Areas between cosines

Muhammad Adam Dombrowski
Pennsbury High School
Fairless Hills, PA 19030
USA
muhammadadamdombrowski@gmail.com
Gregory Dresden
Washington \& Lee University
Lexington, VA 24450
USA
dresdeng@wlu.edu

Abstract

We find the area between $\cos ^{n} x$ and $\cos ^{n} k x$ as k heads to infinity, and we establish connections between these limiting values, and coefficients from exponential generating functions involving $\arcsin x$.

1 Introduction

Shown here is the area between $\cos ^{3} x$ and $\cos ^{3} 11 x$ over the interval $[0, \pi]$.

It is not hard to calculate this area directly. We could write it as

$$
\frac{6}{33}\left(\cot \frac{3 \pi}{12}+9 \cot \frac{\pi}{12}\right)-\frac{5}{33}\left(\cot \frac{3 \pi}{10}+9 \cot \frac{\pi}{10}\right) \approx 1.981887 \ldots
$$

which has a pleasant symmetry, or we could write it as

$$
\frac{1}{33}(144+54 \sqrt{3}-5(19+9 \sqrt{5}) \sqrt{5-2 \sqrt{5}}) \approx 1.981887 \ldots
$$

which is not quite so nice. In this article, we are more interested in what happens when we replace the 11 in $\cos ^{3} 11 x$ with k (giving us $\cos ^{3} k x$) and then find the area between $\cos ^{3} x$ and $\cos ^{3} k x$ as k goes to infinity. In this case, the limiting area turns out to be

$$
\frac{56}{9 \pi} \approx 1.980594 \ldots
$$

which is rather surprising (and also fairly close numerically to the two expressions above).
Of course, there is no reason to restrict ourselves to just looking at the third power of cosine. With this in mind, we define A_{n} to be the limiting area (as $k \rightarrow \infty$) between $\cos ^{n} x$ and $\cos ^{n} k x$ over the interval $[0, \pi]$. In other words, we define

$$
A_{n}=\lim _{k \rightarrow \infty} \int_{0}^{\pi}\left|\cos ^{n} x-\cos ^{n} k x\right| d x
$$

In what follows, we are able to find formulas for A_{n} involving sums with binomial coefficients (Theorems 1 and 2). We then find recursive formulas for A_{n} involving just A_{n-2} (Theorem 3). Finally, in a rather surprising result, we establish formulas for A_{n} that involve sums with double factorials, and we connect these formulas with two entries in the OEIS related to the exponential generating functions for $\arcsin (x) /(1-x)$ and $\arcsin ^{2}(x) /(2(1-x))$ (Theorem 4).

2 Area formulas

We begin with a few values for the limiting area A_{n} for when n is odd.

n odd	A_{n}
1	$\frac{8}{\pi} \cdot \frac{1}{(1)^{2}}$
3	$\frac{8}{\pi} \cdot \frac{7}{(1 \cdot 3)^{2}}$
5	$\frac{8}{\pi} \cdot \frac{149}{(1 \cdot 3 \cdot 5)^{2}}$
7	$\frac{8}{\pi} \cdot \frac{6483}{(1 \cdot 3 \cdot 5 \cdot 7)^{2}}$

And what of these numbers $1,7,149,6483$ that appear in the numerators of A_{n} for n odd? These are every other term in the sequence A296726 in the On-Line Encyclopedia of Integer Sequences (OEIS) [1], where we learn that they also appear as coefficients in the exponential generating function for $\arcsin x /(1-x)$. See Theorem 4 for details.

But first, we present the following theorem.
Theorem 1. With A_{n} the limit, as $k \rightarrow \infty$, of the area between $\cos ^{n} x$ and $\cos ^{n} k x$ on the interval $[0, \pi]$, then

$$
\begin{equation*}
\text { for } n \text { odd, } \quad A_{n}=\frac{8}{\pi} \cdot \frac{1}{2^{n-1}} \cdot \sum_{j=0}^{(n-1) / 2}\binom{n}{j} \frac{1}{(n-2 j)^{2}} . \tag{1}
\end{equation*}
$$

Next, we present a few values for the limiting area A_{n} for when n is even. As it turns out, this case needs to be further subdivided depending on whether $n \equiv 2$ or $0 \bmod 4$.

And what of these numbers $1,16,544,32768,3096576, \ldots$ that appear in the numerators of A_{n} for n even? These are every other term in the sequence A372324 in the OEIS, where
we learn that they also appear as coefficients in the exponential generating function for $\arcsin ^{2} x /(2(1-x))$. See Theorem 4 for details.

For now, we have the following theorem.
Theorem 2. For n even, and with A_{n} the limit, as $k \rightarrow \infty$, of the area between $\cos ^{n} x$ and $\cos ^{n} k x$ on the interval $[0, \pi]$, then

$$
\begin{equation*}
\text { for } n \equiv 2 \bmod 4, \quad A_{n}=\frac{16}{\pi} \cdot \frac{1}{2^{n}} \cdot \sum_{j=0}^{(n-2) / 4}\binom{n}{2 j} \frac{1}{(n / 2-2 j)^{2}}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { for } n \equiv 0 \bmod 4, \quad A_{n}=\frac{16}{\pi} \cdot \frac{1}{2^{n}} \cdot \sum_{j=0}^{(n-4) / 4}\binom{n}{2 j+1} \frac{1}{(n / 2-(2 j+1))^{2}} . \tag{3}
\end{equation*}
$$

The proofs of these two theorems are rather technical, and so we placed them at the end of this paper.

3 Recursion formulas

Surprisingly, A_{n} has a fairly simple recursion formula.
Theorem 3. For A_{n} the limit, as $k \rightarrow \infty$, of the area between $\cos ^{n} x$ and $\cos ^{n} k x$ on the interval $[0, \pi]$, then with $n \geq 3$ we have

$$
\begin{aligned}
& A_{n}=\frac{n-1}{n} A_{n-2}+\frac{8}{\pi n^{2}} \text { for } n \text { odd, and } \\
& A_{n}=\frac{n-1}{n} A_{n-2}+\frac{16}{\pi n^{2}} \text { for } n \text { even. }
\end{aligned}
$$

Proof. We start with the easily-verified statement that

$$
\binom{n}{j} \cdot(n-j) \cdot j=\binom{n-2}{j-1} \cdot(n-1) \cdot n .
$$

Next, we multiply both sides by 4 to get

$$
\binom{n}{j} \cdot(2 n-2 j) \cdot 2 j=4 \cdot\binom{n-2}{j-1} \cdot(n-1) \cdot n
$$

We now divide both sides by $(n-2 j)^{2}=((n-2)-2(j-1))^{2}$, to get

$$
\binom{n}{j} \cdot \frac{(2 n-2 j) \cdot 2 j}{(n-2 j)^{2}}=4 \cdot\binom{n-2}{j-1} \cdot \frac{(n-1) \cdot n}{((n-2)-2(j-1))^{2}} .
$$

