(1−x) and arcsin2(x)/(2(1−x))

(Theorem 4).

2 Area formulas

We begin with a few values for the limiting area An for when n is odd.
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n odd An

1
8

π
· 1

(1)2

3
8

π
· 7

(1 · 3)2

5
8

π
· 149

(1 · 3 · 5)2

7
8

π
· 6483

(1 · 3 · 5 · 7)2

And what of these numbers 1, 7, 149, 6483 that appear in the numerators of An for n odd?

These are every other term in the sequence A296726 in the On-Line Encyclopedia of Integer

Sequences (OEIS) [1], where we learn that they also appear as coefficients in the exponential

generating function for arcsinx/(1− x). See Theorem 4 for details.

But first, we present the following theorem.

Theorem 1. With An the limit, as k → ∞, of the area between cosn x and cosn kx on the

interval [0, π], then

for n odd, An =
8

π
· 1

2n−1
·
(n−1)/2∑

j=0

(
n

j

)
1

(n− 2j)2
. (1)

Next, we present a few values for the limiting area An for when n is even. As it turns

out, this case needs to be further subdivided depending on whether n ≡ 2 or 0 mod 4.

n ≡ 2 An

2
16

π
· 1

(2)2
=

4

π

6
16

π
· 544

(2 · 4 · 6)2
=

34

9π

10
16

π
· 3096576

(2 · 4 · 6 · 8 · 10)2
=

84

25π

n ≡ 0 An

4
16

π
· 16

(2 · 4)2
=

4

π

8
16

π
· 32768

(2 · 4 · 6 · 8)2
=

32

9π

12
16

π
· 423493632

(2 · 4 · 6 · 8 · 10 · 12)2
=

718

225π

And what of these numbers 1, 16, 544, 32768, 3096576, . . . that appear in the numerators

of An for n even? These are every other term in the sequence A372324 in the OEIS, where
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we learn that they also appear as coefficients in the exponential generating function for

arcsin2 x/(2(1− x)). See Theorem 4 for details.

For now, we have the following theorem.

Theorem 2. For n even, and with An the limit, as k → ∞, of the area between cosn x and

cosn kx on the interval [0, π], then

for n ≡ 2 mod 4, An =
16

π
· 1

2n
·
(n−2)/4∑

j=0

(
n

2j

)
1

(n/2− 2j)2
, (2)

and

for n ≡ 0 mod 4, An =
16

π
· 1

2n
·
(n−4)/4∑

j=0

(
n

2j + 1

)
1

(n/2− (2j + 1))2
. (3)

The proofs of these two theorems are rather technical, and so we placed them at the end

of this paper.

3 Recursion formulas

Surprisingly, An has a fairly simple recursion formula.

Theorem 3. For An the limit, as k → ∞, of the area between cosn x and cosn kx on the

interval [0, π], then with n ≥ 3 we have

An =
n− 1

n
An−2 +

8

πn2
for n odd, and

An =
n− 1

n
An−2 +

16

πn2
for n even.

Proof. We start with the easily-verified statement that(
n

j

)
· (n− j) · j =

(
n− 2

j − 1

)
· (n− 1) · n.

Next, we multiply both sides by 4 to get(
n

j

)
· (2n− 2j) · 2j = 4 ·

(
n− 2

j − 1

)
· (n− 1) · n.

4



We now divide both sides by (n− 2j)2 = ((n− 2)− 2(j − 1))2,to get(
n

j

)
· (2n− 2j) · 2j

(n− 2j)2
= 4 ·

(
n− 2

j − 1

)
· (n− 1) · n
((n− 2)− 2(j − 1))2

.

In the numerator on the left, we write 2n−2j as n+n−2j, and we write 2j as n− (n−2j),

giving us(
n

j

)
· (n+ (n− 2j)) · (n− (n− 2j))

(n− 2j)2
= 4 ·

(
n− 2

j − 1

)
· (n− 1) · n
((n− 2)− 2(j − 1))2

.

We multiply out the numerator on the left to get(
n

j

)
· n

2 − (n− 2j)2

(n− 2j)2
= 4 ·

(
n− 2

j − 1

)
· (n− 1) · n
((n− 2)− 2(j − 1))2

,

and a further simplification on the left gives us(
n

j

)
· n2

(n− 2j)2
−
(
n

j

)
= 4 ·

(
n− 2

j − 1

)
· (n− 1) · n
((n− 2)− 2(j − 1))2

.

We now divide both sides by n2 and simplify a bit more to obtain(
n

j

)
1

(n− 2j)2
− 1

n2

(
n

j

)
=

4(n− 1)

n

(
n− 2

j − 1

)
1

((n− 2)− 2(j − 1))2
. (4)

At this point, we will consider three cases, for n odd, n ≡ 2 mod 4, and n ≡ 0 mod 4.

