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Abstract 

This paper reviews the standard algorithm for converting spacecraft state vectors to 
Keplerian orbital elements with a focus on its computer implementation. It analyzes the 
shortcomings of the scheme as described in the literature, and proposes changes to 
address orbits of arbitrary eccentricity and inclination in a robust way. Next, it presents 
two alternative schemes that simplify the program structure while improving the 
accuracy and speed of the transformation on modern computer architectures. 
Comprehensive numerical benchmarks demonstrate accuracy improvements by two 
orders of magnitude, together with a 40% reduction of computational cost relative to 
the standard implementation. 

Keywords: state vector to orbital elements; algorithm accuracy; computational cost 

 

1. Introduction 
Transforming between spacecraft State Vector (SV) { },=x r v  (position and velocity) and 

Classical Orbital Elements (COE) { }, , , , ,a e i ω θ= Ωο  (semimajor axis, eccentricity, 

inclination, longitude of the ascending node, argument of pericenter and true anomaly) 
[1] is a recurring task in many orbital mechanics calculations. There are many high-
precision propagators that operate with the state vector, but it is often the case that the 
orbital elements provide a more convenient description of the trajectory. This is due to 
their small changes over one revolution1, which makes them attractive for applications 
like station-keeping [2], long-term orbital stability [3],  and orbit transfer optimization 
[4]. Moreover, the orbital elements provide an intuitive understanding of the orbit 
orientation and shape. 

The algorithm to transform from SV to COE is considered an essential tool of celestial 
mechanics and, as such, it is ubiquitous in the reference literature (see for example [1] 
[5] [6] [7] [8]). Unlike the switch from COE to SV, which is straightforward and involves 
a fixed sequence of steps, the inverse transform must take into account the singularities 
in the definition of the orbital elements. For equatorial orbits, Ω  is ill-defined. In circular 
orbits, ω  also becomes degenerate. These singularities are especially relevant for 

 
1 Of course, the true anomaly experiences large variations, but it can be replaced easily with the time of 
periapsis or the true/mean anomaly at epoch, which vary slowly. 
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applications where the equations of motion are formulated directly in terms of the 
orbital elements (e.g., [9]). Different sets of elements have been proposed to work 
around this limitation. For a review of alternatives see [10]. The family of equinoctial 
elements was a first attempt to address the issues. It traces its origins to Lagrange’s 
secular theory of planetary motion [11]. The term “equinoctial elements” was coined by 
Arsenault et al. [12] in 1970, and multiple variations of them can be found in the 
literature [13] [14] [15] [16] [17] [18] [19]. Equinoctial elements still suffer from 
limitations, they are singular for parabolic orbits and cannot treat simultaneously 
prograde and retrograde equatorial orbits. A further refinement are the modified 
equinoctial elements [20] [21]. This work only considers the transformation from SV to 
COE, and focuses on improving its accuracy and efficiency in modern computers. 

Software implementations commonly handle the singularities by means of separate 
branches of code for each case. This approach increases program size and the likelihood 
of coding errors, and, crucially, can be detrimental for computational performance in 
modern CPUs. Moreover, identifying which code path to take involves setting tolerances 
for eccentricity and inclination. This may compromise accuracy if the thresholds are not 
chosen carefully. 

Current processor architectures are pipelined [22]. Each instruction goes through 
several execution stages (one per clock cycle) before completion, while subsequent 
instructions are moving through the pipeline concurrently. It is often the case that the 
result of a previous instruction is required to decide which path of a branch must be 
taken. Waiting for the result to be ready (i.e., for the value of the condition to come out 
of the pipeline) would waste processor cycles (this is known as a “bubble”). Bubbles are 
mitigated with speculative execution assisted by a branch predictor [23]. The hardware 
makes a guess of the likely path to follow and starts execution before the condition can 
be evaluated. In case the prediction turns out erroneous, the pipeline must be flushed, 
wasting the processing already done for the instructions in flight [24]. An effective 
strategy against performance degradation due to branch mispredictions is, 
unsurprisingly, branchless programming [25]. 

This document presents two coding strategies that simplify the calculation of classical 
orbital elements and improve the accuracy of the results. Section 2 reviews a standard 
implementation, as found in the astrodynamics literature. It outlines the main 
shortcomings and strategies to mitigate them. Section 3 presents a branchless version 
that eliminates the need to contemplate coordinate system singularities. It enables 
robust, strictly linear (i.e., free from branching) execution, for increased accuracy and 
consistent performance. Section 4 compares the accuracies of the original and 
branchless algorithms in the context of low inclination and near-circular orbits. Section 
5 introduces an alternative algorithm for computer systems where the branchless 
approach is not suitable. It improves accuracy and reduces the number of branches 
(without completely eliminating them). Section 6 presents additional benchmarks. 
Finally, the main conclusions are drawn in section 7.   
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2. Standard programming approach 
A popular algorithm (which we shall denote as AL1) follows the steps below to compute 
the orbital elements from the state vector x . All vectors are expressed in a Cartesian 

frame { }, ,x y z  with axes along the { }ˆ ˆ ˆ, ,i j k  directions. Hats denote unit vectors, for 

example: ˆ
r

=
rr  , where r = ⋅r r . The reference plane for measuring inclination is XY 

and µ  denotes the gravitational parameter.  

