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Figure 1: Left: Our method achieves high-quality surface reconstruction result on par with NeuS [Wang et al. 2021] for this
owl object (DTU-#122). Right: The 2D plot shows that our method achieves a good balance between training time and the
quality of surface reconstructions measured in the Chamfer distance. The statistics are collected from the scenes selected from
BlendedMVS [Yao et al. 2020] dataset.

ABSTRACT
We propose a novel point-based representation, Gaussian surfels,
to combine the advantages of the flexible optimization procedure
in 3D Gaussian points and the surface alignment property of sur-
fels. This is achieved by directly setting the z-scale of 3D Gaussian
points to 0, effectively flattening the original 3D ellipsoid into a 2D
ellipse. Such a design provides clear guidance to the optimizer. By
treating the local z-axis as the normal direction, it greatly improves
optimization stability and surface alignment. While the derivatives
to the local z-axis computed from the covariance matrix are zero in
this setting, we design a self-supervised normal-depth consistency
loss to remedy this issue. Monocular normal priors and foreground
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masks are incorporated to enhance the reconstruction quality, miti-
gating issues related to highlights and background. We propose a
volumetric cuttingmethod to aggregate the information of Gaussian
surfels so as to remove erroneous points in depth maps generated
by alpha blending. Finally, we apply screened Poisson reconstruc-
tion method to the fused depth maps to extract the surface mesh.
Experimental results show that our method demonstrates superior
performance in surface reconstruction compared to state-of-the-art
neural volume rendering and point-based rendering methods.
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1 INTRODUCTION
Recently, 3D Gaussian Splatting (3DGS) [Kerbl et al. 2023] has
gained widespread popularity for reconstructing and rendering 3D
scenes. Different from neural implicit representations [Mildenhall
et al. 2021; Wang et al. 2021; Yariv et al. 2021], 3DGS represents the
appearance and geometry through a set of explicit and topology-
free Gaussian points. These Gaussian points can be dynamically
added and removed during optimization, ensuring the convergence
of the optimization process to cover the entire surface and represent
high-frequency details. Moreover, 3DGS utilizes GPU/CUDA-based
rasterization with closed-form integration [Zwicker et al. 2002] dur-
ing rendering, eliminating the need for time-consuming ray-based
point sampling in volume rendering. This results in a significant
reduction in training and rendering time, enabling a training time
of less than 10 minutes and facilitating real-time rendering.

Despite the advantages of the 3DGS representation, it struggles
to generate high-quality geometric reconstructions. This limitation
stems from three aspects: (1)Non-zero thickness: 3D Gaussian points,
resembling ellipsoids, have non-zero thickness along each axis, hin-
dering their close alignment with the actual surfaces. (2) Ambiguity
in normal direction: there exists ambiguity in determining the nor-
mal for each 3D Gaussian, i.e. the normal axis can change among
different scale directions during optimization. This ambiguity can
result in inaccuracies when reconstructing geometries with fine
details. (3)Modeling sharp surface edges: the alpha blending process
may introduce bias to a reconstructed surface edge, which will
happen when Gaussian points with extent beyond the surface edge
or far from the edge are occasionally involved during the blending.
Recent methods such as SuGaR [Guédon and Lepetit 2023] and
NeuSG [Chen et al. 2023] introduce a regularizer to minimize the
smallest component of the scaling factor along each axis, which
can alleviate the first thickness problem. However, the quality of
reconstructed surface is still unsatisfactory. Using Gaussian points
to reconstruct surface with fine details remains challenging.

In this paper, we propose a novel representation, Gaussian surfels,
to combine the advantages of the flexible optimization procedure
in 3DGS and the surface alignment property of surfels [Pfister et al.
2000]. This significantly improves the quality of the reconstructed
geometry. Gaussian surfels are achieved by directly setting the
z-scale of the scale matrix in 3D Gaussian points to 0, effectively
flattening the original 3D ellipsoid into a 2D ellipse. Compared
with the regularization methods in [Chen et al. 2023; Guédon and
Lepetit 2023], our representation avoids the need to determine a
minimal scale that might change during optimization. It provides
clear guidance to the optimizer to treat the local z-axis as the nor-
mal direction, greatly improving optimization stability and surface
alignment.

The technical challenge arising from flattening 3D Gaussian
points in this manner is that the derivatives that are computed
from the covariance matrix with respect to the local z-axis will be
zero. As a result, the photometric loss itself can not affect the local
z-axis during optimization. Therefore, we design a self-supervised
normal-depth consistency loss to remedy this problem. It requires
local z-axis to be close to the normal computed from the depth
map rendered using Gaussian splatting. Moreover, although the
truncation threshold in 3D Gaussian points is carefully selected to

guarantee high-quality rendering results ( 1
255 in 3DGS), we found

it is too small to prevent the generation of blurred sharp edges
or floating geometries in the surface reconstruction results. These
artifacts often occur when a ray passes through a front surface
near its edge, but actually, the ray’s first intersection with scene
geometry is at a surface behind the front surface. We thus propose
a volumetric cutting method to determine whether a voxel should
be cut off or not according to its distance from the Gaussian surfels,
which further improves geometric quality.

