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Abstract The characteristics inherent in a Domar aggregation, when all sectoral productions

embody a common nonneutral elasticity of substitution, is examined. There, the general

equilibrium propagation of productivity changes entails structural transformation that brings

nonlinearities in their aggregation into price indices. We show that negative singularity, such

that a finite productivity decrease induces an infinitely large price, is possible in an inelastic

economy, while positive singularity, such that a finite productivity increase induces a zero

price, is possible in an elastic economy. Regarding the aggregate outputs, two independent

productivity changes will have synergism in an elastic economy, whereas negative synergism

will be prevalent in an inelastic economy. Neither issue is of concern in a Cobb-Douglas

economy where the elasticity of substitution is everywhere neutral.
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1 Introduction

In this paper, we are concerned with the practice of evaluating technological innovations. In

economics terminology, the level of technology of an industry corresponds to its productivity,

thus innovation to its growth, and the evaluation corresponds to the assessment of potential

impact that productivity growth may deliver into the aggregate output of an economy, or more

specifically, the GDP growth. One such thing that aggregates sectoral productivity growths

into GDP growth is known as the Domar aggregator. Hulten (1978) claimed that the impact

on aggregate output can be assessed as a linear combination of sector-level productivity

shocks with coefficients given by sectors’ Domar weights. Under the general equilibrium

framework comprising Cobb-Douglas technologies throughout, Domar weights turns out to

be the final expenditure share weighted sum of the Leontief inverse.

Accordingly, Acemoglu et al (2012, 2017); Acemoglu and Azar (2020) study linear Do-

mar aggregation whereby assuming neutral elasticity of substitution in all sectoral pro-

ductions as well as in the households’ final consumption, and focus on the effect of

granularity (Gabaix, 2011) inherent in the network of input-output linkages. Meanwhile,

Baqaee and Farhi (2019) study aggregate fluctuations on the basis of second-order approx-

imation of nonlinear Domar aggregation. Kim et al (2017); Nakano and Nishimura (2024)

study the characteristics of empirical Domar aggregation based on a system of sector-specific

CES unit cost functions where every equilibrium is reached numerically by recursive con-

traction. It is now obvious that the elasticity of substitution in all sectoral productions is

essential in defining the characteristics of Domar aggregations.

Nonneutrality of the elasticities, however, prevents our system of equations that equilib-

riates sectoral unit costs with commodity prices from being linear. We therefore simplify the

matter first by allowing nonneutral but unitary elasticity of substitution in all sectors’ CES

unit cost functions. This assumption turns our nonlinear system of equations with respect

to normal prices into a linear system of equations with respect to hyperprices1. Readily, the

equilibrium hyperprices can be solved by way of linear algebra. We then take the advantage

of our knowledge about the viability2 of input-output matrices, to study the consequences of

singularity that can potentially be established in the hyperstructure3. Our approach enables

to analytically examine not only singularity but also synergism among innovations, with

respect to the elasticity of substitution.

The rest of the paper is organized as follows. In the following section, we specify the

model of an economy comprised of multiple CES aggregator functions of unitary elasticity

of substitution, and derive the Domar aggregation function with respect to the (exogenous)

productivity changes and the underlying elasticity of substitution. Our approach to model

multisector general equilibrium in the hyperspace enables us to handle equilibrium solutions

by means of linear algebra. In section 3, we discuss the matter of singularity, and specify

the conditions whereby such a phenomenon is possible. We find that inelastic (elastic)

economy may encounter a negative (positive) singularity. In section 4, we discuss the matter

of synergism in the economic evaluation of innovation(s). We find that an inelastic (elastic)

economy entails negative (positive) synergism. Section 5 concludes the paper.

1 Hyperprice is defined as q ≡ ?1−f where ? is the price underlying, and f is the unitary elasticity of

substitution.

2 A property of input-output coefficient matrices that any set of positive final demand is feasible, the criteria

for which is known as the Hawkins-Simon condition (Hawkins and Simon, 1949).

3 Hyperstructure is defined as 〈' 〉A, where 〈' 〉 denotes the (diagonalized vector of) sectoral hyperpro-

ductivity defined over productivity I where Z ≡ If−1, and A denotes the matrix of share parameters. We

also use the term hyperspace to indicate the space regarding hypervariables (Z , q).
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2 The model

2.1 Production

We write down below a CES production of constant returns to scale, and the corresponding

unit cost function for the 9 th industry (index suppressed), with 8 = 1, · · · , = being an

intermediate factor input, and 8 = 0 being a sigle primary factor of production.

