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ABSTRACT
World models are progressively being employed across diverse
fields, extending from basic environment simulation to complex sce-
nario construction. However, existing models are mainly trained on
domain-specific states and actions, and confined to single-modality
state representations. In this paper, We introduce WorldGPT, a
generalist world model built upon Multimodal Large Language
Model (MLLM). WorldGPT acquires an understanding of world
dynamics through analyzing millions of videos across various do-
mains. To further enhance WorldGPT’s capability in specialized
scenarios and long-term tasks, we have integrated it with a novel
cognitive architecture that combines memory offloading, knowl-
edge retrieval, and context reflection. As for evaluation, we build
WorldNet, a multimodal state transition prediction benchmark
encompassing varied real-life scenarios. Conducting evaluations
on WorldNet directly demonstrates WorldGPT’s capability to ac-
curately model state transition patterns, affirming its effective-
ness in understanding and predicting the dynamics of complex
scenarios. We further explore WorldGPT’s emerging potential in
serving as a world simulator, helping multimodal agents general-
ize to unfamiliar domains through efficiently synthesising multi-
modal instruction instances which are proved to be as reliable as
authentic data for fine-tuning purposes. The project is available on
https://github.com/DCDmllm/WorldGPT.

1 INTRODUCTION
World models [12, 23] explicitly encapsulate the knowledge of the
environment through constructing an internal representation that
mirrors external realities. Incorporating with a reliable world model,
an agent can discern the laws governing its environment through
minimal direct interactions. In the realm of control tasks, which
often involve simple and repetitive environments such as virtual
simulations [13–15], robotic manipulations [46], and embodied
explorations [48], the utility of RNN-based world models has been
extensively investigated. These models aid agents in completing
tasks by ‘imagining’ potential consequences of proposed actions.
Given their success in these simplified settings, a critical question
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arises: can these world models also perform effectively in complex,
real-world situations?

Recent advancements in diffusion models [18, 34] have show-
cased impressive capabilities in generating high-resolution images
and videos. These developments have sparked efforts to construct
world models applicable to real-world scenarios, particularly in
autonomous driving [4, 19, 43]. However, they still fall short of a
generalized world model in several key aspects:

• Limited Scope and Modality Composition: Training is
confined to specific domains and primarily visual states,
overlooking the intricate real-world states that encompass
multiple modalities.

• PoorGeneralizationAbility: Inference is limited to known
scenarios; it cannot reason in unknown situations and strug-
gles with long-sequence problems.

• Insufficient Dataset Development: Investigation on how
to construct comprehensive, sustainable datasets of world
state transitions is still weak, hindering the training and
evaluation of world models.

In this paper, we proposeWorldGPT, a versatile world model
capable of freely predicting state transitions across modalities, from
any given modality combination to any required modality combi-
nation. WorldGPT consists of three components: multimodal en-
coders that process states from different modalities into unified
representations, a Large Language Model (LLM) which predict state
transitions in abstract feature space and multimodal decoders that
generate the state content in modality space. WorldGPT is trained
to harness its inherent textual knowledge and integrate multimodal
knowledge through watching millions of internet-sourced videos.
To ensure that WorldGPT can understand fine-grained actions and
accurately capture the state changes, all videos are preprocessed
by the dense video caption model [49] to generate detailed action
descriptions with specific time intervals. Then we apply a novel
progressive state transition training methodology, where the
train target is evolved from single modality to multiple modalities,
and unimodality to cross-modality. This training approach guaran-
tees the model’s effectiveness in complex situations such as missing
modalities and combined modalities.
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Table 1: A taxonomy of related work on world model.