1. Determine the orbital specific angular momentum = ×h r v  

2. The orbital inclination is ( )ˆ ˆarccosi = ⋅h k  

3. If 0i >  continue with step 4, otherwise skip to step 7 

4. Find the direction of the ascending node 
ˆ

ˆ
ˆ
×

=
×

k hn
k h

 

5. ( )ˆarccosaux xnΩ =   

6. If 0y auxn ≥ →Ω = Ω , otherwise auxΩ = −Ω . Skip to step 8 

7. Set 0Ω =  and ˆˆ =n i  

8. The semimajor axis is 
1

2a
r µ

−
 ⋅

= − 
 

v v  

9. Compute the eccentricity vector ˆ
µ
×

= −
v he r  

10. The eccentricity is e = ⋅e e  
11. If 0e >  proceed with step 12, otherwise skip to 16 
12. ( )ˆ ˆarccosauxθ = ⋅e r  

13. If 0 auxθ θ⋅ ≥ → =r v , otherwise auxθ θ= −  

14. ( )ˆ ˆarccosauxω = ⋅e n  

15. If 0z auxe ω ω≥ → = , otherwise auxω ω= − . Finished 

16. Set 0ω =  and ( )ˆ ˆarccosauxθ = ⋅r n  

17. If 0z auxr θ θ≥ → = , otherwise auxθ θ= −  
Table 1 - Traditional scheme (AL1). 

First and foremost, AL1 does not even work for eccentric inclined orbits in practice. Steps 

12, 14 and 16 hide an insidious pitfall. In exact arithmetic, one expects ˆˆ 1⋅ ≤a b  for any 

pair of unit vectors { }ˆˆ,a b . However, finite precision arithmetic is subject to rounding 

errors. Thus, the magnitude of the dot product could exceed 1 if both vectors are quasi-
parallel. This can happen, for example, in step 12 when the spacecraft is very close to 
the apocenter or pericenter. The computer will trigger an exception if it tries to evaluate 
the arccosine of a value larger than 1, disrupting the calculation. While this occurrence 
may seem unlikely, if the elements are evaluated a large number of times, the problem 
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will eventually arise2. To make matters worse, the circumstances where this issue is 
triggered depends, on the exact sequence of operations used to compute the argument 
of the arccosine (this is typical with rounding-related problems). For example, these two 
apparently equivalent ways of computing auxθ  can yield different results: 

 ( ) ( )arccosˆ ˆarccos ;aux aux e r
θ θ

⋅
= ⋅ =

e r
e r . (2.1) 

A simple workaround is to replace step 12 with 

 ( )ˆ ˆmax(min( ,1), 1) ; arccosauxξ θ ξ= ⋅ − =e r , (2.2) 

which, unfortunately, introduces additional latencies because auxθ  cannot be evaluated 
until ξ  is available. The same applies to steps 14 and 16. One could think that there is a 
potential for a similar issue in step 5. However, in this case the argument of the arccosine 
is just one of the components of a unit vector. This operation is very robust numerically 
and no special precaution is required. 

The sequence of calculations requires conditional branches at steps 3 and 11 because n  
and e  vanish for non-inclined and circular orbits, respectively. In those cases, it is not 
possible to compute the respective unit vectors. Aside from the aforementioned 
performance penalty, the branches are problematic because conditions such as 0i >  
and 0e >  do not fare well in the domain of finite precision arithmetic3 (which always 
applies for numerical orbit propagation). Once the magnitude of the vectors becomes 
sufficiently small, the rounding errors inherent to floating point arithmetic can start 
dominating the calculations. While it may still be possible to normalize the vectors 
without triggering an overflow, the resulting direction can be erroneous due to this kind 
of contamination.  A simple workaround is to set finite thresholds below which the 
alternative code path is taken. However, these tolerances must be adjusted carefully. 
Too low a value does not prevent the rounding issues, while an overly large threshold 
will incorrectly characterize normal orbits as degenerate cases. Therefore, for the sake 
of performance and accuracy it is highly desirable to write an algorithm that can run in 
a strictly linear way (i.e., branchless) and without tolerances that require tuning. 

There are subtler errors in AL1 that need to be fixed before it can be used for arbitrary 
orbits. Note that if the inclination vanishes, the sign of ω  in step 15 cannot be 
determined from the vertical component of the eccentricity vector. Instead, it is given 
by the sign of the y component (because in this case the reference direction for ω  is the 
x axis). Similarly, in step 17, if the orbit is equatorial, the sign of the true anomaly is given 
by the y component of r . Furthermore, one must consider if the orbit is prograde or 
retrograde when choosing the sign. Also, to handle retrograde orbits, the actual 
condition that must be tested in step 3 is 0 AND i i π> < . The correct classical 

 
2 In fact, it was not possible to complete the tests in section 4 without addressing this problem first. 
3 Due to a lucky coincidence, explained in section 3, the condition 0i >  is acceptable in this case. 
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algorithm, including an eccentricity threshold ( )thre  in step 10 to detect quasi-circular 

obits, is summarized in Table 2. 

1. = ×h r v  
2. ( )ˆ ˆmax(min( ,1), 1) arccosiξ ξ= ⋅ − → =h k   

3. Orbit is inclined if 0 AND i i π> < . Continue with step 4 for inclined orbits, 
otherwise skip to step 7 

4. 
ˆ

ˆ
ˆ
×

=
×

k hn
k h

 

5. ( )ˆarccosaux xnΩ =  

6. If 0y auxn ≥ →Ω = Ω , otherwise auxΩ = −Ω . Skip to step 8 

7. ˆˆ0,Ω = =n i  

8. 
1

2a
r µ

−
 ⋅

= − 
 

v v  

9. ˆ
µ
×

= −
v he r  

10. e = ⋅e e  
11. If thre e>  continue with step 12, otherwise skip to step 18 

12. ( )ˆ ˆmax(min( ,1), 1) arccosauxξ θ ξ= ⋅ − → =e r  

13. If 0 auxθ θ⋅ ≥ → =r v , otherwise auxθ θ= −  

14. ( )ˆ ˆmax(min( ,1), 1) arccosauxξ ω ξ= ⋅ − → =e n  

15. If the orbit is inclined continue to step 16, otherwise skip to step 17 
16. If 0z auxe ω ω≥ → = , otherwise auxω ω= − . Finished 