Our high-quality surface reconstruction results using Gaussian
surfels are made possible by the following technical contributions:

• Introducing a novel point-based representation, Gaussian sur-
fels, to resolve the inherent normal ambiguity of 3DGS and
achieve a close alignment with the actual surface. Combined
with our volumetric cutting method, the quality of surface re-
construction is significantly enhanced.

• Proposing a self-supervised normal-depth consistency regular-
izer, along with the photometric loss, to guide the Gaussian sur-
fels in moving and rotating in a manner that closely conforms
to the surfaces of the object. We also incorporate monocular es-
timated normals as a prior to address shape-radiance ambiguity
[Zhang et al. 2020] in regions with specular reflections.

• Compared with state-of-the-art neural volume and point-based
rendering methods, our method achieves a good balance be-
tween reconstruction quality and training speed (Fig. 1).

2 RELATEDWORK
The target of multi-view surface reconstruction methods is to create
a geometric representation of an object or a scene using multi-view
images. This is accomplished through classic multi-view stereo
(MVS) techniques [Furukawa et al. 2015], which can be broadly clas-
sified as voxel grids optimization [Seitz and Dyer 1999; Sinha et al.
2007], feature point growing [Furukawa and Ponce 2009; Wu et al.
2010], or depth-map estimation and merging [Schönberger et al.
2016]. These methods rely on photometric consistency across views,
making it challenging to accurately capture complete geometric
representations due to the ambiguities in the correspondence.

Recently, neural rendering [Tewari et al. 2020] has demonstrated
impressive capabilities in view synthesis and surface reconstruction.
By directly minimizing the per-pixel difference between the image
and rendering results, it achieves detailed surface reconstruction
[Wang et al. 2021]. Additionally, it can adapt to complex materi-
als through a sophisticated rendering process [Zhang et al. 2021,
2022a].

2.1 Neural volume rendering
The landmark work in neural volume rendering is NeRF [Mildenhall
et al. 2021], which employed a differentiable volumetric rendering
technique to reconstruct a neural scene representation, achieving
impressive photorealistic view synthesis with view-dependent ef-
fects. To accelerate its optimization, subsequent research replaces
the neural scene representation with explicit or hybrid scene repre-
sentations, such as voxel grid [Fridovich-Keil et al. 2022; Sun et al.
2022b], low-rank tensors [Chen et al. 2022], tri-planes [Chan et al.
2022; Reiser et al. 2023], and multi-resolution hash maps [Müller
et al. 2022].
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Figure 2: The pipeline of our method. Our method involves the following steps: (a) Starting with random initialization, our
method represents the surface as a set of Gaussian surfels, each with learnable position, rotation, color, opacity, and covariance;
(b) Optimize the Gaussian surfels through multi-view photometric loss, depth-normal consistency loss, and normal prior loss;
(c) Perform volumetric cutting on rendered depth maps, then apply Poisson meshing from rendered depth and normal to
extract a high-quality mesh. Our method can automatically obtain an open surface reconstruction result.

However, NeRF and its variants extract isosurfaces based on
heuristic thresholding of density values, which can introduce high-
frequency noise into the reconstructed surfaces. To enhance the
quality of reconstruction, several studies have suggested using oc-
cupancy grids [Oechsle et al. 2021] or signed distance functions
(SDFs) [Wang et al. 2021; Yariv et al. 2021, 2020] represented by
coordinate-based multi-layer perceptron (MLP) networks. These
methods provide better-defined 3D surfaces compared to volume
density fields. Follow-up works have further improved reconstruc-
tion by utilizing auxiliary information. For example, NeuralWarp
[Darmon et al. 2022] employs patch warping with co-visibility in-
formation for surface optimization. Additionally, monocular depth
and normals [Yu et al. 2022], sparse point clouds [Fu et al. 2022;
Zhang et al. 2022b], semantic segmentation [Guo et al. 2022; Sun
et al. 2022a], and geometric priors [Long et al. 2022] have been used
to guide and regularize 3D reconstruction.

Alternatively, somemethods incorporate explicit voxel grids [Wu
et al. 2022] or multi-resolution hash encodings with a CUDA-based
MLP implementation to expedite surface reconstruction [Li et al.
2023; Wang et al. 2023; Zhao et al. 2022]. For calculating the deriva-
tives of Eikonal loss, Instant-NSR [Zhao et al. 2022] approximates
these derivatives using finite differences, while NeuS2 [Wang et al.
2023] proposes a precise and efficient formulation of second-order
derivatives tailored to MLPs. Neuralangelo [Li et al. 2023] also uti-
lizes numerical gradients for computing higher-order derivatives
as a smoothing operation. Additionally, it involves coarse-to-fine
optimization on the hash grids, controlling different levels of detail.

