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Abstract. Dynamic logic and its variations, because of their good expressive forms capturing
program specifications clearly by isolating programs from logical formulas, have been used as
a formalism in program reasoning for decades and have many applications in different areas.
The program models of traditional dynamic logics are in explicit forms. With a clearly-defined
syntactic structure, compositional verification is made possible, in which a deduction step
transfers proving a program into proving its sub-programs. This structure-based reasoning
forms the basis of many dynamic logics and popular Hoare-style logics. However, structural
rules induce a major drawback that for different target programs, different rules have to be
proposed to adapt different program structures. Moreover, there exist programs that does
not support (or not entirely support) a structure-based reasoning. In this paper, we propose
a parameterized ‘dynamic-logic-like’ logic called DLp with general forms of program models
and formulas, and propose a cyclic proof system for this logic. Program reasoning in DLp is
directly based on symbolic executions of programs according to their operational semantics.
This reduces the burden of designing a large set of rules when specializing a logic theory to
a specific domain, and facilitates verifying programs without a suitable structure for direct
reasoning. Without reasoning by dissolving program structures, DLp can cause an infinite
proof structure. To solve this, we build a cyclic preproof structure for the proof system of
DLp and prove its soundness. Case studies are analyzed to show how DLp works for reasoning
about different types of programs.

Keywords: Logical Framework · Dynamic Logic · Program Verification · Operational Seman-
tics · Cyclic Proof · Theorem Proving

1 Introduction

Dynamic logic is an extension of modal logic by enriching modal formulas with explicit program
models. It is one of popular formal languages for specifying and reasoning about different types
of programs or systems, such as process algebras [6], programming languages [5], synchronous sys-
tems [43,42], hybrid systems [31,33] and probabilistic systems [30,32,24,14]. Like a Hoare-style logic,
dynamic logic consists of two parts: program models and formulas. A dynamic formula is of the
form: [α]ψ, expressing that after all executions of program α, formula ψ holds. Formula φ → [α]ψ
exactly captures partial correctness of programs expressed by triple {φ}α{ψ} in Hoare logic [21].
This separation of program structures (α) and logical formulas (φ) by the modal operator [·] allows
a clear observation of program behaviours throughout the whole deduction processes. Compared to
Hoare-style logics, one advantage of dynamic logics is that with [α]φ itself a logical formula, it is
able to also express the negation ¬[α]φ of [α]φ, or in its dual form: 〈α〉¬φ, meaning that there exists
an execution of α after which φ is not satisfied. Operator 〈·〉 is helpful to express “incorrectness
properties”, which are crucial for nowadays program analysis and verification, and which has been
addressed recently with the new development of incorrectness Hoare logic [29,44].

In dynamic logics, program models α are usually regular programs with tests (e.g. in propositional
dynamic logic [15]), programs tailored from regular programs with tests (e.g. in differential dynamic
logic [31]), or actual computer programs from reality (e.g. in Java dynamic logic [5]). Deductions
of dynamic logics are based on the syntactic structure of a program. This makes compositional
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verification possible, in which a deduction step transfers proving a property of a program into
proving a property of its sub-programs. For example, in propositional dynamic logic [15], proving
[α∪β]φ relies on proving both [α]φ and [β]φ, where α and β are sub-programs of program α∪β. This
also-called ‘divide-and-conquer’ way of verifying have brought many benefits, among which the most
is avoiding state-explosion problem, as opposed to other verification technologies such as traditional
model checking [2].

However, as the development of programs and computer systems nowadays, especially as the
emergence of real-time systems and AI systems [38], this traditional structure-based reasoning sup-
ported by dynamic logics and many Hoare-style logics is challenged, because of the two main draw-
backs:

Firstly, structure-based reasoning requires explicit program syntactic structures. So, for a new
type of programs, one needs to define a new program model (α) and carefully design a set of
particular structural rules to adapt their semantics. This often demands a large amount of work. For
example, Verifiable C [1], a famous program verifier for C programming language based on Hoare
logic, used nearly 40,000 lines of Coq code to define the logic theory. Secondly, and importantly as
well, some (parts of) programs or system models do not directly support structural rules. These
programs either do not have a syntactic structure, like neural networks [18] for example, or have
semantics that do not support independent executions based on their syntax. In the latter case,
usually, additional processes are required to re-formalize their program structures so that structure-
based reasoning is possible. A typical example is the synchronous programming language Esterel [7],
where in a sequential program α;β, as fully illustrated in [17], the executions in α cannot be analyzed
independently from β unless α and β are executed at different instances.

In this paper, we present an abstract dynamic-logic-like formalism, which aims at compensating
for the above two shortcomings in traditional dynamic logics. We call this proposed formalism
parameterized dynamic logic, denoted by DLp. Strictly speaking, DLp is not a dynamic logic in
traditional sense, but of a more general formalism, in which we assume programs and formulas
are in general forms as ‘parameters’, and only keep the modal operator [·] in traditional dynamic
logics to express program properties. In order to capture the executions of general programs, we
also introduce program configurations in general forms as the labels of DLp formulas. So, a DLp

dynamic formula is of the form: σ : [α]φ, where program α, formula φ and configuration σ come
from interested domains. (α, σ) is thus a structure containing all information about an execution
state of a program. Formula σ : [α]φ has the meaning that from (α, σ), all terminal execution paths
end by satisfying formula φ.

To see how this labelled form of a DLp formula actually works, let us see a simple example. We
prove a formula φ =df (x ≥ 0 ⇒ [x := x + 1]x > 0) in first-order dynamic logic [19] expressed as a
sequent (see Section 3), where x is a variable ranging over the set of natural numbers. φ intuitively
means that if x ≥ 0 holds, then x > 0 holds after the execution of x := x + 1. By applying the

structural rule (x := e) for assignment:
ψ[x/e]

[x := e]ψ
(x:=e) on formula [x := x+ 1]x > 0, we substitute

x of x > 0 by x+ 1, and obtain x+ 1 > 0. So formula φ becomes φ′ =df x ≥ 0 ⇒ x+ 1 > 0, which
is always true for any natural number x ∈ N.

In DLp, on the other hand, formula φ can be expressed as a labelled form: ψ =df ({x 7→ t} :
x ≥ 0 ⇒ {x 7→ t} : [x := x + 1]x > 0), where {x 7→ t} is a program configuration with t a
free variable, meaning “mapping x to an arbitrary value t”. This form may seem tedious at first
sight. But one soon can find out that with a configuration explicitly showing up, we can skip the
assignment rule (x := e) and directly base on the symbolic execution of program x := x + 1 as:
(x := x + 1, {x 7→ t}) −→ (↓, {x 7→ t + 1}) to derive formula ψ. Here ↓ indicates a program
termination. Then formula ψ becomes ψ′ =df ({x 7→ t} : x ≥ 0 ⇒ {x 7→ t + 1}[↓] : x > 0) after the
execution of x := x + 1, which is actually ψ′′ =df ({x 7→ t} : x ≥ 0 ⇒ {x 7→ t + 1} : x > 0) since
↓ contributes nothing. By defining the applications of {x 7→ t} and {x 7→ t+ 1} on formulas x ≥ 0
and x > 0 respectively in a usual way: i.e. replacing every free occurrence of x by t (or t + 1), we
obtain the same valid formula φ′: t ≥ 0 ⇒ t+ 1 > 0.

DLp formulas benefit from that no structural rules special for a target program are needed, but
only a program operational semantics and a definition of how a configuration applies to a non-
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dynamical formula. Normally, for existing programs and system models, formalizing a program’s
operational semantics (like (x := x+1, {x 7→ t}) −→ (↓, {x 7→ t+1})) is easier and more direct than
designing an inference rule (like rule (x := e)). As will be illustrated in Section 4.2, in some case, for
a target program with a certain structure, there might exist no structural rules, or, designing such
a rule can be complex.

To give the semantics of DLp, we follow the way of traditional dynamic logics by defining a special
Kripke structure based on the target programs’ operational semantics. After linking evaluations and
configurations through the Kripke structures (Definition 6), we manage to define the validity of a
DLp formula in normal sense based on evaluations (Definition 8).