G = I

(

=
∑

8=0

(U8)
1

f (G8)
f−1
f

)
f

f−1

, ? = I−1

(

=
∑

8=0

U8 (?8)
1−f

)
1

1−f

(1)

Here, elasticity of substitution is denoted by f. The share parameter is denoted by U8, and

assumed that
∑=

8=0 U8 = 1. Quantities and prices are denoted by G and ?, respectively. The

Hickes-neutral productivity level of the industry is denoted by I. Note that duality asserts

zero profit, i.e., ?G =
∑=

8=0 ?8G8 .

The (quasi-) concavity of the production function is assured if f > 0. Note that f = 0

corresponds to Leontief production, while f = 1 corresponds to Cobb-Douglas, the case of

which we call neutral elasticity of substitution. Application of Shepahrd’s lemma to the unit

cost function (1 right) yeilds the following:

B8 ≡
G8

G

?8

?
=

m?

m?8

?8

?
= U8

(

?8

I?

)1−f

(2)

That is, for the case of Cobb-Douglas production (f = 1) the cost share B8 is unaffected by

the changes in productivity and/or prices and stays at U8 . Moreover, a Cobb-Douglas unit

cost function becomes log-linear by the following expansion of (1 right) where W = 1 − f:

ln I? = lim
W→0

ln
(
∑=

8=0 U8 (?8)
W
)

W
= lim

W→0

∑=
8=0 U8 (?8)

W ln ?8
∑=

8=0 U8 (?8)W
=

=
∑

8=0

U8 ln ?8 (3)

Here, l’Hôspital’s rule with the assumption that
∑=

8=0 U8 = 1 is used.

Taking the Wth power on both sides of the unit cost function (1 right) yields:

?W = I−W (U1(?1)
W + U2(?2)

W + · · · + U= (?=)
W + U0(?0)

W) (4)

Consider the following =-industry general equilibrium model comprised of CES unit cost

functions all with the same elasticity of substitution f = 1 − W:

(?1)
W
= (I1)

−W (U11(?1)
W + U21(?2)

W + · · · + U=1(?=)
W + U01(?0)

W)

(?2)
W
= (I2)

−W (U12(?1)
W + U22(?2)

W + · · · + U=2(?=)
W + U02(?0)

W)

...

(?=)
W
= (I=)

−W (U1= (?1)
W + U2= (?2)

W + · · · + U== (?=)
W + U0= (?0)

W)

(5)

Let us call hereafter the case with W = 1 − f < 0 an elastic economy, W = 1 − f > 0 an

inelastic economy, and the case with W = 1 − f = 0 a Cobb-Douglas, or neutrally elastic

economy. In any case, we may analytically solve for the hyperprice q 9 ≡ (? 9 )
W > 0 as a

function of hyperproductivity Z 9 ≡ (I 9 )
−W > 0, for 9 = 1, · · · , =, as follows:

5 = [I − 〈'〉A]−1 〈'〉 "0 (6)
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where, ' = (Z1, · · · , Z=), 5 = (q1, · · · , q=)
′, "0 = (U01, · · · , U0=)

′, and A = [U8 9 ]
′.Angle

brackets indicate vector diagonalization. The price of primary factor is reserved as the

numéraire, i.e., ?0 = 1. Commodity prices are denoted as p = (?1, ?2, · · · , ?=). We

normalize prices, i.e., set 5 = p = (1, 1, · · · , 1)′ = 1, at the baseline where ' = z = 1. In

this event, cost share matrix S = [B8 9]
′ must be identicdal to A according to (2). Moreover,

1 = [I −A]−1 "0 > 0 (7)

2.2 Household

Below are a representative household’s (indirect) utility function of CES, and the corre-

sponding (consumer’s) price index:

* =

(

=
∑

8=1

(`8)
1

[ (28)
[−1
[

)
[

[−1

, � ( p) =

(

=
∑

8=1

`8 (?8)
1−[

)
1

1−[

where the indirect utility and consumer’s price index are denoted by * and �, respectively.

The representative household’s consumption shcedule in physical terms is denoted by c =

(21, 22, · · · , 2=), while its elasticity of substitution among the commodities is denoted by [.

