
ar
X

iv
:2

40
4.

17
74

0v
1 

 [
m

at
h.

R
A

] 
 2

7 
A

pr
 2

02
4 On some relationships between the centers

and the derived ideal in Leibniz 3-algebras

P. Ye. Minaiev, O. O. Pypka

Oles Honchar Dnipro National University, Dnipro, Ukraine

e-mail: minaevp9595@gmail.com, sasha.pypka@gmail.com

Abstract

One of the classic results of group theory is the so-called Schur theorem. It
states that if the central factor-group G/ζ(G) of a group G is finite, then its
derived subgroup [G,G] is also finite. This result has numerous generalizations
and modifications in group theory. At the same time, similar investigations were
conducted in other algebraic structures. In 2016, L.A. Kurdachenko, J. Otal
and O.O. Pypka proved an analogue of Schur theorem for Leibniz algebras: if
central factor-algebra L/ζ(L) of Leibniz algebra L has finite dimension, then
its derived ideal [L,L] is also finite-dimensional. Moreover, they also proved a
slightly modified analogue of Schur theorem: if the codimensions of the left ζl(L)
and right ζr(L) centers of Leibniz algebra L are finite, then its derived ideal
[L,L] is also finite-dimensional. One of the generalizations of Leibniz algebras
is the so-called Leibniz n-algebras. Therefore, the question of proving analogs
of the above results for this type of algebras naturally arises. In this article, we
prove the analogues of the two mentioned theorems for Leibniz 3-algebras.
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1 Introduction.

Let L be an algebra over a field F with the binary operations + and [−,−]. Then L
is called a left Leibniz algebra if it satisfies the left Leibniz identity :

[a, [b, c]] = [[a, b], c] + [b, [a, c]]

for all a, b, c ∈ L. Leibniz algebras first appeared in the paper [2], but the term
“Leibniz algebra” appears in the book [20] and article [21]. In [22], the authors
conducted an in-depth study on Leibniz algebras properties. The theory of Leibniz
algebras has developed very intensely in many different directions.

Note that Lie algebras present a partial case of Leibniz algebras. Conversely,
if L is a Leibniz algebra in which [a, a] = 0 for every element a ∈ L, then it is
a Lie algebra. Thus, Lie algebras can be characterized as anticommutative Leibniz
algebras.

http://arxiv.org/abs/2404.17740v1


One of the key tendencies in the development of Leibniz algebra theory is the
search for analogues of the basic results of Lie algebra theory. At the same time,
there are very significant differences between these two types of algebras (see, for
example, [4]).

We recall some necessary definitions. Let L be a Leibniz algebra over a field F . If
A,B are subspaces of L, then [A,B] will denote a subspace generated by all elements
[a, b] where a ∈ A, b ∈ B.

A subspace A of L is called a subalgebra of L, if [a, b] ∈ A for every a, b ∈ A. It
follows that [A,A] ≤ A. A subalgebra A of L is called a left (respectively right) ideal
of L, if [b, a] ∈ A (respectively [a, b] ∈ A) for every a ∈ A, b ∈ L. In other words, if A
is a left (respectively right) ideal of L, then [L,A] ≤ A (respectively [A,L] ≤ A). A
subalgebra A of L is called an ideal of L (more precisely, two-sided ideal) if it is both
a left ideal and a right ideal. If A is an ideal of L, we can consider a factor-algebra
L/A. It is not hard to see that this factor-algebra also is a Leibniz algebra.

The left ζ l(L) and right ζr(L) centers of a Leibniz algebra L are defined by the
rules:

ζ l(L) = {a ∈ L| [a, b] = 0 for all b ∈ L},

ζr(L) = {a ∈ L| [b, a] = 0 for all b ∈ L}.

It is not hard to prove that the left center of L is an ideal, but it is not true for the
right center. The right center is a subalgebra of L, and, in general, the left and right
centers are different. They even may have different dimensions (see, for example,
[10]).

The center ζ(L) of L is the intersection of the left and right centers, that is

ζ(L) = {a ∈ L| [a, b] = 0 = [b, a] for all b ∈ L}.

Clearly, the center ζ(L) is an ideal of L. In particular, we can consider the factor-
algebra L/ζ(L).

There is a very close connection between the center ζ(L) of the Leibniz algebra L
and its derived ideal [L,L]. In [12], the authors prove that if the central factor-algebra
L/ζ(L) has finite dimension d, then the derived ideal [L,L] is also finite-dimensional
and dimF ([L,L]) ≤ d2. Moreover, they proved some modification of this result: if
codimF (ζ

l(L)) = d and codimF (ζ
r(L)) = r are finite, then dimF ([L,L]) ≤ d(d+ r).