In the numerator on the left, we write $2 n-2 j$ as $n+n-2 j$, and we write $2 j$ as $n-(n-2 j)$, giving us

$$
\binom{n}{j} \cdot \frac{(n+(n-2 j)) \cdot(n-(n-2 j))}{(n-2 j)^{2}}=4 \cdot\binom{n-2}{j-1} \cdot \frac{(n-1) \cdot n}{((n-2)-2(j-1))^{2}}
$$

We multiply out the numerator on the left to get

$$
\binom{n}{j} \cdot \frac{n^{2}-(n-2 j)^{2}}{(n-2 j)^{2}}=4 \cdot\binom{n-2}{j-1} \cdot \frac{(n-1) \cdot n}{((n-2)-2(j-1))^{2}},
$$

and a further simplification on the left gives us

$$
\binom{n}{j} \cdot \frac{n^{2}}{(n-2 j)^{2}}-\binom{n}{j}=4 \cdot\binom{n-2}{j-1} \cdot \frac{(n-1) \cdot n}{((n-2)-2(j-1))^{2}} .
$$

We now divide both sides by n^{2} and simplify a bit more to obtain

$$
\begin{equation*}
\binom{n}{j} \frac{1}{(n-2 j)^{2}}-\frac{1}{n^{2}}\binom{n}{j}=\frac{4(n-1)}{n}\binom{n-2}{j-1} \frac{1}{((n-2)-2(j-1))^{2}} . \tag{4}
\end{equation*}
$$

At this point, we will consider three cases, for n odd, $n \equiv 2 \bmod 4$, and $n \equiv 0 \bmod 4$.
Assume, for now, that n is odd. We sum both sides of equation (4) from $j=1$ to $j=(n-1) / 2$ to obtain

$$
\sum_{j=1}^{(n-1) / 2}\binom{n}{j} \frac{1}{(n-2 j)^{2}}-\frac{1}{n^{2}}\binom{n}{j}=\frac{4(n-1)}{n} \sum_{j=1}^{(n-1) / 2}\binom{n-2}{j-1} \frac{1}{((n-2)-2(j-1))^{2}}
$$

On the left, we can start that sum at $j=0$ instead of $j=1$ without changing the value. On the right, we re-index the sum by using $j^{\prime}=j-1$, so that j^{\prime} starts at $j^{\prime}=0$ and ends at $j^{\prime}=(n-3) / 2$. After distributing the sum on the left, this gives us

$$
\sum_{j=0}^{(n-1) / 2}\binom{n}{j} \frac{1}{(n-2 j)^{2}}-\frac{1}{n^{2}} \sum_{j=0}^{(n-1) / 2}\binom{n}{j}=\frac{4(n-1)}{n} \sum_{j^{\prime}=0}^{(n-3) / 2}\binom{n-2}{j^{\prime}} \frac{1}{\left((n-2)-2 j^{\prime}\right)^{2}}
$$

Thanks to our equation for A_{n} in equation (1) for n odd, we can re-write the above equation
as

$$
\pi 2^{n-4} \cdot A_{n}-\frac{1}{n^{2}} \sum_{j=0}^{(n-1) / 2}\binom{n}{j}=\frac{4(n-1)}{n} \cdot \pi 2^{(n-2)-4} \cdot A_{n-2}
$$

Since n is odd, the sum on the left of the above equation is exactly half of the entire sum of the nth row of Pascal's triangle. The entire sum would be 2^{n}, so we have (after adjusting the powers of 2 on the right)

$$
\pi 2^{n-4} \cdot A_{n}-\frac{1}{n^{2}} \cdot 2^{n-1}=\frac{n-1}{n} \cdot \pi 2^{n-4} \cdot A_{n-2}
$$

If we now divide by $\pi 2^{n-4}$ and re-arrange the terms, we obtain

$$
A_{n}=\frac{n-1}{n} A_{n-2}+\frac{8}{\pi n^{2}},
$$

as desired (for n odd).
Next, we consider $n \equiv 2 \bmod 4$. Looking back at equation (4), we replace j with $2 j$, giving us

$$
\begin{equation*}
\binom{n}{2 j} \frac{1}{(n-4 j)^{2}}-\frac{1}{n^{2}}\binom{n}{2 j}=\frac{4(n-1)}{n}\binom{n-2}{2 j-1} \frac{1}{((n-2)-2(2 j-1))^{2}} \tag{5}
\end{equation*}
$$

We factor out 2^{2} from the $(n-4 j)^{2}$ in the denominator on the left, and likewise from the denominator on the right, giving us

$$
\binom{n}{2 j} \frac{1}{4(n / 2-2 j)^{2}}-\frac{1}{n^{2}}\binom{n}{2 j}=\frac{4(n-1)}{n}\binom{n-2}{2 j-1} \frac{1}{4((n-2) / 2-(2 j-1))^{2}} .
$$

We multiply through by 4 to get

$$
\begin{equation*}
\binom{n}{2 j} \frac{1}{(n / 2-2 j)^{2}}-\frac{4}{n^{2}}\binom{n}{2 j}=\frac{4(n-1)}{n}\binom{n-2}{2 j-1} \frac{1}{((n-2) / 2-(2 j-1))^{2}} . \tag{6}
\end{equation*}
$$

We sum both sides of equation (6) from $j=1$ to $j=(n-2) / 4$ to obtain

$$
\sum_{j=1}^{(n-2) / 4}\binom{n}{2 j} \frac{1}{(n / 2-2 j)^{2}}-\frac{4}{n^{2}}\binom{n}{2 j}=\frac{4(n-1)}{n} \sum_{j=1}^{(n-2) / 4}\binom{n-2}{2 j-1} \frac{1}{((n-2) / 2-(2 j-1))^{2}} .
$$

On the left, we can start that sum at $j=0$ instead of $j=1$ without changing the value. On the right, we re-index the sum by using $j^{\prime}=j-1$, so that j^{\prime} starts at $j^{\prime}=0$ and ends at $j^{\prime}=(n-6) / 4$. This gives us

$$
\sum_{j=0}^{(n-2) / 4}\binom{n}{2 j} \frac{1}{(n / 2-2 j)^{2}}-\frac{4}{n^{2}}\binom{n}{2 j}=\frac{4(n-1)}{n} \sum_{j^{\prime}=0}^{(n-6) / 4}\binom{n-2}{2 j^{\prime}+1} \frac{1}{\left((n-2) / 2-\left(2 j^{\prime}+1\right)\right)^{2}}
$$

Thanks to our equation for A_{n} in equation (2) for $n \equiv 2 \bmod 4$, we recognize that we can re-write the sum of the first expression on the left above as $\pi 2^{n-4} \cdot A_{n}$. When we do so (after distributing that sum on the left) it give us

$$
\pi 2^{n-4} \cdot A_{n}-\frac{4}{n^{2}} \sum_{j=0}^{(n-2) / 4}\binom{n}{2 j}=\frac{4(n-1)}{n} \sum_{j^{\prime}=0}^{(n-6) / 4}\binom{n-2}{2 j^{\prime}+1} \frac{1}{\left((n-2) / 2-\left(2 j^{\prime}+1\right)\right)^{2}}
$$