The share parameter `8 is subject to the constraint
∑=

8=1 `8 = 1. Because � ≡ *� =
∑=

8=1 ?828,

� implies the GDE (gross domestic expenditure) which equals the GDP (gross domestic

product) and the GDI (gross domestic income) or total value added.

Consider the baseline (state of origin) where all prices are normalized at unity, i.e.,

p = 1 = (1, 1, · · · , 1)′. At the baseline, � = *, because � (1) = 1. Given the price change,

� = *� ( p) indicates that * is the real GDP if , is the nominal GDP, while � ( p) being

the GDP deflator. As we normalize the nominal GDP at unity (� = 1), and assuming

Cobb-Douglas utility ([ → 1) the aggregate output growth ln* can be evaluated as follows:

ln* = ln � − ln � ( p) = − ln � ( p) = −

=
∑

8=1

`8 ln ?8 = −- ln p (8)

Note that the third identity is evident by the analogy from (3).

2.3 Domar aggregation

An approach to aggregating growth measures associated with industries (as such of pro-

ductivity growths ln z = (ln I1, ln I2, · · · , ln I=)) to national aggregate growth (as such of

real GDP growth ln*) is called a Domar aggregation. For sake of simplicity, let us assume

hereafter that utility is Cobb-Douglas, i.e., [ = 1. This allows the real GDP growth to be the

weighted sum of price growths as specified in (8). With regard to (6), the hyperspace Domar

aggregator can be specified as follows:

−- ln 5 = −-W ln p = W ln* = −- ln

(

[I − 〈'〉A]−1 〈'〉 "0

)

Accordingly, the Domar aggregator that aggregates sectoral productivity growths ln z into

real GDP growth ln* under an unitary substitution elasticity f = 1 − W be as follows:

ln* = − (-/W) ln
(

[

I −
〈

4−W ln z
〉

A
]−1 〈

4−W ln z
〉

"0

)
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For the case of Cobb-Douglas production (W → 0), price growths have the following inter-

dependences, according to (3),

ln ?1 + ln I1 = U11 ln ?1 + U21 ln ?2 + · · · + U=1 ln ?=

ln ?2 + ln I2 = U12 ln ?1 + U22 ln ?2 + · · · + U=2 ln ?=

...

ln ?= + ln I= = U1= ln ?1 + U2= ln ?2 + · · · + U== ln ?=

where the equilibrium price can be solved as follows:

ln p = [I −A]−1 ln z (9)

Thus, the Domar aggregator for a Cobb-Douglas (elasticity-neutral) economy (with [ = f =

1) can be specified as follows:

ln* = −- ln p = - [I −A]−1 ln z

In other words, the households’ expenditure share-weighted Leontief inverse becomes the

Domar weights.

3 Singularity

3.1 Two-sector general equilibrium

Let us herewith consider a two-sector general equilibrium comprised of two CES unit cost

functions with unitary elasticity of substitution in the form of (5), as follows:

(?1)
W
= (I1)

−W (U21(?2)
W + U01)

(?2)
W
= (I2)

−W (U12(?1)
W + U02)

Here we assume that U11 = U22 = 0 for simplicity. The system of equations in the hyperspace

is as follows:

[

q1
q2

]

=

[

Z1 0

0 Z2

] [

0 U21

U12 0

] [

q1
q2

]

+

[

Z1 0

0 Z2

] [

U01

U02

]

and hence we can solve for the hyper-price by way of (6), as follows:

5 = [I − 〈'〉A]−1 〈'〉 "0 =
1

1 − U21U12Z1Z2

[

U01Z1 + U21Z1U02Z2
U02Z2 + U12Z2U01Z1

]

According to Hawkins and Simon (1949)’s theory, following nonsingularity condition

must be met in order for the equilibrium hyperprices to be positive, i.e., 5 > 0, for any

possible change of hyperproductivities, i.e., 〈'〉 "0 > 0.

