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ABSTRACT

This paper investigates the distribution of public school expenditures across U.S. school districts
using a bayesian maximum entropy model. Covering the period 2000-2016, I explore how inter-
jurisdictional competition and household choice influence spending patterns within the public ed-
ucation sector, providing a novel empirical treatment of the Tiebout hypothesis within a statistical
equilibrium framework. The analysis reveals that these expenditures are characterized by sharply
peaked and positively skewed distributions, suggesting significant socio-economic stratification. Em-
ploying Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling, I fit these patterns
into a statistical equilibrium model to elucidate the roles of competition, as well as household mobility
and arbitrage in shaping the distribution of educational spending. The analysis reveals how the
scale parameters associated with competition and household choice critically shape the equilibrium
outcomes. The model and analysis offer a statistical basis for shaping policy measures intended to
affect distributional outcomes in scenarios characterized by the decentralized provision of local public
goods.

Keywords Public School Expenditures · Statistical Equilibrium · Bayesian Inference · Markov Chain Monte
Carlo (MCMC) Sampling · Maximum Entropy · Tiebout Hypothesis · Inter-jurisdictional Competition · Fiscal
Decentralization · Socioeconomic Stratification · Fiscal Policy Analysis.

1 Introduction

1.1 Tiebout Competition

A central problem in the economic analysis of the provision of local public goods is the lack of incentives of voters to
reveal their true demand. Tiebout [1956] proposed to study the problem of local public goods through a quasi-market
model in which consumer-voters express their preferences for local public goods by moving in and out of local
jurisdictions.The Tiebout hypothesis states that local jurisdictions will tend to sort into homogenous blocks with respect
to demand for local public goods and tax levels, when these are taken to be a form of prices in the model. The core idea
behind this hypothesis is that a Tiebout sorting equilibrium, if it exists, will eliminate inefficiencies associated with
demand diversity; households will not be forced to pay higher tax levels than they would otherwise prefer, nor are they
are able to free-ride on neighboring households’ relatively higher contributions to the local tax-service package.

Tiebout’s 1956 paper was, and continues to be, an important catalyst for renewed research in the analysis of decentralized
government finance. Tiebout’s major contribution was to challenge the standard belief of the time that there was no
market-based solution to the problem of local public goods provision. He did so by placing geographic location and
mobility at the core of the analysis, and by using the latter as a proxy for choice and preference revelation.
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There is no way in which the consumer can avoid revealing his preferences in a spatial economy.
Spatial mobility provides the local-goods counterpart to the private market’s shopping trip. Tiebout
(1956)

While Tiebout [1956] agreed with Musgrave [1939] and Samuelson [1954], that the determination of federal government
expenditures could only have a political solution, he argued for explaining variations in local government expenditures
in terms of decentralized sorting mechanisms (a market analogy) and not by alluding to simple majority voting schemes.

Tiebout’s hypothesized mechanism of competition, when seen though the lens of neoclassical equilibrium models,
may be understood as having three essential traits [Nechyba, 2020]. The first is that when local communities are
viewed as analogous to competing firms, decentralization will allow for the optimal provision of public services in the
presence of heterogeneous household demands. The second is the notion that competition will reduce incentives for
local governments to behave like ‘Leviathans’ [Jha, 2020]. The latter notion rests on the belief that the decentralized
procurement and provision of local public goods will counter the tendency of governments to arbitrarily extract higher
taxes from their residents [Brennan and Buchanan, 1980, Jimenez and Hendrick, 2010]. A third feature implies that
in ’equilibrium’, the Tiebout mechanism will lead households to sort (to some degree) on the basis of ability-to-pay
and household income. This latter feature is, of course, far from being unequivocally desirable. The characterization
of Tiebout sorting as an optimal outcome, possessing intrinsic merit mostly on account of its capacity to bring about
productive efficiencies, turns out to be at odds with basic legal notions regarding citizens’ rights to education [Jha, 2020].
An equilibrium in which public school expenditures and quality are highly correlated with household characteristics
presents non-negligible moral and legal challenges. The scope of these challenges has been duly evidenced by the
continued legal battles and policy debates over funding inequities in the US public education system for the past 50
years [Baker, 2021, Hertert et al., 1994]. The fact that the optimal outcome in a highly idealized formulation of the
Tiebout hypothesis turns out to be fundamentally at odds with what may be desirable at the policy or household level
(or is at the very least highly contestable), does not rule out the possibility that sorting and the rationing of government
resources are in fact shaped by Tiebout-like forces. It does however pose serious challenges to the modeling and
specification of the microeconomic primitives which drive the competitive process.

One of the fundamental problems that comes out of the use of applied general equilibrium models is that they force us
to consider observed economic distributions as resulting chiefly and mechanically from the interaction of optimizing
agents (households and governments) whose preferences are fully satisfied. This is a modeling strategy that rules out a
priori the possibility that agents’ expectations will remain unfulfilled in equilibrium.

In the context of the economic analysis of the determinants of heterogeneity in public school expenditure levels
and demand, where much of the theoretical and policy debates center around the explicit recognition that education
markets are structured by complex political and production processes, the requirement that fully optimizing behavior be
consistent with observed equilibria is hard to sustain. Furthermore, in the absence of plausible characterizations for the
microeconomic and political environments, it is hard to see how any useful insights may be extracted from the study of
general equilibrium forces and outcomes.