After building the theory of DLp, in this paper, we propose a proof system for DLp, which
provides a set of rules to support reasoning via programs’ operational semantics. Unlike traditional
dynamic logics which base on structural rules to dissolve program structures, the derivations of a
DLp formula may result in an infinite proof structure. To solve this problem, we adopt the cyclic
proof approach (cf. [10]), a technique to ensure that a certain proof structure, called preproof, is a
correct proof if it satisfies some soundness condition. We propose a cyclic preproof structure for DLp

(Definitions 11 and 12) and prove that the proof system of DLp is sound.
To summarize, our contributions are mainly three folds:

– We give the syntax and semantics of DLp formulas.
– We build a cyclic proof system for DLp.
– We prove the soundness of the proof system of DLp.

The rest of the paper is organized as follows. Section 2 defines the syntax and semantics of DLp

formulas. In Section 3 we propose a cyclic proof system for DLp, whose soundness is analyzed and
proved in Section 3.4. We show two case studies in Section 4. Section 5 introduces some previous
work that is closely related to ours, while Section 6 makes some discussions and talks about future
work.

2 Dynamic Logic DLp

In this section, we build the theory of DLp. What mostly distinguishes DLp from other dynamic
logics is that its program models and formulas are not in particular forms, but instead can be of
any forms, only provided that their structures and operational semantics of the programs respect
some restrictions (see Definition 1). The so-called “labels” are introduced in DLp, which dynam-
ically associate a formula with a configuration, enabling reasoning directly via program symbolic
executions.

Below, Section 2.1 introduces the syntax of DLp, while Section 2.2 gives the semantics of DLp.

2.1 Definition of DLp

Our construction relies on several assumptions of general structures and constructions as below
without formal definitions, which depend on specific discussed domains.

Programs, Configurations and Program Behaviours Assume a set of programs Prog and a
set of program configurations Conf . Their elements belongs to a term algebra TA(Σ,Var) — a freely
generated algebraic structure built upon a signature Σ with a set of variables Var . For example, we
can have terms like f(x), f(x, y), g(f(c), x), if f, g ∈ Σ are functions, c ∈ Σ is a constant (function),
and x, y ∈ Var are variables. TA(Σ,Var) is an assumed structure depending on interested domains.
It is commonly known that many interested structures in computer programs and system models can
be captured as a term algebra (cf. [37]). Variables in Var are usually denoted by x, y, z. Terms without
variables in term algebra TA(Σ, ∅) (simply TA(Σ)) are called closed terms of algebra TA(Σ,Var).
Other terms of algebra TA(Σ,Var) are called open terms. An evaluation ρ : Var → TA(Σ) maps a
variable to a closed term. Given a term t, ρ(t) means the closed term obtained by substituting each
free variable x with value ρ(x) in usual sense. We use t1 ≡ t2 to denote that two terms t1 and t2 are
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identical. Two terms t1 and t2 are equivalent, denoted by t1 = t2, if ρ(t1) ≡ ρ(t2) for any ρ. Usually,
we use Cl(A) to represent the set of closed terms of set A, use Cl(t) to express the set of closed
instances of term t: Cl(t) =df {u | there is an evaluation ρ such that ρ(t) = u}.

We distinguish two special closed terms in Prog, namely ↓ and ↑. ↓ indicates a termination of
a program, while ↑ means an abortion of a program. A program state is defined as a pair (α, σ) of
closed terms over Cl(Prog)×Cl(Conf).

A program transition between two program states (α, σ) and (α′, σ′) is a binary relation (α, σ) −→
(α′, σ′). We use −→∗ (resp. −→+) to denote the reflexive and transitive (resp. transitive) closure
of −→. The structural operational semantics [34] (also called small-step semantics) of programs
is a (possibly infinite) set Λ of program transitions. Usually, Λ can be expressed by a finite set
of rules (or more strictly speacking, rule schemata) according to the syntactic structure of the
programs in Prog, in a manner that a transition ((α, σ) −→ (α′, σ′)) ∈ Λ if (α, σ) −→ (α′, σ′)
can be inferred based on these rules in a finite number of steps (see the example below in Table 1
for rule schemata). An execution path over Λ is a finite or infinite sequence of program transitions
(α1, σ1) −→ ... −→ (αn, σn) −→ ... (n ≥ 1), with each transition ((αi, σi) −→ (αi+1, σi+1)) ∈ Λ
(1 ≤ i ≤ n). A path is terminal, or can terminate, if it ends with a program ↓. We call an execution
path minimum, in the sense that in it there is no two equivalent program states.

In this paper, we confine our discussion to a certain type of programs whose operational semantics
satisfy the following properties, we simply call program properties.

Definition 1 (Program Properties). The operational semantics Λ of programs in Prog satisfies
that for each program α ∈ Cl(Prog), the following properties hold:

I. Well-definedness. For any program state (α, σ), there exists at least one transition (α, σ) −→
(α′, σ′) ∈ Λ for some α′ and σ′, unless α is either ↓ or ↑, when there is no transitions from
(α, σ) in Λ.

II. Branching Finiteness. From any program state (α, σ), there exists only a finite number of
transitions in Λ.

III. Termination Finiteness. From any program state (α, σ), there is only a finite number of mini-
mum terminal execution paths.

These restrictions are crucial for the soundness of DLp discussed in Section 3.4. Our current
discussion domain of programs actually includes a rich set of programs with discrete behaviours.
Among them are, for example, all deterministic programs (i.e., there is only one transition from
any program state) and programs with finite behaviours (i.e., starting from a program state, only
a finite number of program states can be reached). However, there exist types of programs that do
not satisfy some of the program properties I — III. For example, hybrid programs (cf. [31]) with
continuous behaviours do not satisfy branching finiteness. Some non-deterministic programs, like
probabilistic programs [3], do not satisfy termination finiteness.

Table 1 shows examples of particular Prog,Conf and Λ. Both while programs and Esterel pro-
grams are deterministic programs (for Esterel programs, cf. [7]), thus satisfy the program properties
in Definition 1. However, while programs and Esterel programs have different syntax and configu-
rations. The operational semantics of while programs is given by a finite set of inference rules. We
do not give the operational semantics of Esterel programs here due to its complexity. One can refer
to [35] for more details.

Syntax of DLp In DLp, we assume a set of logical formulas Form, where each formula is composed
by the terms in TA(Σ,Var) using a set L of predicates and logical connectives distinguished from Σ.
For example, formulas can be p(t1, t2), p1(t1) → p2(t2), p1∧p2 or p1∨p2, where p, p1, p2,→,∧,∨ ∈ L.
A formula that has only closed terms is called a closed formula, otherwise it is called open. Given
an evaluation ρ, ρ(φ) represents the formula in which all terms t of φ are replaced by ρ(t). Similar
to terms, we use φ1 ≡ φ2 to express that two formulas are identical.

A closed formula in Form has a boolean semantics of either true or false. A formula φ is satisfied
by an evaluation ρ, denoted by ρ |= φ, is defined such that ρ(φ) is true. A formula φ is valid, denoted
by |= φ, if ρ(φ) is true for any ρ.
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While programs:
WP =df x := e | WP ;WP | if b then WP else WP end | while b do WP end

σ =df a set of assignments of the form: x 7→ e

(x := e, σ) −→ (↓, σ[x 7→ e(σ)])
(x:=e)

(WP1, σ) −→ (WP’1, σ
′)

(WP1;WP2, σ) −→ (WP’1;WP2, σ
′)

(;)
(WP1, σ) −→ (↓, σ′)

(WP1;WP2, σ) −→ (WP2, σ
′)

(;↓)

(WP1, σ) −→ (WP’1, σ
′) φ⊲ σ is true

(while φ do WP1 end, σ) −→ (WP’1; while φ do WP1 end, σ′)
(wh1)

(WP1, σ) −→ (↓, σ′) φ⊲ σ is true

(while φ do WP1 end, σ) −→ (while φ do WP1 end, σ′),∆
(wh1↓)

φ⊲ σ is false

(while φ do WP1 end, σ) −→ (↓, σ)
(wh2)

Esterel programs:
E =df nothing | pause | E ;E | E ‖ E | loop E end | signal S in E end | emit S |

present S then E else E end | suspend E when S | trap T in E end | exit T

σ =df a stack of assignments of the form: x 7→ e

Table 1: Examples of programs, configurations and operational semantics

A configuration is assumed to be applied to a formula through a function: ·⊲ · : Form×Conf →
Form. In other words, for a formula φ ∈ Form and a configuration σ ∈ Conf , φ ⊲ σ returns a
formula in Form w.r.t. φ and σ.

