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THE RIGIDITY OF BICONSERVATIVE SURFACES IN Sol3

DOREL FETCU

Abstract. We consider biconservative surfaces in Sol3, find their local equations,
and then show that all biharmonic surfaces in this space are minimal.

1. Introduction

Almost forty years ago, B.-Y. Chen [3] introduced biharmonic submanifolds of
Euclidean spaces En, as isometric immersions with harmonic mean curvature vector
field. Then, in [4, 14] it was proved that biharmonic surfaces in E

3 are minimal, a
result that led to the still open Chen’s Conjecture that biharmonic submanifolds of
Euclidean spaces are minimal [3].

In the same era, independently and in a more abstract way, biharmonic maps
were defined by G.-Y. Jiang [12] as critical points of the L2−norm of the tension
field. This type of a variational problem was suggested back in the 1964 by J. Eells
and J. H. Sampson in their seminal paper [8]. We note that the two definitions agree
in Euclidean spaces En.

Since ambient spaces with non-positive curvatures do not allow for interesting
compact examples, most of the research has been done on biharmonic submanifolds
of Euclidean spheres and other spaces with convenient curvature properties (for
detailed accounts see [10, 26]).

The notion of biconservative submanifolds was derived from the theory of bi-
harmonic submanifolds by only requiring the vanishing of the tangent part of the
bitension field. Although a rather new one, this subject is already well established.
If we are to illustrate only the literature on biconservative surfaces, we refer to pa-
pers like [2, 9, 11, 17, 21, 22, 23, 25] to gain a satisfactory (if fairly incomplete)
imagine.

Studying the geometry of surfaces in Sol3 seems to be the most challenging among
the eight Thurston geometries. The lack of some powerful tools used in other ho-
mogeneous 3-manifolds to describe the geometry of immersed surfaces lead to many
difficulties that do not appear in the case of the remaining seven geometries (see
[6]). However, in spite of these difficulties, there are important results on the ex-
istence and uniqueness of constant mean curvature (CMC) spheres [6, 19, 20], on
totally umbilic surfaces [28], half-space theorems for minimal surfaces [5], as well
as Jenkins-Serrin type results for minimal [24] and CMC surfaces [15]. In a local
approach, one classified constant angle surfaces [16]. Also CMC biharmonic surfaces
were studied in [27] and it turned out that in Sol3 they are actually minimal.

In our paper, we first prove that CMC biconservative surfaces in Sol3 are minimal.
Next, we show that non-CMC biconservative surfaces are constant angle surfaces and
find their local equations. We conclude with the fact that all biharmonic surfaces
in Sol3 are minimal. This last result is similar to that for biharmonic surfaces in E

3

(see [3, 7]).
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Conventions. Throughout the paper surfaces are oriented, we will use the fol-
lowing sign conventions

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, ∆ = trace∇2 = trace(∇∇−∇∇),

and objects on Sol3 will be indicated by (·).

2. Preliminaries

Biharmonic maps φ : Mm → Nn between two Riemannian manifolds are critical
points of the bienergy functional

E2 : C
∞(M,N) → R, E2(φ) =

1

2

∫

M
|τ(φ)|2dv,

where τ(φ) = trace∇dφ is the tension field of φ. The Euler-Lagrange equation, also
called the biharmonic equation, was derived by G.-Y. Jiang [12]

τ2(φ) = ∆τ(φ)− traceRN (dφ(·), τ(φ))dφ(·) = 0,(2.1)

where τ2(φ) is the bitension field of φ.
Since any harmonic map is biharmonic, the important case, from the point of

view of biharmonicity, is that of non-harmonic biharmonic ones.
Next, if we consider a fixed map φ and let the domain metric vary, one obtains a

functional on the set G of Riemannian metrics on M

F2 : G → R, F2(g) = E2(φ).

Critical points of this functional are characterized by the vanishing of the stress-
energy tensor S2 of the bienergy (see [17]). This tensor was introduced in [13] as

S2(X,Y ) =
1

2
|τ(φ)|2〈X,Y 〉+ 〈dφ,∇τ(φ)〉〈X,Y 〉 − 〈dφ(X),∇Y τ(φ)〉

−〈dφ(Y ),∇Xτ(φ)〉,
and it satisfies

divS2 = −〈τ2(φ), dφ〉.
For isometric immersions, (divS2)

♯ = −τ2(φ)
⊤, where τ2(φ)

⊤ is the tangent part
of the bitension field.