17. If ( ) 0y z auxe h ω ω⋅ ≥ → = , otherwise auxω ω= − . Finished 

18. 0ω =  
19. ( )ˆ ˆmax(min( ,1), 1) arccosauxξ θ ξ= ⋅ − → =r n  

20. Continue to step 21 for inclined orbits, otherwise proceed to step 22 
21. If 0z auxr θ θ≥ → = , otherwise auxθ θ= − . Finished 

22. If ( ) 0y z auxr h θ θ⋅ ≥ → = , otherwise auxθ θ= −  

Table 2 – Correct traditional scheme (AL2). 

While the algorithm in Table 2 (AL2 henceforth) addresses many issues from the original 
formulation, it is clearly more convoluted. This increases the likelihood of coding errors, 
and can negatively impact performance. It also requires setting an appropriate value for 

thre , which shall be discussed in section 4.1. 

To close this section, we call to the attention of the reader that step 8 of AL1 and AL2 
can trigger an exception —overflow, infinity or not a number (NaN), depending on the 
specifics of the computer and compiler— for parabolic orbits. A parabolic orbit, by 
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definition, has infinite semimajor axis, so this is more a limitation of the COE themselves 
than a software issue. For most applications this edge case does not require special 
attention. For example, in double precision floating-point arithmetic it happens if 

3081.8 10a ≥ ⋅  [26]. Note that, because the semimajor axis is not used in subsequent 
steps, the exception will not stop the calculation, and can be detected and treated a 
posteriori. For applications focusing on quasi-parabolic orbits, an alternative is to 
compute 1a−  instead, which is finite. This edge case falls outside the scope of the work, 
and will not receive further consideration. We also note that the classical algorithm is 
applicable to hyperbolic orbits ( 1e > ), where it returns a negative semimajor axis, as per 
standard conventions. 

3. A branchless general code path 
It is possible to overcome the aforementioned shortcomings by using the protections 
built inside the ATAN2 function available in compilers. It is also a native instruction in 
many processor architectures4 [27]. A call to ATAN2(y,x) returns the argument of the 
complex number x iy+  in the [ , ]π π−  range. Crucially, even if both arguments are null, 
it returns well-defined values ( 0  or π , depending on the signs of the operands5). This 
instruction can compute Ω  and the direction of the eccentricity vector to the best 
accuracy offered by the hardware, free from exceptions and without having to set 
arbitrary tolerances. With a reliable value of Ω , the n̂  vector can be uniquely 

determined. Then, a reference triad for the orbital plane { }ˆ ˆˆ , ,n b h  is defined. In this 

frame, ω  and θ  can be determined reliably with ATAN2 calls, irrespective of the 
eccentricity and inclination. 

Interestingly, use of the arctangent (and even ATAN2 calls) for transforming SV to COE 
is mentioned as early as 1992 [28]. However, the driving factor is completely different. 
The author used an old programming language, where the only inverse trigonometric 
function available was the arctangent. In fact, he explicitly states that additional code is 
required to treat circular and equatorial orbits. 

As shown below, the improved algorithm (AL3 hereafter) results in a single code path 
for all types of orbits: 

1. = ×h r v  

2. ( )2 2ATAN2 ,x y zi h h h= +  

3. ( )ATAN2 ,x yh hΩ = −  

4. ˆ ˆˆ cos sin= Ω + Ωn i j  

5. Compute ˆ ˆ ˆ= ×b h n  such that { }ˆ ˆˆ , ,n b h  is right-handed triad 

 
4 For example, in x86 and IA64 its known as Partial Arctangent and its opcode is FPATAN. 
5 In standard floating-point arithmetic, zeros are signed. 
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6. 
1

2a
r µ

−
 ⋅

= − 
 

v v  

7. ˆ
µ
×

= −
v he r  

8. e = ⋅e e  

9. ( )ˆ ˆATAN2 ,ω = ⋅ ⋅e b e n  

10. ( )ˆ ˆATAN2 ,θ ω= ⋅ ⋅ −r b r n  

Table 3 - Branchless scheme (AL3). 
Clearly, the branchless algorithm is easier to follow and requires fewer steps. This 
simplicity is a considerable advantage by itself, as it reduces the likelihood of coding 
errors and improves maintainability. In addition to eliminating branches, the use of 
ATAN2 removes the need to check the magnitude of the arccosine argument, and 
determining the sign of the angle afterwards. Of course, it can be argued that some of 
the tests have not disappeared, they are simply hidden inside the ATAN2 call. However, 
if the function is supported by the CPU, these steps are accomplished at the hardware 
level, which is usually more efficient than a software implementation.  

Step 3 deals cleanly with vanishing inclination orbits. It computes Ω  as the argument of 
the vector ˆ ×k h  (which is orthogonal to the projection of h  over the XY plane). This 
way, the longitude of the ascending node is determined to the best accuracy the 
computer is capable of. In case the projection of the angular momentum vanishes 
completely (i.e., the orbit is equatorial), Ω  is set to either 0  or π . The two values are 
equally acceptable, because step 3 ensures that Ω  and the direction n̂  are always 
consistent6. Because n̂  is well-defined, the calculation of the remaining vector of the 
orbital plane reference triad ( b̂ ) is straightforward. 