Likewise, since $n \equiv 2 \bmod 4$, then $n-2 \equiv 0 \bmod 4$, and so if we use equation (3) for A_{n-2} then we recognize that the sum on the right is equal to $\pi 2^{(n-2)-4} A_{n-2}$. This means we can re-write the above equation as

$$
\pi 2^{n-4} \cdot A_{n}-\frac{4}{n^{2}} \sum_{j=0}^{(n-2) / 4}\binom{n}{2 j}=\frac{4(n-1)}{n} \cdot \pi 2^{n-6} \cdot A_{n-2}
$$

Since $n \equiv 2 \bmod 4$, then the sum on the left of the above equation is exactly one quarter of the entire sum of the nth row of Pascal's triangle. The entire sum would be 2^{n}, so we have (after adjusting the powers of 2 on the right)

$$
\pi 2^{n-4} \cdot A_{n}-\frac{4}{n^{2}} \cdot 2^{n-2}=\frac{n-1}{n} \cdot \pi 2^{n-4} \cdot A_{n-2}
$$

If we now divide by $\pi 2^{n-4}$ and re-arrange the terms, we obtain

$$
A_{n}=\frac{n-1}{n} A_{n-2}+\frac{16}{\pi n^{2}},
$$

as desired (for $n \equiv 2 \bmod 4$).
Finally, we consider $n \equiv 0 \bmod 4$. Looking back once more at equation (4), we first factor out 2^{2} from the $(n-2 j)^{2}$ in the denominator on the left, and likewise from the denominator in the right. We also replace $n-2$ with q in the expression on the right, leaving us with

$$
\binom{n}{j} \frac{1}{4(n / 2-j)^{2}}-\frac{1}{n^{2}}\binom{n}{j}=\frac{4(n-1)}{n}\binom{q}{j-1} \frac{1}{4(q / 2-(j-1))^{2}} .
$$

We now multiply through by 4 , and replace j with $2 j+1$, giving us

$$
\begin{equation*}
\binom{n}{2 j+1} \frac{1}{(n / 2-(2 j+1))^{2}}-\frac{4}{n^{2}}\binom{n}{2 j+1}=\frac{4(n-1)}{n}\binom{q}{2 j} \frac{1}{(q / 2-2 j)^{2}} \tag{7}
\end{equation*}
$$

We sum both sides of equation (7) from $j=0$ to $j=(n-4) / 4$ to obtain

$$
\sum_{j=0}^{(n-4) / 4}\binom{n}{2 j+1} \frac{1}{(n / 2-(2 j+1))^{2}}-\frac{4}{n^{2}}\binom{n}{2 j+1}=\frac{4(n-1)}{n} \sum_{j=0}^{(n-4) / 4}\binom{q}{2 j} \frac{1}{(q / 2-2 j)^{2}}
$$

Thanks to our equation for A_{n} in equation (3) for $n \equiv 0 \bmod 4$, we recognize that we can re-write the sum of the first expression on the left above as $\pi 2^{n-4} \cdot A_{n}$. When we do so (after distributing that sum on the left, and after also replacing $n-4$ with $q-2$ in the upper bound of the sum on the right) it give us

$$
\pi 2^{n-4} \cdot A_{n}-\frac{4}{n^{2}} \sum_{j=0}^{(n-4) / 4}\binom{n}{2 j+1}=\frac{4(n-1)}{n} \sum_{j=0}^{(q-2) / 4}\binom{q}{2 j} \frac{1}{(q / 2-2 j)^{2}}
$$

Since $n \equiv 0 \bmod 4$ and since $q=n-2$, then $q \equiv 2 \bmod 4$, and so if we use equation (2) for $A_{q}=A_{n-2}$ then we recognize that the sum on the right is equal to $\pi 2^{(n-2)-4} A_{n-2}$. This means we can re-write the above equation as

$$
\pi 2^{n-4} \cdot A_{n}-\frac{4}{n^{2}} \sum_{j=0}^{(n-4) / 4}\binom{n}{2 j+1}=\frac{4(n-1)}{n} \cdot \pi 2^{n-6} \cdot A_{n-2}
$$

Since $n \equiv 0 \bmod 4$, then the sum on the left of the above equation is exactly one quarter of the entire sum of the nth row of Pascal's triangle. That entire sum would be 2^{n}, so we have (after adjusting the powers of 2 on the right)

$$
\pi 2^{n-4} \cdot A_{n}-\frac{4}{n^{2}} \cdot 2^{n-2}=\frac{n-1}{n} \cdot \pi 2^{n-4} \cdot A_{n-2}
$$

If we now divide by $\pi 2^{n-4}$ and re-arrange the terms, we obtain

$$
A_{n}=\frac{n-1}{n} A_{n-2}+\frac{16}{\pi n^{2}},
$$

as desired (for $n \equiv 0 \bmod 4$).
Having covered all the cases for n, this completes the proof.

4 Connections to the OEIS

As we mentioned earlier, the numbers that appear in Theorem 1 are related to the sequence A296726. Here is the connection.

Theorem 4. For A_{n} as defined above, then

$$
\begin{align*}
& \text { for } n \text { odd, } \quad A_{n}=\frac{8}{\pi} \cdot \frac{n!}{(n!!)^{2}} \cdot \sum_{j=0}^{(n-1) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1} \text {, } \tag{8}\\
& \text { and for } n \text { even, } \quad A_{n}=\frac{16}{\pi} \cdot \frac{n!}{(n!!)^{2}} \cdot \sum_{j=0}^{(n-2) / 2} \frac{(2 j)!!}{(2 j+1)!!} \frac{1}{2 j+2} \text {. } \tag{9}
\end{align*}
$$

Furthermore, the numbers

$$
\begin{equation*}
n!\sum_{j=0}^{(n-1) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1} \quad \text { for } n \text { odd } \tag{10}
\end{equation*}
$$

from equation (8) above, appear as every other entry in A296726, the terms from the exponential generating function for $\arcsin (x) /(1-x)$. Likewise, the numbers

$$
\begin{equation*}
n!\sum_{j=0}^{(n-2) / 2} \frac{(2 j)!!}{(2 j+1)!!} \frac{1}{2 j+2} \quad \text { for } n \text { even } \tag{11}
\end{equation*}
$$

from equation (9) above, appear as every other entry in A372324, the terms from exponential generating function for $\arcsin ^{2}(x) /(2(1-x))$.