This concern has steered the Tiebout and education finance literature towards a path of building models of increased
mathematical and computational complexity, where elements such as heterogenous voting preferences and non-financial
inputs are incorporated in order to provide richer descriptions that are more empirically relevant, as well as plausible
from a microeconomic perspective [Nechyba, 2003, Kuminoff et al., 2010].

There has been a recent shift in the literature from building general equilibrium models to building computational equi-
librium models that straddle a wide spectrum covering both purely theoretical and empirically motivated formulations.
As Nechyba [2020] notes, all such models start by explicitly specifying the underlying mathematical structure of the
economic environment being modeled. That is, they provide a fully structural specification for household preferences,
school production functions, distributions for household characteristics in the model (such as income), as well as
mathematical descriptions for the political process (voting models), the fiscal environment, and the housing and private
school markets. Through simulation studies, the study of the equilibrium outcomes in these models is then expected to
yield meaningful policy insights, and to provide a sandbox for experimenting with out-of-sample policy interventions.

The problem is that the relevance of these simulation studies hinges on the empirical plausibility of the elaborate
microeconomic structure that is being used to represent the underlying mechanics of the data generating process, and
on the confidence we may have in the model’s parameters to adequately capture empirically relevant processes. But
if we consider the fact that the task of determining the empirical plausibility of any given model specification for
complex social environments with large degrees of freedom may be ill-posed and underdetermined [Scharfenaker and
Foley, 2017], then it is hard to see how the route of increasing model complexity in fully micro-founded general (or
computational) equilibrium models is likely to yield unambiguous and normatively unbiased results. There is a very
broad continuum of models and solutions that are consistent with any set of circumstantial data and evidence [Golan,
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2018]. And misspecification can show up either at the level of functional forms (production and preference functions),
criterion or decision functions, the specification of voting models, as well as priors for stochastic inputs in the model
(e.g. household characteristics).

This paper takes an alternative approach that makes use of maximum entropy methods and a statistical equilibrium
framework to model and study the effect of competition in shaping the distributions of local government education
expenditures for the period of 2000-2016 in the United States. The advantages of this maximum entropy/statistical
equilibrium framework are plenty, but a central one that we consider here is that it allows us to study the competitive
dynamics of the US public education market (a complex social systems with large degrees of freedom) without having
to commit a priori to a heavy mathematical scaffolding of the underlying microeconomic environment. Rather, it allows
is to study one plausible way in which the probabilistic structure of school district expenditures can be seen to emerge
from a pair of parsimonious behavioral and institutional constraints that we place on the underlying microeconomic
environment.

1.2 Unintended Outcomes, Market Efficiency and Tiebout Sorting

One of the interesting aspects of Tiebout’s original 1956 formulation is that it remains non-committal with respect to
any specific equilibrium model formulation, even if it highlights a set of stylized facts and features that the hypothetical
competitive process should meet. But as the history of the empirical tests of the Tiebout hypothesis has shown [Nechyba,
2020, Oates, 1969, Edel and Sclar, 1974], it is not truly possible to test all of the assumptions of the larger Tiebout
hypothesis at once without running into contradictions. For example, testing the assumption of residential mobility
alongside the capitalization of fiscal variables into housing prices may run against Tiebout’s larger efficiency hypothesis
(since the presence of capitalization is evidence for the existence of excess demand for housing in the jurisdiction where
taxes and local service levels are being capitalized) [Epple and Nechyba, 2004]>. Similarly, as we pointed above, the
existence of Tiebout sorting is to be better understood as a potentially unexpected macroeconomic outcome (to at least
some section of households). Seen under this light, the prospect of being able to reconcile the underlying political
contradictions of the education market with the assumption of fully maximizing households in a general equilibrium
model seems far-fetched. That said, we believe there is need and ample room to focus on some aspects of the Tiebout
hypothesis, and that it is possible to study the empirical support for the general claim that expenditures in local public
goods are heavily shaped (and at least partially explained) by competitive forces and a boundedly rational arbitrage that
takes place at the household level in terms of education consumption.

This paper applies the theoretical framework of the Quantal Response Statistical Equilibrium (QRSE) model developed
in Scharfenaker and Foley [2017]. As mentioned above, the approach taken by the paper is not fully agnostic with
respect to microeconomic structure, as it utilizes an entropy constrained model of residential mobility and jurisdictional
choice as the baseline characterization of household behavior. This baseline model makes the behavioral assumption
that households try to maximize the rate of return on tax expenditures (considered as prices for local education services),
under the constraint of a limited capacity to process market and political signals. In the context of low-income and
inner-city households, we put forward the idea that this limited capacity may also be interpreted as a form of restricted
economic agency. The basic outline of this behavioral model is very similar to the one found in Sims’ rational inattention
program [Sims, 2003]. Through the inclusion of an information-theoretic constraint on the utility maximizing program
of households, this baseline specification delivers a meaningful probabilistic description of household behavior.

1.3 Sample and Paper Structure

The statistical equilibrium distribution of the QRSE model presented here is a positively skewed unimodal distribution
of the household rate of return for local tax expenditures, with four parameters T , S, µ, and α that qualitatively predict
the observed data and give insights into the possible range of variation across sub-sampling schemes. We use US public
education finance data for all school districts in the period of 2000-2016. We then apply Bayesian inference and MCMC
sampling to fit the observed distribution for the entire period to the theoretical QRSE model, and to recover posterior
distributions for the four unknown parameters.