The first of the mentioned results is a direct analogue of the so-called [18]
Schur theorem. More precisely, Schur theorem states that if the central factor-group
G/ζ(G) of a group G is finite, then the derived subgroup [G,G] is also finite. In
this formulation, for the first time it appears in the paper [23]. This theorem was
obtained also in [1]. This theorem has numerous generalizations and modifications
in group theory (see, for, example, [6, 7, 11, 13, 14, 24]). Furthermore, similar inves-
tigations were conducted in other algebraic structures of a different nature. Thus,
analogues of Schur theorem were obtained for modules (see, for example, [19]), lin-
ear groups [5], topological groups [28], n-groups [9], associative algebras [25], Lie
algebras [15, 26], Lie n-algebras [27], Lie rings [16], Poisson algebras [17].
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In [3], the authors introduced the concept of Leibniz n-algebras. Let L be an
n-algebra over a field F with the binary operations + and an n-linear bracket
[−, . . . ,−]. Then L is called a left Leibniz n-algebra if it satisfies the following left
Leibniz n-identity :

[b1, . . . , bn−1, [a1, . . . , an]] =

n
∑

i=1

[a1, . . . , ai−1, [b1, . . . , bn−1, ai], ai+1, . . . , an]

for any a1, . . . , an, b1, . . . , bn−1 ∈ L. The theory of Leibniz n-algebras is much less
developed than the theory of Leibniz algebras. Our goal is to establish connections
between these types of algebras. In particular, in this paper we will prove analogs
of the two above-mentioned results from the theory of Leibniz algebras for Leibniz
3-algebras.

2 Preliminary results.

Let L be a 3-algebra over a field F with the binary operation + and ternary operation
[−,−,−]. Then L is called a Leibniz 3-algebra (more precisely, a left Leibniz 3-
algebra) if for all elements a, b, c, x, y ∈ L it satisfies the left Leibniz 3-identity :

[x, y, [a, b, c]] = [[x, y, a], b, c] + [a, [x, y, b], c] + [a, b, [x, y, c]].

If A,B,C are subspaces of L, then [A,B,C] will denote a subspace generated
by all elements [a, b, c] where a ∈ A, b ∈ B, c ∈ C. As usual, a subspace A of L is
called a subalgebra of L if [a, b, c] ∈ A for all elements a, b, c ∈ A. In other words,
[A,A,A] ≤ A. A subalgebra A is called a left (respectively middle, right) ideal of L
if [x, y, a] ∈ A (respectively [x, a, y] ∈ A, [a, x, y] ∈ A) for every x, y ∈ L, a ∈ A. In
other words, if A is a left (respectively middle, right) ideal of L, then [L,L,A] ≤ A
(respectively [L,A,L] ≤ A, [A,L,L] ≤ A). A subalgebra A of L is called an ideal of
L (or three-sided ideal) if it is a left, middle and a right ideal of L. If A is an ideal of
L, we can say about the factor-algebra L/A. It is not hard to see that L/A is also a
Leibniz 3-algebra.

Let L be a Leibniz 3-algebra over a field F , M be a non-empty subset of L, and
H be a subalgebra of L. Put

Annl
H(M) = {a ∈ H| [a,M,M ] = 〈0〉},

Annm
H(M) = {a ∈ H| [M,a,M ] = 〈0〉},

Annr
H(M) = {a ∈ H| [M,M, a] = 〈0〉}.

The subset Annl
H(M) (respectively Annm

H(M), Annr
H(M)) is called the left (respec-

tively middle, right) annihilator of M in H. The intersection

AnnH(M) = Annl
H(M) ∩Annm

H(M) ∩Annr
H(M)

is called annihilator of M in H. We note the following basic properties of annihila-
tors.
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Lemma 2.1. Let L be a Leibniz 3-algebra over a field F , M be an ideal of L, and
H be a subalgebra of L. Then Annl

H(M), Annm
H(M), Annr

H(M) are subalgebras of
L.

Proof. Let A = Annl
H(M), a, b, c ∈ A, x, y ∈ M . We have:

[[a, b, c], x, y] = [a, b, [c, x, y]] − [c, [a, b, x], y] − [c, x, [a, b, y]].

Since c ∈ A, [c, x, y] = 0. The fact that M is an ideal of L implies that [a, b, x] ∈ M
and [a, b, y] ∈ M , so that [c, [a, b, x], y] = [c, x, [a, b, y]] = 0. Thus, [[a, b, c], x, y] = 0.