2.2 Neural point-based rendering.
Point-based rendering has also been employed for neural rendering.
Unlike volumetric representation, point-based methods represent
geometry through unstructured samples in a topology-free man-
ner [Kobbelt and Botsch 2004]. As directly rendering point samples
suffers from holes and discontinuities, surface splatting has been

developed by splatting point primitives with an extent, such as
ellipsoids or surfels with circular or elliptic discs [Botsch et al. 2005;
Habbecke and Kobbelt 2007; Pfister et al. 2000; Ren et al. 2002;
Zwicker et al. 2002], and the surfel representation has been applied
to depth fusion in 3D reconstruction using depth cameras [Weise
et al. 2009; Xu et al. 2018]. For point-based surface reconstruc-
tion, DSS [Yifan et al. 2019] employs opaque circles to represent
surfaces, optimizing them through differentiable surface splatting.
This approach confines its gradients to few closest ellipses. Simi-
larly, PBNR [Kopanas et al. 2021] uses an anisotropic 2D Gaussian
associated with each pixel to capture local geometry. Due to the
absence of adjustable opacity, both of these methods rely on a rela-
tively precise geometric initialization. Point-based rendering can
also be combined with neural features and decoder networks to
enhance rendering quality [Aliev et al. 2020; Rückert et al. 2022].

Alternatively, recent methods have been developed to approxi-
mate volume rendering via conventional alpha-blending on sorted
splats. Pulsar [Lassner and Zollhofer 2021] and Neural Catacaustics
[Kopanas et al. 2022] represent surfaces as a set of isotropic 3D
spheres or 2D Gaussian discs. 3D Gaussian Splatting (3DGS) [Kerbl
et al. 2023] introduces a promising approach to modeling 3D scenes,
achieving fast reconstruction and real-time rendering speeds, as
well as enhanced quality. It represents complex scenes as a combina-
tion of numerous 3D Gaussians with position, opacity, anisotropic
covariance, and spherical harmonic coefficients. SuGaR [Guédon
and Lepetit 2023] further proposes a method allowing precise and
fast mesh extraction from 3D Gaussian Splatting by adding a regu-
larization term that encourages the Gaussians to align well with
the surface. Similarly, NeuSG [Chen et al. 2023] incorporates scale
regularization to promote narrow 3D Gaussian ellipsoids. However,
despite these efforts, achieving a close fit between anisotropic 3D
Gaussians and surfaces remains a challenging task.

In contrast, our method takes a different approach by utilizing
Gaussian surfels with opacity and anisotropic covariance to achieve
a better alignment with the surface. Unlike 3DGS [Kerbl et al. 2023]
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and SuGaR [Guédon and Lepetit 2023] which emphasize realistic
rendering, our primary objective is to achieve super-fast surface
reconstruction while preserving fine details.

3 METHOD
3.1 Overview
The goal of our method is to combine the flexible optimization and
rendering scheme in 3DGS and the surface alignment property of
surfels in a way such that surface meshes with fine details can be
efficiently reconstructed. As outlined in Fig. 2, the proposed method
takes a set of posed RGB images as input, where I𝑘 denotes the
captured 𝑘-th image. As to the output, the method produces a set of
Gaussian surfels, represented as ellipses with anisotropic Gaussian
kernels, opacities, and view-dependent colors represented using
spherical harmonics (Sec. 3.2).

We optimize the Gaussian surfels to minimize the photometric
difference between input RGB images and rendering results at cap-
tured views. To make the optimization controllable, we introduce
a set of regularization losses to enforce surface smoothness and
depth-normal consistency (Sec. 3.3). After completing the optimiza-
tion, we render multi-view depth maps and normal maps and fuse
them through screened Poison reconstruction [Kazhdan and Hoppe
2013] to extract a high-quality global mesh. Before meshing, a vol-
umetric cutting procedure is performed to reduce erroneous depth
values caused by alpha blending for pixels at surface boundaries
(see 3.4).

3.2 Gaussian Surfels
In this section, we introduce the representation of our Gaussian
surfels, which comprise a set of unstructured Gaussian kernels
{x𝑖 , r𝑖 , s𝑖 , 𝑜𝑖 , C𝑖 }𝑖∈P , where 𝑖 is the index of each Gaussian kernel,
x𝑖 ∈ R3 denotes the position of Gaussian kernel’s center, r𝑖 ∈ R4
is its rotation (orientation) represented by a quaternion, 𝑜𝑖 ∈ R
is the opacity, and C𝑖 ∈ R𝑘 is spherical harmonic coefficients of
each Gaussian. The symbol s𝑖 ∈ R3 represents the scaling factors
for each of the two local axes of a surfel. Thus, the 3D Gaussian
distribution can be represented as:

𝐺 (x; x𝑖 ,Σ𝑖 ) = exp
{
−0.5 (x − x𝑖 )⊤Σ𝑖

−1 (x − x𝑖 )
}
, (1)

where Σ𝑖 is the covariance matrix expressed as the product of a
scaling matrix S𝑖 and a rotation matrix R(r𝑖 ), which is a 3 × 3
rotation matrix represented by a quaternion r𝑖 .