The paper consists of 5 sections. Section 2 provides a description of the data used and presents empirical the frequency
distributions for the key fiscal and expenditure variables used in building the model. Section 3 puts our application of
the QRSE model into context by discussing fiscal decentralization, Smith’s theory of competition, and the measurable
implications of the Tiebout hypothesis. Section 4 then develops the paper’s QRSE treatment of Tiebout competition and
derives the statistical equilibrium density for the local per pupil rate of return on tax and service charges, which we
term educational returns. Section 5 describes the Bayesian estimation of the model, and discusses results for the four
main parameter estimates.
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2 School District Variables

2.1 Data

This paper uses data from the National Center for Education Statistics’ Common Core of Data, the US Census Bureau
Small Area Income and Poverty Estimates, and the US Department of Education’s EDFacts initiative 1.

We consider a sample of local expenditures in primary and secondary education, local taxes, enrollment and population
estimates for all 50 US states and school districts (on average ~ 13,500), in the 2000-2016 period. We excluded a total
of 233 data points (roughly 0.1% of the dataset), 58 of which were due to extreme value observations attributable to
data entry error, and the remaining 175 due to missing values in one of the outcome variables. The total number of
observations for all 50 US states and school districts (on average 13,500) is N = 229, 553. The outcome variable we
are seeking to characterize is defined as:

x =
Total Local Education Expenditures

Enrollment
− Total Local Taxes and Charges

Population
(1)

The outcome variable x is the household per pupil rate of return on tax and service charges, which we term educational
returns. The variable Total Local Education Expenditures is aggregated from a large set of expenditure categories in
primary and secondary education (K-12) that include instruction, textbooks, pupil support services, staff , transportation,
administration, maintenance, food services, utilities, supplies, and technology. We denote the variable Total Local
Education Expenditures, scaled by enrollment, as κ.

The variable Total Local Taxes and Charges aggregates the following revenue categories: Private contributions, fines
and forfeits, property sales, rents and royalties, sales and services, individual and corporate income taxes, general fees,
public utility taxes, general sales taxes, and property taxes. We denote the variable Total Local Education Expenditures,
scaled by school district population, as τ .

Due to constraints from missing data or comparability across regions and years, this paper works with aggregate local
revenue categories, without excluding general fees or service charges.

2.2 Empirical Distributions

Below we present the marginal empirical distribution for x, as defined in formula 1, for the period 2000− 2016. In
figure 2 we plot a stacked histogram with the empirical density for each year in the pooled sample. The stacked
histogram reveals the persistent organization of educational returns into highly peaked asymmetric distributions with
positive skew. The pattern variance in the right tails is particularly revealing of disequilibrium fluctuations in the Tiebout
sorting process. Fatter right tails with positive skew, we believe, might constitute a strong signal of inter-jurisdictional
sorting in the Tiebout sense.

A visual inspection of these distributions points to the asymmetric Subbotin or exponential power distribution [Alfarano,
2012] as a potential candidate for modeling the statistical equilibrium density and for approximating the empirical
frequencies of school district educational returns in the period considered [Scharfenaker and Semieniuk, 2015]>.

While these may be good candidates for characterizing highly skewed and peaked distributions, in general, their
specifications would not allows us to draw straightforward theoretical conclusions from estimates of their location,
scale and shape parameters. In sections 4 and 5, we show how the maximum entropy derivation of the QRSE model
leads to a marginal density function f̂x whose parameter estimates can be directly linked to the impact of competition
and households incentives on jurisdictional sorting and expenditure levels.

3 Free Competition and The Tiebout Hypothesis

3.1 Smith’s Theory of Competition

In the classical Smithian theory of competition, profit-seeking agents make the choice to enter or exit lines of production
based on the market’s prevailing rate of return. Unlike general equilibrium models, where prices and rates of return
are understood as static market clearing quantities in a pure exchange economy, competitive price and rate discovery

1This data has been made available in a harmonized format in a publicly available API by the Urban Institute, which provides a
convenient and reliable interface to all the major federal dataset. Education Data Portal (Version 0.10.0), Urban Institute, accessed
February, 2021,https://educationdata.urban.org/documentation/, made available under the ODC Attribution License.
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Figure 1: Marginal distribution of x (in thousands) for the period 2000− 2016. Histogram and Box-Plot.

Figure 2: Stacked histogram plots of the educational returns variable x (in thousands). 2000-2016. The stacked
histograms reveal the time invariance of the statistical equilibrium distributions for the different years that make up the
pooled sample.

in the Smithian conception follows a process governed by negative feedbacks. As producers enter profitable lines of
production they tend to lower the profit rate by crowding the output and supply of that particular good. Eventually,
this forces relocation of capital and resources into other sectors, pushing the rate back to attractive levels [Smith, 1937,
Scharfenaker and Foley, 2017, Shaikh, 2016].

This homeostatic process, in which rates are pushed up and down as resources enter and relocate throughout sectors in
the economy, has the particular advantage that it lends itself well to a probabilistic interpretation [Farjoun and Machover,
2020]. Observed prices and returns can be effectively seen as gravitating around a fundamental central tendency. If
we think in terms of probability distributions, we may suitably express a rate’s theoretical fundamental value or its
’natural’ (regulating) level as the distribution’s location parameter. Similarly, the extent to which observed rates vary
and the intensity with which they respond to exit and entry decisions may be suitably captured by variance and scale
parameters.