The case of near-circular orbits is treated seamlessly by step 9. Because the eccentricity 
vector is never normalized, there is no risk of exceptions. Again, the argument of the 
pericenter is calculated to the best accuracy attainable by the computer, and any 
spurious component of e  along ĥ  (which can appear due to rounding errors) is 
automatically cancelled out during the calculations. If the eccentricity vanishes 
completely, the argument of the pericenter will be set to  0  or π , but the choice is 
irrelevant because ω θ+  yields the correct value of the argument of latitude. Step 10 
ensures that the true anomaly remains consistent with ω  (i.e., the original state vector 
can always be recovered from the computed orbital elements, to the accuracy allowed 
by the approximate arithmetic, irrespective of the type of orbit). 

The attentive reader has surely noticed another subtle difference in AL3. In step 2, the 
inclination is computed using the ATAN2 function, instead of the arccosine. Replacing 

 

6 Note that, for a zero-inclination orbit, the sum ωΩ+  gives the correct longitude of the pericenter. 
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the arccosine with the arctangent improves the accuracy when operating in finite 
precision arithmetic. For small values of the inclination, we can approximate 

 
2

cos 1
2
ii − . (3.1) 

In floating-point arithmetic, there exists 0ε >  such that7 

 If 1 1ˆx xε< → + = , (3.2) 

where we used a hat over the equal sign to indicate the result of approximate arithmetic 
[29]. For double precision 1610ε −

  [26]. Combining equations (3.1) and (3.2): 

 ( )
2

ˆ ˆIf cos 1 1 arccos 0ˆ ˆ
2
ii iε≤ → − = → ⋅ =h k . (3.3) 

As the inclination of the orbit approaches ε , AL2 yields vanishing inclination, 
introducing additional errors. Interestingly, while this phenomenon is undesirable from 
the accuracy standpoint, it has a convenient side effect. Because the computed value of 
the inclination vanishes well before the angular momentum becomes truly parallel to 
the z  direction, it is possible to apply directly the condition 0i >  (i.e., without setting a 
finite tolerance) to select the code path for equatorial/inclined orbits. 

The ATAN2 instruction solves the accuracy issue because, for small inclinations, 

 tan i i . (3.4) 

There is no constant term summed to the inclination in Eq. (3.4). Therefore, the 
arctangent function computes a good numerical approximation of the inclination, no 
matter how small it is. This same advantage applies whenever the arccosine function is 
used to compute an angle close to 0 or π , so it also applies to the determination of Ω , 
ω  and θ . To keep the presentation concise, this paper focuses on the inclination, but 
the discussion also applies to the other angles.  

It must be mentioned that AL3 is not truly general, as it will not work for zero orbital 
angular momentum. However, this case is of minimal relevance in practical applications 
(the trajectory is a straight line passing through the primary) and can usually be ignored. 

4. Comparative accuracy of AL2 and AL3 
The accuracy of the two implementations was tested building families of orbits with 
decreasing values of eccentricity, inclination, or both. Each orbit is sampled at 100 
equally-spaced values of the true anomaly (starting at the pericenter). The error due to 
the transformation between state vector and orbital elements is estimated as follows: 

 
7 Rigorously speaking, there are two alternative definitions of ε . The first one is given by Eq. (3.2). The 
second one is the relative rounding error of floating-point arithmetic operations, which is half as large. 
For the sake of simplicity, we shall use both of them interchangeably, because it does not affect the 
substance of the discussion.  
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1. From the reference orbital elements ref
iο  at the i-th sampling point, compute the 

corresponding reference state vector ( )ref ref
i i=x x ο . 

2. Apply the transformation to determine the approximate orbital elements 

( )ref
i i=ο ο x . Then, invert the transformation to recover an approximation of the 

reference state vector ( )ref
i i=x x ο . 

3. The absolute error at the i-th point is ref ref
i i iiδ = −x x . 

For each orbit, the maximum error across all the sampling points and the RMS error are 
recorded: 

 { }

100
2

max 1
1 100max , , ;

100

i
RMS

δ
δ δ δ δ= =

∑
 . (4.1) 

This error measure includes a contribution from the transformation from orbital 
elements to state vector. However, given that this part is the same for both AL2 and AL3, 
it yields valid comparisons. Note that it is not appropriate to evaluate the error 
comparing by ref

iο  directly against iο  because, near the singularities of the 

transformation, vastly different combinations of { }, ,ω θΩ  correspond to almost 

identical state vectors. Instead, (4.1) measures how well the original state vector can be 
recovered from the approximate orbital elements. This is more relevant from a physical 
standpoint. 

For the sake of simplicity, dimensionless variables have been used. In this system the 
gravitational parameter is 1µ = , and a circular orbit of unitary radius has an orbital 
velocity of one. The fixed values 1, 1 rada ω= Ω = =  have been used to focus on the 
effects of e and i. Because the eccentricity is kept small in all tests (maximum 0.01) the 
distance to the primary and the velocity are always close to unity. Thus, the absolute 
and relative errors have the same order of magnitude and it is not necessary to examine 
them separately. The absolute error is used for the comparisons. All calculations use 
double precision floating-point arithmetic (i.e., 1610ε −

 ).  

4.1 Quasi-circular orbits with nonzero inclination 
The inclination is fixed at 4π , and the eccentricity is progressively reduced from 10-2 to 
10-16. The test compares the traditional scheme (AL2) against the branchless algorithm 
(AL3). For this initial run 0thre = , as in AL1. The results are shown in Fig. 1.  
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Fig. 1 – AL2 vs. AL3 error. Inclined quasi-circular orbits. ethr=0. 