Definition 2.1. A submanifold φ : Mm → Nn of a Riemannian manifold Nn is
called biconservative if div S2 = 0.

From the definition, it is easy to see that a submanifold is biconservative if and
only if the tangent part of the bitension field vanishes.

Now, let us consider a surface Σ2 in a Riemannian manifold Nn, with the unit
normal vector field ξ. The Gauss and the Weingarten equations of the surface

∇N
XY = ∇XY + σ(X,Y ) and ∇N

Xξ = −AX,

hold for all vector fields X and Y tangent to the surface, where ∇ is the induced
connection on Σ2, σ is its second fundamental form, and A its shape operator. The
mean curvature vector field of Σ2 is given by H = fξ, where f = (1/2) traceA is
the mean curvature function.

If f is constant, then Σ2 is called a constant mean curvature (CMC) surface.
The Codazzi equation of the surface reads, for any vector fields X, Y , Z tangent

to Σ2, and any normal vector field V ,

(2.2) 〈R̄(X,Y )Z, V 〉 = 〈(∇⊥
Xσ)(Y,Z), V 〉 − 〈(∇⊥

Y σ)(X,Z), V 〉,
where (∇⊥

Xσ)(Y,Z) = ∇⊥
Xσ(Y,Z)− σ(∇XY,Z)− σ(Y,∇XZ).
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The Gauss equation of the surface is

(2.3) 〈R(X,Y )Z,W 〉 = 〈R̄(X,Y )Z,W 〉+ 〈AY,Z〉〈AX,W 〉 − 〈AX,Z〉〈AY,W 〉,

for all tangent vector fields X, Y , Z, and W , where R is the curvature tensor of Σ2.
Specializing a general result in [17] in the case of surfaces, we have the following

splitting of biharmonic equation theorem.

Theorem 2.2 ([17]). A surface Σ2 in a Riemannian manifold Nn is biharmonic if

and only if
{

∆f − f |A|2 − f〈trace(RN (·, ξ)·), ξ〉 = 0

A(∇f) + f∇f + f trace(RN (·, ξ)·)⊤ = 0.

Corollary 2.3. A surface Σ2 in a Riemannian manifold Nn is biconservative if and

only if

(2.4) A(∇f) + f∇f + f trace(RN (·, ξ)·)⊤ = 0.

Next, we shall briefly recall some basic facts on Sol3. This Lie group is R
3 with

the Riemannian metric

〈, 〉 = e2zdx2 + e−2zdy2 + dz2,

where (x, y, z) are the canonical coordinates of R3.
A left-invariant orthonormal frame field {E1, E2, E3} with respect to this metric,

called the canonical frame, is defined by

E1 = e−z ∂

∂x
, E2 = ez

∂

∂y
, E3 =

∂

∂z
.

The Levi-Civita connection of Sol3 is then the following

(2.5)

∇̄E1
E1 = −E3, ∇̄E1

E2 = 0, ∇̄E1
E3 = E1

∇̄E2
E1 = 0, ∇̄E2

E2 = E3, ∇̄E2
E3 = −E2

∇̄E3
E1 = 0, ∇̄E3

E2 = 0, ∇̄E3
E3 = 0.

One can see that the vertical vector field E3 foliates Sol3 by vertical geodesics.
Moreover, we get that the sectional curvatures of the vertical plane fields (E1, E3)
and (E2, E3) are equal to −1, while that of the horizontal plane field (E1, E2) is
equal to 1.

The only totally geodesic surfaces in Sol3 are the leaves of the first two canonical
foliations

F1 ≡ {x = constant} and F2 ≡ {y = constant},
which are isometric to the hyperbolic plane H

2 (see [28]).
The leaves of the third canonical foliation F3 ≡ {z = constant} are isometric to

R
2 with its usual flat metric and are minimal.
The curvature tensor R̄ of Sol3 is given by (see [28])

R̄(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y + 2〈Z,E3〉(〈X,E3〉Y − 〈Y,E3〉X)(2.6)

+2(〈X,Z〉〈Y,E3〉 − 〈Y,Z〉〈X,E3〉)E3.
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3. Biconservative surfaces in Sol3

As we have seen, CMC biharmonic surfaces in Sol3 are minimal ([27]). The follow-
ing result shows that this stands true when we only keep the weaker biconservative
condition.