We recall that the notation n ! refers to the usual factorial function, and the notation $n!!$ is the less-familiar double factorial function [3]. Really, it's more like an "every other factorial", and here is the definition:

$$
\begin{aligned}
(2 j)!! & =(2 j)(2 j-2)(2 j-4) \cdots 6 \cdot 4 \cdot 2, \\
(2 j+1)!! & =(2 j+1)(2 j-1)(2 j-3) \cdots 5 \cdot 3 \cdot 1 .
\end{aligned}
$$

We also agree that $0!!=(-1)!!=1$.
Proof of Theorem 4. We begin with n odd. We define A_{n}^{\prime} to be the right-hand side of equation (8), so that

$$
\begin{equation*}
A_{n}^{\prime}=\frac{8}{\pi} \cdot \frac{p!}{(n!!)^{2}} \cdot \sum_{j=0}^{(n-1) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1} \tag{12}
\end{equation*}
$$

We know from the first statement in Theorem 3 that

$$
A_{n}=\frac{n-1}{n} A_{n-2}+\frac{8}{\pi} \cdot \frac{1}{n^{2}}
$$

We now seek to prove that

$$
\begin{equation*}
A_{n}^{\prime}=\frac{n-1}{n} A_{n-2}^{\prime}+\frac{8}{\pi} \cdot \frac{1}{n^{2}} . \tag{13}
\end{equation*}
$$

This, along with the fact that $A_{1}=A_{1}^{\prime}=8 / \pi$, is all we will need.
We begin with the easily-verified statement

$$
\begin{equation*}
\frac{n!}{(n!!)^{2}} \cdot \frac{(n-2)!!}{(n-1)!!} \cdot \frac{1}{n}=\frac{1}{n^{2}} . \tag{14}
\end{equation*}
$$

Now, starting with the right-hand side of equation (12), we use the definition of A_{n}^{\prime} to write

$$
\frac{n-1}{n} A_{n-2}^{\prime}+\frac{8}{\pi} \cdot \frac{1}{n^{2}}=\frac{8}{\pi}\left(\frac{1}{n^{2}}+\frac{n-1}{n} \cdot \frac{(n-2)!}{((n-2)!!)^{2}} \sum_{j=0}^{(n-3) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1}\right) .
$$

Since

$$
\frac{n-1}{n} \cdot \frac{(n-2)!}{((n-2)!!)^{2}}=\frac{n(n-1)}{n^{2}} \cdot \frac{(n-2)!}{((n-2)!!)^{2}}=\frac{n!}{(n!!)^{2}},
$$

we can re-write the previous equation as

$$
\frac{n-1}{n} A_{n-2}^{\prime}+\frac{8}{\pi} \cdot \frac{1}{n^{2}}=\frac{8}{\pi}\left(\frac{1}{n^{2}}+\frac{n!}{(n!!)^{2}} \sum_{j=0}^{(n-3) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1}\right)
$$

We now use the expression for $1 / n^{2}$ in equation (14) to re-write the above equation as

$$
\frac{n-1}{n} A_{n-2}^{\prime}+\frac{8}{\pi} \cdot \frac{1}{n^{2}}=\frac{8}{\pi}\left(\frac{n!}{(n!!)^{2}} \cdot \frac{(n-2)!!}{(n-1)!!} \cdot \frac{1}{n}+\frac{n!}{(n!!)^{2}} \sum_{j=0}^{(n-3) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1}\right)
$$

and we add that first term on the right into the sum (as the $j=(n-1) / 2$ term) to give us

$$
\frac{n-1}{n} A_{n-2}^{\prime}+\frac{8}{\pi} \cdot \frac{1}{n^{2}}=\frac{8}{\pi} \frac{n!}{(n!!)^{2}} \sum_{j=0}^{(n-1) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1}=A_{n}^{\prime}
$$

as desired.
Hence, both A_{n} and A_{n}^{\prime} satisfy the same recursion from equation (13), and since they
also start at the same value of $A_{1}=A_{1}^{\prime}=1$, then they are indeed identical, thus giving us the desired equality in equation (8) in the statement of our theorem.

Next, we will show that the numbers

$$
n!\sum_{j=0}^{(n-1) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1}
$$

from equation (10) really are the same as every other entry in A296726, which is the list of coefficients for the exponential generating function for $\arcsin (x) /(1-x)$. To show this, we begin with the series for $1 /(1-x)$ which is

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots,
$$

and for $\arcsin x$ which is

$$
\arcsin x=x+\frac{1}{3!} x^{3}+\frac{9}{5!} x^{5}+\frac{225}{7!} x^{7}+\frac{11025}{9!} x^{9}+\cdots,
$$

thanks to A177145. And furthermore, thanks to A001818, we can re-write those numerators as follows:

$$
\arcsin x=\frac{((-1)!!)^{2}}{1!} x+\frac{(1!!)^{2}}{3!} x^{3}+\frac{(3!!)^{2}}{5!} x^{5}+\frac{(5!!)^{2}}{7!} x^{7}+\frac{(7!!)^{2}}{9!} x^{9}+\cdots
$$

Hence, since the generating function for $\arcsin (x) /(1-x)$ will be the convolution of the generating functions for $\arcsin x$ and $1 /(1-x)$, then the nth term in the exponential generating function for $\arcsin (x) /(1-x)$, for n odd, will be

$$
n!\left(\frac{((-1)!!)^{2}}{1!}+\frac{(1!!)^{2}}{3!}+\frac{(3!!)^{2}}{5!}+\cdots+\frac{((n-2)!!)^{2}}{n!}\right)
$$

which we can write as

$$
n!\sum_{j=0}^{(n-1) / 2} \frac{((2 j-1)!!)^{2}}{(2 j+1)!}
$$

Now, since $(2 j+1)!=(2 j-1)!!(2 j)!!(2 j+1)$, then the above expression becomes

$$
n!\sum_{j=0}^{(n-1) / 2} \frac{(2 j-1)!!}{(2 j)!!} \frac{1}{2 j+1}
$$

as seen in equation (10).

The cases for n even are quite similar, and we leave the details to the reader.

5 Technical Results

Before we can begin the proof, we will need some preliminary results.
Lemma 5. Let N and q be positive integers. Then,

$$
\text { for } N \text { even, } \quad \sum_{\ell=1}^{N / 2} \sin \frac{q \ell 2 \pi}{N}=\left\{\begin{array}{cc}
0 & \text { for } q \text { even } \tag{15}\\
\cot \frac{q \pi}{N} & \text { for } q \text { odd. }
\end{array}\right.
$$

Proof. We call upon Lagrange's Trigonometric Identity [2], which states that

$$
\begin{equation*}
\sum_{\ell=0}^{m} \sin \ell \theta=\frac{\cos \theta / 2-\cos (m+1 / 2) \theta}{2 \sin \theta / 2} \tag{16}
\end{equation*}
$$

Since we are assuming that N is even, we replace m with $N / 2$ and we replace θ with $q 2 \pi / N$ in equation (16) to get

$$
\begin{equation*}
\sum_{\ell=0}^{N / 2} \sin \frac{q \ell 2 \pi}{N}=\frac{\cos \frac{q \pi}{N}-\cos \frac{(N+1) q \pi}{N}}{2 \sin \frac{q \pi}{N}} \tag{17}
\end{equation*}
$$

Now, $\cos \frac{(N+1) q \pi}{N}$ can be written as $\cos \left(q \pi+\frac{q \pi}{N}\right)$, and for q even then $q \pi$ is an even multiple of π and so $\cos \left(q \pi+\frac{q \pi}{N}\right)$ equals $\cos \frac{q \pi}{N}$. However, for q odd then $q \pi$ is an odd multiple of π and so $\cos \left(q \pi+\frac{q \pi}{N}\right)$ equals $-\cos \frac{q \pi}{N}$. When we plug these simplifications into the numerator of equation (17), we get either 0 or $2 \cos \frac{q \pi}{N}$ in the numerator depending on whether q is even or odd, respectively, and this gives us our desired formula.