In this paper we seek to link this theory of free competition to Tiebout’s original account of the role that inter-
jurisdictional competition plays in determining equilibrium levels for local fiscal and expenditure variables, as well
as for household choice. Our proposition departs radically from the education finance literature in that we propose
a statistical understanding of equilibrium, and do not follow the requirement that parameter estimates be interpreted
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as operating at fully efficient margins. This leaves open the possibility that households’ expectations and preferences
might remain unfulfilled in equilibrium. But because the equilibrium is statistical, and not static, this does not constitute
a barrier for analysis. The framework considered here allows us to study how such departures from optimality and
efficiency may relate to the distinct statistical features of expenditure levels in decentralized education markets, such as
positive skew and sharp pre-modal decay.

3.2 The Tiebout Hypothesis

In his 1956 paper, Tiebout laid out a set of highly abstract assumptions for his model of local public goods competition,
which he also called "a pure theory of local expenditures". The model’s assumptions may be summarized as follows:

1. Consumer-voters have full mobility and knowledge of prevailing expenditure patterns in neighboring commu-
nities.

2. Mobility is a proxy for consumer-voter choice.

3. There is a large number of communities from which to choose.

4. There is an optimal community size, given demand conditions and fixed resources.

5. Tax-service packages are set according to consumer-voter preferences.

Given that Tiebout’s model postulates consumer-voters as choosing tax-service packages by moving in and out of
communities, and that the levels of these public goods packages are determined by local governments in response
to demand (i.e migration inflows and outflows), we can see how the Smithian framework applies. In the context of
education expenditures, we assume that inhabitants are looking for high rates of return to their decision to locate or
relocate to a particular community. We take these rates of return to be proportional to the difference between the per
capita local tax rate and per pupil local expenditures that consumer-voters face in the local public goods market. For
the purposes of this paper, we take these market units to be school districts. Competitive school districts will offer
attractive per pupil expenditure rates, and low per capita tax rates and service charges. As consumer-voters crowd
districts with good schools and low taxes, the rates of educational returns return will adjust accordingly, and under the
assumptions of full mobility and rational incentives to fulfill expectations in a local public goods payoff, the iterative
process of rate adjustment and migration flows will stabilize expenditures into the observed patterns.

The outcome variable x, the per pupil rate of return on local tax spending and charges, which we termed educational
returns is defined by the difference:

x = κ− τ

where κ is the total local expenditure per pupil, scaled by the school district’s enrollment, and τ the total local tax and
charge burden, scaled by the district’s population. In the next section we delve deeper into our statistical treatment of
Tiebout competition and derive the QRSE density f̂x.

4 Local Public School Expenditures and Household Choice

4.1 Statistical Equilibrium Modeling and Maximum Entropy Inference

The highly peaked and positively skewed patterns of the outcome variable x for the 2000-2016 period suggests the
existence of a central tendency in the distribution along with non-symmetric deviations from its mean. Asymmetric
Exponential Power Distributions (AEPD) and Skewed Exponential Power Distributions (SEPD) [Alfarano, 2012,
Scharfenaker and Semieniuk, 2017, Mundt and Oh, 2019] are good candidates to model this kind of data. But because
we need a constructive probabilistic description that is phenomenologically relevant, as well as theoretically interpretable
in its parameters, we implement a Quantal Response Statistical Equilibrium (QRSE) model to fit this data.

The notion of statistical equilibrium has been widely used in physics and information theory [Jaynes, 1983, 1957]. A
statistical equilibrium for a quantity x takes the form of a probability density function fx; it represents the most likely
distribution for the outcome variable given a set of theoretical and empirical conditions. It can be derived by maximizing
the entropy H[fx] = −

∑
x
fx log[fx] subject to constraints expressing relevant information, theory or observations. The

methodology is most commonly used in the context of bayesian statistics with the purpose of deriving informative priors
by feeding moment constraints and relevant background information to the maximum entropy program. An important
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feature of the maximum entropy program is that as long as the set of constraints provided describe a non-empty convex
set in the space of distributions, the maximum entropy program will yield an optimal solution that can be used as the
statistical equilibrium density of the model [Scharfenaker and Foley, 2017, Golan, 2018]. For more details on the
derivation of maximum entropy distributions see [Sivia and Skilling, 2006, Jaynes, 2003, Golan, 2018].

We can view single-state solutions to general equilibrium models as special cases of this statistical equilibrium model.
They represent degenerate probability densities for the variable x where only the optimal solution is assigned a positive
probability. Such degenerate distributions, with all the probability mass concentrated around a single point, also imply
systems that operate with zero entropy.

Formally, the model we present here is a derived maximum entropy distribution for the joint density of household
jurisdictional choice and educational returns x. Rather than giving full statistical content to the complete set of
assumptions in the Tiebout hypothesis, we use this derived probability model to examine Tiebout’s intuition regarding
the role of competition and household choice in shaping the marginal distribution fx.