As anticipated in section 2, the standard algorithm fails catastrophically for small 
eccentricities (below 10-8). The issue arises because, for quasi-circular orbits, the 
calculation of the eccentricity involves the difference of two very similar vectors. It is a 
well-known fact in finite precision arithmetic that subtracting two close numbers is an 
ill-conditioned operation. The relative error of the result can be much larger than the 
uncertainties of the operands, a phenomenon known as catastrophic cancellation [30]. 
It is easier to understand the source of the problem if, instead of the eccentricity vector, 
we focus on its magnitude. The eccentricity can be recast as 

 
2

221 he v
r
µ

µ
 = − − 
 

. (4.2) 

With floating-point arithmetic, the evaluation of the radicand will be subject to a 
rounding error of order ( )O ε  at least8. Therefore, the computed (approximate) 

eccentricity is 

 ( )2e e O ε= + . (4.3) 

It is clear that whenever e ε<  the rounding error term dominates the calculation and 
e  becomes unreliable. This agrees perfectly with the behavior observed in Fig. 1, where 
AL2 becomes unusable for 810e ε−< ≈ . The reason for the unacceptable increase in 
δ  is not the uncertainty of e itself (the orbit is so close to circular that it does not change 
the result much), but the loss of accuracy of ê  (the direction of the pericenter). This 

 
8 Note that the radicand is the difference of two operands, the first one having the fixed value 1. Therefore, 
for small eccentricities, the second approaches unity. The intrinsic rounding error of the floating-point 
approximation of a value close to 1 is ε . Therefore, the expected uncertainty of the radicand calculation 
is, at a minimum, ε .  
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contaminates the calculation of ω  and θ , to the point that they correspond to a 
completely erroneous position along the orbit. AL3 is impervious to this issue because, 
by design, it ensures that the sum ω θ+  is the angle between the orbiter and the 
ascending node, even if 1e << .  

AL2 can be fixed by treating the orbit as circular whenever the eccentricity is sufficiently 
small. From the discussion above, a reasonable threshold is 710 10thre ε −= ≈ . A safety 

factor 10 has been included in thre  to ensure that catastrophic failure never occurs. 

 

Fig. 2 – AL2 vs. AL3 error. Inclined quasi-circular orbits. ethr=10-7. 

Adding the eccentricity tolerance makes the accuracy of AL2 and AL3 comparable (see 
Fig. 2). Note that, superimposed to the general trend, there are strong fluctuations of 
the error (by as much as 5 orders of magnitude). This is typical of rounding uncertainties, 
because they can cancel out or add up unpredictably. It is remarkable that the error of 
the branchless scheme is equal to AL2 in the worst case, but never higher. From this 
point on, all test involving AL2 use 10thre ε= .  

4.2 Elliptical orbits with small inclination 
In this case the eccentricity is fixed at 0.01 and the inclination varied from 10-2 to 10-16 
rad. 
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Fig. 3 - AL2 vs. AL3 error. Small-inclination elliptical orbits. ethr=10-7. 

The vast superiority of the improved algorithm is evident in Fig. 3. The reason is the 
limitations of the arccosine function, illustrated in Eq. (3.3). 

4.1 Orbits with vanishing eccentricity and inclination 
Finally, we set eccentricity and inclination to the same value, which we ramp down from 
10-2 to 10-16. The behavior of both schemes is very similar (see Fig. 4). Note that, once 
again, AL2 is never superior to AL3 in terms of accuracy  

  

Fig. 4 - AL2 vs. AL3 error. Small eccentricity and inclination (e=i/rad). ethr=10-7. 

5. A hybrid algorithm with reasonable performance and accuracy 
The scheme AL3 is very accurate, robust and extremely simple to implement in 
comparison with AL2. However, the fact that it relies on calls to ATAN2 can be an issue 
in processors architectures with limited Floating-Point Unit (FPU) capabilities. This is 
often the case in microcontrollers and embedded systems. Those processors may not 
even support the instruction natively. Instead, the compiler (or the programmer) must 
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emulate it via software. Unfortunately, a suboptimal implementation can cause a 
performance hit. To address situations where ATAN2 is not available, is slow or does not 
behave as expected (i.e., does not properly handle null arguments), an alternative 
scheme that relies only on calls to the arccosine function (like AL2) is presented.  It also 
removes the two transcendental function evaluations9 (sine and cosine) that AL3 uses 
to compute n̂  (step 4 in Table 3), which are expensive in systems with weak FPUs. 

There are two key insights for improving the performance of AL2 and retain some of the 
accuracy benefits of AL3, all the while avoiding calls to ATAN2. The first one is that the 
loss of accuracy of AL2 when the inclination decreases is due to the presence of the 
arccosine function (see section 3), which has zero slope at the origin. The second one is 
that, as shown in section 4.1, the calculated value of the eccentricity effectively turns 
into numerical noise well before the orbit becomes circular (i.e., for e ε<  it effectively 
becomes irrelevant if the orbit is circular or not). Thus, it is not necessary to preserve 
accuracy as e approaches zero. It is sufficient to guarantee that the result is reasonable. 

It would be possible to remove ATAN2 from the computation of inclination and retain 
the full accuracy for small i by using the arcsine. Thus: 

 

2 2

arcsin    for small inclination

arccos            otherwise              

x y

z

h h
h

i
h
h

  +
  
  

 = 
  
  

 

. (5.1) 

Note that it is not appropriate to always use the arcsine, as its accuracy degrades for 
polar orbits. This introduces one branch in the code, but brings several advantages to 
the table, as we shall see. The condition “small inclination” in Eq. (5.1) must be defined 
precisely and in a robust way (i.e., not linked to any particular case). We shall establish 
the threshold for small inclinations at the point where the accuracies of the two 
branches of (5.1) become comparable, with a twist to increase performance. 