Based on the assumed sets Prog,Conf and Form, we give the syntax of DLp. We firstly define
a general dynamic logical (GDL) formulas in Definition 2, then we define DLp in Definition 3.

Definition 2 (Syntax of GDL). A general dynamic logical (GDL) formula is inductively defined
as follows: 1. Any formula in Form is a GDL formula. 2. ¬φ and φ1 ∧ φ2 are GDL formulas if φ,
φ1 and φ2 are GDL formulas. 3. [α]φ is a GDL formula if α is a program in Prog and φ is a GDL
formula.

We also call [α] the dynamic part of a GDL formula. Call a formula having a dynamic part a
dynamic formula. Intuitively, formula [α]φ means that after all executions of program α, formula φ
holds. 〈·〉 is the dual operator of [·]. Formula 〈α〉φ can be expressed by ¬[α]¬φ. Other formulas with
logical connectives such as ∨ and → can be expressed by formulas with ¬ and ∧ accordingly.

Definition 3 (DLp Formulas). A parameterized dynamic logical (DLp) formula is a formula of
the form σ : φ, where σ ∈ Conf is a configuration, φ is a GDL formula.

In order to reason about termination of programs in DLp and to prove the soundness of the proof
system of DLp as shown later in Section 3, the concept of well-founded relation is introduced.

Definition 4 (Well-foundedness). A set is ‘well-founded’ w.r.t. a partially-ordered relation <, if
for any element a in this set, there is no infinite descent sequence: a > a1 > a2 > ... in this set.
Relation < is also called a well-founded relation.

In DLp, we assume a partial function T : Conf → TA(Σ) that assigns a configuration σ ∈ Conf

with a sub-term t appeared in σ, called termination factor. And we assume a well-founded relation
≺ between these termination factors. A termination factor measures how close a program is from
terminations. Usually, we write σ{t} if t ≡ T (σ). T is a function as usually we only care about one
such factor. T is partial as in a configuration there might not exist such a factor.
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2.2 Semantics of DLp

Traditionally, the semantics of a dynamic logic is denotational and is given as a Kripke structure [20].
Following a similar manner, to give the semantics of DLp formulas, we firstly build a special Kripke
structure consisting of closed configurations as worlds, and operational semantics of programs as
relations between worlds. This structure allows us to define a satisfaction relation of GDL formulas
by evaluations and configurations, based on which, the semantics of DLp is given.

Definition 5 (Kripke Structure of GDL). Given Prog,Conf and , the Kripke structure of
GDL is a triple M =df (Cl(Conf),→, I), where Cl(Conf) is the set of closed configurations as
‘worlds’, →⊆ Cl(Conf) × (Cl(Prog) × Cl(Prog)) × Cl(Conf) is a set of labelled transitions,
I : Cl(Form) → 2Cl(Conf) is an interpretation of closed formulas in Form on the set of worlds,
satisfying the following conditions:

1. For each world σ, σ
α/α′

−−−→ σ′ iff ((α, σ) −→ (α′, σ′)) ∈ Λ.

2. For each formula φ ∈ Cl(Form), σ ∈ I(φ) iff φ⊲ σ is true.

Different from the traditional Kripke structure (cf. [20]), in the Kripke structure of GDL, the
transitions between worlds are defined according to the operational semantics, rather than the syn-
tactic structures of programs.

Below we do not distinguish σ
α/α′

−−−→ σ′ from (α, σ) −→ (α′, σ′) and also call it a ‘transition’, and

call σ1
α1/α2

−−−−→ σ2
α2/α3

−−−−→ ...
αn−1/αn

−−−−−−→ σn... an “execution path”.

Definition 6 (Satisfaction Relation of GDL Formulas on Kripke Structure). Given the
Kripke structure M = (Cl(Conf ),→, I) of GDL, the satisfaction of a GDL formula φ w.r.t. an
evaluation ρ and a configuration σ ∈ Conf , denoted by ρ, σ |=M φ (or simply ρ, σ |= φ), is inductively
defined as follows:

1. ρ, σ |=M φ where φ ∈ Form, if ρ(σ) ∈ I(ρ(φ)).

2. ρ, σ |=M ¬φ, if ρ, σ 6|=M φ.

3. ρ, σ |=M φ1 ∧ φ2, if both ρ, σ |=M φ1 and ρ, σ |=M φ2.

4. ρ, σ |=M [α]φ, if (1) ρ(α) is ↓ and ρ, σ |=M φ, or (2) for all execution paths σ
ρ(α)/α1

−−−−−→ ...
αn/↓
−−−→ σ′,

ρ, σ′ |=M φ.

Note that ρ, σ |=M φ differs from ρ |= φ introduced in Section 2.1 as σ has an impact on formula
φ through operator ·⊲ ·. The satisfaction relation ρ, σ |=M 〈α〉φ can be formally defined as: ρ, σ |=M

〈α〉φ, if (1) ρ(α) is ↓ and ρ, σ |=M φ, or (2) there exists an execution path σ
ρ(α)/α1

−−−−−→ ...
αn/↓
−−−→ σ′

such that ρ, σ′ |=M φ.

We define the semantics of a DLp formula naturally based on the Kripke structure of GDL and
the satisfaction of GDL formulas on the Kripke structure.

Definition 7 (Semantics of DLp Formulas). The semantics of a DLp formula σ : φ is given as
the satisfaction relation by an evaluation ρ as follows: ρ |= σ : φ, if ρ, σ |= φ.

The satisfiability and validity of DLp formulas are introduced as follows. They are defined in a
standard way.

Definition 8 (Satisfiability and Validity). A DLp formula σ : φ is ‘satisfiable’, if there exists
an evaluation ρ such that ρ |= σ : φ. A DLp formula σ : φ is ‘valid’, if ρ |= φ for all evaluations ρ,
denoted by |= σ : φ.
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{Γ ⇒ σ′ : [α′]φ,∆}(α′,σ′)∈Φ

Γ ⇒ σ : [α]φ,∆
2 ([α]σ), where Φ =

{

(α′, σ′)

∣

∣

∣

∣

∣

for any ρ, if ρ |= Γ ,

then ((ρ(α), ρ(σ)) −→ (ρ(α′), ρ(σ′))) ∈ Λ

}

Γ ⇒ σ′{t′} : 〈α′〉φ,∆

Γ ⇒ σ{t} : 〈α〉φ,∆
2 (〈α〉σ), for any ρ, if ρ |= Γ , then ((ρ(α), ρ(σ)) −→ (ρ(α′), ρ(σ′))) ∈ Λ, t′ � t

Γ ⇒ ∆
1 (σTer)

Γ ⇒ σ : φ,∆

Γ ⇒ σ : [↓]φ,∆
([↓]σ)

Γ ⇒ σ : φ,∆

Γ ⇒ σ : 〈↓〉φ,∆
(〈↓〉σ)

Γ ⇒ σ : [↑]φ,∆
([↑]σ)

Γ, σ : φ⇒ ∆

Γ ⇒ σ : (¬φ),∆
(¬σR)

Γ ⇒ σ : φ,∆

Γ, σ : (¬φ) ⇒ ∆
(¬σL)

Γ ⇒ σ : φ,∆ Γ ⇒ σ : ψ,∆

Γ ⇒ σ : (φ ∧ ψ),∆
(∧σ)

Γ ⇒ σ : φ, σ : ψ,∆

Γ ⇒ σ : (φ ∨ ψ),∆
(∨σ)

Γ ⇒ φ⊲ σ,∆

Γ ⇒ σ : φ,∆
3 (σInt)

1 (1) for each formula φ in Γ or ∆, φ ∈ Form; (2) Γ ⇒ ∆ is valid. 2 α /∈ {↓, ↑}. 3 φ ∈ Form.