4.2 A Logit Quantal Response Function for Household Choice

The general Quantal Response Statistical Equilibrium (QRSE) model presented here links a set of household quantal
actions a ∈ A to the outcome variable x ∈ R. This could also be a vector x⃗ in Rn, but in this paper the variable x is
a scalar, which corresponds to the level of educational returns at the school district level. A is be the binary action
set A = {e, s} —where e stands for the entry of households into a particular school district, and s for the exit. The
interaction between the hidden quantal action set A and the outcome variable x is modeled by the joint distribution
fx,a. The maximum entropy distribution fx,a represents a statistical equilibrium where the inflow/outflow actions of
households, represented by the set A, are conditionally dependent on the educational returns rate x, but also shape it via
equilibrating forces and the negative feedback process which we defined as Smithian and Tiebout-like competition. We
define the payoff for the typical household by the function

π(a, x) : A×X → R (2)

The payoff takes as input an action from the action set A, and a signal from the state space of educational returns x ∈ X .
We use linear symmetric payoffs such that π(e, x) = −π(s, x), as shown in equation 3.

π(e, x) = x− µ

π(s, x) = µ− x
(3)

The difference of the entry and exit payoffs is given by equation 4 below:

∆π(a, x) =

= π(e, x)− π(s, x)

= 2(x− µ)

(4)

This payoff structure contains a location parameter µ to express the fact that households will have a tipping point
for moving in or out of a particular school district. Households will tend to move into districts where the level of
educational returns is above this expectation µ and vice versa. Note that µ is not the average rate, but the expectation
that the households forms prior to relocation.

The first constraint that we impose on our statistical model of local education returns is that it be micro-founded
by a probabilistic theory of behavior. In other words, we expect the entry and exit decisions of households to be
non-deterministic responses to variations in local expenditure patterns for the set of communities that constitute the
local public goods market. It is possible to think of this as the assumption that households follow ‘mixed strategies’
in determining whether to move in or out of a particular district. At times they will follow their payoff maximizing
action, but sometimes they won’t. We expect the probabilities of observing a particular behavior to be proportional to
the payoffs in equation 3, and exclude the degenerate case in which households choose only the payoff maximizing
action with probability 1.

One way to derive the stochastic function which describes the micro-level behavioral component of the model is
to impose a minimum entropy constraint on the utility maximization program of the agent. The household payoff
maximization program and the associated Lagrangian take the forms shown below in equations 5 and 6.
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max
fa|x≥0

∑
A

fa|xπ(a, x)

s.t:∑
A

fa|x = 1

−
∑
A

fa|x log[fa|x] ≥ Hmin

(5)

L = −
∑
A

fa|xπ(a, x)− λ

(∑
A

fa|x − 1

)

+ T

(∑
A

fa|x log[fa|x]−Hmin

) (6)

This maximization program introduces the behavioral parameter of the model T . In Scharfenaker and Foley [2017] it is
described as a ‘behavior temperature’ parameter in analogy to statistical models of thermodynamic systems, but it can
also be understood as a bounded rationality constraint. Maximizing the payoff subject to a minimum entropy constraint
is dual to the problem of maximizing the entropy of the mixed strategy fa|x subject to a minimum payoff constraint. In
that dual case, the Lagrangian containts the term β

(∑
a fa|xπ(a, x)− Umin

)
, which links the multiplier β = 1

T to the
minimum payoff constraint.

The solution to this programming problem yields a general logit quantal response or Gibbs density, as in equation 7:

fa|x =
e

π(a,x)
T∑

A e
π(a,x)

T

(7)

For the case of the binary action set A, the program yields the canonical QRSE logit quantal response functions in 8
and 9.

fe|x =
1

1 + e−
∆π(a,x)

T

=
1

1 + e−
2(x−µ)

T

(8)

fs|x = 1− fe|x =
1

1 + e
2(x−µ)

T

(9)

This pair of stochastic quantal response functions take the shape of the cumulative distribution function for the logistic
distribution. The parameter T is the scale parameter that expresses the sensitivity of the household choice rule to the
difference in the observed outcome from the subjective expectation (x− µ). The introduction of µ allows us to model
household behavior as ’chasing’ a central tendency in the outcome variable x, and as having a ‘tipping point’ for the
choice to enter or exit a particular school district. In the context of Tiebout competition, these stochastic choice rules
should be conceived as representing conditional probabilities for migration inflow or outflow into the ensemble of
school districts for which the parameter T is estimated. They are not ‘agent-level’ functions that additively aggregate to
the ensemble equilibrium distribution, but rather a meso-level description that models the dependency of entry/exit
flows on observed expenditure patterns and local fiscal variables.

4.3 The Competitive Feedback Constraint

In the canonical QRSE model from Scharfenaker and Foley [2017] which is applied here, agents respond to payoff
differentials by entering or exiting a particular economic sector. In the Tiebout setting, household inflows into particular
districts may cause congestion in public school services and lead to a feedback effect where the level of educational
returns x will be reduced. Conversely, household outflows from school districts will tend (over time) to push the
educational returns rate back up. In the QRSE model, this assumption takes the form of a congestion or ‘competitive
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Figure 3: Quantal responses functions for probability of household entry/exit. At near zero T the quantal response
function takes resembles the heaviside step function. Under a zero entropy assumption (T = 0), we would expect
households to move into districts exclusively in the case where x− µ > 0. This graph is illustrative (taking T=0.1 and
T = 3 as examples).

feedback’ constraint on the outcome distribution. The competitive feedback constraint is expressed as an inequality that
limits the scale of the difference between expected market rates conditional on entry and exit, as shown in 10.