Proposition 3.1. A CMC biconservative surface in Sol3 is minimal.

Proof. From Corrolary 2.3 and the expression (2.6) of the curvature tensor of Sol3,
one can easily see that a CMC surface Σ2 is biconservative if and only if either the
vector field E3 is either normal or tangent to the surface.

If E3 is normal, then Σ2 is minimal and therefore we only have to study the
case when E3 is tangent. In this situation, we consider an orthonormal frame field
{X1 = E3,X2} on the surface and, since ∇̄E3

E3 = 0, it follows that AX1 = 0 and
AX2 = 2fX2. Also, we can write X2 as

X2 = cosαE1 + sinαE2,

and then

E1 = cosαX2 + sinαξ, E2 = sinαX2 − cosαξ,

along the surface, where ξ = sinαE1 − cosαE2 is a unit vector field normal to Σ2.
Next, using formulas (2.5) and the Gauss and Weingarten equations of the surface,

one obtains

∇̄X2
E1 = − cosαE3

= X2(cosα)X2 + cosα∇X2
X2 + 2f cosαξ +X2(sinα)ξ − 2f sinαX2,

and

∇̄X2
E2 = sinαE3

= X2(sinα)X2 + sinα∇X2
X2 + 2f sinαξ −X2(cosα)ξ + 2f cosαX2.

Taking the inner product with X1 in both equations, we get

cosα〈∇X2
X2,X1〉 = − cosα and sinα〈∇X2

X2,X1〉 = sinα,

which leads to sinα cosα = 0. This means that either E1 or E2 is normal to Σ2 and
therefore the surface is totally geodesic. �

Remark 3.2. In contrast to our situation, any CMC surface in a 3-dimensional
space form is biconservative [2] and also in the other 3-dimensional BCV-spaces
(that are local models for six of the Thurston geometries, the exceptions being H

3

and Sol3) non-minimal CMC biconservative surfaces do exist [23].

We will henceforth focus on non-CMC biconservative surfaces. Let Σ2 be a bi-
conservative surface in Sol3 such that ∇f 6= 0 at a point p ∈ Σ2. Therefore, there
exists a neighborhood V of p with ∇f 6= 0 on V . Since f cannot vanish on V , there
exists on open subset U of V such that f 6= 0 at each point of U . Moreover, we can
assume that f > 0 on U . Next, we consider an orthonormal frame field {X1,X2}
on U , where

X1 =
∇f

|∇f | , X2 ⊥ X1, |X2| = 1.

We now have

∇f = X1(f)X1 +X2(f)X2,

which leads to

(3.1) X1(f) = |∇f | > 0 and X2(f) = 0.
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Next, let H = fξ be the mean curvature vector field of Σ2, where ξ is a unit vector
field normal to the surface. By a straightforward computation, using isothermal
coordinates (x, y) on the surface and since Σ2 is biconservative, one obtains (see
also [18]),

E =
(

∇ ∂
∂x
AH

) ∂

∂y
−

(

∇ ∂
∂y
AH

) ∂

∂x
= 3f

(

−∂f

∂y

∂

∂x
+

∂f

∂x

∂

∂y

)

,

which shows that X1 ⊥ E on U , i.e., E and X2 are collinear.
On the other hand, from the Codazzi equation (2.2) and the expression of the

curvature tensor (2.6), we get

E =
(

∇ ∂
∂x
AH

) ∂

∂y
−

(

∇ ∂
∂y
AH

) ∂

∂x
= 2f〈ξ,E3〉

(〈

∂

∂y
,E3

〉

∂

∂x
−

〈

∂

∂x
,E3

〉

∂

∂y

)

,

and this readily shows that E is orthogonal to E3. Therefore, the two vector fields
X2 and E3 are orthogonal and, along U , we can write

(3.2)











E1 = sinβ sin θX1 + cos βX2 − sin β cos θξ

E2 = − cosβ sin θX1 + sin βX2 + cos β cos θξ

E3 = cos θX1 + sin θξ,

or, equivalently,

(3.3)











X1 = sin β sin θE1 − cosβ sin θE2 + cos θE3

X2 = cos βE1 + sinβE2

ξ = − sin β cos θE1 + cos β cos θE2 + sin θE3,

where β and θ are real valued functions on U .
From Corrolary 2.3 and formula (2.6) we easily get that the biconservative con-

dition is equivalent to

(3.4) AX1 = −
(

f +
f

|∇f | sin(2θ)
)

X1 = λ1X1,

and therefore X1 is a principal direction with the corresponding eigenfunction λ1.
It follows that also X2 is a principal direction and

(3.5) AX2 =

(

3f +
f

|∇f | sin(2θ)
)

X2 = λ2X2.