Table 2: A Proof System for DLp

3 A Cyclic Proof System for DLp

Sequent Calculus In this paper, we adopt sequents [16] as the derivation form of the logic.
Sequent is a convenient structure for derivation, as it can describe both top-down and bottom-up
natural deductions as bottom-up deductions on the left and right sides of the arrow ‘⇒’ of a sequent.
By using sequents, the implementation of DLp would become nature in theorem provers like Coq or
Isabelle, whose deduction structure is actually in the form of a sequent.

A sequent is a logical argumentation of the form: Γ ⇒ ∆, where Γ and ∆ are finite multisets of
formulas. Γ ⇒ ∆ expresses the formula (

∧

φ∈Γ φ) → (
∨

φ∈∆ φ). In this paper, we do not distinguish
a sequent and its corresponding formula.

An inference rule in a sequent calculus is of the form
Γ1 ⇒ ∆1 ... Γn ⇒ ∆n

Γ ⇒ ∆ ,
where Γ1 ⇒

∆1,...,Γn ⇒ ∆n are called premises, Γ ⇒ ∆ is called a conclusion. The semantics of the rule is that
the validity of sequents Γ1 ⇒ ∆1,...,Γn ⇒ ∆n implies the validity of sequent Γ ⇒ ∆.

A proof tree is a tree structure formed by deducing a sequent as a conclusion backwardly by
consecutively applying a set of proof rules. In a proof tree, each node is a sequent of an instance of a
proof rule. The root node of the tree is the conclusion. Each leaf node of the tree is called terminal,
if it is a sequent of an instance of an axiom.

3.1 A Proof System for DLp

As shown in Table 2, the proof system of DLp consists of a set of rules for deriving DLp labeled
dynamic formulas based on program executions according to their operational semantics. These
rules forms the core part of a general verification framework in which to prove the validity of a DLp

formula, we transform it into proof obligations of the formulas in Form. Notice that in practical
deductions, additional rules in special domains may be needed for constructing suitable labelled
formulas in order to obtain a preproof structure. See Section 4.1 for an example.

Rules ([α]σ) and (〈α〉σ) deal with dynamic parts of DLp formulas based on the operational seman-
tics of programs. In rule ([α]σ), {...}(α′,σ′)∈Φ represents the collection of premises for all (α′, σ′) ∈ Φ.
Φ is a set consisting of distinct elements w.r.t. equivalence = between terms. In other words, for any
t1, t2 ∈ Φ, t1 6= t2. By II of Definition 1, set Φ is finite. So rule ([α]σ) has a finite number of premises.
We write ‘ρ |= Γ ’ to mean that ρ |= φ for each φ ∈ Γ . Intuitively, rule ([α]σ) says that to prove that
[α]φ holds under configuration σ in the context Γ , we prove that for any execution from (α, σ) to
(α′, σ′) (w.r.t. a ρ), [α′]φ holds under configuration σ′ in the context Γ . Compared to rule ([α]σ),
rule (〈α〉σ) only has one premise for some pair (α′, σ′). Termination factor t is required by partial
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function T in σ to indicate program terminations. Intuitively, rule (〈α〉σ) says that to prove 〈α〉φ
holds under configuration σ in the context Γ , after some execution from (α, σ) to (α′, σ′) (w.r.t. a
ρ), 〈α′〉φ holds under configuration σ′ in the context Γ . At the same time, the termination factor t′

is forbidden to grow larger than t w.r.t. the well-founded relation ≺. Note that in both rules ([α]σ)
and (〈α〉σ), we assume that there always exists an execution from (α, σ) to (α′, σ′) (w.r.t. a ρ) since
α is neither ↓ nor ↑. This is guaranteed by the well-definedness of the operational semantics, as
stated in I of Definition 1.

Note that in practice, form (α′, σ′) in rule (σ[α]φ), (σ〈α〉) can be easily obtained by the program’s
operational semantics. Check Section 4.1 for an example.

Rule (σTer) declares a termination of a proof branch. When each formula in Γ and ∆ is a formula
in Form. We can conclude the proof branch if sequent Γ ⇒ ∆ is valid.

Rules ([↓]σ), (〈↓〉σ) and ([↑]σ) deal with the situations when program α is either a termination
↓ or an abortion ↑. Note that there is no rules for formula σ : 〈↑〉φ. Intuitively, it is not hard to see
that 〈↑〉φ is false under any configuration because ↑ never terminates.

Rules (¬σR), (¬σL), (∧σ) and (∨σ) deal with logic connectives ¬, ∧ and ∨ in a labelled DLp

formula. They correspond to the rules in traditional propositional logic (without labels) for ¬, ∧
and ∨. Note that rule (∨σ) is primitive, as rule (∧σ) only expresses the deduction on the right side
of the sequent for connective ∧.

Rule (σInt) is an introduction rule for labels, used when φ is a formula in Form without any
dynamic parts. To prove that φ holds under configuration σ, we prove that φ⊲ σ is a valid formula.

In the above rules, we often call the formulas distinguished from Γ and ∆ that are changed from
the conclusion to the premise the target formulas of the rule.

3.2 Infiniteness of DLp Proof System and Well-founded Relations

Based on the semantics of DLp given in Section 2.2, it is not hard to prove that each proof rule of
Table 2 is sound. When each branch of a proof tree terminates with a valid sequent in Form, the
whole proof is sound.

However, a branch of a proof tree in DLp system does not always terminate, since the process
of symbolically executing a program via rule ([α]σ) or/and rule (〈α〉σ) might not stop. This is well
known when a program has a loop structure that may runs infinitely, for example, a while program
while true do x := x+ 1 end.

To avoid potentially infinite derivations in DLp, in this paper, we adopt the so-called cyclic proof
approach (cf. [10]), a technique to insure a sound conclusion even when its proof tree contains infinite
derivations. A preproof is a proof tree with a finite structure (which means having a finite number of
nodes) but containing infinite derivation paths. A preproof structure can lead to a sound conclusion
if a certain soundness condition is met. This condition guarantees that any counterexamples from
an invalid conclusion would cause an infinite descent sequence w.r.t. a well-founded relation (Defini-
tion 4) that is related to the semantics of DLp, which, however, is a contradiction to the definition
of the well-foundedness itself. We will expand it in detail in Section 3.3.

To apply the cyclic proof approach, we need 3 critical well-founded relations that are related to
the semantics of DLp. One of them, relation ≺, has already been introduced in Section 2.1. With
these relations, in Section 3.3, we will define a preproof structure, and give the soundness condition
in which a preproof is a sound proof.

In the following, we introduce another 2 well-founded relations. The first relation ≺s is the suffix
relation between two execution paths; while the second relation ≺m is between two finite sets of
execution paths.

Definition 9 (Relation ≺s). Given two execution paths tr1 and tr2, relation tr1 ≺s tr2 is defined
if tr2 is a proper suffix of tr1. Write tr1 �s tr2 if tr1 is a suffix of tr2.

It is trivial that in a set of finite paths, relation ≺s is well-founded. Because every finite path has
only a finite number of suffixes.

Relation ≺m is based on the definition of relation ≺s.
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Definition 10 (Relation ≺m). Given two finite sets C1 and C2 of finite paths, C1 ≺m C2 is defined
if set C1 can be obtained from C2 by replacing (or removing) one or more elements of C2 with a
finite number of elements, such that for each replaced element tr ∈ C2, its replacements tr1, ..., trn
(n ≥ 1) in C1 satisfies that tri ≺s tr for any i, 1 ≤ i ≤ n.

Write C1 �m C2 if C1 = C2 or C1 ≺m C2.