Assume, for now, that n is odd. We sum both sides of equation (4) from j = 1 to

j = (n− 1)/2 to obtain

(n−1)/2∑
j=1

(
n

j

)
1

(n− 2j)2
− 1

n2

(
n

j

)
=

4(n− 1)

n

(n−1)/2∑
j=1

(
n− 2

j − 1

)
1

((n− 2)− 2(j − 1))2
.

On the left, we can start that sum at j = 0 instead of j = 1 without changing the value. On

the right, we re-index the sum by using j′ = j − 1, so that j′ starts at j′ = 0 and ends at

j′ = (n− 3)/2. After distributing the sum on the left, this gives us

(n−1)/2∑
j=0

(
n

j

)
1

(n− 2j)2
− 1

n2

(n−1)/2∑
j=0

(
n

j

)
=

4(n− 1)

n

(n−3)/2∑
j′=0

(
n− 2

j′

)
1

((n− 2)− 2j′)2
.

Thanks to our equation for An in equation (1) for n odd, we can re-write the above equation

5



as

π2n−4 · An −
1

n2

(n−1)/2∑
j=0

(
n

j

)
=

4(n− 1)

n
· π2(n−2)−4 · An−2.

Since n is odd, the sum on the left of the above equation is exactly half of the entire sum of

the nth row of Pascal’s triangle. The entire sum would be 2n, so we have (after adjusting

the powers of 2 on the right)

π2n−4 · An −
1

n2
· 2n−1 =

n− 1

n
· π2n−4 · An−2.

If we now divide by π2n−4 and re-arrange the terms, we obtain

An =
n− 1

n
An−2 +

8

πn2
,

as desired (for n odd).

Next, we consider n ≡ 2 mod 4. Looking back at equation (4), we replace j with 2j,

giving us (
n

2j

)
1

(n− 4j)2
− 1

n2

(
n

2j

)
=

4(n− 1)

n

(
n− 2

2j − 1

)
1

((n− 2)− 2(2j − 1))2
. (5)

We factor out 22 from the (n − 4j)2 in the denominator on the left, and likewise from the

denominator on the right, giving us(
n

2j

)
1

4(n/2− 2j)2
− 1

n2

(
n

2j

)
=

4(n− 1)

n

(
n− 2

2j − 1

)
1

4((n− 2)/2− (2j − 1))2
.

We multiply through by 4 to get(
n

2j

)
1

(n/2− 2j)2
− 4

n2

(
n

2j

)
=

4(n− 1)

n

(
n− 2

2j − 1

)
1

((n− 2)/2− (2j − 1))2
. (6)

We sum both sides of equation (6) from j = 1 to j = (n− 2)/4 to obtain

(n−2)/4∑
j=1

(
n

2j

)
1

(n/2− 2j)2
− 4

n2

(
n

2j

)
=

4(n− 1)

n

(n−2)/4∑
j=1

(
n− 2

2j − 1

)
1

((n− 2)/2− (2j − 1))2
.

On the left, we can start that sum at j = 0 instead of j = 1 without changing the value. On

the right, we re-index the sum by using j′ = j − 1, so that j′ starts at j′ = 0 and ends at

j′ = (n− 6)/4. This gives us

6



(n−2)/4∑
j=0

(
n

2j

)
1

(n/2− 2j)2
− 4

n2

(
n

2j

)
=

4(n− 1)

n

(n−6)/4∑
j′=0

(
n− 2

2j′ + 1

)
1

((n− 2)/2− (2j′ + 1))2
.

Thanks to our equation for An in equation (2) for n ≡ 2 mod 4, we recognize that we can

re-write the sum of the first expression on the left above as π2n−4 ·An. When we do so (after

distributing that sum on the left) it give us

π2n−4 · An −
4

n2

(n−2)/4∑
j=0

(
n

2j

)
=

4(n− 1)

n

(n−6)/4∑
j′=0

(
n− 2

2j′ + 1

)
1

((n− 2)/2− (2j′ + 1))2
.

Likewise, since n ≡ 2 mod 4, then n− 2 ≡ 0 mod 4, and so if we use equation (3) for An−2

then we recognize that the sum on the right is equal to π2(n−2)−4An−2. This means we can

re-write the above equation as

π2n−4 · An −
4

n2

(n−2)/4∑
j=0

(
n

2j

)
=

4(n− 1)

n
· π2n−6 · An−2

Since n ≡ 2 mod 4, then the sum on the left of the above equation is exactly one quarter of

the entire sum of the nth row of Pascal’s triangle. The entire sum would be 2n, so we have

(after adjusting the powers of 2 on the right)

π2n−4 · An −
4

n2
· 2n−2 =

n− 1

n
· π2n−4 · An−2.

If we now divide by π2n−4 and re-arrange the terms, we obtain

An =
n− 1

n
An−2 +

16

πn2
,

as desired (for n ≡ 2 mod 4).