0 ≤ fe E[(x− α)|e]− fs E[(x− α)|s] ≤ ϵ (10)

This inequality expresses the idea that the expected jurisdictional market rates will be higher conditional on entry than
on exit——but that their difference is small enough so that we wouldn’t expect an infinite inflow or crowding into a
particular district. This constraint allows us to parsimoniously model the simultaneous and feedback driven relationship
that exists between household choice and expenditure levels in the local education market.

The mean outcome level x̄ is then co-determined by a complex (non-reductive) interaction between those two layers
of the economic process. In practice we tend to find that α ̸= µ, which means that the market sustains unexpected
outcomes and unfulfilled expectations, an assumption that seems appropriate for the case of public goods markets. The
constraint in 10 can be unpacked in more detail using the form in equation 11, where it is written as an expectation of
the market outcome (x− α), factored by the difference in mixed strategy probabilities ∆ fa|x:

fe

∫
fx|e (x− α) dx− fs

∫
fx|s (x− α) dx

=

∫
fe|x fx (x− α)dx−

∫
fs|x fx (x− α)dx

=

∫
∆fa|x fx (x− α) dx

=

∫
tanh

(
x− µ

T

)
fx (x− α) dx

≤ ϵ

(11)

The tanh function arises from the definition of the logit quantal response functions, as shown below in 12:
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∆fa|x = fe|x − fs|x

=

(
1

1 + e−
2(x−µ)

T

)
−
(

1

1 + e
2(x−µ)

T

)
=

e2(x−µ)/T − 1

e2(x−µ)/T + 1

= tanh

(
2(x− µ)

2T

)
= tanh

(
x− µ

T

)
(12)

Thus, the competitive feedback constraint can be written using the general form written in 13, noting that ∆fa|x =

tanh
(
x−µ
T

)
: ∫

∆fa|x fx (x− α) dx ≤ ϵ (13)

In the next subsection we explain how the assumptions of entropy constrained behavior and the existence of a competitive
feedback constraint determine, via the maximum entropy program, the joint distribution fa,x.

4.4 QRSE Maximum Entropy Program and Density

The maximum entropy program for the QRSE model constrains the joint distribution fa,x so that it is consistent with
the following two propositions:

1. The behavioral property of a non-zero entropy rule for household jurisdictional choice (entry/exit decisions).
2. The competitive feedback constraint that we postulate for the Tiebout-like process in analogy with the Smithian

theory of competition.

These conditions were formally defined in the previous two subsections. We also constraint the distribution so that it
meets the usual normalization condition:

∫
fxdx = 1. Hence, the program maximizes the joint entropy of fa,x subject

to normalization, competitive feedback, and bounded household choice constraints. We can express the joint entropy
Hx.a in terms of the marginal entropy Hx and the conditional or ’binary entropy’ Ha|x [Cover and Thomas, 2006], as
shown in 14 and 15.

Hx.a = Hx +

∫
X

fx Ha|x dx (14)

Ha|x = −
∑
A

fa|x log[fa|x] (15)

Using the above decomposition, we can write the maximization program for the QRSE model using the compact form
shown below in equation 16.

max
fx≥0

Hx +

∫
X

fx Ha|x dx

st.∫
fx dx = 1∫
∆fa|x fx (x− α) dx ≤ ϵ

(16)

10
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Note that the second constraint parsimoniously encodes both the behavioral and the market feedback constraints. The
associated Lagrangian takes the form in equation 17 below:

L[fx, λ, γ] = Hx +

∫
X

fx Ha|x dx

− λ

(∫
fxdx− 1

)

− γ

(∫
∆fa|x fx (x− α) dx − ϵ

)
(17)

The multiplier associated to the competitive feedback constraint in the program yields the γ parameter for the candidate
statistical equilibrium density, which measures the effect of the competitive feedback process on the marginal distribution
fx.

The solution to this maximum entropy program produces a predictive density f̂x that is consistent with our description
of Tiebout-like competition in local public goods markets. The distribution f̂x predicts the marginal frequencies of the
outcome variable x and completes the theory by determining the conditional densities fx|e and fx|s, the joint densitiy
fx,a, a well as the expectations E[x|s] and E[x|e].

The solution f̂x takes the form of a Gibbs/Boltzmann distribution, shown below in equation 18:

f̂x =
eHa|x e−γ(∆fa|x) (x−α)

Z
(18)

where Z is the partition function.

Z =

∫
X

eHa|x e−γ(∆fa|x) (x−α) dx (19)

By expressing the γ parameter as γ = 1
S , we can rewrite the predictive marginal density f̂x as below in 20:

f̂x =
eHa|x e− tanh( x−µ

T ) ( x−α
S )

Z
(20)

With this parametrization it is then possible to perform inference using two scale parameters T and S, and two location
parameters µ and α, which all have the same dimension as the educational returns variable x. The scale parameter
S accounts for the concentration of educational returns around the mode that arises from the market level process of
jurisdictional competition, while the scale parameter T accounts for the concentration of values that arises from the
purposive behavior of households.

In the next section we provide details on the bayesian estimation of the model for the pooled dataset using all US school
districts in the period 2000-2016, and focus our discussion on theoretically interpretable results for the four unknown
parameters T , µ, S and α.