Lemma 6. Let N and q be positive integers. Then,

$$
\text { for } N, q \text { even, } \quad \sum_{\ell=1}^{N / 2} \sin \frac{q \ell \pi}{N}=\left\{\begin{array}{cl}
0 & \text { for } q \equiv 0 \bmod 4 \tag{18}\\
\cot \frac{q \pi}{2 N} & \text { for } q \equiv 2 \bmod 4 .
\end{array}\right.
$$

Proof. We call once more upon Lagrange's Trigonometric Identity (16). Since N is again
even, we will replace m with $N / 2$ and we replace θ with $q \pi / N$ in equation (16) to get

$$
\begin{equation*}
\sum_{\ell=0}^{N / 2} \sin \frac{q \ell \pi}{N}=\frac{\cos \frac{q \pi}{2 N}-\cos \frac{(N+1) q \pi}{2 N}}{2 \sin \frac{q \pi}{2 N}} \tag{19}
\end{equation*}
$$

Now, $\cos \frac{(N+1) q \pi}{2 N}$ can be written as $\cos \left(\frac{q \pi}{2}+\frac{q \pi}{2 N}\right)$, and for $q \equiv 0 \bmod 4$ then $\frac{q \pi}{2}$ is an even multiple of π and so $\cos \left(\frac{q \pi}{2}+\frac{q \pi}{2 N}\right)$ simplifies to $\cos \frac{q \pi}{2 N}$. However, for $q \equiv 2 \bmod 4$ then $\frac{q \pi}{2}$ is an odd multiple of π is odd and so $\cos \left(\frac{q \pi}{2}+\frac{q \pi}{2 N}\right)$ simplifies to $-\cos \frac{q \pi}{2 N}$ When we plug these simplifications into the right-hand side of equation (19), we get either 0 or $2 \cos \frac{q \pi}{2 N}$ in the numerator depending on whether q is equivalent to 0 or $2 \bmod 4$, respectively, and this gives us our desired formula.

Lemma 7. For x any real number,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\frac{1}{k}-1\right) \cot \frac{x}{k-1}+\left(\frac{1}{k}+1\right) \cot \frac{x}{k+1}=\frac{4}{x} \tag{20}
\end{equation*}
$$

Proof. We begin with the Taylor expansion for the cotangent, which gives us

$$
\cot \theta=\frac{1}{\theta}-\frac{\theta}{3}-\frac{\theta^{3}}{45}+\cdots=\frac{1}{\theta}+\mathcal{O}(\theta)
$$

If we apply this to our limit, we get

$$
\left(\frac{1}{k}-1\right)\left(\frac{k-1}{x}+\mathcal{O}\left(\frac{x}{k-1}\right)\right)+\left(\frac{1}{k}+1\right)\left(\frac{k+1}{x}+\mathcal{O}\left(\frac{x}{k+1}\right)\right)
$$

Since x is fixed, we can remove it from inside the \mathcal{O}. After expanding the above expression, we get

$$
\left(\frac{1-k}{k}\right)\left(\frac{k-1}{x}\right)+\left(\frac{1-k}{k}\right) \cdot \mathcal{O}\left(\frac{1}{k-1}\right)+\left(\frac{1+k}{k}\right)\left(\frac{k+1}{x}\right)+\left(\frac{1+k}{k}\right) \cdot \mathcal{O}\left(\frac{1}{k+1}\right) .
$$

This simplifies nicely to

$$
\left(\frac{(1-k)(k-1)+(1+k)(k+1)}{k x}\right)+\mathcal{O}\left(\frac{1}{k}\right) .
$$

We reduce this to get

$$
\left(\frac{(1+k)^{2}-(1-k)^{2}}{k x}\right)+\mathcal{O}\left(\frac{1}{k}\right)=\left(\frac{4 k}{k x}\right)+\mathcal{O}\left(\frac{1}{k}\right)=\frac{4}{x}+\mathcal{O}\left(\frac{1}{k}\right)
$$

which, as $k \rightarrow \infty$, gives us our desired $4 / x$.

Lemma 8. Let k and q be odd numbers. Then, if we define

$$
\begin{equation*}
B_{q}=\lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2} \int_{\ell 2 \pi /(k+1)}^{\ell 2 \pi /(k-1)}(\cos q k x-\cos q x) d x \tag{21}
\end{equation*}
$$

we have that

$$
B_{q}=\frac{4}{q^{2} \pi} .
$$

Proof. First, we integrate the right-hand side of equation (21) to get

$$
\begin{equation*}
B_{q}=\lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2} \frac{1}{k q} \sin q k x-\left.\frac{1}{q} \sin q x\right|_{x=\ell 2 \pi /(k+1)} ^{x=\ell 2 \pi /(k-1)} \tag{22}
\end{equation*}
$$

Taking out the $1 / q$ and plugging in the endpoints, we get

$$
\begin{equation*}
B_{q}=\frac{1}{q} \lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2}\left(\frac{1}{k} \sin \frac{q k \ell 2 \pi}{k-1}-\sin \frac{q \ell 2 \pi}{k-1}\right)-\left(\frac{1}{k} \sin \frac{q k \ell 2 \pi}{k+1}-\sin \frac{q \ell 2 \pi}{k+1}\right) \tag{23}
\end{equation*}
$$

Now, if we write

$$
\frac{q k \ell 2 \pi}{k-1}=\frac{q(k-1+1) \ell 2 \pi}{k-1}=q \ell 2 \pi+\frac{q \ell 2 \pi}{k-1}
$$

then we see that

$$
\begin{equation*}
\sin \frac{q k \ell 2 \pi}{k-1}=\sin \frac{q \ell 2 \pi}{k-1} . \tag{24}
\end{equation*}
$$

Likewise, if we write

$$
\frac{q k \ell 2 \pi}{k+1}=\frac{q(k+1-1) \ell 2 \pi}{k-1}=q \ell 2 \pi-\frac{q \ell 2 \pi}{k-1}
$$

then we see that

$$
\begin{equation*}
\sin \frac{q k \ell 2 \pi}{k+1}=-\sin \frac{q \ell 2 \pi}{k-1} . \tag{25}
\end{equation*}
$$

By substituting equations (24) and (25) into the right-hand side of equation (23), we have that

$$
\begin{equation*}
B_{q}=\frac{1}{q} \lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2}\left(\frac{1}{k}-1\right) \sin \frac{q \ell 2 \pi}{k-1}+\left(\frac{1}{k}+1\right) \sin \frac{q \ell 2 \pi}{k+1} . \tag{26}
\end{equation*}
$$