In the following, working on U , we will prove a sequence of three lemmas that
will eventually lead to our first main result.

Lemma 3.3. On the set U the following identities hold:

(1) X1(θ) = −λ1 + cos(2β) sin θ;
(2) X2(θ) = − sin(2β);
(3) cos θ〈∇X1

X1,X2〉 = sin(2β) sin θ;
(4) cos θ〈∇X2

X1,X2〉 = λ2 sin θ + cos(2β);
(5) (X1(β)− 〈∇X1

X1,X2〉 sin θ) sin β = 0;
(6) X1(β) sin β cos θ = 2 sin2 β cosβ sin2 θ;
(7) X2(β) cos θ = λ2 + cos(2β) sin θ;
(8) X2(β) sin θ − 〈∇X2

X1,X2〉 = − cos(2β) cos θ.
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Proof. From (2.5), (3.2), and (3.3), we have

∇̄X1
E3 = sin β sin θE1 + cos β sin θE2

= −X1(θ) sin θX1 + cos θ∇X1
X1 + cos θσ(X1,X1)

+X1(θ) cos θξ − sin θλ1X1,

and

∇̄X2
E3 = cos βE1 − sin βE2

= −X2(θ) sin θX1 + cos θ∇X2
X1 +X2(θ) cos θξ − sin θλ2X2.

Considering the inner product with X1, X2, and ξ, one obtains the first four equa-
tions.

Next, again using (2.5), (3.2), and (3.3), it follows

∇̄X1
E1 = − sinβ sin θE3

= X1(θ) sin β cos θX1 +X1(β) cos β sin θX1 + sin β sin θ∇X1
X1

+sinβ sin θσ(X1,X1)−X1(β) sin βX2 + cos β∇X1
X2

+X1(θ) sin β sin θξ −X1(β) cos β cos θξ + sinβ cos θλ1X1.

We take the inner product with X2 and obtain the fifth identity. From this and the
third identity, the sixth one follows immediately.

Finally, we have

∇̄X2
E1 = − cosβE3

= X2(θ) sin β cos θX1 +X2(β) cos β sin θX1 + sin β sin θ∇X2
X1

+cosβσ(X2,X2)−X2(β) sin βX2 + cos β∇X2
X2

+X2(θ) sin β sin θξ −X2(β) cos β cos θξ + sinβ cos θλ2X2,

and, taking the inner product with each X1, X2, and ξ, also using the third and the
fourth identities, we prove the last two items of the lemma. �

Remark 3.4. Any two of the third, fifth, and sixth items of Lemma 3.3 imply the
other one. This also happens with the fourth, seventh, and eighth items. Therefore
only six of the identities are independent. It is easy to verify that this is the max-
imum number of independent equations of this type that can be derived from the
expressions of ∇̄Xi

Ej , i, j ∈ {1, 2, 3}.

The next result shows that one of the two vector fields E1 or E2 is tangent to the
surface Σ2 at any point of U .

Lemma 3.5. On the set U we have sin(2β) = 0.

Proof. From the Codazzi equation (2.2) and (2.6), one obtains

(∇X1
A)X2 − (∇X2

A)X1 = − sin(2θ)X2,

which can be written as

(3.6)

{

X1(λ2) + (λ2 − λ1)〈∇X2
X1,X2〉+ sin(2θ) = 0

X2(λ1)− (λ2 − λ1)〈∇X1
X2,X1〉 = 0.

Using Lemma 3.3, the second equation become

(3.7) X2(λ1) cos θ + (λ2 − λ1) sin(2β) sin θ = 0.
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In the following, we will compute X2(λ1). Since X2(f) = 0 and X1(f) = |∇f |,
we have, also using Lemma 3.3,

X2(λ1) = −X2

(

f +
f

|∇f | sin(2θ)
)

(3.8)

=
f

|∇f |

(

X2(X1(f))

|∇f | sin(2θ) + 2 sin(2β) cos(2θ)

)

.