We set s𝑖 = [s𝑥
𝑖
, s𝑦
𝑖
, 0]⊤ to flatten the 3D Gaussians [Kerbl et al.

2023]. Therefore, the corresponding Σ𝑖 is changed to:

Σ𝑖 = R(r𝑖 )S𝑖S⊤𝑖 R(r𝑖 )⊤ = R(r𝑖 )Diag
[ (

s𝑥𝑖
)2
,

(
s𝑦
𝑖

)2
, 0
]

R(r𝑖 )⊤, (2)

where Diag[·] indicates a diagonal matrix with diagonal entries in
[]. In this Gaussian surfel representation, eachGaussian is truncated
as a 2D ellipse and the normal for each Gaussian kernel can be
directly computed as n𝑖 = R(r𝑖 ) [:, 2], where the [·] operator follows
the slicing syntax of a multi-dimensional array in NumPy [Kingma
and Ba 2014]. Our method supports optimizing the normal direction
of each ellipse to achieve the alignment of Gaussian surfels with
the actual surface.

Differentiable Gaussian splatting. For novel view rendering, the
Gaussian splatting procedure remains consistent with that of 3DGS.
Specifically, during rendering, the color of each pixel u is calculated
via alpha-blending of all the nearby Gaussian kernels:

𝐶 =

𝑛∑︁
𝑖=0

𝑇𝑖𝛼𝑖c𝑖 , 𝑇𝑖 =

𝑖−1∏
𝑗=0

(1 − 𝛼 𝑗 ), 𝛼𝑖 = 𝐺 ′ (u; u𝑖 ,Σ′
𝑖 )𝑜𝑖 , (3)

where 𝛼𝑖 represents alpha-blending weight, which is the product of
opacity and the Gaussian weight specified in Eq. 1. The view depen-
dent color c𝑖 is computed via spherical harmonics. To enhance the
rendering efficiency, the 3D Gaussian in Eq. 2 are reparameterized
in 2D ray space [Zwicker et al. 2002] as 𝐺 ′:

𝐺 ′ (u; u𝑖 ,Σ′
𝑖

)
= exp

{
−0.5 (u − u𝑖 )⊤Σ′

𝑖
−1 (u − u𝑖 )

}
, (4)

Σ′
𝑖 =

(
J𝑘W𝑘Σ𝑖W⊤

𝑘
J⊤
𝑘

)
[: 2, : 2] , (5)

where W𝑘 is a viewing transformation matrix for input image 𝑘 ,
J𝑘 is the affine approximation of the projective transformation. Σ′

represents the transformed covariance matrix in image coordinates.
Similarly, the depth �̃� and normal �̃� for each pixel can also be

calculated via Gaussian splatting and alpha-blending:

�̃� =
1

1 −𝑇𝑛+1

𝑛∑︁
𝑖=0

𝑇𝑖𝛼𝑖R𝑖 [:, 2], �̃� =
1

1 −𝑇𝑛+1

𝑛∑︁
𝑖=0

𝑇𝑖𝛼𝑖𝑑𝑖 (u) . (6)

We utilize 1/(1 −𝑇𝑛+1) to normalize the blending weight 𝑇𝑖𝛼𝑖 . Un-
like adding a background color during color rendering, we found
this normalization approach to be more suitable for rendering depth
and normal maps.

For depth rendering, directly blending the depth of the center
position 𝑑𝑖 (u𝑖 ) of each Gaussian kernel is inaccurate because it
neglects the slope of the 2D ellipse, as illustrated in Fig. 3. For
instance, when dealing with Gaussian surfels aligned with a slanted
plane, such depth rendering results will not be consistent with
surface normals. To this end, in our implementation, the depth of
pixel u for each Gaussian kernel 𝑖 is computed by calculating the
intersection of the ray cast through pixel u with the Gaussian ellipse
during splatting. It can be simplified via local Taylor expansion as:

𝑑𝑖 (u) = 𝑑𝑖 (u𝑖 ) + (W𝑘R𝑖 ) [2, :] J−1𝑝𝑟 (u − u𝑖 ) , (7)

where J−1𝑝𝑟 is the Jacobian of inverse mapping a pixel in the image
space onto the tangent plane of Gaussain surfel as in [Zwicker et al.
2001], (W𝑘R𝑖 ) transforms the rotation matrix of a Gaussian surfel
to the camera space.

3.3 Optimization
To guide the optimization of explicit Gaussian surfels, our total loss
L consists of five components: photometric loss Lp, normal-prior
loss Ln, opacity loss Lo, depth-normal consistency loss Lc. Similar
to [Wang et al. 2021], we also introduce a mask loss Lm, which
computes binary cross-entropy between

∑𝑛
𝑖=0𝑇𝑖𝛼𝑖 and the binary

segmentation mask. Thus we have:

L = Lp + Ln + 𝜆oLo + 𝜆cLc + 𝜆mLm, (8)

where the trade-off weights 𝜆o, 𝜆c, and 𝜆m balance the loss terms.
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Figure 3: The first row: the intersection of a ray with a 3D
Gaussian point is challenging to calculate precisely. As a
result, methods such as SuGaR [Guédon and Lepetit 2023]
approximate the depth of intersection with the depth of the
Gaussian’s center point, which can introduce errors. The
second row: the intersection of a ray with our Gaussian surfel
can be calculated precisely, as well as its depth.