� = det (I − 〈'〉A) = 1 − U21U12Z1Z2 > 0 (10)

At the same time, we know that hyperprices approach infinity, i.e., 5 → ∞, as the hyper-

structure of the economy approaches singularity, i.e., � → 0. Figure 1 depicts a sample
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Fig. 1: Contour plots of (11) where the horizontal and vertical axis correspond to I1 and I2,

respectively. The left figure corresponds to an inelastic economy (W = 0.1, U21U12 = 0.8),

and the right to an elastic economy (W = −0.5, U21U12 = 0.6). Dotted line indicates

singularity where � → 0. The dark areas indicate that � < 0. Nonsingularity (� > 0) is

held at the state of origin (I1, I2) = (1, 1) for both cases.

contour plot of the determinant � with respect to productivity change (I1, I2), where we

display the function below:

� = 1 − U21U12(I1I2)
W (11)

Note that Figure 1 depicts the case of inelastic economy W > 0 on the left, and the case of

elastic economy W < 0 on the right. The point is that productivity decline in an inelastic

economy or productivity increase in an elastic economy brings the hyper-structure towards

singularity.

The outcome of singularity in the hyperstructure (� → 0) also depends on the elasticity

of substitution in all productions (f = 1 − W). Specifically, because 5 → ∞ as � → 0,

? 9 = (q 9 )
1/W →

{

∞ Inelastic (0 < W < 1)

0 Elastic (W < 0)
9 = 1, 2

That is, singularity in the hyperstructure brings hyperprice to infinity, where the price

approaches infinity in an inelastic economy, while towards zero in an elastic economy. We

are also concerned about the physical requirement of the primary factor of production 8 = 0

in all sectors in the neighborhood of hyperstructure singularity. Application of Shephard’s

lemma onto each unit cost function yields the following:

18 9 ≡
G8 9

G 9

=
m? 9

m?8
= U8 9

(

?8

? 9

)−f

(I 9 )
f−1

= U8 9

(

q8

q 9

)1−1/W

Z 9

where 18 9 denotes input-output coefficient in physical terms for 8 = 0, 1, 2 and 9 = 1, 2. Since

q0 = 1, the primary factor input per unit output in physical terms be:

10 9 = U0 9 (q 9 )
1/W−1Z 9 =

{

∞ Inelastic

0 Elastic
9 = 1, 2
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at the hyperstructure singularity where 5 → ∞. That is, some finite productivity change

(0 < zW = ' ≪ ∞) can bring the per-output requirement of primary factor to infinity in an

inelastic economy, while towards zero in an elastic economy. Finally note that such an issue

(price infinitely large or zero under the aegis of finite productivity change) will not be of

concern in an elasticity-neutral (Cobb-Douglas) economy by the sake of (9).

3.2 Multisector general equilibrium

Hawkins and Simon (1949)’s claim can be interpreted that the following viability condition

is equivalent to the existence of positive solution 5 > 0 for any 〈'〉 a0 > 0, regarding (6).

�: = det (I − 〈'〉A): > 0 : = 1, 2, · · · , = (12)

That is, all the successive (the :th) principal minor determinants of [I − 〈'〉A] must be

positive. At the baseline (' = 1), this condition is met by the sake of (7). Also, we know by

Nikaido (1968) that the following conditions are equivalent:

det (I −A): > 0, lim
C→∞

(A:)
C
= 0

Following Takayama (1985), let us confirm this for the :th minor (index omitted).

Let M) ≡
∑)

C=0A
C
= I +A + · · · +A) , then

M) [I −A] = I −A)+1
= [I −A]M) (13)

Since A > 0, it must be that A)+1 > 0, so that I > [I −A]M) . The nonsingularity

assumption of [I−A] allows one to see that ") is bounded from above and increasing in ) ,

as follows:

L ≡ [I −A]−1 > M) > M)−1 > · · · > M0 = I > 0 (14)

By Hawkins and Simon (1949) we know this is equivalent to det(I − A): > 0 for : =

1, · · · , =. Also, since the above exposition tells that M∞ is convergent, it must be true that

lim
)→∞

(

A)+1
= M)+1 −M)

)

= 0

Conversely, ifA∞ → 0, then we know thatL = M∞ > 0 by (13), which we know is equivalent

to (14). Therefore, L > 0, det(I −A) > 0 and A∞ → 0 are all equivalent statements.