Finally, we consider n ≡ 0 mod 4. Looking back once more at equation (4), we first factor

out 22 from the (n− 2j)2 in the denominator on the left, and likewise from the denominator

in the right. We also replace n− 2 with q in the expression on the right, leaving us with(
n

j

)
1

4(n/2− j)2
− 1

n2

(
n

j

)
=

4(n− 1)

n

(
q

j − 1

)
1

4(q/2− (j − 1))2
.
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We now multiply through by 4, and replace j with 2j + 1, giving us(
n

2j + 1

)
1

(n/2− (2j + 1))2
− 4

n2

(
n

2j + 1

)
=

4(n− 1)

n

(
q

2j

)
1

(q/2− 2j)2
. (7)

We sum both sides of equation (7) from j = 0 to j = (n− 4)/4 to obtain

(n−4)/4∑
j=0

(
n

2j + 1

)
1

(n/2− (2j + 1))2
− 4

n2

(
n

2j + 1

)
=

4(n− 1)

n

(n−4)/4∑
j=0

(
q

2j

)
1

(q/2− 2j)2
.

Thanks to our equation for An in equation (3) for n ≡ 0 mod 4, we recognize that we

can re-write the sum of the first expression on the left above as π2n−4 · An. When we do

so (after distributing that sum on the left, and after also replacing n − 4 with q − 2 in the

upper bound of the sum on the right) it give us

π2n−4 · An −
4

n2

(n−4)/4∑
j=0

(
n

2j + 1

)
=

4(n− 1)

n

(q−2)/4∑
j=0

(
q

2j

)
1

(q/2− 2j)2
.

Since n ≡ 0 mod 4 and since q = n − 2, then q ≡ 2 mod 4, and so if we use equation (2)

for Aq = An−2 then we recognize that the sum on the right is equal to π2(n−2)−4An−2. This

means we can re-write the above equation as

π2n−4 · An −
4

n2

(n−4)/4∑
j=0

(
n

2j + 1

)
=

4(n− 1)

n
· π2n−6 · An−2

Since n ≡ 0 mod 4, then the sum on the left of the above equation is exactly one quarter of

the entire sum of the nth row of Pascal’s triangle. That entire sum would be 2n, so we have

(after adjusting the powers of 2 on the right)

π2n−4 · An −
4

n2
· 2n−2 =

n− 1

n
· π2n−4 · An−2.

If we now divide by π2n−4 and re-arrange the terms, we obtain

An =
n− 1

n
An−2 +

16

πn2
,

as desired (for n ≡ 0 mod 4).

Having covered all the cases for n, this completes the proof.
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4 Connections to the OEIS

As we mentioned earlier, the numbers that appear in Theorem 1 are related to the sequence

A296726. Here is the connection.

Theorem 4. For An as defined above, then

for n odd, An =
8

π
· n!

(n!!)2
·
(n−1)/2∑

j=0

(2j − 1)!!

(2j)!!

1

2j + 1
, (8)

and for n even, An =
16

π
· n!

(n!!)2
·
(n−2)/2∑

j=0

(2j)!!

(2j + 1)!!

1

2j + 2
. (9)

Furthermore, the numbers

n!

(n−1)/2∑
j=0

(2j − 1)!!

(2j)!!

1

2j + 1
for n odd, (10)

from equation (8) above, appear as every other entry in A296726, the terms from the expo-

nential generating function for arcsin(x)/(1− x). Likewise, the numbers

n!

(n−2)/2∑
j=0

(2j)!!

(2j + 1)!!

1

2j + 2
for n even, (11)

from equation (9) above, appear as every other entry in A372324, the terms from exponential

generating function for arcsin2(x)/(2(1− x)).

We recall that the notation n! refers to the usual factorial function, and the notation

n!! is the less-familiar double factorial function [3]. Really, it’s more like an “every other

factorial”, and here is the definition:

(2j)!! = (2j)(2j − 2)(2j − 4) · · · 6 · 4 · 2,
(2j + 1)!! = (2j + 1)(2j − 1)(2j − 3) · · · 5 · 3 · 1.

We also agree that 0!! = (−1)!! = 1.

Proof of Theorem 4. We begin with n odd. We define A′
n to be the right-hand side of

equation (8), so that

A′
n =

8

π
· p!

(n!!)2
·
(n−1)/2∑

j=0

(2j − 1)!!

(2j)!!

1

2j + 1
. (12)

9
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We know from the first statement in Theorem 3 that

An =
n− 1

n
An−2 +

8

π
· 1

n2

We now seek to prove that

A′
n =

n− 1

n
A′

n−2 +
8

π
· 1

n2
. (13)

This, along with the fact that A1 = A′
1 = 8/π, is all we will need.

We begin with the easily-verified statement

n!