Photometric loss Lp. The photometric loss is same as in 3DGS. It
combines an 𝐿1 term and a D-SSIM term to minimize the difference
between a rendered image Ĩ and its matched input image I:

Lp = 0.8 · 𝐿1 (Ĩ, I) + 0.2 · 𝐿𝐷𝑆𝑆𝐼𝑀 · (Ĩ, I), (9)

Depth-normal consistency lossLc. This term enforces consistency
between the rendered depth D̃ and the rendered normal Ñ:

Lc = 1 − Ñ · 𝑁 (𝑉 (D̃)) . (10)

where 𝑉 (·) transforms each pixel and its depth to a 3D point, and
𝑁 (·) calculates the normal from neighboring points using the cross
product. The depth-normal consistency loss plays a crucial role
in our optimization process, particularly in resolving the gradient
vanishing problem for each Gaussian surfel.

Moreover, we have found that it can also aid in resolving the
ambiguity between rendered depth and normal, where Gaussian-
splatted normals may exhibit accuracy while depths do not, and
vice versa. As illustrated in Fig. 4: when the center depth is correct
but the normal is not (top b), the rendered depth can help correct the
direction of the Gaussian ellipse; when the normal is correct but the
depth is not (top c), Lc can be interpreted as normal-aware depth
smoothing. Enforcing bidirectional consistency between rendered
depth and normal results in an improved quality of reconstruction
in both cases. The self-supervised consistency loss alone does not
guarantee correct surface (top d), while combining with other loss
terms in this section achieves consistent and correct results (top a).

Normal-prior loss Ln. This term acts as a prior-based regular-
izer that improve optimization stability, especially in areas with
highlights, where photometric loss may result in wrong surface
points. We use normal maps �̂� from a pretrained monocular deep
neural network from Omnidata [Eftekhar et al. 2021]. Additionally,
we introduce an 𝐿1 loss to minimize the gradient of the rendered
normal, denoted as ∇�̃� , thereby regularizing the curvature of the
surface:

Ln = 0.04 · (1 − Ñ · N̂) + 0.005 · 𝐿1 (∇Ñ, 0), (11)

Opacity loss Lo. This opacity loss promotes non-transparent
surfaces by encouraging each Gaussian’s opacity to be either near

w/ ℒ!

Depth-normal consistency:

GT imagew/o ℒ!

2.393 2.567

CorrectDepth of surfel center:
Surfel normal:

Correct Incorrect
Correct
Consistent

Incorrect Correct
Inconsistent Inconsistent

Depth color map:

Surfel distribution:

Incorrect
Incorrect
Consistent

(a) (b) (c) (d)

Figure 4: Depth-normal consistency. Top: The consistency of
surfel depth and normal during optimization. Bottom: Ren-
dered depth maps with and without consistency loss, along-
side the reference image.

zero or near one, where 𝑜𝑖 is parameterized with a sigmoid function.
This contributes to the overall quality of the reconstruction:

Lo = exp
(
−(𝑜𝑖 − 0.5)2/0.05

)
. (12)

According to Equation 2, the gradient of the covariance matrix
with respect to the 3rd column of R𝑖 (normal), is equal to zero.
Consequently, following the chain rule, the photometric loss Lp
has no gradient with respect to the normal of each Gaussian surfel.
As R𝑖 is a rotation matrix in SO(3), the normal will still be modified
according to the first two axes of R𝑖 . However, this kind of indirect
modification can lead to errors during optimization. This observa-
tion inspired us to incorporate the depth-normal consistency loss
Lc, which rectifies the normal of each Gaussian surfel using the
gradient obtained from the rendered depth.

3.4 Gaussian Point Cutting and Meshing
We fuse the rendered depth and normal maps at captured views
and then apply screened Poisson reconstruction [Kazhdan and
Hoppe 2013] with a tree depth of 10 to obtain the final surface
mesh. Compared with directly applying Poisson reconstruction
to Gaussian centers, this greatly increases the point density and
improves the quality of surface details.

However, the rendered depth map still contains errors, especially
near depth discontinuities. As depicted in Fig. 5, if ellipses extend
beyond the true surface boundary and the associated weights can-
not rapidly decay to zero, the rendered depth of the background
surfaces will be influenced by the alpha of the foreground Gaussian
points, resulting in a depth that is in front of the true background
surface. Due to the complex distribution of Gaussian surfels, we
found it was difficult to remove outliers along each ray by dis-
carding surfels far from median or alpha-weighted mean (Fig. 6
(c)). Instead, we implement volumetric cutting according to the
aggregated alpha values from each Gaussian surfel.