Hence, our purpose to show (12) amounts to showing that (〈'〉A)∞ → 0. To do so, we

first eigendecompose A which is a square, nonnegative and nonsingular matrix, for further

evaluation of the hyperstructure, as follows:

〈'〉A = 〈'〉Q 〈,〉Q−1 < (ZmaxI)Q 〈,〉Q−1
= Q 〈Zmax,〉Q

−1

Here, 〈,〉 denotes the diagonal matrix of the eigenvalues of A, and Zmax = max 9 ' > 0 is a

scalar. Because A∞ → 0, we know that 〈,〉∞ = Q−1A∞Q → 0. In other words |_ 9 | < 1 for

9 = 1, · · · , =. Thus, for any ' < 1, it must be true that |Zmax_ 9 | < 1 for 9 = 1, · · · , =, so that

nonsingularity of the hyperstructure is secured, i.e.,

0 < (〈'〉A)∞ < Q 〈Zmax,〉
∞ Q−1 → 0 ∀' < 1
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On the other hand, the hyperstructure can also be evaluated as follows:

〈'〉A = 〈'〉Q 〈,〉Q−1 > (ZminI)Q 〈,〉Q−1
= Q 〈Zmin,〉Q

−1

where Zmin = min 9 ' > 0 is again a scalar. Then, for some ' > 1, it may be the case that

|Zmin_ 9 | > 1 for some 9 so that nonsingularity of the hyperstructure is disrupted, i.e.,

(〈'〉A)∞ > Q 〈Zmin,〉
∞Q−1 → ∞ ∃' > 1

We summarize below the findings obtained so far.

Proposition 1. In an inelastic economy (W > 0), productivity improvement (z > 1) can only

lead to viable hyperstructure (�: > 0) with finite price (0 < p < 1), whereas productivity

decline (z < 1) can lead to an infinitely large price ( p → ∞) under hyperstructural

singularity (�: → 0), in which event, the physical unit inputs for the primary factor also

become infinitely large (b0 → ∞). We refer the latter to a negative singularity.

Proposition 2. In an elastic economy (W < 0), productivity decline (z < 1) can only lead

to viable hyperstructure (�: > 0) with finite price (1 < p ≪ ∞), whereas productivity

improvement (z > 1) can lead to an infinitesimal price ( p → 0) under hyperstructural

singularity (�: → 0), in which event, the physical unit inputs for the primary factor also

become infinitesimal (b0 → 0). We refer the latter to a positive singularity.

4 Synergism

4.1 Two-sector general equilibrium

Consider a two-sector production system with self-inputs, as follows.

?1 = (I1)
−1

(

U11

1 + U11

(?1)
W +

U21

1 + U11

(?2)
W +

U01

1 + U11

)1/W

?2 = (I2)
−1

(

U12

1 + U22

(?1)
W +

U22

1 + U22

(?2)
W +

U02

1 + U22

)1/W
(15)

Note that U21 + U01 = U12 + U02 = 1 and assume that 0 < U8 9 < 1, for 8 = 0, 1, 2 and

9 = 1, 2. The system of equations in the hyperspace are solved for hyperprices as follows:

q1 = Z1

(

U11q1 + U21q2 + U01

1 + U11

)

=
Z1(U21q2 + U01)

1 + U11(1 − Z1)
= \1(U21q2 + U01)

q2 = Z2

(

U12q1 + U22q2 + U02

1 + U22

)

=
Z2(U12q1 + U02)

1 + U22(1 − Z2)
= \2(U12q1 + U02)

(16)

Nonsingularity requires that 1 + U 9 9 (1 − Z 9 ) ≠ 0 for 9 = 1, 2. By its definition below, \ 9 is

monotonically increasing with respect to the value of Z 9 for any 0 < U 9 9 < 1, and passes

through the points (Z 9 , \ 9) = (0, 0) and (1, 1), as depected in Figure 2.

\ 9 =
Z 9

1 − U 9 9 (1 − Z 9 )
9 = 1, 2 (17)

In other words, (1, 1) < (\1, \2) if (1, 1) < (Z1, Z2), and (0, 0) < (\1, \2) < (1, 1) if

(0, 0) < (Z1, Z2) < (1, 1).
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1

10

\ 9

Z 9

\ 9 =
Z 9

1−U 9 9 (1−Z 9 )

U 9 9 = 0.2

U 9 9 = 0.5

U 9 9 = 0.8

Fig. 2: Sample correspondences between Z 9 and \ 9 under various U 9 9 , according to (17).