(n!!)2
· (n− 2)!!

(n− 1)!!
· 1
n
=

1

n2
. (14)

Now, starting with the right-hand side of equation (12), we use the definition of A′
n to write

n− 1

n
A′

n−2 +
8

π
· 1

n2
=

8

π

 1

n2
+

n− 1

n
· (n− 2)!

((n− 2)!!)2

(n−3)/2∑
j=0

(2j − 1)!!

(2j)!!

1

2j + 1

 .

Since
n− 1

n
· (n− 2)!

((n− 2)!!)2
=

n(n− 1)

n2
· (n− 2)!

((n− 2)!!)2
=

n!

(n!!)2
,

we can re-write the previous equation as

n− 1

n
A′

n−2 +
8

π
· 1

n2
=

8

π

 1

n2
+

n!

(n!!)2

(n−3)/2∑
j=0

(2j − 1)!!

(2j)!!

1

2j + 1

 .

We now use the expression for 1/n2 in equation (14) to re-write the above equation as

n− 1

n
A′

n−2 +
8

π
· 1

n2
=

8

π

 n!

(n!!)2
· (n− 2)!!

(n− 1)!!
· 1
n
+

n!

(n!!)2

(n−3)/2∑
j=0

(2j − 1)!!

(2j)!!

1

2j + 1

 ,

and we add that first term on the right into the sum (as the j = (n− 1)/2 term) to give us

n− 1

n
A′

n−2 +
8

π
· 1

n2
=

8

π

n!

(n!!)2

(n−1)/2∑
j=0

(2j − 1)!!

(2j)!!

1

2j + 1
= A′

n,

as desired.

Hence, both An and A′
n satisfy the same recursion from equation (13), and since they

10



also start at the same value of A1 = A′
1 = 1, then they are indeed identical, thus giving us

the desired equality in equation (8) in the statement of our theorem.

Next, we will show that the numbers

n!

(n−1)/2∑
j=0

(2j − 1)!!

(2j)!!

1

2j + 1

from equation (10) really are the same as every other entry in A296726, which is the list of

coefficients for the exponential generating function for arcsin(x)/(1 − x). To show this, we

begin with the series for 1/(1− x) which is

1

1− x
= 1 + x+ x2 + x3 + x4 + x5 + · · · ,

and for arcsinx which is

arcsinx = x+
1

3!
x3 +

9

5!
x5 +

225

7!
x7 +

11025

9!
x9 + · · · ,

thanks to A177145. And furthermore, thanks to A001818, we can re-write those numerators

as follows:

arcsinx =
((−1)!!)2

1!
x+

(1!!)2

3!
x3 +

(3!!)2

5!
x5 +

(5!!)2

7!
x7 +

(7!!)2

9!
x9 + · · · .

Hence, since the generating function for arcsin(x)/(1−x) will be the convolution of the gen-

erating functions for arcsinx and 1/(1− x), then the nth term in the exponential generating

function for arcsin(x)/(1− x), for n odd, will be

n!

(
((−1)!!)2

1!
+

(1!!)2

3!
+

(3!!)2

5!
+ · · ·+ ((n− 2)!!)2

n!

)
,

which we can write as

n!

(n−1)/2∑
j=0

((2j − 1)!!)2

(2j + 1)!
.

Now, since (2j + 1)! = (2j − 1)!!(2j)!!(2j + 1), then the above expression becomes

n!

(n−1)/2∑
j=0

(2j − 1)!!

(2j)!!

1

2j + 1
,

as seen in equation (10).

11

http://oeis.org/A296726
http://oeis.org/A177145
http://oeis.org/A001818


The cases for n even are quite similar, and we leave the details to the reader.

5 Technical Results

Before we can begin the proof, we will need some preliminary results.

Lemma 5. Let N and q be positive integers. Then,

for N even,

N/2∑
ℓ=1

sin
qℓ2π

N
=


0 for q even

cot
qπ

N
for q odd.

(15)

Proof. We call upon Lagrange’s Trigonometric Identity [2], which states that

m∑
ℓ=0

sin ℓθ =
cos θ/2− cos(m+ 1/2)θ

2 sin θ/2
. (16)

Since we are assuming that N is even, we replace m with N/2 and we replace θ with q2π/N

in equation (16) to get

N/2∑
ℓ=0

sin
qℓ2π

N
=

cos
qπ

N
− cos

(N + 1)qπ

N

2 sin
qπ

N

. (17)

Now, cos (N+1)qπ
N

can be written as cos
(
qπ + qπ

N

)
, and for q even then qπ is an even multiple

of π and so cos
(
qπ + qπ

N

)
equals cos qπ

N
. However, for q odd then qπ is an odd multiple of π

and so cos
(
qπ + qπ

N

)
equals − cos qπ

N
. When we plug these simplifications into the numerator

of equation (17), we get either 0 or 2 cos qπ
N

in the numerator depending on whether q is even

or odd, respectively, and this gives us our desired formula.