Now, let B = Annm
H(M), a, b, c ∈ B, x, y ∈ M . We have:

[x, [a, b, c], y] = [a, b, [x, c, y]] − [[a, b, x], c, y] − [x, c, [a, b, y]].

Since c ∈ B, [x, c, y] = 0. Furthermore, M is an ideal of L, so that [a, b, x] ∈ M
and [a, b, y] ∈ M . Therefore, [[a, b, x], c, y] = [x, c, [a, b, y]] = 0. Thus,

[x, [a, b, c], y] = 0.

Finally, let C = Annr
H(M), a, b, c ∈ C, x, y ∈ M . We have:

[x, y, [a, b, c]] = [[x, y, a], b, c] + [a, [x, y, b], c] + [a, b, [x, y, c]].

Since a, b, c ∈ C, [x, y, a] = [x, y, b] = [x, y, c] = 0. Thus, [x, y, [a, b, c]] = 0.
Since AnnH(M) = A ∩B ∩ C, AnnH(M) is also a subalgebra of L. �

Let L be a Leibniz 3-algebra over a field F . Put

ζ(L) = {a ∈ L| [a, x, y] = [x, a, y] = [x, y, a] = 0 for all x, y ∈ L}.

The subset ζ(L) is called the center of L. We note that the center of L is the
annihilator of L in L. The left, middle and right annihilators lead us to the following
subsets. Put

ζ l(L) = {a ∈ L| [a, x, y] = 0 for all x, y ∈ L},

ζm(L) = {a ∈ L| [x, a, y] = 0 for all x, y ∈ L},

ζr(L) = {a ∈ L| [x, y, a] = 0 for all x, y ∈ L}.

The subset ζ l(L) (respectively ζm(L), ζr(L)) is called the left (respectively middle,
right) center of L. Obviously,

ζ(L) = ζ l(L) ∩ ζm(L) ∩ ζr(L).

In particular, we can define the lm-center of L by the rule

ζ lm(L) = ζ l(L) ∩ ζm(L).

We note that, in general, ζ l(L), ζm(L), ζr(L) are not ideals of L. However, we
have the following result.
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Lemma 2.2. Let L be a Leibniz 3-algebra over a field F . Then the following asser-
tions hold.

(i) ζ l(L), ζm(L), ζr(L), ζ(L) are subalgebras of L.

(ii) ζ lm(L), ζ(L) are ideals of L.

Proof. (i) Since

Annl
L(L) = ζ l(L), Annm

L (L) = ζm(L), Annr
L(L) = ζr(L), AnnL(L) = ζ(L),

Lemma 2.1 shows that ζ l(L), ζm(L), ζr(L), ζ(L) are subalgebras of L.
(ii) Let D = ζ lm(L), v ∈ D, a, b, x, y ∈ L. We have:

[[x, y, v], a, b] = [x, y, [v, a, b]] − [v, [x, y, a], b] − [v, a, [x, y, b]],

[a, [x, y, v], b] = [x, y, [a, v, b]] − [[x, y, a], v, b] − [a, v, [x, y, b]].

Since v ∈ D,

[[x, y, v], a, b] = [x, y, 0] − 0− 0 = 0,

[a, [x, y, v], b] = [x, y, 0] − 0− 0 = 0.

This means that D is a left ideal of L. Furthermore,

[[x, v, y], a, b] = [x, v, [y, a, b]] − [y, [x, v, a], b] − [y, a, [x, v, b]]

= 0− [y, 0, b] − [y, a, 0] = 0,

[a, [x, v, y], b] = [x, v, [a, y, b]] − [[x, v, a], y, b] − [a, y, [x, v, b]]

= 0− [0, y, b] − [a, y, 0] = 0,

which shows that D is a middle ideal of L. Finally, we have:

[[v, x, y], a, b] = [v, x, [y, a, b]] − [y, [v, x, a], b] − [y, a, [v, x, b]]

= 0− [y, 0, b] − [y, a, 0] = 0,

[a, [v, x, y], b] = [v, x, [a, y, b]] − [[v, x, a], y, b] − [a, y, [v, x, b]]

= 0− [0, y, b] − [a, y, 0] = 0.