Below we display the solution to the system of equations (16), for the case when (\1 ≠

1, \2 ≠ 1), under viability (or Hawkins-Simon) condition 1 − U12U21\1\2 > 0:

[

q
(1,2)
1

q
(1,2)
2

]

=

[ [

1 0

0 1

]

−

[

\1 0

0 \2

] [

0 U21

U12 0

] ]−1 [

\1 0

0 \2

] [

U01

U02

]

=

[

U01\1+U21 \1U02\2
1−U12U21\1 \2

U02\2+U12 \2U01\1
1−U12U21\1 \2

]

Similarly for the case when (\1 ≠ 1, \2 = 1) under viability condition 1 − U12U21\1 > 0:

[

q
(1)
1

q
(1)
2

]

=

[[

1 0

0 1

]

−

[

\1 0

0 1

] [

0 U21

U12 0

]]−1 [

\1 0

0 1

] [

U01

U02

]

=

[

U01\1+U21\1U02

1−U12U21\1
U02+U12U01 \1
1−U12U21\1

]

and for the case when (\1 = 1, \2 ≠ 1) under viability condition 1 − U12U21\2 > 0:

[

q
(2)
1

q
(2)
2

]

=

[[

1 0

0 1

]

−

[

1 0

0 \2

] [

0 U21

U12 0

]]−1 [

1 0

0 \2

] [

U01

U02

]

=

[

U01+U21U02 \2
1−U12U21\2

U02\2+U12\2U01

1−U12U21\2

]

After some calculations we are able to show the following:

q
(1,2)

1
− q

(1)

1
q
(2)

1
=

(1 − \1)(1 − \2)(U01 + U12U02\2)U12U21\1

(1 − U12U21\1\2)(1 − U12U21\1)(1 − U12U21\2)

q
(1,2)
2

− q
(1)
2

q
(2)
2

=
(1 − \1)(1 − \2)(U02 + U21U01\1)U12U21\2

(1 − U12U21\1\2)(1 − U12U21\1)(1 − U12U21\2)

(18)

For both cases, the common denominator is positive due to viability conditions mentioned

above. Both numerators, on the other hand, will be positive if (0, 0) < (\1, \2) < (1, 1),

or (1, 1) < (\1, \2). According to Figure 2, these conditions are equivalent to (0, 0) <

(Z1, Z2) < (1, 1) and (1, 1) < (Z1, Z2), and hence, to the following:

(1, 1) < (I1, I2) < (∞,∞), (0, 0) < (I1, I2) < (1, 1) Inelastic

(0, 0) < (I1, I2) < (1, 1), (1, 1) < (I1, I2) < (∞,∞) Elastic

or, more concisely to the following:

(I1, I2) < (1, 1) < (I1, I2) (Inelastic or Elastic) (19)

In other words, (18) would be positive if productivity changes are on the same direction,

i.e., if prductivities are both improving or both declining (from the state of origin (1, 1)).



10 Satoshi Nakano, Kazuhiko Nishimura

Conversely, if the productivity changes z = (I1, I2) are on the same direction as (19), what

follows must be true.

ln 5 (1,2) − ln 5 (1) − ln 5 (2)
= W

(

ln p (1,2) − ln p (1) − ln p (2)
)

> 0 (20)

Hence, we see that for any 0 < - < 1, the aggregate outputs, as defined in (8), have the

following properties:

−- ln p (1,2) < −- ln p (1) − - ln p (2) Inelastic

−- ln p (1,2) > −- ln p (1) − - ln p (2) Elastic

Note that for any productivity improvement (z > 1), equilibrium prices would decrease from

the state of origin (p < 1) and the aggregate output growth be positive (−- ln p > 0). For

any productivity decline (z < 1), in contrast, equilibrium prices would increase from the

state of origin (p > 1) and the aggregate output growth be negative (−- ln p < 0).

Below we summarize the findings obtained.

Proposition 3. In an inelastic economy (0 < W < 1), the aggregate output pertaining

to productivity improvements in two sectors (I1 > 1, I2 > 1) is less than the sum of the

aggregate outputs that pertain to productivity improvement in one sector (I1 > 1, I2 = 1)

and in another (I1 = 1, I2 > 1). The aggregate output pertaining to productivity declines in

two sectors (I1 < 1, I2 < 1) is also less than the sum of the aggregate outputs that pertain

to productivity decline in one sector (I1 < 1, I2 = 1) and in another (I1 = 1, I2 < 1). We

call this a negative synergism.