We now distribute the sum, and change the upper limit of the second summation from $(k-1) / 2$ to $(k+1) / 2$, which fortunately does not change the value of the sum, to get

$$
\begin{equation*}
B_{q}=\frac{1}{q} \lim _{k \rightarrow \infty}\left(\frac{1}{k}-1\right) \sum_{\ell=1}^{(k-1) / 2} \sin \frac{q \ell 2 \pi}{k-1}+\left(\frac{1}{k}+1\right) \sum_{\ell=1}^{(k+1) / 2} \sin \frac{q \ell 2 \pi}{k+1} . \tag{27}
\end{equation*}
$$

At this point, since k is odd, then both $k-1$ and $k+1$ are even and so we can apply Lemma 5 (with q odd) to rewrite the above equation as

$$
\begin{equation*}
B_{q}=\frac{1}{q} \lim _{k \rightarrow \infty}\left(\frac{1}{k}-1\right) \cot \frac{q \pi}{k-1}+\left(\frac{1}{k}+1\right) \cot \frac{q \pi}{k+1} . \tag{28}
\end{equation*}
$$

We can now apply Lemma 7 with $x=q \pi$ to the above equation to get that

$$
B_{q}=\frac{1}{q} \frac{4}{q \pi}=\frac{4}{q^{2} \pi},
$$

as desired.
Lemma 9. For k odd and q even, if we define

$$
\begin{equation*}
C_{q}=\lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2} \int_{(\ell-1) \pi /(k-1)}^{\ell \pi /(k+1)} f_{q, k}(x) d x-\int_{\ell \pi /(k+1)}^{\ell \pi /(k-1)} f_{q, k}(x) d x \tag{29}
\end{equation*}
$$

with

$$
f_{q, k}(x)=\cos q x-\cos q k x
$$

then we have that

$$
C_{q}=\left\{\begin{array}{cc}
0 & \text { for } q \equiv 0 \bmod 4 \\
\frac{16}{q^{2} \pi} & \text { for } q \equiv 2 \bmod 4
\end{array}\right.
$$

Proof. If we let $F_{q, k}(x)$ be the anti-derivative of $f_{q, k}(x)=\cos q x-\cos q k x$, then equation (29) becomes

$$
\begin{equation*}
C_{q}=\left.\lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2} F_{q, k}(x)\right|_{(\ell-1) \pi /(k-1)} ^{\ell \pi /(k+1)}+\left.F_{q, k}(x)\right|_{\ell \pi /(k-1)} ^{\ell \pi /(k+1)} \tag{30}
\end{equation*}
$$

where we replaced $-F_{q, k}$ with $F_{q, k}$ and reversed the limits in the second integral. We note that almost every term in the above expression for C_{q} will appear twice when we plug in the endpoints and write out the sum, with the exception of $F_{q, k}(0)$ and $F_{q, k}(\pi / 2)$ which will each appear once. However, since an easy calculation gives us that

$$
\begin{equation*}
F_{q, k}(x)=\frac{1}{q} \sin q x-\frac{1}{q k} \sin q k x \tag{31}
\end{equation*}
$$

then $F_{q, k}(0)=0$ and since q is even then $F_{q, k}(\pi / 2)=0$ as well.
So, if we plug in the endpoints, write out the sum, and replace the $F_{q, k}(0)$ term with $F_{q, k}(\pi / 2)$, them equation (30) becomes

$$
\begin{equation*}
C_{q}=2 \lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2} F_{q, k}\left(\frac{\ell \pi}{k+1}\right)-F_{q, k}\left(\frac{\ell \pi}{k-1}\right) . \tag{32}
\end{equation*}
$$

Replacing $F_{q, k}$ with the expression in equation (31) and taking out the $1 / q$ gives us

$$
\begin{equation*}
C_{q}=\frac{2}{q} \lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2}\left(\sin \frac{q \ell \pi}{k+1}-\frac{1}{k} \sin \frac{q k \ell \pi}{k+1}\right)-\left(\sin \frac{q \ell \pi}{k-1}-\frac{1}{k} \sin \frac{q k \ell \pi}{k-1}\right) . \tag{33}
\end{equation*}
$$

Now, if we write

$$
\frac{q k \ell \pi}{k+1}=\frac{q(k+1-1) \ell \pi}{k+1}=q \ell \pi-\frac{q \ell \pi}{j+1}
$$

and if we remember that q is even, then we see that

$$
\begin{equation*}
\sin \frac{q k \ell \pi}{k+1}=-\sin \frac{q \ell \pi}{k+1} . \tag{34}
\end{equation*}
$$

Likewise, if we write

$$
\frac{q k \ell \pi}{k-1}=\frac{q(k-1+1) \ell \pi}{k-1}=q \ell \pi+\frac{q \ell \pi}{k-1}
$$

and again recall that q is even, then we see that

$$
\begin{equation*}
\sin \frac{q k \ell \pi}{k-1}=\sin \frac{\ell 2 \pi}{k-1} \tag{35}
\end{equation*}
$$

By substituting equations (34) and (35) into the right-hand side of equation (33), we have that

$$
\begin{equation*}
C_{q}=\frac{2}{q} \lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2}\left(1+\frac{1}{k}\right) \sin \frac{q \ell \pi}{k+1}-\left(1-\frac{1}{k}\right) \sin \frac{q \ell \pi}{k-1} . \tag{36}
\end{equation*}
$$

We now distribute the sum, factor through the negative in the second expression, and change the upper limit of the first summation from $(k-1) / 2$ to $(k+1) / 2$, which fortunately does not change the value of the sum, to get

$$
\begin{equation*}
C_{q}=\frac{2}{q} \lim _{k \rightarrow \infty}\left(\frac{1}{k}+1\right) \sum_{\ell=1}^{(k+1) / 2} \sin \frac{q \ell \pi}{k+1}+\left(\frac{1}{k}-1\right) \sum_{\ell=1}^{(k-1) / 2} \sin \frac{q \ell \pi}{k-1} . \tag{37}
\end{equation*}
$$

At this point, since k is odd, then both $k+1$ and $k-1$ are even and so we can apply Lemma 6 (with q even). If $q / 2$ is even, then Lemma 6 tells us that both the above sums are zero and so $C_{q}=0$ in this case. If $q / 2$ is odd, we apply Lemma 6 to tell us that

$$
\begin{equation*}
C_{q}=\frac{2}{q} \lim _{k \rightarrow \infty}\left(\frac{1}{k}+1\right) \cot \frac{q \pi}{2(k+1)}+\left(\frac{1}{k}-1\right) \cot \frac{q \pi}{2(k-1)} \quad \text { for } q / 2 \text { odd. } \tag{38}
\end{equation*}
$$

We can now apply Lemma 7 with $x=q \pi / 2$ to the above equation to get that

$$
C_{q}=\frac{2}{q} \frac{4}{q \pi / 2}=\frac{16}{q^{2} \pi} \quad \text { for } q / 2 \text { odd }
$$

as desired.