Note that in Definition 10 it is not hard to see that C1 ≺m C2 implies C1 6= C2.
For example, let C1 = {tr1, tr2, tr3}, where tr1 =df (α, σ) −→ (α1, σ1) −→ (α2, σ2) −→

(α3, σ3) −→ (↓, σ4), tr2 =df (α, σ) −→ (α1, σ1) −→ (β1, δ1) −→ (β2, δ2) −→ (↓, δ3) and tr3 =df

(α, σ) −→ (↓, τ); C2 = {tr′1, tr
′
2}, where tr′1 =df (α1, σ1) −→ (α2, σ2) −→ (α3, σ3) −→ (↓, σ4), tr′2 =df

(α1, σ1) −→ (β1, δ1) −→ (β2, δ2) −→ (↓, δ3). We see that tr′1 ≺s tr1 and tr′2 ≺s tr2. C2 can be ob-
tained from C1 by replacing tr1 and tr2 with tr′1 and tr′2 respectively, and removing tr3. Hence
C2 ≺m C1.

Relation ≺m is in fact a special case of the “multiset ordering” introduced in [12], where it has
shown that multiset ordering is well-founded. Therefore, ≺m is well-founded.

3.3 Construction of A Cyclic Preproof Structure in DLp

A preproof is a finite proof tree in which each non-terminal node is identical to one of its ancestors
in the tree. Such a non-terminal node is called a bud (cf. [10]). The ancestor equivalent to a bud N
is called a companion of N . A bud and one of its companions is together called a back-link.

A derivation path in a preproof is a possibly infinite sequence of nodes n1n2...nm... (m ≥ 1)
starting from the root n1, where each pair of nodes (ni, ni+1) (i ≥ 1) is either a conclusion-premise
pair of the instance of a proof rule, or a back-link of the preproof. A derivation trace is a possibly
infinite sequence τ1τ2...τm... of formulas over a derivation path n1n2...nm... (m ≥ 1) such that each
τi is a formula appeared in node ni (i ≥ 1).

We introduce the notion of (progressive) derivation traces (cf. [10]) in a preproof of DLp, which
is critical for a preproof structure to be a sound proof. The key idea is that if each derivation trace
of a preproof structure is progressive, then it is impossible for the conclusion of the preproof to be
invalid. Otherwise, an infinite descent sequence of counterexamples of finite sets of execution traces
of a program can be constructed, contradicting the fact that the relation ≺s or ≺m mentioned in
Section 3.2 is well-founded.

Definition 11 (Progressive Step/Progressive Derivation Trace in DLp). In a preproof of
DLp, given an infinite derivation trace τ1τ2...τm... along a derivation path n1n2...nm... (m ≥ 1), a
formula pair (τi, τi+1) (1 ≤ i ≤ m) of the derivation trace is called a “progressive step”, if τi, τi+1

are the formulas appeared in the sequent pair (ni, ni+1) respectively, as:

ni : Γ ⇒ σ : [α]φ,∆,

ni+1 : Γ ⇒ σ′ : [α′]φ,∆,

which is in an instance of rule ([α]σ) and where τi is formula σ : [α]φ, τi+1 is formula σ′ : [α′]φ;
Or as:

ni : Γ ⇒ σ{t} : 〈α〉φ,∆,

ni+1 : Γ ⇒ σ′{t′} : 〈α′〉φ,∆,

which is in an instance of rule (〈α〉σ) and where τi is formula σ{t} : 〈α〉φ, τi+1 is formula σ′{t′} :
〈α′〉φ, and termination factors t, t′ satisfy t′ ≺ t.

If a derivation trace has an infinite number of progressive steps, we say that the trace is ‘progres-
sive’, or it is a “progressive trace”.

Note that when (ni, ni+1) is in an instance of rule (〈α〉σ), the execution from (α, σ) to (α′, σ′)
observes a termination factor t′ strictly less than t w.r.t. relation ≺. This, as will be seen later in
Section 3.4, actually indicates the termination of a counter-example path of program α, which is the
key to prove Theorem 1.

Now we give the soundness condition for a preproof structure to lead a sound conclusion in DLp.
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Definition 12 (A Cyclic Preproof of DLp). In DLp, a preproof is a ‘cyclic’ one, if there exists
a progressive trace along any infinite derivation path.

The following theorem is the main result of this section.

Theorem 1 (Soundness of A Cyclic Preproof of DLp). A cyclic preproof of DLp always has
a valid conclusion.

About the Completeness of DLp Since DLp is not a specific logic in traditional sense, its com-
pleteness relies on specific structures of programs, configurations and formulas given as Prog,Conf

and Form respectively. The completeness of DLp depends on whether we can build a cyclic preproof
for every valid formula in this logic by constructing suitable configurations so that every infinite
derivation path has a progressive derivation trace.

3.4 Soundness of the Cyclic Proof System for DLp

In this subsection, we analyze and prove Theorem 1. We only focus on the case when the conclusion
is of the form Γ ⇒ σ : [α]φ or Γ ⇒ σ : 〈α〉, where dynamic DLp formulas σ : [α]φ and σ : 〈α〉φ are
the only formula on the right side of the sequent. Other cases are trivial.

To prove Theorem 1 we need to show that if a preproof is cyclic (Definition 12), that is, if any
infinite derivation path is followed by a progressive trace, then the conclusion is valid. The proof is
carried out by contradiction following the main idea behind [8]. Suppose the conclusion is invalid,
that is, Γ ⇒ σ : [α]φ (resp. Γ ⇒ σ : 〈α〉φ) is invalid. Then we show that it induces an infinite
descent sequence of elements ordered by well-founded relation ≺m introduced in Section 3.2, which
is contradict to Definition 4.

Before proving Theorem 1, we need some preparations stated as the following lemmas and defi-
nitions.

Definition 13. A “counter-example” F (ρ, α, σ, φ) of a formula τ ∈ {σ : [α]φ, σ : 〈α〉φ} is a set of
minimum terminal execution paths defined as: F (ρ, α, σ, φ) =df {(ρ(α), ρ(σ)) −→∗ (↓, σ′) | ρ, σ′ 6|= φ}.

Recall that a path being minimum is defined in Section 2.1.
Intuitively, a corresponding path is a result of symbolic executions by the instances of rules (σ[α])

and (σ〈σ〉) along a derivation trace.

Definition 14. Given a derivation trace τ1τ2...τm... over a derivation path n1n2...nm... (m ≥ 1),
where τ1 ∈ {σ : [α]φ, σ : 〈α〉φ}, each pair (τi, τi+1) (i ≥ 1) either satisfies τi ≡ τi+1 or (ni, ni+1) is a
conclusion-premise pair of an instance of rule (σ[α]) or (σ〈α〉), a “corresponding path” (α1, σ1) −→
... −→ (αn, σn) −→ ... (n ≥ 1) of the derivation trace τ1τ2...τm... satisfies that α1 ∈ Cl(α), σ1 ∈
Cl(σ), and for any (αk, σk) −→ (αk+1, σk+1) (k ≥ 1) of the path and formula τi =df σi : [αi]φ (resp.
τi =df σi : 〈αi〉φ, i ≥ 1) such that αk ∈ Cl(αi) and σk ∈ Cl(σi), there is a pair (τj , τj+1) over
(nj , nj+1) (i ≤ j) such that τi ≡ ... ≡ τj, (ni, ni+1) is a conclusion-premise pair of an instance of
rule (σ[α]) (resp. rule (σ〈α〉)), and τj+1 =df σj+1[αj+1]φ (resp. τj+1 =df σj+1〈αj+1〉φ) such that
αk+1 ∈ Cl(αi) and σk+1 ∈ Cl(σi).

Lemma 1. In a cyclic preproof of sequent Γ ⇒ σ : 〈α〉φ, given an evaluation ρ satisfying ρ |= Γ ,
any corresponding path tr starting from (ρ(α), ρ(σ)) of an infinite derivation trace τ1τ2... starting
from τ1 =df σ : 〈α〉φ eventually terminates.