We can estimate the accuracy of the cosine branch assuming the evaluation of the term 
/zh h  is subject to an absolute error ε  (small inclination is assumed, so / 1zh h ≈ ) 

 coszh i
h

ε= +


. (5.2) 

Using the series expansion of the cosine it is possible to estimate the computed value of 
inclination ( i ) 

 
9 For processors with capable FPUs, this performance penalty is not as large as it seems. IA64 and x86 
processors support the FSINCOS instruction [27]. It computes simultaneously the sine and cosine of the 
argument at a lower cost than two separate evaluations. 
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 ( )
2

4cos 1
2
ii O iε+ = − +


 . (5.3) 

Expanding the left hand side (LHS) 

 ( )
2 2

4

2 2
i i O iε− + = − +



, (5.4) 

where i i≈   is assumed to lump all the high-order terms together. Retaining only 
second-order terms gives an estimate of the absolute error of the inclination computed 
with the cosine ( cosδ ): 

 ( )2 2 cos cos2 2i i i i i i i
i
εε δ δ= − = + − ≈ →  

 . (5.5) 

To estimate the error of the sine formula, we start with the series expansion 

 ( )
2 2 3

5sin
6

x yh h ii i O i
h
+

= = − + . (5.6) 

To maximize performance, assume only the first term of the series is retained. In this 
case, computing inclination is trivial. The error of this simple approximation is 

 
3

sin

6
iδ  . (5.7) 

The crossover point ( croi ) is the inclination which makes (5.5) and (5.7) comparable: 

 
3

4 6
6
cro

cro
cro

i i
i
ε ε→  . (5.8) 

For double precision arithmetic, 410croi −
 . This is ideal, because it matches the point 

where the cosine approximation accuracy starts to degrade rapidly (see Fig. 3). At the 
cost of a branch in the scheme, the ATAN2 call for the inclination has been replaced by 
an arccosine (for inclined orbits) or, even better, the identity function (for small i). 
Moreover, it is possible to recast the calculation of n̂  in a way that avoids additional 
calls to trigonometric functions: 

 

ˆ ˆ    if 

ˆ
ˆ ˆ   otherwise

y x
thr

xy xy

y x

xy xy

h h i i
h h

h h
h h

−
+ >

= 
− +



i j

n
i j

, (5.9) 

where 2 2
xy x yh h h= +  and the overline denotes “safe” values. These are computed as 

 ( )( ) 2 2max ,sign , ;y y y xy y xh h h h h h hε= = + , (5.10) 
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 where the sign transfer function has been used: 

 ( )
  if  0

sign ,
  otherwise

a b
a b

a
 ≥= −

. (5.11) 

The effect of the safe values is to make n̂  parallel to the î  direction when i ε<<  (it acts 
as a safeguard against division by zero). Note that 

 sinxyh h i= . (5.12) 

Therefore, the safe values (5.10) are extremely close to the original (non-overlined) 
variables unless the inclination is very small. They have a negligible impact on the 
accuracy because, by the time the correction becomes important, the orbit is almost 
equatorial and the errors are dominated by the XY components of position and velocity. 
Under these conditions, the exact location of the ascending node is not crucial. Those 
readers concerned with extreme accuracy can replace ε  in Eq. (5.10) with a smaller 
value, but the effect is very limited in practice. 

Moving to the efficient determination of { }, ,ω θΩ , having established a branch for 

inclined/equatorial orbits makes it possible to completely eliminate the calls to ATAN2. 

Start by computing: 

 ( )( )ˆ ˆsign arccos ,x yn nΩ = , (5.13) 

 
ˆ

arccosaux e
ω

ε
⋅ =  + 

e n , (5.14) 

 ( )( ) ( )ˆ ˆmax min ,1 , 1 arccosauxξ θ ξ= ⋅ − → =r n . (5.15) 

The ε  term in the denominator of Eq. (5.14) ensures that no exception occurs for very 
low eccentricity orbits ( 0ω →  for quasi-circular orbits). Furthermore, it removes the 
need to check that the argument of the arccosine is below one. In practice, the extra 
term entails no loss of accuracy because, as discussed in section 4.1, the computation of 
eccentricity is subject to larger uncertainties due to its expression being numerically ill-
conditioned. 

For inclined orbits ( )thri i> , the signs of ω  and θ  are obtained from the vertical 

components of the eccentricity and position vectors: 

 ( )sign ,aux zeω ω= , (5.16) 

 ( )sign ,aux zrθ θ ω= − . (5.17) 

For small inclinations ( )thri i< , an auxiliary vector b  determines the signs: 

 ( ) ( )ˆ ˆˆ ˆ ˆ ˆz z y xh h n n= × = − +b k n i j , (5.18) 
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 ( )sign ,auxω ω= ⋅e b , (5.19) 

 ( )sign ,auxθ θ ω= ⋅ −r b . (5.20) 

The vector b  in Eq. (5.18) is contained in the XY plane. This simplifies the evaluation of 
the expressions where it appears, enhancing performance. It is orthogonal to n̂ , with its 
direction determined by the sign of zh . This ensures that the algorithm works also for 
retrograde orbits. 

Note that, for the sake of clarity, the expressions above used thri i>  to identify inclined 
orbits, but the correct implementation is 

 cosz
cro

h i
h

< , (5.21) 

which addresses both prograde and retrograde trajectories. 