Now, since X2(X1(f)) = X1(X2(f)) − [X1,X2](f) = −[X1,X2](f) and, from
Lemma 3.3, we know that

cos θ[X1,X2] = cos θ(∇X1
X2 −∇X2

X1)

= − sin(2β) sin θX1 − (λ2 sin θ + cos(2β))X2,

one obtains

(3.9) cos θX2(X1(f)) = sin(2β) sin θX1(f) = sin(2β) sin θ|∇f |.
Replacing in (3.8) we get

X2(λ1) =
2f

|∇f | sin(2β) cos
2 θ,

and then, from (3.7), since

λ2 − λ1 = 4f +
2f

|∇f | sin(2θ),

one obtains
2 sin(2β)

|∇f |
(

2|∇f | sin θ + cos θ
(

1 + sin2 θ
))

= 0.

Therefore, at each point of U , either

sin(2β) = 0 or 2|∇f | sin θ + cos θ
(

1 + sin2 θ
)

= 0.

Assume that sin(2β) 6= 0 at a point q ∈ U . Then, there exists a neighborhood
W ⊂ U of q such that sin(2β) 6= 0 at all points of W , which means that

(3.10) 2|∇f | sin θ + cos θ
(

1 + sin2 θ
)

= 0

on W . From here, it follows that

2X2(X1(f)) sin θ + (2|∇f | cos θ − sin θ − sin3 θ + 2 sin θ cos2 θ)X2(θ) = 0,

on W . We then multiply by cos θ, use (3.9), Lemma 3.3, and again (3.10), to obtain,
after a straightforward computation, that cos θ = 0 on the set W . But, from (3.10),
this implies that also ∇f = 0 on W , which is a contradiction and we conclude. �

Lemma 3.6. Throughout the set U we have

cos θ 6= 0, sin θ 6= 0, X1(θ) = −2f, X2(θ) = 0, ∇X1
X1 = 0, X2(X1(f)) = 0,

and either

(1) ∇X2
X1 = cos θX2;

(2) λ2 = − sin θ,

or

(1) ∇X2
X1 = − cos θX2;

(2) λ2 = sin θ,

as β = 0 or β = π/2 on U .
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Proof. The claims on∇X2
X1,X2(θ), and λ2 follow directly from Lemmas 3.3 and 3.5.

Then, using the expression of λ2 and again the two previous lemmas, one obtains
that X1(θ) = −2f .

If sin θ = 0 at a point q ∈ U , then, at this point, λ2 = 0 and λ1 = 2f . But, from
the biconservative condition (3.4), it follows that λ1 = −f which implies that f = 0,
at q. Therefore, sin θ 6= 0 at any poiny of U .

Next, from the first equation of (3.6), one can see that, if we assume cos θ = 0 at
a point q ∈ U , then, at that point, we have X1(λ2) = 0. But, in general, on U ,

X1(λ2) = 3X1(f) +X1

(

f

|∇f |

)

sin(2θ) +
2f

|∇f |X1(θ) cos(2θ),

and therefore, at q,

X1(λ2) = 3|∇f |+ 4f2

|∇f | ,

as X1(θ) = −2f . Since f > 0 and |∇f | 0 on U , this is a contradiction, i.e., cos θ 6= 0
throughout U . To conclude, we note that ∇X1

X1 = 0 now follows immediately from
Lemma 3.3, and X2(X1(f)) = 0 from equation (3.9). �

Now, we can state the rigidity of biconservative surfaces result.

Theorem 3.7. Let Σ2 be a biconservative surface in Sol3 with f > 0 and ∇f 6= 0
at any point. Then, locally, Σ2 can be parametrized as either

(3.11) x1(u, v) = veΨ(u)E1 +Φ1(u)e
−Ψ(u)E2 +Ψ(u)E3 = (v,Φ1(u),Ψ(u)),

or

(3.12) x2(u, v) = Φ2(u)e
−Ψ(u)E1 + ve−Ψ(u)E2 +Ψ(u)E3 = (Φ2(u), v,Ψ(u)),

where

Ψ(u) =

∫ u

u0

cos θ(s)ds,Φ1(u) = −
∫ u

u0

sin θ(s)eΨ(s)ds,Φ2(u) =

∫ u

u0

sin θ(s)e−Ψ(s)ds.