Proof. Since every derivation trace is progressive, according to rule (σ〈α〉) and Definition 14, if
path tr does not terminate, then along the path there exists an infinite sequence of configurations
σ1{t1}, ..., σn{tn}... where their termination factors satisfy t1 ≻ ... ≻ tn ≻ .... This violates the
well-foundedness of relation ≺ (see below Definition 4). �

Lemma 2. In a cyclic preproof, let τ ∈ {σ : [α]φ, σ : 〈α〉φ} be a formula in an invalid node
n =df (Γ ⇒ τ), ρ |= Γ , and F (ρ, α, σ, φ) is a finite counter-example of τ . Then there exists a
formula pair (τ, τ ′) appeared in the node pair (n, n′) and a set F (ρ, α′, σ′, φ) such that n′ is invalid,
F (ρ, α′, σ′, φ) is a finite counter-example of τ ′, and F (ρ, α′, σ′, φ) �m F (ρ, α, σ, φ). Moreover, if
(τ, τ ′) is a progressive step, then F (ρ, α′, σ′, φ) ≺m F (ρ, α, σ, φ).
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Proof. Consider the rule application from node n, actually the only non-trivial cases are when it is
an instance of rule ([α]σ) (namely “case 1”) or rule (〈α〉σ) (namely “case 2”).

Case 1: If from node n rule ([α]σ) is applied with τ =df σ : [α]φ the target formula in
n, by ρ |= Γ and the invalidity of n, ρ 6|= σ : [α]φ. By the semantics of σ : [α]φ, there is a
pair (α′, σ′) and a transition (ρ(α), ρ(σ)) −→ (ρ(α′), ρ(σ′)) ∈ Λ such that ρ 6|= σ′ : [α′]φ. This
means that there exists an invalid sequent n′ =df Γ ⇒ τ ′ as a premise of n, in which formula
τ ′ =df σ

′ : [α′]φ is invalid. And because of this, F (ρ, α′, σ′, φ) is non-empty. We observe that by the
transition (ρ(α), ρ(σ)) −→ (ρ(α′), ρ(σ′)), each path in F (ρ, α′, σ′, φ) is actually a proper suffix of a
path in F (ρ, α, σ, φ). So from the finiteness of F (ρ, α, σ, φ), we obtain the finiteness of F (ρ, α′, σ′, φ),
and by Definition 10, we have F (ρ, α′, σ′, φ) ≺m F (ρ, α, σ, φ).

Case 2: If from node n rule (〈α〉σ) is applied with τ =df σ : 〈α〉φ the target formula in n, let
n′ =df Γ =⇒ τ ′ and τ ′ =df σ′ : 〈α′〉φ. By Lemma 1, any path (ρ(α), ρ(σ)) −→ (ρ(α′), ρ(σ′)) −→∗

(↓, σ′′) that corresponds to an infinite derivation trace τ1τ2... starting from τ1 =df σ : 〈α〉φ and
τ2 =df σ

′ : 〈α′〉φ in the sense of Definition 14 eventually terminates. And since ρ 6|= σ : 〈α〉φ, ρ, σ′′ 6|=
φ. As there must exist an infinite derivation trace τ1τ2... as described above (otherwise violating
the assumption that n is invalid), F (ρ, α′, σ′, φ) is non-empty. By the transition (ρ(α), ρ(σ)) −→
(ρ(α′), ρ(σ′)), each path in F (ρ, α′, σ′, φ) is a proper suffix of F (ρ, α, σ, φ). So the finiteness of
F (ρ, α, σ, φ) implies the finiteness of F (ρ, α′, σ′, φ), and we have F (ρ, α′, σ′, φ) ≺m F (ρ, α, σ, φ).
�

From the “case 2” of the above proof, we see that it does not have to be a progressive step in order
to obtain a strictly-smaller-than relation F (ρ, α′, σ′, φ) ≺m F (ρ, α′, σ′, φ). However, progressive steps
are still required for proving the termination of paths in Lemma 1.

As the end of this subsection, we give the proof of Theorem 1 as follows.

Proof (Proof of Theorem 1). As stated previously we only focus on the cases where the conclusion
of a cyclic preproof is either of the form Γ ⇒ σ : [α]φ or Γ ⇒ σ : 〈α〉φ.

Let τ ∈ {σ : [α]φ, σ : 〈α〉φ}. Suppose Γ ⇒ τ is invalid. If the counter-example set F (ρ, α, σ, φ)
of τ is finite, according to Lemma 2, we can obtain an infinite derivation trace τ1τ2...τm... over a
derivation path n1n2...nm... (m ≥ 1) and each set Fi (with F1 =df F (ρ, α, σ, φ)) as a finite counter-
example of formula τi (i ≥ 1). Note that there must exist at least one infinite derivation trace,
otherwise, Γ =⇒ τ is valid. By Lemma 2, from these counter-examples we obtain an infinite relation

chain: F1 �m F2 �m ... �m Fm �m .... Moreover, since τ1τ2...τm... is progressive (Definition 12),
there must be an infinite number of relation ≻m among these relations. This thus forms an infinite
descent sequence w.r.t. relation ≻m, violating the well-foundedness of relation ≻m (cf. Section 3.2).

It remains to show that F (ρ, α, σ, φ) is finite in different cases of τ . However, this is direct by III
of Definition 1. �

4 Case Studies

In this section, we give two case studies from different types of programs as described in Table 1,
showing how the proposed DLp can be used to derive different types of programs step by step
according to their operational semantics and how it lifts other rules in specific domains.

4.1 Example One: A While Program

The first example is a traditional while program:

WP1 =df {s := 0; while (n > 0) do s := s+ n; n := n− 1 end }.

Given an initial value of variables n, this program computes the sum from n to 1 stored in variable
s. We prove a property described in a sequent of DLp formulas as follows:

P1 =df σ1 : (n ≥ 0) ⇒ σ1 : [WP1](s =
(n+ 1)n

2
),
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12
11
10
9

([α]σ)

4
([α]σ)

8
(σTer)

7
(σInt)

6
([↓]σ)

5
([α]σ)

3
2
1

([α]σ)

1: σ1(v, u) : (n ≥ 0) ⇒ σ1(v, u) : [s := 0; α1]φ1

2: σ1(v, u) : (n ≥ 0) ⇒ σ2(v) : [while (n > 0) do β1 end ]φ1

3: σ1(v, u) : (n ≥ 0) ⇒ σ3(v) : [while (n > 0) do β1 end ]φ1

4: σ1(v, u) : (n > 0) ⇒ σ3(v) : [while (n > 0) do β1 end ]φ1

5: σ1(v, u) : (n = 0) ⇒ σ3(v) : [while (n > 0) do β1 end ]φ1

6: σ1(v, u) : (n = 0) ⇒ σ3(v) : [↓]φ1

7: σ1(v, u) : (n = 0) ⇒ σ3(v) : (s = ((n+ 1)n)/2)
8: σ1(v, u) : (n = 0) ⇒ (s = ((n+ 1)n)/2) ⊲ σ3(v)
9: σ1(v, u) : (n > 0) ⇒ σ4(v) : [n := n− 1; α1]φ1

10: σ1(v, u) : (n > 0) ⇒ σ5(v) : [while (n > 0) do β1 end ]φ1

11: σ1(v
′, u) : (n ≥ 0) ⇒ σ3(v

′) : [while (n > 0) do β1 end ]φ1

12: σ1(v, u) : (n ≥ 0) ⇒ σ3(v) : [while (n > 0) do β1 end ]φ1

α1 =df while (n > 0) do β1 end

β1 =df s := s+ n; n := n− 1
φ1 =df (s = ((n+ 1)n)/2)
σ1(v, u) =df {n 7→ v, s 7→ u}
σ2(v) =df {n 7→ v, s 7→ 0}

σ3(v) =df

{

n 7→ v,
s 7→ ((n+ v + 1)(n− v))/2

}

σ4(v) =df

{

n 7→ v,
s 7→ ((n+ v)(n− v + 1))/2

}

σ5(v) =df

{

n 7→ v − 1,
s 7→ ((n+ v)(n− v + 1))/2

}

Fig. 1: Derivations of Example 1

where σ1 =df {n 7→ v, s 7→ u} with v, u free variables. P1 says that given an initial value of n, after
executing E1, s equals to ((n+ 1)n)/2, which is the sum of 1 + 2 + ...+ n.