Proposition 4. In an elastic economy (W < 0), the aggregate output pertaining to produc-

tivity improvements in two sectors (I1 > 1, I2 > 1) is larger than the sum of the aggregate

outputs that pertain to productivity improvement in one sector (I1 > 1, I2 = 1) and in

another (I1 = 1, I2 > 1). The aggregate output pertaining to productivity declines in two

sectors (I1 < 1, I2 < 1) is also larger than the sum of the aggregate outputs that pertain to

productivity decline in one sector (I1 < 1, I2 = 1) and in another (I1 = 1, I2 < 1). We call

this a positive synergism.

4.2 Multisector general equilibrium

Below is a system of hyperspace equations for an =-sector economy, where only the first and

the second sectors are allowed to have productivity changes.

q1 = Z1 (U11q1 + U21q2 + U31q3 + · · · + U=1q= + U01)

q2 = Z2 (U12q1 + U22q2 + U32q3 + · · · + U=2q= + U02)

q3 = U13q1 + U23q2 + U33q3 + · · · + U=3q= + U03

...

q= = U1=q1 + U2=q2 + U3=q3 + · · · + U==q= + U0=

With obvious notational correspondences, let us rewrite the above system of equations more

concisely as follows:

q1 = Z1
(

" (1,2)1 (q1, q2)
′ + "A15A + U01

)

(21)

q2 = Z2
(

" (1,2)2 (q1, q2)
′ + "A25A + U02

)

(22)

5A = A(1,2)A (q1, q2)
′ +AAA5A + "0A (23)
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Here, " (1,2)1 and " (1,2)2 are 1 × 2 row vectors, 5A and "0A are (= − 2) × 1 colum vectors,

"A1 and "A2 are 1 × (= − 2) row vectors, A(1,2)A is an (= − 2) × 2 matrix, and AAA is an

(= − 2) × (= − 2) matrix. Let us solve (23) for 5A and plug into (21) and (22) as follows:

q1 = Z1

(

" (1,2)1 (q1, q2)
′ + "A1 [I −AAA ]

−1
[

A(1,2)A (q1, q2)
′ + "0A

]

+ U01

)

(24)

q2 = Z2

(

" (1,2)2 (q1, q2)
′ + "A2 [I −AAA ]

−1
[

A(1,2)A (q1, q2)
′ + "0A

]

+ U02

)

(25)

5A = [I −AAA ]
−1

[

A(1,2)A (q1, q2)
′ + "0A

]

(26)

The above system of equations (24–25) is essentially a linear system as described below,

with obvious notational correspondences:

q1 = Z1 (Ũ11q1 + Ũ21q2 + Ũ01)

q2 = Z2 (Ũ12q1 + Ũ22q2 + Ũ02)

This is equivalent to the two-sector production system described as (15), thus, all arguments

presented in the previous section apply. Therefore, let us redescribe our key findings (20) for

synergism as follows:

ln q
(1,2)
9

≥ ln q
(1)
9

+ ln q
(2)
9

, 9 = 1, 2 (27)

Also, we can redescribe (26) as follows:

q 9 = Ũ1 9q1 + Ũ2 9q2 + Ũ0 9 9 = 3, · · · , = (28)

Since all prices are normalized (5 = 1) at the state of origin (' = 1), we know that

Ũ1 9 + Ũ2 9 + Ũ0 9 = 1, for 9 = 1, · · · , =. The problem is that we still cannot prove (27), i.e.,

synergism, for the remaining commodities 9 = 3, · · · , =.

Hence, from here on, we consider infinitesimal productivity changes. Since the state of

origin (for all variables including all prices and hyperprices) is unity, infinitesimal produc-

tivity changes will induce infinitesimal departure from unity for all variables. As we recall

that q ≈ 1 + ln q wherever q ≈ 1, we can approximate (28) as follows:

1 + ln q 9 = Ũ1 9 (1 + ln q1) + Ũ2 9 (1 + ln q2) + Ũ0 9 9 = 3, · · · , = (29)

For infinitesimal changes, (29) and (28) are equivalent. Since Ũ1 9 + Ũ2 9 + Ũ0 9 = 1, as noted

earlier, (29) can be reduced as follows:

ln q 9 = Ũ1 9 ln q1 + Ũ2 9 ln q2 9 = 3, · · · , = (30)

Let X 9 be the indicator for an infinitesimal (hyper-) productivity change in the 9 th sector.