Lemma 6. Let N and q be positive integers. Then,

for N, q even,

N/2∑
ℓ=1

sin
qℓπ

N
=


0 for q ≡ 0 mod 4,

cot
qπ

2N
for q ≡ 2 mod 4.

(18)

Proof. We call once more upon Lagrange’s Trigonometric Identity (16). Since N is again

12



even, we will replace m with N/2 and we replace θ with qπ/N in equation (16) to get

N/2∑
ℓ=0

sin
qℓπ

N
=

cos
qπ

2N
− cos

(N + 1)qπ

2N

2 sin
qπ

2N

. (19)

Now, cos (N+1)qπ
2N

can be written as cos
(
qπ
2
+ qπ

2N

)
, and for q ≡ 0 mod 4 then qπ

2
is an even

multiple of π and so cos
(
qπ
2
+ qπ

2N

)
simplifies to cos qπ

2N
. However, for q ≡ 2 mod 4 then qπ

2
is

an odd multiple of π is odd and so cos
(
qπ
2
+ qπ

2N

)
simplifies to − cos qπ

2N
When we plug these

simplifications into the right-hand side of equation (19), we get either 0 or 2 cos qπ
2N

in the

numerator depending on whether q is equivalent to 0 or 2 mod 4, respectively, and this gives

us our desired formula.

Lemma 7. For x any real number,

lim
k→∞

(
1

k
− 1

)
cot

x

k − 1
+

(
1

k
+ 1

)
cot

x

k + 1
=

4

x
. (20)

Proof. We begin with the Taylor expansion for the cotangent, which gives us

cot θ =
1

θ
− θ

3
− θ3

45
+ · · · =

1

θ
+O(θ).

If we apply this to our limit, we get(
1

k
− 1

)(
k − 1

x
+O

(
x

k − 1

))
+

(
1

k
+ 1

)(
k + 1

x
+O

(
x

k + 1

))
.

Since x is fixed, we can remove it from inside the O. After expanding the above expression,

we get(
1− k

k

)(
k − 1

x

)
+

(
1− k

k

)
·O
(

1

k − 1

)
+

(
1 + k

k

)(
k + 1

x

)
+

(
1 + k

k

)
·O
(

1

k + 1

)
.

This simplifies nicely to(
(1− k)(k − 1) + (1 + k)(k + 1)

kx

)
+O

(
1

k

)
.

13



We reduce this to get(
(1 + k)2 − (1− k)2

kx

)
+O

(
1

k

)
=

(
4k

kx

)
+O

(
1

k

)
=

4

x
+O

(
1

k

)
,

which, as k → ∞, gives us our desired 4/x.

Lemma 8. Let k and q be odd numbers. Then, if we define

Bq = lim
k→∞

(k−1)/2∑
ℓ=1

∫ ℓ2π/(k−1)

ℓ2π/(k+1)

(
cos qkx− cos qx

)
dx, (21)

we have that

Bq =
4

q2π
.

Proof. First, we integrate the right-hand side of equation (21) to get

Bq = lim
k→∞

(k−1)/2∑
ℓ=1

1

kq
sin qkx− 1

q
sin qx

∣∣∣∣x=ℓ2π/(k−1)

x=ℓ2π/(k+1)

. (22)

Taking out the 1/q and plugging in the endpoints, we get

Bq =
1

q
lim
k→∞

(k−1)/2∑
ℓ=1

(
1

k
sin

qkℓ2π

k − 1
− sin

qℓ2π

k − 1

)
−
(
1

k
sin

qkℓ2π

k + 1
− sin

qℓ2π

k + 1

)
(23)

Now, if we write
qkℓ2π

k − 1
=

q(k − 1 + 1)ℓ2π

k − 1
= qℓ2π +

qℓ2π

k − 1

then we see that

sin
qkℓ2π

k − 1
= sin

qℓ2π

k − 1
. (24)

Likewise, if we write

qkℓ2π

k + 1
=

q(k + 1− 1)ℓ2π

k − 1
= qℓ2π − qℓ2π

k − 1

then we see that

sin
qkℓ2π

k + 1
= − sin

qℓ2π

k − 1
. (25)

14



By substituting equations (24) and (25) into the right-hand side of equation (23), we have

that

Bq =
1

q
lim
k→∞

(k−1)/2∑
ℓ=1

(
1

k
− 1

)
sin

qℓ2π

k − 1
+

(
1

k
+ 1

)
sin

qℓ2π

k + 1
. (26)

We now distribute the sum, and change the upper limit of the second summation from

(k − 1)/2 to (k + 1)/2, which fortunately does not change the value of the sum, to get

Bq =
1

q
lim
k→∞

(
1

k
− 1

) (k−1)/2∑
ℓ=1

sin
qℓ2π

k − 1
+

(
1

k
+ 1

) (k+1)/2∑
ℓ=1

sin
qℓ2π

k + 1
. (27)

At this point, since k is odd, then both k−1 and k+1 are even and so we can apply Lemma

5 (with q odd) to rewrite the above equation as

Bq =
1

q
lim
k→∞

(
1

k
− 1

)
cot

qπ

k − 1
+

(
1

k
+ 1

)
cot

qπ

k + 1
. (28)

We can now apply Lemma 7 with x = qπ to the above equation to get that

Bq =
1

q

4

qπ
=

4

q2π
,

as desired.