To summarize, the steps of the enhanced algorithm (AL4 henceforth) are: 

1. = ×h r v  

2. 
1

2a
r µ

−
 ⋅

= − 
 

v v  

3. ˆ
µ
×

= −
v he r  

4. e = ⋅e e  

5. Let 2 2,z
xy x y

h h h h
h

ξ = = +  

6. If cos croiξ <  continue with step 7, otherwise skip to step 10 

7. arccosi ξ=  

8. ˆ ˆˆ y x

xy xy

h h
h h
−

= +n i j  

9. Let zs eω =  and zs rθ = . Skip to step 14 

10. xy
aux

h
i

h
= . If 0z auxh i i≥ → = , otherwise auxi iπ= −  

11. Compute safe values ( )( )max ,sign ,y y yh h h hε=  and 2 2
xy y xh h h= +  

12. ( )ˆ ˆ ˆ ˆˆ ˆ ˆ,y x
z y x

xy xy

h h h n n
h h
−

= + = − +n i j b i j  

13. Let sω = ⋅e b  and sθ = ⋅r b  

14. ( )( )ˆ ˆsign arccos ,x yn nΩ =  

15. ( )ˆ
arccos sign ,aux aux s

e ωω ω ω
ε
⋅ = → = + 

e n  
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16. ( )( ) ( ) ( )ˆ ˆmax min ,1 , 1 arccos sign ,aux aux sθξ θ ξ θ θ ω= ⋅ − → = → = −r n  

Table 4 – Hybrid efficient scheme (AL4). 
5.1 Accuracy of AL4 vs. AL3 
The only noticeable difference between AL3 and AL4 is in the elliptical small inclination 
test (Fig. 1). Because the other two benchmarks yield indistinguishable results, they will 
not be presented to save space. 

 

Fig. 5 – AL3 vs. AL4 error. Small-inclination elliptical orbits. 

There is a moderate degradation of accuracy (up to one order of magnitude) in the 
neighborhood of croi , when the cosine approximation starts to lose precision and the 
degree-3 term of the sine series expansion is still relevant. The difference is subtle and 
can be ignored in most applications. If maximum accuracy is sought, AL4 can be 
improved by retaining one more term in the expansion of the sine. Starting from 

 
3 5

sin
3! 5!
i ii i= − + + , (5.22) 

and dropping terms of order 5 and higher: 

 
3

6
xyh ii
h

= − . (5.23) 

While there is an analytical solution for Eq. (5.23), its expression is computationally 
costly. It is more efficient to use a single Newton-Rapson iteration to compute the 
approximate inclination. 

Let 

 ( ) ( )
3 2

1
6 2

xyhi if i i f i
h

′= − − → = − . (5.24) 
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The iterative scheme is 

 ( )
( )

0

3 3
0 0 0

1 0 0 0 22
0 00 6 3

6 1
2

xyh
i

h
f i i ii i i i
f i ii

=

−
= − = − = +

′ − 
− 

 

. (5.25) 

The resulting algorithm (denoted AL5 hereafter) only requires a minor change in step 10 
(see Table 5). 

10. 
3

26 3
xy

aux

h
i

h
ξξ ξ
ξ

= → = +
−

. If 0z auxh i i≥ → = , otherwise auxi iπ= −  

Table 5 - Improved calculation of i for small-inclination orbits (AL5). 

The crossover inclination for AL5 is determined using as error estimate for the sine 
approximation the degree-5 term of the series (5.22) 

 
5

6 120
5!
cro

cro
cro

i i
i
ε ε→  , (5.26) 

which yields 35 10croi −⋅  for double precision. The accuracy of AL5 in the inclination test 
is virtually identical to AL3, so the graph is not included for the sake of brevity. 

6. Additional benchmarks 
This section extends the comparison to orbits with a wide range of orbital elements 
chosen at random. The algorithms AL2 through AL5 (AL1 is unusable in practice, so it is 
not included) were tested on two sets of one billion (109) combinations. The first set 
(termed “general” hereafter) uses uniformly distributed values within the following 
intervals: 

 [ ] [ ] { } [ ]3 310 ,10 , 0,0.9 , 0, , , , 0, 2a e i π ω θ π− ∈ ∈ ∈ Ω ∈  . (6.1) 

For the second set (“low e/i”), focusing on quasi-circular low-inclination orbits, the 
ranges of the orbital elements are: 

 { } [ ] { } [ ]3 310 ,10 , log , log 16, 2 , , , 0, 2a e i ω θ π− ∈ ∈ − − Ω ∈  . (6.2) 

Note that in (6.2) it is the logarithms of the eccentricity and inclination that are uniformly 
distributed. This ensures that all the orders of magnitude are represented equally in the 
sample. The gravitational parameter is 1 in all cases. 

6.1 Comparative accuracy tests 
This benchmark uses the relative error because the components of the state vector are 
no longer of order 1. For each individual in the sample, it is computed as 
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 i
i ref

i

δϕ =
x

, (6.3) 

where the absolute error iδ  is given by Eq. (4.1). Table 6 summarizes the results. 

Orbit type ϕ  AL2 AL3 AL4 AL5 

General RMS 3.55·10-11 7.14·10-14 2.13·10-12 2.13·10-12 
max 2.76·10-07 1.69·10-09 2.73·10-08 2.73·10-08 

Low e/i RMS 1.90·10-08 1.80·10-10 1.82·10-10 1.82·10-10 
max 2.98·10-07 2.10·10-08 2.28·10-08 2.28·10-08 

Table 6 – Relative accuracy comparison for random orbital elements. Sample size 109. 

For the general set, AL3 excels at accuracy. It performs over one order of magnitude 
better than AL4 and AL5, whose behavior is virtually identical. AL2 produces the largest 
error, an order of magnitude higher than AL3/4. In the context of the low e/i set AL3 
through AL5 perform very close to each other, with an average improvement of two 
orders of magnitude over AL2. In this case, however, the peak difference is smaller, at 
one order of magnitude approximately. We know from the tests in section 4.2 that the 
difference is larger for some specific conditions (see Fig. 3, where the accuracy of AL2 is 
up to 5 orders of magnitude worse). However, those are unlikely to appear in a random 
set.  