The general equilibrium hyperprices ex-post of infinitesimal productivity changes can then

be evaluated, in light of (30) and (27), as follows:

ln q
(X1, X2)
9

= Ũ1 9 ln q
(X1, X2)
1

+ Ũ2 9 ln q
(X1, X2)
2

≥ Ũ1 9 ln q
(X1)
1

+ Ũ2 9 ln q
(X1)
2

+ Ũ1 9 ln q
(X2)
1

+ Ũ2 9 ln q
(X2)
2

= ln q
(X1)
9

+ ln q
(X2)
9

Hence, the key inequality for synergism (27) is at least marginally applicable for an =-sector

economy, as follows:

ln q
(X1, X2)
9

≥ ln q
(X1)
9

+ ln q
(X2)
9

9 = 1, · · · , = (31)
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We further consider integrating the hyperprices over infinitesimal productivity changes

in the first and the second sector, individually and simultaneously. For that matter, we restrict

our focus on cases where the equilibrium log-hyperprices are positive (ln 5 > 0). In regard

to (6), positive log-hyperprices are compatible with increasing hyperproductivities (' > 1)

that correspond to productivity improvement under elastic economy (z > 1, W < 0), and

productivity decline under inelastic economy (z < 1, W > 0). In other words, additional

hyperproductivity increase will raise the hyperprice. Now, consider equilibrium hyperprices

under infinitesimal hyperproductivity increase (X1, X2) and then adding further infinitesimal

hyperproductivity increase (X1∗ and X2∗), individually and simultaneously. With regard to

(31), what follows must be true:

ln q
(X1+X1∗ , X2+X2∗ )
9

≥ ln q
(X1+X1∗ , X2)
9

+ ln q
(X1, X2+X2∗ )
9

(32)

Next inequality for synergism describes the case when we choose X1 as the productivity

underlying, and adding further infinitesimal productivity changes (X1∗ and X2), individually

and simultaneously.

ln q
(X1+X1∗ , X2)
9

> ln q
(X1+X1∗ )
9

+ ln q
(X1, X2)
9

(33)

Similarly, following inequality for synergism describes the case when we choose X2 as the

productivity underlying, and adding further infinitesimal productivity changes (X1 and X2∗),

individually and simultaneously.

ln q
(X1, X2+X2∗ )
9

> ln q
(X1, X2)
9

+ ln q
(X2+X2∗ )
9

(34)

Combining (32), (33), (34), and ln q 9 > 0 as mentioned previously, we have the following

result that allows one to integrate over individual and simultaneous productivity changes.

ln q
(X1+X1∗ , X2+X2∗ )
9

> ln q
(X1+X1∗ )
9

+ ln q
(X2+X2∗ )
9

9 = 1, · · · , =

Finally, let us summarize the results below.

Proposition 5. Propositions 3 and 4 hold true for marginal (infinitesimal) productivity

changes (dz1, dz2), in a multisector economy.

Proposition 6. Positive synergism will take place for productivity improvements in two

sectors (I1 > 1, I2 > 1) in an elastic multisector economy (W < 0), whereas negative

synergism will take place for productivity declines in two sectors (I1 < 1, I2 < 1) in an

inelastic multisector economy (0 < W < 1).

5 Concluding Remarks

According to Eden et al (2012), singularity hypotheses refer to two distinct scenarios. One

is the intelligence explosion (Good, 1966), whereby the machine intelligence surpasses

the human intelligence through computational advancement that entails recursive self-

improvement. The other scenario is the biointelligence explosion that entails amplifications

of human capabilities to overcome all existing human liminations (Kurzweil, 2005). In both

ways, however, the concept of singularity thereof (i.e., explosion) does not go beyond expo-

nential growth, if not being extreme. The economic singularity theory of Nordhaus (2021)

also exploits the idea of extreme exponential growth of intelligence capital, with its deepen-

ing by a large elasticity of substitution. In contrast, the singularity presented in this study is

based on well-defined matrix singularity that brings infinities to economic variables.
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As regards our inaugural question of how we could evaluate technological innovation,

this study may provide some insights. A linear assessment (as such of cost-benefit analysis)

could underestimate the value of an innovation as we take other potential innovations into

account, under an elastic economy. That is, depending on the elasticity of substitution of the

economy, a portfolio of industrial policy to promote potential innovations could outperform a

selective policy. A synergism must be taken into account not only for productivity augmenting

innovations but also for productivity diminishing ones as such of environmental conservation

technologies. A productivity diminishing innovation could benefit from other innovations, but

could encounter an unviable structure (or, negative singularity), depending on the elasticity

of substitution of the economy.
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