Lemma 9. For k odd and q even, if we define

Cq = lim
k→∞

(k−1)/2∑
ℓ=1

∫ ℓπ/(k+1)

(ℓ−1)π/(k−1)

fq,k(x) dx−
∫ ℓπ/(k−1)

ℓπ/(k+1)

fq,k(x) dx (29)

with

fq,k(x) = cos qx− cos qkx,

then we have that

Cq =


0 for q ≡ 0 mod 4,

16

q2π
for q ≡ 2 mod 4.

Proof. If we let Fq,k(x) be the anti-derivative of fq,k(x) = cos qx − cos qkx, then equation

(29) becomes

Cq = lim
k→∞

(k−1)/2∑
ℓ=1

Fq,k(x)

∣∣∣∣∣
ℓπ/(k+1)

(ℓ−1)π/(k−1)

+ Fq,k(x)

∣∣∣∣∣
ℓπ/(k+1)

ℓπ/(k−1)

(30)

15



where we replaced −Fq,k with Fq,k and reversed the limits in the second integral. We note

that almost every term in the above expression for Cq will appear twice when we plug in

the endpoints and write out the sum, with the exception of Fq,k(0) and Fq,k(π/2) which will

each appear once. However, since an easy calculation gives us that

Fq,k(x) =
1

q
sin qx− 1

qk
sin qkx, (31)

then Fq,k(0) = 0 and since q is even then Fq,k(π/2) = 0 as well.

So, if we plug in the endpoints, write out the sum, and replace the Fq,k(0) term with

Fq,k(π/2), them equation (30) becomes

Cq = 2 lim
k→∞

(k−1)/2∑
ℓ=1

Fq,k

(
ℓπ

k + 1

)
− Fq,k

(
ℓπ

k − 1

)
. (32)

Replacing Fq,k with the expression in equation (31) and taking out the 1/q gives us

Cq =
2

q
lim
k→∞

(k−1)/2∑
ℓ=1

(
sin

qℓπ

k + 1
− 1

k
sin

qkℓπ

k + 1

)
−
(
sin

qℓπ

k − 1
− 1

k
sin

qkℓπ

k − 1

)
. (33)

Now, if we write
qkℓπ

k + 1
=

q(k + 1− 1)ℓπ

k + 1
= qℓπ − qℓπ

j + 1

and if we remember that q is even, then we see that

sin
qkℓπ

k + 1
= − sin

qℓπ

k + 1
. (34)

Likewise, if we write
qkℓπ

k − 1
=

q(k − 1 + 1)ℓπ

k − 1
= qℓπ +

qℓπ

k − 1

and again recall that q is even, then we see that

sin
qkℓπ

k − 1
= sin

ℓ2π

k − 1
. (35)

By substituting equations (34) and (35) into the right-hand side of equation (33), we have

that

Cq =
2

q
lim
k→∞

(k−1)/2∑
ℓ=1

(
1 +

1

k

)
sin

qℓπ

k + 1
−
(
1− 1

k

)
sin

qℓπ

k − 1
. (36)
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We now distribute the sum, factor through the negative in the second expression, and change

the upper limit of the first summation from (k − 1)/2 to (k + 1)/2, which fortunately does

not change the value of the sum, to get

Cq =
2

q
lim
k→∞

(
1

k
+ 1

) (k+1)/2∑
ℓ=1

sin
qℓπ

k + 1
+

(
1

k
− 1

) (k−1)/2∑
ℓ=1

sin
qℓπ

k − 1
. (37)

At this point, since k is odd, then both k+1 and k−1 are even and so we can apply Lemma

6 (with q even). If q/2 is even, then Lemma 6 tells us that both the above sums are zero

and so Cq = 0 in this case. If q/2 is odd, we apply Lemma 6 to tell us that

Cq =
2

q
lim
k→∞

(
1

k
+ 1

)
cot

qπ

2(k + 1)
+

(
1

k
− 1

)
cot

qπ

2(k − 1)
for q/2 odd. (38)

We can now apply Lemma 7 with x = qπ/2 to the above equation to get that

Cq =
2

q

4

qπ/2
=

16

q2π
for q/2 odd,

as desired.