6 Proof of Theorem 1

Proof of Theorem 1. We begin with the area between $\cos ^{n} x$ and $\cos ^{n} k x$ for n odd. As seen in this picture with $n=3$ and $k=11$, there is odd symmetry across the midpoint $x=\pi / 2$ and so each region "below" $\cos ^{3} x$ (in color) has an equivalent area "above" $\cos ^{3} x$ (in a matching color).

In other words, we can just find the areas "above" $\cos ^{n} x$ on the interval $[0, \pi]$ and then double them. To do so, we first need to find the intersection points. Since n is odd, then to find the the solutions to $\cos ^{n} x=\cos ^{n} k x$ we take the nth root of both sides and rewrite it to get $\cos x-\cos k x=0$, and we then use a trig identity to write that as

$$
\sin \frac{(k+1) x}{2} \cdot \sin \frac{(k-1) x}{2}=0 .
$$

This has solutions $x=\ell \cdot 2 \pi /(k+1)$ and $x=\ell \cdot 2 \pi /(k-1)$ for ℓ any integer, and we note that we can order these as follows:

$$
\begin{aligned}
& 0<\frac{1 \cdot 2 \pi}{k+1}<\frac{1 \cdot 2 \pi}{k-1}<\frac{2 \cdot 2 \pi}{k+1}<\frac{2 \cdot 2 \pi}{k-1}<\cdots \\
& \cdots<\frac{\ell \cdot 2 \pi}{k+1}<\frac{\ell \cdot 2 \pi}{k-1}<\frac{(\ell+1) \cdot 2 \pi}{k+1}<\frac{(\ell+1) \cdot 2 \pi}{k-1}<\cdots \\
& \cdots<\frac{(k-1) / 2 \cdot 2 \pi}{k+1}<\frac{(k-1) / 2 \cdot 2 \pi}{k-1}=\pi
\end{aligned}
$$

and in particular we have that

$$
\frac{\ell \cdot 2 \pi}{k-1}<\frac{(\ell+1) \cdot 2 \pi}{k+1} \quad \text { so long as } \ell<(k-1) / 2
$$

With these intersection points, we have the following formula for the total area which takes just the "upper" regions and doubles them:

$$
\begin{equation*}
2 \sum_{\ell=1}^{(k-1) / 2} \int_{\ell 2 \pi /(k+1)}^{\ell 2 \pi /(k-1)}\left(\cos ^{n} k x-\cos ^{n} x\right) d x \tag{39}
\end{equation*}
$$

We now use the power-reduction formula for cosine to an odd power n,

$$
\cos ^{n} \theta=\frac{2}{2^{n}} \sum_{j=0}^{(n-1) / 2}\binom{n}{j} \cos (n-2 j) \theta,
$$

and when we substitute this into equation (39), twice, we get the following expression for the area:

$$
\begin{equation*}
2 \sum_{\ell=1}^{(k-1) / 2} \int_{\ell 2 \pi /(k+1)}^{\ell 2 \pi /(k-1)} \frac{2}{2^{n}} \sum_{j=0}^{(n-1) / 2}\binom{n}{j}(\cos (n-2 j) k x-\cos (n-2 j) x) d x \tag{40}
\end{equation*}
$$

Of course, we want the limit of the expression in (40) as k goes to infinity, so when we do this, and re-arrange the sums and integrals and such, we get

$$
\begin{equation*}
A_{n}=\frac{4}{2^{n}} \sum_{j=0}^{(n-1) / 2}\binom{n}{j} \lim _{k \rightarrow \infty} \sum_{\ell=1}^{(k-1) / 2} \int_{\ell 2 \pi /(k+1)}^{\ell 2 \pi /(k-1)}(\cos (n-2 j) k x-\cos (n-2 j) x) d x \tag{41}
\end{equation*}
$$

We now recognize the limit in the right-hand side of equation (41) as being the same as in Lemma 8. In other words, we have that

$$
\begin{equation*}
A_{n}=\frac{4}{2^{n}} \sum_{j=0}^{(n-1) / 2}\binom{n}{j} B_{n-2 j} \tag{42}
\end{equation*}
$$

and thanks to Lemma 8, this becomes

$$
\begin{align*}
A_{n} & =\frac{4}{2^{n}} \sum_{j=0}^{(n-1) / 2}\binom{n}{j} \frac{4}{(n-2 j)^{2} \pi} \tag{43}\\
& =\frac{8}{\pi} \cdot \frac{1}{2^{n-1}} \cdot \sum_{j=0}^{(n-1) / 2}\binom{n}{j} \frac{1}{(n-2 j)^{2}}, \tag{44}
\end{align*}
$$

as desired.
The area between $\cos ^{n} x$ and $\cos ^{n} k x$ for k even is quite similar and leads to the same formula as seen in equation (44); we leave the details to the reader.

7 Proof of Theorem 2

Proof of Theorem 2. We begin with the area between $\cos ^{n} x$ and $\cos ^{n} k x$ for k odd. As seen in this picture with $n=4$ and $k=7$, there is even symmetry across the midpoint $x=\pi / 2$ and so each region on the left of $x=\pi / 2$ (in color) has an equivalent area on the right of $w=\pi / 2$ (in a matching color).

In other words, we can just find the areas from 0 to $\pi / 2$ and double them. To do so, we first need to find the intersection points. If we set

$$
\begin{equation*}
\cos ^{n} x=\cos ^{n} k x \tag{45}
\end{equation*}
$$

and take the nth root of both sides, then since n is even we will get

$$
\cos x= \pm \cos k x
$$

which becomes two equations,

$$
\cos x-\cos k x=0 \quad \text { and } \quad \cos x+\cos k x=0
$$

Using two familiar trig identities, these become

$$
\sin \frac{(k+1) x}{2} \sin \frac{(k-1) x}{2}=0 \quad \text { and } \quad \cos \frac{(k+1) x}{2} \cos \frac{(k-1) x}{2}=0
$$

The first equation has solutions $x=0$, and also $x=2 \pi /(k+1)$ and $x=2 \pi /(k-1)$, and also $x=4 \pi /(k+1)$ and $x=4 \pi /(k-1)$, and so on. The second equation has solutions $x=\pi /(k+1)$ and $x=\pi /(k-1)$, and also $x=3 \pi /(k+1)$ and $x=3 \pi /(k-1)$, and so on. Hence, the complete list of solutions to equation (45) in the interval $[0, \pi / 2]$, written out in order, is

$$
\begin{aligned}
0<\frac{\pi}{k+1}<\frac{\pi}{k-1}<\frac{2 \pi}{k+1}<\frac{2 \pi}{k-1} & <\frac{3 \pi}{k+1}<\frac{3 \pi}{k-1}<\cdots \\
& \cdots<\frac{(k-1) / 2 \cdot \pi}{k+1}<\frac{(k-1) / 2 \cdot \pi}{k-1}=\frac{\pi}{2}
\end{aligned}
$$