Volumetric cutting. The idea is to mark those voxels far from
Gaussian surfels as un-occupied, i.e., cutting them from the grid.
Thus, the wrong 3D point in red illustrated in Fig. 5 can be re-
moved because it is inside a un-occupied voxel. More precisely, we
first construct a 5123 voxel grid within the bounding box. Next,
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Rendered 
depth

Foreground intersection

Background intersection

Alpha
Depth

w/ cuttingw/o cutting

Figure 5: An example of error in the rendered depth. The
complex distribution of Gaussian surfels after optimization
makes it difficult to remove outlier Gaussian points along
each ray by discarding points far from median or alpha-
weighted mean.

we traverse all the Gaussian ellipses, calculate their intersection
with the surrounding voxels, and accumulate the weighted opacity
𝐺 (x; x𝑖 ,Σ𝑖 ) · 𝑜𝑖 to the corresponding voxels. To reduce computa-
tional cost, we approximate the integration of Gaussian weights
and opacities within the intersection area using the weighted opac-
ity of the voxel center. If a voxel has a low accumulated weighted
opacity, lower than 𝜆 = 1 in our experiments, indicating a large
distance from the foreground or background surfaces, we prune
these voxels as well as the 3D points in them computed from the
depth. As shown in Fig. 6, compared with outlier removal using
median depth at each pixel, our volumetric cutting exhibits better
quality and computational efficiency.

3.5 Implementation details
Initialization. We support the use of sparse points computed via

the Structure from Motion (SfM) as the initialization (Fig. 10). We
found this could accelerate the decrease of loss function values
in the first few steps but overall did not significantly improve the
convergence rate. Thus, we initialize our Gaussian surfels with
random positions and rotations inside the approximated bounding
box of the target object in all our experiments.

Optimization. Our model is trained on a GPU server with an i9-
14900KCPU and a RTX 4090GPU, using theAdamoptimizer [Kingma
and Ba 2014], PyTorch 1.12.0 [Paszke et al. 2019], and CUDA 11.8.
Each data batch contains all pixels of an image at every iteration.
We do the ADMM training procedure for 15k iterations starting
at lower resolutions for a warm-up. For the training loss, we as-
sign 𝜆o = 0.01 and 𝜆m = 1. 𝜆c is linearly increased from 0 to 0.1.
The learning rate associated with the surfels position x𝑖 is set to
1.6e-4, and decays exponentially to 1.6e-6. The learning rates for
r𝑖 , s𝑖 , 𝑜𝑖 , C𝑖 are set to 1.0e-3, 5.0e-3, 5.0e-2, 2.5e-3, respectively. As the
photometric loss does not have a gradient with respect to R(r𝑖 )[:,2],
we scale the gradient 𝜕Ñ/𝜕R[:, 2] by a factor of 10 in the derivative
chain to balance the gradients along each axis in R(r𝑖 ), and guide
the Gaussian ellipse to rotate to the correct direction.

We utilize adaptive point splitting, cloning, and pruning tech-
niques akin to 3DGS. A novel aspect of our implementation involves
pruning points that do not receive gradients every N iterations,
where N is the number of images. This pruning is motivated by

(a) Meshing with Gaussian centers (b) Depth fusion & meshing (w/o cutting)

(c) Depth fusion & meshing
(pixel-level median)

(d) Depth fusion & meshing
(volumetric cutting)

Figure 6: Comparisons on cutting strategies. Meshing is
achieved via screened Poisson reconstruction [Kazhdan and
Hoppe 2013].

the fact that points lacking gradients correspond to those that are
invisible from all views, such as noisy points within the object.

4 EXPERIMENTS
Baseline. We compare our method with 1) NeuS [Wang et al.

2021], INSR [Zhao et al. 2022] and NeuS2 [Wang et al. 2023], which
are implicit surface reconstructions by neural volume rendering,
2) 3DGS [Kerbl et al. 2023] and SuGaR [Guédon and Lepetit 2023]
which are 3D Gaussian points-based surface reconstructions. All
comparisons use original author’s implementations and hyperpa-
rameters.

Evaluation metrics and datasets. To evaluate our method, we
report both surface accuracy as Chamfer distance and render fidelity
as Peak Signal-to-Noise Ratio (PSNR) on the DTU [Jensen et al.
2014] and BlendedMVS [Yao et al. 2020] datasets. We follow NeuS2
to leave 7 ∼ 8 images for testing on DTU, and use all images
for training on BlendedMVS. The Chamfer distance measures the
average of accuracy and completeness, i.e. the Chamfer distance of
prediction to reference point cloud and vise versa.

Comparisons. Wefirst benchmark ourmethod on theDTU dataset
[Jensen et al. 2014] both quantitatively (Table 1) and qualitatively
(Fig. 8). The dataset encompasses laboratory-captured scenes, each
encompassing 49 or 64 images with resolution 1600 × 1200, and we
choose the same set of scenes selected by IDR [Yariv et al. 2020]
that contain 15 objects with manually annotated object masks. We
further tested on 18 challenging scenes from the low-res set of the
BlendedMVS dataset [Yao et al. 2020], where each scene comprises
24 to 143 images at 768 × 576 pixels with masks provided. The
evaluation result is obtained using the DTU evaluation code.