6 Proof of Theorem 1

Proof of Theorem 1. We begin with the area between cosn x and cosn kx for n odd. As seen

in this picture with n = 3 and k = 11, there is odd symmetry across the midpoint x = π/2

and so each region “below” cos3 x (in color) has an equivalent area “above” cos3 x (in a

matching color).

17



In other words, we can just find the areas “above” cosn x on the interval [0, π] and then

double them. To do so, we first need to find the intersection points. Since n is odd, then to

find the the solutions to cosn x = cosn kx we take the nth root of both sides and rewrite it

to get cosx− cos kx = 0, and we then use a trig identity to write that as

sin
(k + 1)x

2
· sin (k − 1)x

2
= 0.

This has solutions x = ℓ · 2π/(k + 1) and x = ℓ · 2π/(k − 1) for ℓ any integer, and we note

that we can order these as follows:

0 <
1 · 2π
k + 1

<
1 · 2π
k − 1

<
2 · 2π
k + 1

<
2 · 2π
k − 1

< · · ·

· · · <
ℓ · 2π
k + 1

<
ℓ · 2π
k − 1

<
(ℓ+ 1) · 2π

k + 1
<

(ℓ+ 1) · 2π
k − 1

< · · ·

· · · <
(k − 1)/2 · 2π

k + 1
<

(k − 1)/2 · 2π
k − 1

= π,

and in particular we have that

ℓ · 2π
k − 1

<
(ℓ+ 1) · 2π

k + 1
so long as ℓ < (k − 1)/2.

With these intersection points, we have the following formula for the total area which takes

just the “upper” regions and doubles them:

2

(k−1)/2∑
ℓ=1

∫ ℓ2π/(k−1)

ℓ2π/(k+1)

(
cosn kx− cosn x

)
dx. (39)

We now use the power-reduction formula for cosine to an odd power n,

cosn θ =
2

2n

(n−1)/2∑
j=0

(
n

j

)
cos(n− 2j)θ,

and when we substitute this into equation (39), twice, we get the following expression for

the area:

2

(k−1)/2∑
ℓ=1

∫ ℓ2π/(k−1)

ℓ2π/(k+1)

2

2n

(n−1)/2∑
j=0

(
n

j

)(
cos(n− 2j)kx− cos(n− 2j)x

)
dx. (40)
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Of course, we want the limit of the expression in (40) as k goes to infinity, so when we do

this, and re-arrange the sums and integrals and such, we get

An =
4

2n

(n−1)/2∑
j=0

(
n

j

)
lim
k→∞

(k−1)/2∑
ℓ=1

∫ ℓ2π/(k−1)

ℓ2π/(k+1)

(
cos(n− 2j)kx− cos(n− 2j)x

)
dx. (41)

We now recognize the limit in the right-hand side of equation (41) as being the same as in

Lemma 8. In other words, we have that

An =
4

2n

(n−1)/2∑
j=0

(
n

j

)
Bn−2j, (42)

and thanks to Lemma 8, this becomes

An =
4

2n

(n−1)/2∑
j=0

(
n

j

)
4

(n− 2j)2π
(43)

=
8

π
· 1

2n−1
·
(n−1)/2∑

j=0

(
n

j

)
1

(n− 2j)2
, (44)

as desired.

The area between cosn x and cosn kx for k even is quite similar and leads to the same

formula as seen in equation (44); we leave the details to the reader.

7 Proof of Theorem 2

Proof of Theorem 2. We begin with the area between cosn x and cosn kx for k odd. As seen

in this picture with n = 4 and k = 7, there is even symmetry across the midpoint x = π/2

and so each region on the left of x = π/2 (in color) has an equivalent area on the right of

w = π/2 (in a matching color).
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In other words, we can just find the areas from 0 to π/2 and double them. To do so, we first

need to find the intersection points. If we set

cosn x = cosn kx (45)

and take the nth root of both sides, then since n is even we will get

cosx = ± cos kx,

which becomes two equations,

cosx− cos kx = 0 and cosx+ cos kx = 0.

Using two familiar trig identities, these become

sin
(k + 1)x

2
sin

(k − 1)x

2
= 0 and cos

(k + 1)x

2
cos

(k − 1)x

2
= 0

The first equation has solutions x = 0, and also x = 2π/(k + 1) and x = 2π/(k − 1), and

also x = 4π/(k + 1) and x = 4π/(k − 1), and so on. The second equation has solutions

x = π/(k + 1) and x = π/(k − 1), and also x = 3π/(k + 1) and x = 3π/(k − 1), and so on.

Hence, the complete list of solutions to equation (45) in the interval [0, π/2], written out in

order, is

0 <
π

k + 1
<

π

k − 1
<

2π

k + 1
<

2π

k − 1
<

3π

k + 1
<

3π

k − 1
< · · ·

· · · <
(k − 1)/2 · π

k + 1
<

(k − 1)/2 · π
k − 1

=
π

2
.