11
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5 Bayesian Estimation of QRSE Model

5.1 MAPs and Distance Measures

We use Bayesian inference to recover the values for the unknown parameter vector Γ = [T, S, µ, α], for the full sample
containing all US school districts in the 2000-2016 period. The approach we followed in our estimation procedure
was to first find close to optimal values for the model by jointly minimizing the Kullback-Leibler divergence (DKL)
between the observed marginal frequency f̄x and the inferred theoretical frequency f̂x. This is equivalent to finding
maximum a posteriori (MAP) point estimates for Γ, given that maximizing the likelihood turns out to be equivalent to
minimizing the KL-Divergence (See Golan [2018]) . To find these MAPs we used the available optimization packages
found in the Python Scipy library (COBYLA and SLSQP). Minimizing the functional in equation 21 yields the MAPs
that we then use as starting points for the MCMC sampler.

DKL

(
f̂x∥f̄x

)
=
∑

f̂Γ;x log

[
f̂Γ;x
f̄x

]
(21)

Additionally, we use the Soofi information distinguishability statistic (Soofi ID; See Soofi and Retzer [2002] for
details and theory) to evaluate fit performance. The Soofi ID is shown below in equation 22. Smaller values of the
KL-Divergence and of the Soofi ID imply better model fits and the Soofi ID in particular gives a measure of how much
informational content is explained (recovered) by the candidate distribution.

ID
(
f̂x : f̄x

)
= 1− exp

[
−DKL

(
f̂x∥f̄x

)]
(22)

5.2 Model Specification and Markov-Chain Monte Carlo Sampling

We use the QRSE density itself as the likelihood for estimation, considering that the sampler holds the data D fixed as
it explores different probabilities for the parameters in Γ via P (D|Γ). Alternatively, to justify this, one might simply
note that the likelihood is proportional to the sampling distribution ; L(Γ | x) ∝ fx|Γ. The QRSE log-likelihood used
for the sampler is shown below in 23:

log[f̂x] = Ha|x − tanh

(
x− µ

T

) (
x− α

S

)
− log (Z) (23)

We directly compute the partition function Z by the sum in 24.

Z =
∑
X

eHa|x e− tanh( x−µ
T ) ( x−α

S ) (24)

We evaluate the log-likelihood in 23 by computing sequences of random samples from the joint posterior distribution
of Γ. In this paper we use a standard Metropolis-Hastings algorithm (MCMC-MH; see Hogg and Foreman-Mackey
[2018]). Our code uses PyMC3 [Salvatier et al., 2015], an open source probabilistic programming framework written in
Python 2.

For each parameter, we run 3 chains with 30, 000 iterations and 4, 000 tuning samples. All of the chains converged with
R̂ = 1. For more details on the convergence statistic R̂ used see Vehtari et al. [2019]. We show a plot of the chain
sample traces below in figure 4. In figure 5 we show pair plots of the posterior samples for the four parameters, which
do not appear to be correlated. We used truncated normal priors centered near the MAP estimates for T and S, with
lower and upper bounds at 0.1 and 8 respectively. For µ and α we used normal priors centered near the MAPs and
specified large variances in order to explore reasonably wide ranges of the parameter space. Given knowledge about the
plausible ranges for the scale and location parameters, along with the MAP estimates, this choice of weakly informative
priors seemed appropriate.

2Code used, data and MCMC sample traces will be made available in a public GitHub repository for review. For details on the
PyMC3 library see: https://docs.pymc.io/api/inference.html
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Figure 4: Trace plots for MCMC samples obtained using the Metropolis-Hastings algorithm. 3 chains, 30,000 iterations
per chain and 4,000 tuning samples. All US School Districts. 2000-2016.

Figure 5: Posterior pair plots for parameters T, S, µ and α.
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5.3 Results

Table 1 gives the summary statistics for the estimated parameters T, S, µ, and α. In figure 6 we plot the four posterior
distributions for the QRSE parameters, which are unimodal, symmetric and have relatively wide standard deviations.

Posterior Estimates Summary

Parameter Mean (Sd) Mode 94 % HDI R̂

µ 8.66 (2.24) 7.78 [4.54, 12.9] 1.0
α 17.8 (2.24) 19.71 [13.61, 22.05] 1.0
T 2.1 (0.94) 2.17 [0.24, 3.7] 1.0
S 4.9 (1.01) 4.69 [3.01, 6.79] 1.0

Table 1: Summary statistics of estimated parameters T, S, µ, and α. The means, standard deviations, 94% credible
intervals and the convergence statistics R̂ from the MCMC samples are reported. All US School Districts, 2000-2016.

Figure 6: Posterior distributions for T, S, µ, and α.All US School Districts. 2000-2016.
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5.4 Fits

In table table 2 we present summary statistics for the fiscal variables used in the model, and for the educational returns
variable x. In figure 7 we plot the line histogram of x for the entire 2000-2016 period, alongside yearly time series for
both mean educational returns x and mean total expenditures τ .

Summary Statistics

Variable Mean S.D. Min. Max.
Educational Returns (x) 14.27 6.30 -12.83 75.08
Total District Expenditures (κ) 15.31 6.69 0.01 102.56
Taxes and Charges (τ ) 1.04 1.04 0.00 59.55

Table 2: Model variables (in thousands). All US School Districts, 2000-2016.