In other words, D is a right ideal of L. Thus, D is an ideal of L.
In the same way we can show that the center ζ(L) of L is an ideal of L. �

Let L be a Leibniz 3-algebra over a field F . A linear transformation f of L is
called a derivation of L if

f([a, b, c]) = [f(a), b, c] + [a, f(b), c] + [a, b, f(c)]

for all a, b, c ∈ L.
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Consider the mapping la,b : L → L defined by the rule la,b(x) = [a, b, x], a, b ∈ L.
We note some basic properties of la,b. Let x, y, z ∈ L, λ ∈ F . Then

la,b(x+ y) = [a, b, x+ y] = [a, b, x] + [a, b, y] = la,b(x) + la,b(y),

la,b(λx) = [a, b, λx] = λ[a, b, x] = λla,b(x),

la,b([x, y, z]) = [a, b, [x, y, z]]

= [[a, b, x], y, z] + [x, [a, b, y], z] + [x, y, [a, b, z]]

= [la,b(x), y, z] + [x, la,b(y), z] + [x, y, la,b(z)].

These equalities show that la,b is a derivation of L.

3 Main result.

We now present the main result of this paper.

Theorem 3.1. Let L be a Leibniz 3-algebra over a field F . If codimF (ζ
lm(L)) = d

and codimF (ζ
r(L)) = r are finite, then dimF ([L,L,L]) ≤ d2(d+ r).

Proof. We have: L = ζ lm(L) ⊕ E for some subspace E. Choose in E a basis
{e1, . . . , ed}. If x, y, z are arbitrary elements of L, then

x = α1e1 + . . .+ αded + s1,

y = β1e1 + . . . + βded + s2,

z = γ1e1 + . . .+ γded + s3

for αi, βi, γi ∈ F , i ∈ {1, . . . , d}, and sj ∈ ζ lm(L), j ∈ {1, 2, 3}. Then we have

[x, y, z] =





∑

1≤i≤d

αiei + s1,
∑

1≤j≤d

βjej + s2,
∑

1≤k≤d

γkek + s3





=
∑

1≤i,j,k≤d

αiβjγk[ei, ej , ek] +
∑

1≤i,j≤d

αiβj [ei, ej , s3].

It follows that the subspace S generated by the elements [ei, ej , ek], 1 ≤ i, j, k ≤ d,
and the subspaces [ei, ej , ζ

lm(L)], 1 ≤ i, j ≤ d, include [L,L,L].
Put Z = ζ lm(L) and let a, b be arbitrary elements of L. We define a mapping

la,b(x) : Z → Z by the rule la,b(z) = [a, b, z], z ∈ Z. As we noted above, this mapping
is linear, Im(la,b) = [a, b, Z] and Ker(la,b) = Annr

Z((a, b)) where (a, b) is an ordered
pair of elements a and b. Hence

[a, b, Z] = Im(la,b) ∼=F Z/Ker(la,b) = Z/Annr
Z((a, b)).

Since ζr(L) ≤ Annr
L((a, b)), we have codimF (Ann

r
L((a, b))) ≤ r and so

dimF ([a, b, Z]) = dimF (Z/Ann
r
Z((a, b))) ≤ r.

In particular, dimF ([ei, ej , Z]) ≤ r for every 1 ≤ i, j ≤ d. It follows that the subspace
S has dimension at most d3 + d2r = d2(d+ r), as required. �
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Corollary 3.2. Let L be a Leibniz 3-algebra over a field F . If codimF (ζ(L)) = d is
finite, then dimF ([L,L,L]) ≤ d3.

Indeed, we have ζ(L) = ζ lm(L)∩ζr(L). Since codimF (ζ
lm(L)) and codimF (ζ

r(L))
are finite, codimF (ζ(L)) is finite. Then it suffices to take the proof of Theorem 3.1
into account to obtain Corollary 3.2.

Recall [8] that a 3-algebra L over a field F (char(F ) 6= 2) with the binary
operations + and a 3-linear bracket [−,−,−] is called a Lie 3-algebra if it satisfies
the following conditions:

(i) Lie 3-bracket is antisymmetric, that is [a1, a2, a3] = sign(σ)[aσ(1) , aσ(2), aσ(3)];
(ii) Lie 3-bracket satisfies the generalized Jacobi identity (or Jacobi 3-identity),

that is
[x, y, [a, b, c]] = [[x, y, a], b, c] + [a, [x, y, b], c] + [a, b, [x, y, c]]

for any a, b, c, x, y ∈ L and any permutation σ ∈ S3. Note that since char(F ) 6= 2
the first condition equivalent to [a1, a2, a3] = 0 whenever ai = aj for some i 6= j,
1 ≤ i, j ≤ 3. Obviously, every Lie 3-algebra is a Leibniz 3-algebra. Therefore, we can
apply the previous results to this partial case. We have the following

Corollary 3.3. Let L be a Lie 3-algebra over a field F . If codimF (ζ(L)) = d is

finite, then dimF ([L,L,L]) ≤
d(d−1)(d−2)

6 .
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