With these intersection points, we have the following formula for the total area (for k any fixed odd number) which takes just the regions on the right of $x=\pi / 2$ and doubles them:

$$
\begin{equation*}
2 \sum_{\ell=1}^{(k-1) / 2} \int_{(\ell-1) \pi /(k-1)}^{\ell \pi /(k+1)} f_{n}(x) d x+\int_{\ell \pi /(k+1)}^{\ell \pi /(k-1)}-f_{n}(x) d x \tag{46}
\end{equation*}
$$

where $f_{n}(x)=\cos ^{n} x-\cos ^{n} k x$.
We now use the power-reduction formula for cosine to an even power n,

$$
\cos ^{n} \theta=\frac{1}{2^{n}}\binom{n}{n / 2}+\frac{2}{2^{n}} \sum_{j=0}^{(n / 2)-1}\binom{n}{j} \cos (n-2 j) \theta
$$

to give us that

$$
f_{n}(x)=\frac{2}{2^{n}} \sum_{j=0}^{(n / 2)-1}\binom{n}{j}(\cos (n-2 j) x-\cos (n-2 j) k x) .
$$

When we substitute this into equation (46) twice, and distribute the outer sum, we get the following expression for the area:

$$
\begin{align*}
& 2 \sum_{\ell=1}^{(k-1) / 2} \int_{(\ell-1) \pi /(k-1)}^{\ell \pi /(k+1)} \frac{2}{2^{n}} \sum_{j=0}^{(n / 2)-1}\binom{n}{j}(\cos (n-2 j) x-\cos (n-2 j) k x) d x \\
& \quad-2 \sum_{\ell=1}^{(k-1) / 2} \int_{\ell \pi /(k+1)}^{\ell \pi /(k-1)} \frac{2}{2^{n}} \sum_{j=0}^{(n / 2)-1}\binom{n}{j}(\cos (n-2 j) x-\cos (n-2 j) k x) d x . \tag{47}
\end{align*}
$$

Of course, we want the limit of the expression in (47) as k goes to infinity, so when we do this, and re-arrange the sums and integrals and such, we get

$$
\begin{align*}
A_{n}=\frac{4}{2^{n}} \sum_{j=0}^{(n / 2)-1}\binom{n}{j} \lim _{k \rightarrow \infty}(& \sum_{\ell=1}^{(k-1) / 2} \int_{(\ell-1) \pi /(k-1)}^{\ell \pi /(k+1)}(\cos (n-2 j) x-\cos (n-2 j) k x) d x \\
& \left.-\sum_{\ell=1}^{(k-1) / 2} \int_{\ell \pi /(k+1)}^{\ell \pi /(k-1)}(\cos (n-2 j) x-\cos (n-2 j) k x) d x\right) \tag{48}
\end{align*}
$$

We now recognize the limit in the right-hand side of equation (48) as being the same as in Lemma 9. In other words, we now have that

$$
\begin{equation*}
A_{n}=\frac{4}{2^{n}} \sum_{j=0}^{(n / 2)-1}\binom{n}{j} C_{n-2 j} \tag{49}
\end{equation*}
$$

where $C_{n-2 j}$ from Lemma (9) is defined as

$$
C_{n-2 j}=\left\{\begin{array}{cl}
0 & \text { for } n-2 j \equiv 0 \bmod 4 \\
\frac{16}{(n-2 j)^{2} \pi} & \text { for } n-2 j \equiv 2 \bmod 4
\end{array}\right.
$$

We now consider the case when $n \equiv 2 \bmod 4$. In this case, if we write out the terms in equation (49) and use our definition of $C_{n-2 j}$ from above, we have only the terms with j even (as that is when $n-2 j \equiv 2 \bmod 4$), giving us

$$
A_{n}=\frac{4}{2^{n}}\left(\binom{n}{0} \frac{16}{(n)^{2} \pi}+\binom{n}{2} \frac{16}{(n-4)^{2} \pi}+\binom{n}{4} \frac{16}{(n-8)^{2} \pi}+\cdots+\binom{n}{(n / 2)-1} \frac{16}{(2)^{2} \pi}\right)
$$

We now factor out $16 /\left(2^{2} \pi\right)$ from each term, giving us

$$
A_{n}=\frac{4}{2^{n}} \frac{16}{2^{2} \pi}\left(\binom{n}{0} \frac{1}{(n / 2)^{2}}+\binom{n}{2} \frac{1}{(n / 2-2)^{2}}+\binom{n}{4} \frac{1}{(n / 2-4)^{2}}+\cdots+\binom{n}{(n / 2)-1} \frac{1}{(1)^{2}}\right)
$$

We re-index the above sum, and simplify the coefficients on the left, to get

$$
A_{n}=\frac{16}{\pi} \cdot \frac{1}{2^{n}} \cdot \sum_{j=0}^{(n-2) / 4}\binom{n}{2 j} \frac{1}{(n / 2-2 j)^{2}}
$$

as desired $($ for $n \equiv 2 \bmod 4)$.
Finally, for $n \equiv 0 \bmod 4$, we again write out the terms in equation (49) and use our definition of $C_{n-2 j}$ from above. This time, the only non-zero contributions come from j odd (as this is when $n-2 j \equiv 2 \bmod 4$), giving us

$$
A_{n}=\frac{4}{2^{n}}\left(\binom{n}{1} \frac{16}{(n-2)^{2} \pi}+\binom{n}{3} \frac{16}{(n-6)^{2} \pi}+\binom{n}{5} \frac{16}{(n-10)^{2} \pi}+\cdots+\binom{n}{(n / 2)-1} \frac{16}{(2)^{2} \pi}\right)
$$

We again factor out $16 /\left(2^{2} \pi\right)$ from each term, giving us
$A_{n}=\frac{4}{2^{n}} \frac{16}{2^{2} \pi}\left(\binom{n}{1} \frac{1}{(n / 2-1)^{2}}+\binom{n}{3} \frac{1}{(n / 2-3)^{2}}+\binom{n}{5} \frac{1}{(n / 2-5)^{2}}+\cdots+\binom{n}{(n / 2)-1} \frac{1}{(1)^{2} \pi}\right)$
We re-index the above sum, and simplify the coefficients on the left, to get

$$
A_{n}=\frac{16}{\pi} \cdot \frac{1}{2^{n}} \cdot \sum_{j=0}^{(n-4) / 4}\binom{n}{2 j+1} \frac{1}{(n / 2-(2 j+1))^{2}}
$$

as desired (for $n \equiv 0 \bmod 4$).
The area between $\cos ^{n} x$ and $\cos ^{n} k x$ for k even is quite similar and leads to the same formulas as seen above; we leave the details to the reader.

References

[1] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, Published electronically at https://oeis.org, 2023.
[2] Jonathan Balsam, Proof Without Words: Lagrange's Trigonometric Identity (Part II), College Math J. 54 (2023), 235.
[3] Henry Gould and Jocelyn Quaintance, Double Fun with Double Factorials, Math. Mag. 85 (2012), 177-192.