6.2 Comparative performance tests 
Finally, we assess the speed of the four algorithms in both the general and low e/i 
configurations. For the test, the sample sizes are reduced to 105 combinations of orbital 
elements, and the corresponding state vectors stored in memory. Then, the 
transformation to orbital elements is applied to each set 1000 times (i.e., a total of 108 
transformations for each algorithm and set). To obtain a reliable timing, the entire 
process is repeated 10 times, averaging the duration of each pass. The set of 105 states 
gives reasonable diversity while fitting easily inside the CPU cache. This improves the 
estimate of raw algorithm performance by avoiding memory access bottlenecks. 

The measurements were taken on an AMD Ryzen 9 7945HX laptop CPU using the Intel 
IFX Fortran compiler (version 2024.1) for Windows 64bit with the maximum 
optimization level (O3). The benchmark results are summarized in Table 7.  The run 
times for each combination of orbit type and algorithm are normalized with respect to 
AL2 in the general case.  

Orbit type AL2 AL3 AL4 AL5 
General 1.00 0.57 0.70 0.70 
Low e/i 0.76 0.74 0.74 0.72 

Table 7 - Relative time comparison for general and quasi-circular low-inclination orbits. 

Code performance is affected by many implementation details. Changing the hardware, 
operating system, compiler version or settings can have a noticeable impact on speed. 
Furthermore, the effect may be different for each algorithm. The results from Table 7 
should be taken as rough performance guidelines. It is always important to repeat this 
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test on the target system, and select the scheme that best serves the requirements of 
the application at hand. 

Keeping in mind the caveat of the previous paragraph, the performance of AL3 for 
general orbits is outstanding, requiring 43% less time than AL2. AL4 and AL5 deliver a 
30% reduction compared with the traditional scheme. 

For the low e/i set, all schemes achieve comparable speed. Interestingly, the 
performance of AL3 degrades substantially relative to the general case. This is probably 
due to the large variation in latency of the ATAN2 function between the best and worst-
case scenarios. As an example, for the processor used in the test (AMD Zen 4 family), 
the latency of FPATAN varies from 50 to 190 cycles [31]. It is likely that, when the 
protections against small values of the arguments are triggered, the latency of each 
ATAN2 call increases substantially. In any case, this is not a showstopper because, even 
in this situation, the speed is identical to AL4. While AL5 seems to fare slightly better10, 
the difference with respect to AL3/4 is close to the uncertainty of the time 
measurements (around 1%), so the advantage is marginal at best. Another noteworthy 
fact is that AL2 behaves much better than in the general case. This is due to the 
alternative paths for low eccentricity and inclination being computationally simpler 
(they just assign arbitrary fixed values to the ill-defined variables). This offsets the 
penalties due to the multiple branches, and brings the performance close to the other 
algorithms. 

6.3 Comparison summary 
The benchmarks in sections 4 and 6 evidence that, in systems with an efficient 
implementation of ATAN2, AL3 is the undisputed choice. It delivers the best 
performance, accuracy and ease of implementation. If AL3 is not feasible, AL5 should be 
chosen. It is as fast as AL4, equally simple to implement, and has a small accuracy 
advantage for low inclination orbits, as indicated in section 5.1. AL4 was a crucial 
stepping stone towards AL5 development, but it has no real use case. Regarding AL2, it 
loses even to AL4 in all categories.  

7. Conclusions 
This paper reviewed the standard approach to computing classical orbital elements from 
spacecraft state vector. Due to the singularities that affect the orbital elements in the 
case of circular and zero-inclination orbits, they must be addressed separately. The 
algorithm, if implemented in the way commonly presented in the literature (scheme 
AL1), suffers from accuracy and efficiency shortcomings. The accuracy can be improved 
to a certain extent by increasing the complexity of the implementation (AL2), at the cost 
of performance. An important contributor to the computational cost of AL2 is the 
presence of branches in the code, which is detrimental for the pipelined architectures 
of modern processors. 

 

10 The small speed advantage relative to AL4 in this test is likely due to croi  being larger for AL5. This allows 
it to take the code branch for small inclinations more frequently, avoiding an arccosine call. 
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The intrinsic safeguards of the ATAN2 instruction, available in many programming 
languages, enable a coding scheme free from branches (AL3). This approach also 
improves the accuracy of the transformation compared to AL2, with the errors reduced 
by as much as 5 orders of magnitude for some small inclination orbits. To address 
processor architectures with limited support for transcendental functions, a hybrid of 
the AL2 and AL3 schemes has been developed (AL5) that avoids ATAN2 calls while 
retaining a substantial part of the performance and accuracy improvements of AL3. 

A test on a large set of random orbits showed that AL3 is, on average, 2 orders of 
magnitude more accurate than AL2. The advantage of AL5 is smaller, but still substantial 
at one order of magnitude. Regarding computational performance, the cost of AL3 is up 
to 43% less than AL2 for a random mix of all types of orbits. The advantage of AL5 is 
lower, at 30%. When restricted to low-inclination quasi-circular orbits, the speed gains 
of AL3 and AL5 are very limited, but they retain a substantial accuracy advantage. 

The scheme AL3 yields important benefits in terms of simplicity (improving ease of 
programming and maintainability), accuracy and speed, with no obvious downsides. It 
is therefore an excellent alternative to the standard implementation (AL2). For those 
systems without good support for ATAN2, the scheme AL5 offers the same advantages, 
albeit to a smaller degree. 
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