Figure 7: Marginal distribution of x, and yearly line plot for x and κ for the period 2000-2016. The histogram excludes
the upper 0.01 quantile (for visualization). Plotted in thousands. All US School Districts. 2000-2016.

In 8 we fit the estimated QRSE model to the histograms of the observed distribution of x for this ‘full ensemble case’,
which covers all US school districts in the 2000-2016 period. In figure 9 we plot the predicted joint action and outcome
densities fa,x, alongside the estimated quantal response functions, which predict the conditional probability of entry
and exit of households into districts given a certain level of educational returns x. We discuss these results in the next
subsection.
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Figure 8: Line histogram of observed distribution for x (educational returns). Overlaid is the fitted predictive marginal
density f̂x. We excluded the upper 0.01 quantile (for visualization). The Soofi ID/performance fit measure is shown.
All US School Districts. 2000-2016.

Figure 9: Left: Predictive entry and exit densities fa,x. Right: Household Quantal Response Functions fa|x. The
estimated ‘tipping point’ µ̂ is plotted with a dashed-dotted line.
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6 Discussion

Our central aim is to study the role that Tiebout-like competition may play in explaining observed educational returns
across school districts in the US. To do so we implemented a quantal response statistical equilibrium (QRSE) model,
which allowed us to characterize competition between local jurisdictions as a complex negative feedback process
operating at both the household-level and market-level scales. The QRSE model used in this paper parsimoniously
characterizes the complex interaction between household jurisdictional choice and the emergent statistical properties
of decentralized education markets in terms of the parameter vector Γ = [T, S, µ, α]. The observed distribution of
educational returns is then explained via the predictive distribution f̂x;Γ. In order to better understand the distinct role
that both the scale (S & T) and location (µ and α) parameters play in explaining observed patterns, it is useful to plot
variations to the individual parameters holding all others constant. We do so below in figure 10.

Figure 10: Variations to individual parameter, holding all others constant. The baseline setting is T = 5, S=5, and µ = α
= 0.

The µ and α parameters are particularly relevant in understanding the positive skewness of the statistical equilibrium
distribution that we find for the full ensemble case. The parameter α estimates a market-level statistical tendency that
acts as the barycenter around which the household-formed expectation µ fluctuates. To see how this is built into the
theory, note that in the competitive feedback constraint in 10, we write the expectation as E[x− α] and not E[x]. In
the case where households’ expectations of the local educational returns rate matches the market level tendency, then
α = µ. In that case the distribution is symmetrical and the estimated values for α and µ also match the sample mean x̄.
Whenever µ ̸= α, then the QRSE distribution is asymmetrical, and positive values for α − µ in particular will lend
the distribution a more or less sizeable positive skew. As shown in figure 10, both the behavioral and market scale
parameters T and S predict a lesser/larger concentration of values around the mode, with lower values lending more
peakedness to the distribution.

The QRSE model explains concentration around modal values as the consequence of intense competition in decentralized
public education markets. Both relatively purposive households and market feedbacks work to stabilize educational
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returns into their statistical equilibrium distribution. This understanding of competition is consistent with the profit
rate equalization hypothesis that one finds in classical political economy, and which has been given modern statistical
treatments in [Farjoun and Machover, 2020, Scharfenaker and Semieniuk, 2017, Alfarano, 2012, Scharfenaker and
Foley, 2017].

The statistical equilibrium analysis shows concrete evidence that there are both sorting forces and competitive forces at
play in determining the equilibrium educational returns rate. Tiebout sorting in particular educational markets might in
fact be signaled by distributions with heavy right tails and positive skew. We believe this to be the case in the sense that
‘better sorted’ or more ’balanced’ subsamples in x will undoubtedly contain a broader set of tax-service packages that
households sort into via the local public goods and housing markets. In our QRSE model and estimates, the Tiebout
‘sorting forces’ are captured by the size of the difference α− µ, while the competitive forces are captured by the size
and interaction of the T and S parameters. This leads to future work needing to unpack how the α parameter is related
to median household income and property values in school districts, given that high income and property values push
public school expenditures far beyond competitive or modal rates.

Educational returns in school districts across the US for the 2000-2016 period exhibit distinctively peaked, positively
skewed distributions with right tails of variable width. The shaping of their statistical equilibrium distribution is the
outcome of an evolving process of inter-jurisdictional competition, household residential sorting on the basis of a broad
set of characteristics (such as income), and shifting policy regimes at the local, state and federal levels.

Using a statistical equilibrium framework, in this paper we sought to examine the role played by inter-jurisdictional
competition and household choice in shaping the observed distribution of educational returns for a full ensemble case
that covers all US school districts in the 2000-2016 period. This is a considerably larger sample than the ones found in
other empirical treatments in the literature, which usually focus on single states or regions. An important aspect of our
empirical findings is that it corroborates the need to divorce normative notions about market efficiency from claims
about the presence of Tiebout sorting and competition. We proposed a parsimonious model that meaningfully captures
the difference between competitive and sorting forces via two sets of scale and location parameters.

This empirical analysis also corroborates previous findings in the QRSE literature regarding the use of feedback
constraints as meaningful characterizations of competition in decentralized market settings. The histogram and model
fit displayed in this paper are clearly suggestive of the part played by decentralized competition in sharpening modal
peaks, and by elevated (far from competitive) market rates in creating positive skew.
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