The statistics of Chamfer distances in these two tests are shown
in Tables 1 and 2. Our method significantly outperforms 3DGS and
SuGaR on the DTU and the BlendedMVS datasets. Compared with
NeuS2, our results show a larger Chamfer distance on DTU. We
hypothesize that it is due to the bias inherent in per-view depth
calculation using alpha blending. Despite the higher Chamfer dis-
tance, our results often have less noise than NeuS2 and more details
than NeuS, as illustrated in Fig. 8. In addition, our method can be
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Table 1: Geometry quality comparison on the DTU dataset.
We report the Chamfer distance compared with baselines.
Mean scores of Chamfer distance (mm) and training times
(minute) are included on the bottom. Best results are high-
lighted as 1st , 2nd , and 3rd .

Methods Ours 3DGS SuGaR NeuS NeuS2 INSR
24 0.66 2.89 1.85 0.83 0.56 2.86
37 0.93 2.65 1.19 0.98 0.76 2.81
40 0.54 2.66 1.91 0.56 0.49 2.09
55 0.41 2.31 1.64 0.37 0.37 0.81
63 1.06 3.55 2.76 1.13 0.92 1.65
65 1.14 2.94 1.94 0.59 0.71 1.39
69 0.85 2.19 1.97 0.60 0.76 1.47
83 1.29 2.66 3.07 1.45 1.22 1.67
97 1.53 2.99 2.38 0.95 1.08 2.47
105 0.79 1.83 1.33 0.78 0.63 1.12
106 0.82 2.54 1.69 0.52 0.59 1.22
110 1.58 3.38 3.61 1.43 0.89 2.30
114 0.45 2.05 1.53 0.36 0.40 0.98
118 0.66 1.99 1.83 0.45 0.48 1.41
122 0.53 2.02 1.97 0.45 0.55 0.95
Mean 0.88 2.58 2.05 0.77 0.70 1.68
Time 6.67 5.19 30.9 408 3.27 8.48

Table 2: Geometry quality comparison on the BlendedMVS
dataset. Best results are highlighted as 1st , 2nd , and 3rd .

Methods Ours 3DGS SuGaR NeuS NeuS2 INSR
Basketball 1.55 5.59 8.00 2.96 2.48 2.67

Bear 1.96 5.08 9.73 3.00 3.20 3.72
Bread 1.17 3.98 7.65 2.85 2.47 2.76
Camera 2.34 5.85 7.77 2.61 2.89 3.25
Clock 3.41 7.34 9.21 2.75 2.87 3.45
Cow 2.17 5.38 8.69 2.04 2.29 2.11
Dog 2.89 7.16 9.27 2.75 2.97 2.54
Doll 2.13 6.25 8.75 2.17 2.23 2.44

Dragon 2.75 4.90 9.76 2.95 2.68 2.20
Durian 2.35 6.66 8.04 3.14 3.39 5.78
Fountain 3.01 5.03 9.05 3.03 2.68 3.79
Gundam 0.85 4.46 7.32 1.62 1.87 1.36
House 2.12 4.64 7.28 3.23 3.02 2.93
Jade 3.50 6.96 10.7 4.25 4.03 3.85
Man 2.47 7.13 9.29 2.29 2.20 2.22

Monster 1.38 5.84 8.20 1.92 1.96 1.80
Sculpture 2.90 6.68 8.98 2.10 2.06 1.70
Stone 1.84 6.01 9.19 2.51 2.01 2.12
Mean 2.27 5.83 8.71 2.67 2.63 2.82
Time 3.82 3.47 18.3 377 3.61 2.78

applied to the reconstruction of open surfaces (Fig. 2), since Gauss-
ian surfels do not assume closed surfaces as in the representation

Table 3: Rendering quality comparison on DTU in common
(12.5% of images for testing) and sparse (50% for testing) set-
tings.

Test ratio 12.5% 50%
Methods Ours 3DGS NeuS2 Ours 3DGS NeuS2
PSNR ↑ 32.51 32.78 31.41 31.70 30.08 30.66
SSIM ↑ 0.942 0.943 0.916 0.936 0.882 0.910

Ground Truth Ours 3DGS NeuS2

D
TU

-#
37

D
TU

-#
24

Figure 7: Rendering quality comparison under sparse inputs
on DTU. With geometry constraints, our method and NeuS2
render floater-free images compared to 3DGS. Meanwhile
our renderings recover better visual details than NeuS2’s.

of signed distance functions. Overall, our method achieves a good
balance between reconstruction speed and quality. In contrast to
NeuS, our approach exhibits rapid convergence to high-quality
reconstructions, as detailed in Table 1 and 2. Furthermore, while
NeuS [Wang et al. 2021] employs a large MLP to model surfaces,
offering robustness to outliers, it may result in over-smoothing of
the reconstructed surfaces as depicted in Fig. 8. On the other hand,
our reconstruction speed is comparable to that of INSR [Zhao et al.
2022] and NeuS2 [Wang et al. 2023], both of which utilize hash fea-
ture maps and tiny MLPs to expedite implicit surface optimization.