A configuration σ of a while program is a storage that maps some variable to a value of the
integer domain Z. For example, {n 7→ 100, s 7→ 0} denotes a configuration that maps n to 100 and
s to 0. Part of the operation semantics of Program WP1 are described as inference rules in Table 1.
φ⊲ σ is defined as the formula after the variable assignments according to configuration σ in φ. For
example, (n ≥ 0)⊲ {n 7→ 1, s 7→ 0} assigns n to 1 in n ≥ 0 and thus we get 1 ≥ 0.

Figure 1 shows the derivation of this formula. The inferences with no names aside do not belong
to Table 2, but are the additional rules for constructing proper labelled formulas. The derivation
from sequent 2 to 3 is according to the fact that σ2(v) = σ3(v). Configuration σ3(v) constructed in
sequent 3 is crucial, as starting from it, we can find a bud node — 12 — that is identical to it. The
derivation from sequent 3 to {4, 5} is dividing sequent 3 into two cases: n > 0 and n = 0. Sequent
11 is obtained by substituing v with v′ +1 from sequent 10. We observe that σ5(v) is just σ3(v− 1).
The left side of 11 comes from the fact that {u 7→ v′ + 1, s 7→ u} : (n > 0) is logically equivalent to
{u 7→ v′, s 7→ u} : (n ≥ 0), which is the left side of sequent 11. From sequent 11 to sequent 12, we
simply replace the free variable name v′ with v, which does not change the validity of the sequent.

The whole proof tree is a cyclic preproof because the only infinite derivation path: 1,2,3̇,4̇,9̇,1̇0,1̇1,1̇2,3̇,
4̇,9̇,... has a progressive derivation trace consisting of the target formulas underlined in Figure 1.

Readers may notice that if we choose the configuration as a free variable X and try to prove

X : (n ≥ 0) ⇒ X : [WP1](s = (n+1)n
2 ), then our approach is no different from using the ‘update’

structure in previous work like [4]. In this way, a configuration has no explicit structure itself, but
just a variable carrying updates, for example, X [s 7→ 0], which updates the value of s to 0 in X . One
of the advantages of the configurations in DLp compared to the ‘update’ approach is that it allows
explicit forms of programs’ or system models’ structures.

4.2 Example Two: A Synchronous Loop Program

The second example we consider is a synchronous program written in Esterel language [7]:

E2 =df A ‖ B,

where

A = trap loop







if x > 0 then

x := x− 1; emit T ; pause

else

emit S; exit

end







︸ ︷︷ ︸

Al

end end
,
B = trap loop







present S then

exit

else

pause

end







︸ ︷︷ ︸

Bl

end end
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are two programs running in parallel. Their loop bodies are represented by Al and Bl respectively.
Different from while programs, the behaviour of a synchronous program is characterized by a se-
quence of instances. At each instance, several (atomic) executions of a program occur. A synchronous
program model guarantees that when some programs run in parallel, the program state at the end
of an instance is unique, regardless of the orders of all executions during that instance. Therefore,
at each instance, the behaviour of a parallel synchronous program is deterministic.

In this example, program A decreases a variable x by 1 every instance, while program B listens
to a control signal S from A, and only terminates when program A emits S. Key word pause ends
the current instance of a program. “present S...” means “if S is emitted...”. exit terminates either
program A or B by jumping out of a trap statement. At each instance, when x > 0, program A
executes x := x − 1 and emit T , while program B simply pauses by doing nothing. When x ≤ 0,
program A emits S and terminates, while program B just terminates at the same instance. And
the whole program A ‖ B terminates. When initializing x as 5, the state of all variables at the end
of each instance is listed as follows: (inst 1 : x = 4, S = ⊥, T = ⊤), (inst 2 : x = 3, S = ⊥, T =
⊤), (inst 3 : x = 2, S = ⊥, T = ⊤), (inst 4 : x = 1, S = ⊥, T = ⊤), (inst 5 : x = 0, S = ⊤, T = ⊥),
where ⊤ and ⊥ represent the presence and absence of a signal respectively.

Different from Example 1, a configuration in Esterel is a stack structure [35], allowing expressing
local variables with same names. For example, {x 7→ 5 |T 7→ ⊥ |S 7→ ⊤ |T 7→ ⊤} represents a
configuration in which there are 4 variables: x, S and two T s with different values. We use “ |”
instead of “ ,” to remind that it is a stack structure, with the right-most side as the top of the stack.
In this example, for simplicity, we assume that the 3 variables x, T and S are already declared, so an
initial configuration of the program is always of the form: {x 7→ v |T 7→ ⊥ |S 7→ ⊥} for an arbitrary
value v. φ⊲σ has a similar meaning as in Example 1, the only difference is that, a variable, say x, is
explained by the top-most variable x in the stack of σ. For instance, (x > 0)⊲{x 7→ 5 |x 7→ 2 | y 7→ 1}
is 2 > 0, rather than 5 > 0.

The operational semantics of an Esterel program is quite complex, which can be understood in two
scopes. In micro scope, each transition represents an atomic execution of a program in an instance.
In macro scope, there can be more than one transitions in an instance. After the last transition, all
signals are reset to “absence” and a new instance starts. During executions in an instance, auxiliary
processes (called ‘Can’ processes [35]) are needed in order to guarantee the consistency of all variables.
In this paper, for simplicity, we do not list the inference rules for Esterel but only give the transitions
needed for the deductions as below.

Contrast with while programs, Esterel programs do not directly support structural rules. Intu-
itively, for a sequence program α;β in Esterel, program α cannot simply proceed independently from
program β, unless all atomic executions in β occur at a different instance from any execution in α.
One needs to collect all atomic executions in α;β at current instance together, in order to check that
all variables are consistent. More analysis was given in [17].

We prove the following property

P2 =df {x 7→ v |T 7→ ⊥ |S 7→ ⊥} : (x > 0) ⇒ {x 7→ v |T 7→ ⊥ |S 7→ ⊥} : 〈E2〉(x = 0),

which says that under any configuration (with v a free variable), if x > 0, then there exists an
execution of E2 that terminates and satisfies x = 0.

The derivations of P2 is shown in Figure 2. Instances of rule (〈α〉σ) rely on the transitions listed
as follows:

– from node 1 to 2: (A ‖ B, σ1(v){v}) −→ (A1 ‖ B, σ2(v){v − 1})
– from node 2 to 3: (A1 ‖ B, σ2(v){v − 1}) −→ (A2 ‖ B1, σ3(v){v − 1})
– from node 6 to 7: (A ‖ B, σ2(v){v − 1}) −→ (A3 ‖ B2, σ4(v){v − 1})
– from node 7 to 8: (A3 ‖ B2, σ4(v){v − 1}) −→ (↓, σ2(v){v − 1})

The termination factors in E2 are defined as natural numbers, with the “less-than relation” < between
natural numbers as the well-founded relation (≺) between termination factors. v and v − 1 are the
termination factors in the configurations. From node 4, two situations 5 and 6 are considered based
on the loop condition x > 0. Node 11 is obtained from node 5 by substituting variable v with v′ +1.
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12
11
5

10
σTer

9
(σInt)

8
(〈↓〉σ)

7
(〈α〉σ)

6
(〈α〉σ)

4
3
2

(〈α〉σ)

1
(〈α〉σ)

1: σ1(v) : (x > 0) ⇒ σ1(v){v} : 〈A ‖ B〉(x = 0)
2: σ1(v) : (x > 0) ⇒ σ2(v){v − 1} : 〈A1 ‖ B〉(x = 0)
3: σ1(v) : (x > 0) ⇒ σ3(v){v − 1} : 〈A2 ‖ B1〉(x = 0)
4: σ1(v) : (x > 0) ⇒ σ2(v){v − 1} : 〈A ‖ B〉(x = 0)
5: σ1(v) : (x > 1) ⇒ σ2(v){v − 1} : 〈A ‖ B〉(x = 0)
6: σ1(v) : (x = 1) ⇒ σ2(v){v − 1} : 〈A ‖ B〉(x = 0)
7: σ1(v) : (x = 1) ⇒ σ4(v){v − 1} : 〈A3 ‖ B2〉(x = 0)
8: σ1(v) : (x = 1) ⇒ σ2(v){v − 1} : 〈↓〉(x = 0)
9: σ1(v) : (x = 1) ⇒ σ2(v){v − 1} : (x = 0)
10: σ1(v) : (x = 1) ⇒ (x = 0) ⊲ σ2(v){v − 1}
11: σ1(v