The function θ = θ(u) is given either by

(3.13) θ(u) = 2 arctan e(1−
√
13)u/3, u < 0,

or by the following first order ODE

(3.14) (θ′ + 2a1 sin θ)
6a2 = c(θ′ + 2a2 sin θ)

6a1 ,

such that θ′ < 0 and θ′′ < 0, where a1,2 = (−1 ±
√
13)/6 and c > 0 is a positive

constant.

Proof. From Lemma 3.5, we know that either E1 or E2 is tangent to our surface and
therefore Σ2 is a constant angle surface as defined in [16], where equations (3.11)
and (3.12) of such surfaces were found.

We will consider only the case of the first surface, that with our notations corre-
spond to β = 0, meaning that X2 = E1. The computations in the second case are
similar and therefore we will omit them.

In [16], the local coordinates (u, v) were chosen such that

X1 =
∂

∂u
and X2 = α(u, v)

∂

∂v
,

for some function α, which is allowed by the fact that

[X1,X2] = −∇X1
X2 = − cos θX2.
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Therefore, in this setting, X2(f) = 0 and X2(θ) = 0 imply that f = f(u) and
θ = θ(u). It is now straightforward to verify that surfaces defined by (3.11) and
(3.12) satisfy all identities in Lemma 3.6.

Thus, we only have to find the function θ = θ(u) by solving the biconservative
equation, which, for the first surface, taking into account Lemma 3.6, can be written
as

λ1 = −
(

f +
f

f ′ sin(2θ)

)

= 2f + sin θ,

or, equivalently,

(3.15) 3ff ′ + f ′ sin θ + f sin(2θ) = 0,

where θ′ = −2f . Denote y = sin θ and then we can see that

2yy′ = 2θ′ sin θ cos θ = −2f sin(2θ),

and equation (3.15) becomes

3ff ′ + yf ′ − yy′ = 0.

We can write f ′ = y′(df/dy) and, replacing in the last equation, we have

3fy′
df

dy
+ yy′

df

dy
− yy′ = 0.

Since from Lemma 3.6 we know that cos θ 6= 0 and we also have θ′ = −2f 6= 0, it
follows that y′ = θ′ cos θ 6= 0, which shows that the above equation is equivalent to

3f
df

dy
+ y

df

dy
− y = 0.

We denote f = yg and, after a straightforward computation, this equation reads as

(3.16) y(3g + 1)
dg

dy
+ 3g2 + g − 1 = 0.

We now have two cases as 3g2 + g − 1 = 0 or 3g2 + g − 1 6= 0. In the first one,
g = a1,2 = (−1±

√
13)/6 is a constant and f = a sin θ, where a stands either for a1

or a2. Since θ′ = −2f , it follows that

θ(u) = 2 arctan e−2au, f(u) =
2ae−2au

1 + e−4au
, and f ′(u) =

4a2e−2au(e−4au − 1)

(1 + e−4au)2
.

Since f > 0, we see that a = (
√
13 − 1)/6, and, from f ′(u) = X1(f) = |∇f | > 0, it

follows that u must be negative.
In the second case, a simple computation shows that equation (3.16) has the

implicit solution

(3.17) (y(g − a1))
6a2 = c(y(g − a2))

6a1 ,

where c ∈ R is a positive constant. Hence, we have

(f − a1 sin θ)
6a2 = c(f − a2 sin θ)

6a1 ,

which is just equation (3.14). �

Remark 3.8. In the case when θ = θ(u) is given by (3.13), one can compute the
explicit expression of the function Ψ = Ψ(u) as

Ψ(u) =

∫ u

u0

cos θ(s)ds =
1

2a
ln

(

e−4au + 1
)

+ u+ c0,

with a = (−1 +
√
13)/6, c0 = constant ∈ R.
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In this case, we can also compute, using equation (2.3), the Gaussian curvature
of the surface

K = − cos2 θ − 2f sin θ = −4ae−4au + (1− e−4au)2

(1 + e−4au)2
< 0.

Remark 3.9. The only possible solution of the biconservative equation (3.15) of

the form f = a sin θ, where a ∈ R is a constant, is the one with a = (−1 +
√
13)/6.

Otherwise, equation (3.14) implies that θ is a constant and therefore f = 0.