Compared to point-based reconstruction methods such as 3DGS
[Kerbl et al. 2023] and SuGaR [Guédon and Lepetit 2023], both of
which utilize Gaussian points to represent radiance fields and sur-
faces, our method excels in reconstructing noise-free surfaces and
capturing intricate details. For 3DGS, we employ a mesh extraction
method similar to ours but calculate normals directly based on the
rendered depth map. For SuGaR, we utilize the proposed 𝜆−level
set of the density function with 𝜆 = 0.3 for point extraction and
Poisson reconstruction with a depth of 10. As illustrated in Fig. 8,
while superior to vanilla 3DGS on DTU, this approach still exhibits
ellipsoid-like artifacts and holes on the surface. We believe this
discrepancy arises because the regularization term that encourages
the 3D Gaussians to be flat does not align well enough with the
extracted 𝜆−level set.

We also assess the rendering quality of our method by compar-
ing it with 3DGS and NeuS2 on DTU under two settings: a com-
mon setting where 12.5% of images are reserved for testing, and
a sparse setting where half of the images are reserved for testing.
As shown in Table 3, our method exceeds NeuS2 in both settings,
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Figure 8: Qualitative comparisons on DTU and BlendedMVS Datasets.
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Table 4: Loss term ablation studies on DTU using average
Chamfer distance (CD) and PSNR score.

Metrics Full w/o Lc w/o Ln w/o Lo w/o Lm w/o cut
CD ↓ 0.882 1.243 1.070 1.085 1.015 1.189
PSNR ↑ 32.51 31.56 32.63 32.08 29.10 /

Mesh
(Full)

Input 
image

Normal from 
depth

Rendered 
normal

Mesh
(ablation)

Normal
(ablation)

Normal
(Full)

w/o ℒ!

w/o ℒ"

w/o ℒ#

w/o ℒ$

Figure 9: Top: Ablation on depth-normal consistency loss.
For the normal column, the part left to the central dashed
line on the object represents the rendered normals, while
the right part represents the normals calculated from the
rendered depth. We can observe better consistency with the
depth-normal consistency loss, resulting in improved recon-
struction. Second row: Ablation on normal-prior loss; the
concave parts on the surface caused by highlights are cor-
rected. Third row: Ablation on opacity loss. The LEGO studs
are better reconstructed, with sharper edges. Bottom Abla-
tion without masks, where the absence of masks may lead to
noises in texture-less background regions.

only performs slightly worse than the vanilla 3DGS in common set-
ting. However, due to its precise underlying geometry, our method
demonstrates superior generality compared to 3DGS, resulting in
a significant improvement in rendering quality in sparse settings
(Fig. 7).

Ablations. We show quantitative analyses of our loss terms by
excluding each individually from the optimization (Table 4). The
photometric lossLp is always included. In addition, we evaluate the
effect of volumetric cutting by excluding volumetric cutting (w/o

Rendering Normal Depth Mesh

Figure 10: Reconstruction results of our method on indoor
scenes from DeepBlending [Hedman et al. 2018] and MipN-
eRF360 [Barron et al. 2022] datasets when initialized with
sparse SfM points.

cut). Removing depth-normal consistency loss Lc significantly re-
duces reconstruction quality. The qualitative results of the ablation
are shown in Fig. 9. The normal-prior loss helps reduce fluctuations
in the geometric reconstruction in highlighted areas (the second
row of Fig. 9), contributing to a lower Chamfer distance. However,
as indicated in the third colomn of Table 4, removing the normal-
prior loss can slightly improve the rendering quality. This is because
this loss might prevent the optimizer from approximating the high-
lights as a virtual light sources behind the actual surface, resulting
in lower rendering quality. The opacity loss aids in representing
details (the fourth column in 4). As depicted in the third rows of
Fig. 9, with this loss, the details on the “LEGO studs” are much more
clearly reconstructed and rendered. The last two columns of Table 4
demonstrate the efficacy of mask loss Lm and volumetric cutting in
noise reduction, which can improve the quality of reconstruction.

5 CONCLUSION
We have demonstrated that our point-based representation, Gauss-
ian surfels, can be efficiently optimized to achieve a good balance
between high-quality surface reconstruction and computational
cost.

Limitations. Even with monocular norm priors, our method can-
not guarantee accurate reconstruction results at areas with strong
specular reflections. In the future, we will investigate how to store
and optimize features at Gaussian surfels to encode their view-
dependent appearance. Taking the features and view direction as
inputs, we can train a neural network decoder to give us additional
capabilities to handle specular reflections than spherical harmonics.
Moreover, we have also observed that, for surfaces with very weak
textures, our reconstructed surfaces may exhibit a global shift com-
pared to ground-truth surfaces. It is possible to mitigate this issue
by incorporating information from depth sensors or more shape
priors.
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