′) : (x > 0) ⇒ σ1(v
′){v′} : 〈A ‖ B〉(x = 0)

12: σ1(v) : (x > 0) ⇒ σ1(v){v} : 〈A ‖ B〉(x = 0)

β1 =df s := s+ n; n := n− 1
A1 =df trap loop emit T ; pause;Al end end

A2 =df trap loop pause;Al end end

B1 =df trap loop pause;Bl end end

A3 =df trap loop exit;Al end end

B2 =df trap loop exit;Bl end end

σ1(v){v} =df {x 7→ v |T 7→ ⊥ |S 7→ ⊥}
σ2(v){v − 1} =df {x 7→ v − 1 |T 7→ ⊥ |S 7→ ⊥}
σ3(v){v − 1} =df {x 7→ v − 1 |T 7→ ⊤ |S 7→ ⊥}
σ4(v){v − 1} =df {x 7→ v − 1 |T 7→ ⊥ |S 7→ ⊤}

Fig. 2: Derivations of Example 2

Node 12 is a bud with node 2 as its companion, which is obtained by replace the free variable name v′

with v′ in node 11. The whole preproof is progressive as the derivation step from 1 to 2 is progressive
(with v − 1 < v). So all infinite derivation traces are progressive.

5 Related Work

Reasoning about programs directly through their executable semantics is not a new idea. As far
as we know, the first related work was matching logic, proposed by Rosu and Stefanescu in [36].
Matching logic is based on patterns and pattern matching. Its basic form, a reachability rule ϕ⇒ ϕ′

(note that ⇒ means differently there than in our sequents), captures whether pattern ϕ′ is reachable
from pattern ϕ in a given pattern reachability system. One-path reachability logic [37] and all-paths
reachability logic [39] were developed based on matching logic by adding conditional rules and a
all-paths reachability rule ϕ⇒∀ ϕ′ respectively. The concept of ‘patterns’ in matching/reachability
logics has a wider scope of meaning than the concepts of ‘programs’, ‘configurations’ and ‘formulas’
in DLp. The program specifications described with modal operator [·] in DLp cannot be expressed in
matching logic and one-path reachability logic when the program models are non-deterministic, as [·]
captures “the reachability of ALL execution paths”. However, the semantics of [·] can be captured by
the reachability rule ϕ⇒∀ ϕ′ in all-paths reachability logic. A more powerful matching µ-logic [11]
was developed by adding a least fixpoint µ-binder to matching logic. We conjecture that matching
µ-logic can encode DLp, as it has been declared in [11] that it can encode traditional dynamic logics.
So compared to reachability logic and matching-µ logic, our contribution is not about expressiveness,
but that we propose a different proof theory rooted in cyclic reasoning (rather than coinduction [37])
and the theory of dynamic logic for program verification via operational semantics.

Compared to all matching, reachability and matching-µ logics above, one advantage of DLp is
that DLp comes to program deductions in a more natural and direct way, in the sense that the
concepts of ‘programs’ and ‘configurations’ are explicitly expressed, and programs and formulas are
clearly separated by the modal operator [·]. As we put previously, this brings a benefit that we can
observe how program behaviours evolve independently from the formulas along the whole derivation
processes. On the other hand, to express a DLp specification like (σ : φ) ⇒ (σ : 〈α〉ψ) in matching
logic for example, one needs to ‘mix up’ all structures together to form a pattern, in a form like:
ϕ =df α ∧ σ ∧ φ and ϕ′ =df↓ ∧σ′ ∧ ψ for some configuration σ′, in order to prove the reachability
rule ϕ⇒ ϕ′.

[28] proposed a general program verification framework based on coinduction, the theory the
reachability logics [37,39] also rely on. Using the terminology in this paper, in [28] a program spec-
ification can be expressed as a pair (c, P ) with c a program state and P a set of program states,
capturing the exact meaning of formula σ : [α]φ in DLp if we let c be (α, σ) and let set P be the
semantics of formula φ. The authors designed a method to derive a program specification (c, P )
in a coinductive way according to the operational semantics of c. The soundness of the method is



Title Suppressed Due to Excessive Length 15

proved by using the greatest fixpoint theory on mathematical sets. Following [28], [26] also proposed
a general framework for program reasoning, but via big-step semantics. Unlike the frameworks in [28]
and [26], which are directly based on set theory, DLp has an explicit form of logic, which is more
suitable in some cases to catch specifications. The proof system of DLp is based on the cyclic proof
theory (cf. [10]) rather than coinduction, where especially, the soundness of DLp is proved by con-
tradiction on the well-foundedness of partial-order relations. Besides, in DLp, one can also express
and derive the negation of a dynamic formula σ : [α]φ as the dual formula σ : 〈α〉¬φ, whose meaning
cannot be captured in the framework of [28].

The structure ‘updates’ in traditional dynamic logics, used in Java dynamic logic [5], differential
dynamic logic [31], dynamic trace logic [4], etc., works as a special case of the configurations in
this paper. As illustrated at the end of Section 4.1, a configuration is more than just a calculus for
substitutions of variables and terms.

The proof system of DLp relies on the cyclic proof theory which firstly arose in [40], and later
developed in different logics such as [10], [8], etc. Traditional dynamic logics’ proof systems are not
cyclic ones. In [23], Jungteerapanich proposed a complete cyclic proof system for µ-calculus, which
subsumes propositional dynamic logic (PDL) [15] in its expressiveness. In [13], Docherty and Rowe
proposed a complete labelled cyclic proof system for PDL. Both µ-calculus and PDL are logics with
regular expressions with tests as their program models, which are not in a parameterized form like
the program models of DLp. The labelled form of DLp formula σ : [α]φ comes from [13], where a
labelled PDL formula is of the form s : [α]φ, with s a state in Kripke structure. Rather than just a
state, a configuration σ in DLp allow more forms rather than functions mapping variables to values
(see our Example 2). [13] has inspired us to use the well-founded relation ≺m in the proof of the
soundness of DLp, though we take a different proof approach since unlike PDL, DLp formulas do
not satisfy the “finite model property” (cf. [13]).

6 Some Discussions & Future Work

DLp can be a very powerful logic calculus due to its general forms. But one should not take DLp as
a “unified framework” for programming and verification, like matching-µ logic and UTP theory [22].
DLp is more of a second-ordered logic restricted to a particular form so that it facilitates expressing
and reasoning about programs and systems. Though we only give two examples in this paper, one
can easily see that DLp can be used to reason about many other types of programs, specially those
do not support structural rules, such as neural networks as done recently in [41], and also many
abstract system models, such as Kleene algebra with tests [25] and CCS [27].

DLp can be taken as a general theory that can subsume the existed dynamic logic theories in
which program models satisfy the program properties declared in Definition 1. Any rule in a dynamic
logic theory can be lifted as a labelled rule in DLp, which is derived without changing the labels of
a formula. For instance, in the example discussed in Section 1, to derive formula ψ =df ({x 7→ t} :
x ≥ 0 ⇒ {x 7→ t} : [x := x+1]x > 0), one can also apply the “lifting version” of the assignment rule

(x := e) as:
σ : ψ[x/e]

σ : [x := e]ψ
, and ψ then becomes ψ′′′ =df ({x 7→ t} : x ≥ 0) → ({x 7→ t} : x+ 1 > 0),

which also can be transformed into formula φ′: t ≥ 0 → t+ 1 > 0 after the applications of {x 7→ t}.
This “lifting ability” provides DLp with a flexible framework in which different inference rules can be
applied to make a trade-off between structural-based reasoning and symbolic executions in practical
deduction processes. More work will be on analyzing how program verification can be benefited from
this flexibility of the theory of DLp.

One future work will focus on implementing a specialized program verifier based on the theory
of DLp. The tool is now under development based on Cyclist [9], a proof engine supported by an
efficient cyclic-proof-search algorithm. To see the full potential of DLp, we are also trying to use DLp

to describe and verify more types of programs or structures.
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