With these intersection points, we have the following formula for the total area (for k any

fixed odd number) which takes just the regions on the right of x = π/2 and doubles them:
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2

(k−1)/2∑
ℓ=1

∫ ℓπ/(k+1)

(ℓ−1)π/(k−1)

fn(x) dx+

∫ ℓπ/(k−1)

ℓπ/(k+1)

−fn(x) dx, (46)

where fn(x) = cosn x− cosn kx.

We now use the power-reduction formula for cosine to an even power n,

cosn θ =
1

2n

(
n

n/2

)
+

2

2n

(n/2)−1∑
j=0

(
n

j

)
cos(n− 2j)θ,

to give us that

fn(x) =
2

2n

(n/2)−1∑
j=0

(
n

j

)(
cos(n− 2j)x− cos(n− 2j)kx

)
.

When we substitute this into equation (46) twice, and distribute the outer sum, we get the

following expression for the area:

2

(k−1)/2∑
ℓ=1

∫ ℓπ/(k+1)

(ℓ−1)π/(k−1)

2

2n

(n/2)−1∑
j=0

(
n

j

)(
cos(n− 2j)x− cos(n− 2j)kx

)
dx

− 2

(k−1)/2∑
ℓ=1

∫ ℓπ/(k−1)

ℓπ/(k+1)

2

2n

(n/2)−1∑
j=0

(
n

j

)(
cos(n− 2j)x− cos(n− 2j)kx

)
dx. (47)

Of course, we want the limit of the expression in (47) as k goes to infinity, so when we do

this, and re-arrange the sums and integrals and such, we get

An =
4

2n

(n/2)−1∑
j=0

(
n

j

)
lim
k→∞

(
(k−1)/2∑

ℓ=1

∫ ℓπ/(k+1)

(ℓ−1)π/(k−1)

(
cos(n− 2j)x− cos(n− 2j)kx

)
dx

−
(k−1)/2∑

ℓ=1

∫ ℓπ/(k−1)

ℓπ/(k+1)

(
cos(n− 2j)x− cos(n− 2j)kx

)
dx

)
(48)

We now recognize the limit in the right-hand side of equation (48) as being the same as in

Lemma 9. In other words, we now have that

An =
4

2n

(n/2)−1∑
j=0

(
n

j

)
Cn−2j (49)
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where Cn−2j from Lemma (9) is defined as

Cn−2j =


0 for n− 2j ≡ 0 mod 4,

16

(n− 2j)2π
for n− 2j ≡ 2 mod 4.

We now consider the case when n ≡ 2 mod 4. In this case, if we write out the terms

in equation (49) and use our definition of Cn−2j from above, we have only the terms with j

even (as that is when n− 2j ≡ 2 mod 4), giving us

An =
4

2n

((
n

0

)
16

(n)2π
+

(
n

2

)
16

(n− 4)2π
+

(
n

4

)
16

(n− 8)2π
+ · · ·+

(
n

(n/2)− 1

)
16

(2)2π

)
We now factor out 16/(22π) from each term, giving us

An =
4

2n
16

22π

((
n

0

)
1

(n/2)2
+

(
n

2

)
1

(n/2− 2)2
+

(
n

4

)
1

(n/2− 4)2
+ · · ·+

(
n

(n/2)− 1

)
1

(1)2

)
We re-index the above sum, and simplify the coefficients on the left, to get

An =
16

π
· 1

2n
·
(n−2)/4∑

j=0

(
n

2j

)
1

(n/2− 2j)2
,

as desired (for n ≡ 2 mod 4).

Finally, for n ≡ 0 mod 4, we again write out the terms in equation (49) and use our

definition of Cn−2j from above. This time, the only non-zero contributions come from j odd

(as this is when n− 2j ≡ 2 mod 4), giving us

An =
4

2n

((
n

1

)
16

(n− 2)2π
+

(
n

3

)
16

(n− 6)2π
+

(
n

5

)
16

(n− 10)2π
+ · · ·+

(
n

(n/2)− 1

)
16

(2)2π

)
We again factor out 16/(22π) from each term, giving us

An =
4

2n
16

22π

((
n

1

)
1

(n/2− 1)2
+

(
n

3

)
1

(n/2− 3)2
+

(
n

5

)
1

(n/2− 5)2
+ · · ·+

(
n

(n/2)− 1

)
1

(1)2π

)
We re-index the above sum, and simplify the coefficients on the left, to get

An =
16

π
· 1

2n
·
(n−4)/4∑

j=0

(
n

2j + 1

)
1

(n/2− (2j + 1))2
,
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as desired (for n ≡ 0 mod 4).

The area between cosn x and cosn kx for k even is quite similar and leads to the same

formulas as seen above; we leave the details to the reader.
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