Theorem 3.10. Any biharmonic surface in Sol3 is minimal.

Proof. The case of CMC biharmonic surfaces was studied in [18] so we only have to
show that if Σ2 is a biharmonic surface in Sol3 such that there exists a point p ∈ Σ2

at which ∇f 6= 0, then the surface is minimal.
As before, we consider an open neighborhood U ⊂ Σ2 of the point p such that

∇f 6= 0 and f > 0 on U . As in the proof of Theorem 3.7, suffices treating only the
case of a surface given by (3.11), the other one being similar. We will also use the
same setting and notations as in the proof of Theorem 3.7.

From Theorem 2.2, we know that the normal part of the biharmonic equation is

∆f − f |A|2 − f〈trace(R̄(·, ξ)·), ξ〉 = 0.

A direct computation, using Lemma 3.6, shows that

|A|2 = 4f2 + 4f sin θ + 2 sin2 θ.

From formula (2.6) we find

〈trace(R̄(·, ξ)·), ξ〉 = 2 sin2 θ.

It follows that the biconservative surface Σ2 given by (3.11) is biharmonic if and
only if

(3.18) ∆f = 4f(f2 + f sin θ + sin2 θ) > 0.

Now, let us assume that θ is given by (3.13) and, therefore,

f(u) =
2ae−2au

1 + e−4au
, a =

−1 +
√
13

6
.

From Lemma 3.6, we have that

∆f = f ′′ + cos θf ′,

and then, a direct computation leads to

∆f =
4e−6au

(

e−4au(2a3 − a2) + e4au(2a3 − a2) + 2a2 − 12a3
)

(1 + e−4au)3
.

It is easy to verify that ∆f < 0, in this case, which is a contradiction.
Next, let the function θ be a solution of equation (3.14) and again denote g =

f/ sin θ, as in the proof of Theorem 3.7. From Remark 3.9, we have that g 6= 0
throughout U .

The first derivative of f is given by the biconservative equation as

f ′ = − f sin(2θ)

3f + sin θ
,
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where we have also used θ′ = −2f . Taking into account Remark 3.9 (and possibly
restricting to an open subset V ⊂ U) we can see that f ′ is well defined. Using this
formula, and again θ′ = −2f , it is straightforward to compute f ′′ and then

∆f =
f

(3f + sin θ)3

(

36f3(1− 2 sin2 θ)− f2(6 sin θ + 18 sin3 θ)

−f(12 sin2 θ − 8 sin4 θ) + 2 sin3 θ − 2 sin5 θ
)

.

Replacing in (3.18), and taking into account that sin θ 6= 0 on U , one obtains the
following equation

(3.19) sin2 θP1(g)− P2(g) = 0,

where P1 and P2 are two polynomial functions of u, given by

P1(g) = 100g5 + 216g4 + 324g3 + 166g2 + 32g + 6

and

P2(g) = 36g3 − 6g2 − 12g + 2.

Since g satisfies equation (3.17), we can write

sin2 θ =
(g − a2)

b1

c(g − a1)b2
,

where b1,2 = (6a1,2)/
√
13 and c ∈ R is a positive constant. Then, equation (3.19)

can be written as

(g − a2)
b1P1(g) = c(g − a1)

b2P2(g).

Differentiating with respect to u and using that g′(u) 6= 0 at any point of U , we
obtain

(g−a2)
b1(g−a1)

(

b1P1 + (g − a2)
dP1

dg

)

= c(g−a1)
b1(g−a2)

(

b2P2 + (g − a1)
dP2

dg

)

The last two equations imply

2(3g + 1)P1P2 + (3g2 + g − 1)

(

P1
dP2

dg
− P2

dP1

dg

)

= 0.

After a long but simple computation, this polynomial equation reads as

25128g8+92760g7+85632g6+15840g5−19352g4−13224g3−1872g2+656g+160 = 0,

and shows that g is a constant, which is a contradiction. We conclude that there
are no biharmonic surfaces in Sol3 other than the minimal ones. �

Remark 3.11. This last result is similar to that in [4, 7, 14] on biharmonic surfaces
of the Euclidean space E3 and even to the one in [1] about biharmonic surfaces in the
Euclidean sphere S3. Although in this last case non-minimal biharmonic surfaces do
exist, they are also CMC, and, therefore, there are no non-CMC such surfaces in S

3.
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