World Model Methods Modality Training Out-of-Domain Continous Output
Resource Prediciton Prediciton Space

RNN-based Dreamer[13], DayDreamer[46] Vision Simulator × ✓ – Embedding
Diffusion-based DriveDreamer[43], UniSim[50] Vision Labelled Video × × Pixel

Autoregressive-based GAIA[19], Genie[6] Vision Labelled Video × ✓ – Both
WorldGPT Vision, Audio Unlabelled Video ✓ ✓ Both

Following the extensive pre-training process,WorldGPT emerges
as a holistic world model. However, we have observed that its per-
formance declines in unfamiliar scenarios and tends to forget past
information in continuous generation tasks. To mitigate this issue,
we drew on theories from cognitive science and design a cognitive
architecture [21, 22, 35, 39] for WorldGPT. This framework contains
three parts: a knowledge retrieval system which provides external
knowledge for special scenarios, an working memory mechanism
which manages the history predictions, and a novel ContextRe-
flector which efficiently extracts grounded infomation from the
retrieved context (i.e., external knowledge and memory). To enable
WorldGPT cooperate with the cognitive architecture, we construct
high-quality sequential samples and retrieval-augmented samples
to teach WorldGPT to utilize information from retrieved context
through the cognitive-augmented tuning process. Coupled with
the advanced cognitive architecture, WorldGPT’s capabilities are
further enhanced, allowing it to generalize effortlessly across all
tasks.

To foster research in constructing realistic world models, we
further present WorldNet, a comprehensive dataset for multi-
modal world state transition. WorldNet comprises two subsets:
WorldNet-Wild, constructed through low-cost methods and suitable
for pre-training, and WorldNet-Crafted, transformed from high-
quality datasets and suitable for thorough evaluation. Specifically,
WorldNet-Wild contains millions of samples derived from raw In-
ternet videos, covering a wide range of scenarios and tasks in realist
world, varied from outdoor activities like fishing to kitchen chores
like kneading the dough. All videos are labelled with machine-
generated actions, serving as an extensive training resource for
building world models. WorldNet-Crafted is transformed from ex-
isting dataset with human-labelled actions. Leveraging the origi-
nal annotations, we further construct tasks specialized for modal-
ity combination prediction, knowledge-enhanced prediction and
long-sequence prediction, thereby establishing a holistic evalua-
tion benchmark. We conduct a thorough evaluation of WorldGPT
based on WorldNet-Crafted. The results demonstrate WorldGPT’s
proficiency in modeling world dynamics.

With the capability to process any modality in any domain,
WorldGPT can serve as a universal world simulator. Unlike previous
generation models that only support simulating static scenes (e.g.,
Stable Diffusion [34]) or image transformations based on naive edit-
ing instructions (e.g., InstructPix2Pix [5]), WorldGPT is capable of
synthesizing dynamic scenes that change according to complex in-
teractions, offering more practical significance. Utilizing WorldGPT,
we explore a novel learning paradigm for multimodal agents (e.g.,
MLLMs [53, 59]), namely dream tuning, where agents acquire spe-
cialized knowledge from WorldGPT to enhance their performance
on specific tasks by fine-tuning on synthetic multimodal instruction
data. The generation process for this data is efficient: a powerful

LLM (e.g., GPT-4) generates the textual components of instructions
and drives WorldGPT to complete the multimodal part. We con-
ducted experiments with four widely-used MLLM agents across
three diverse tasks ((Visual Understanding, Embodied Planning, and
Audio-Video Question Answering). Results reveal that agents trained
on synthesized data exhibit competitive performance compared to
those trained on authentic data, strongly supporting the reliability
of WorldGPT as a world simulator.

Our contributions can be summarized as follows:
• Development ofWorldGPT: We proposeWorldGPT, a gen-
eralist world model trained on millions of videos through
a progressive state transition training process, which natu-
rally supports input and output across any combination of
modalities.

• Innovative Cognitive Architecture: We introduce a novel
cognitive architecture tailored for world models, encompass-
ing memory offloading, knowledge retrieval, and ContextRe-
flector.

• Construction of WorldNet: We present WorldNet, a com-
prehensive dataset for world state transitions, ideal for train-
ing and evaluating world models.

• Novel Learning Paradigm for Multimodal Agents: We
explore a new learning paradigmwherein multimodal agents
can efficiently acquire knowledge from WorldGPT through
dream tuning on synthesized data.

2 RELATEDWORK
World Models.World models have been well adopted in model-
based reinforce learning [12–15]. Through predicting future states
of the environment based on current and past observations, world
models enable agents learn complex behaviors with fewer inter-
actions with the actual environment. With the rapid development
of visual encoding and synthesis techniques, from Convolutional
Neural Network (CNN) to Diffusion Model (DM), world models’ ap-
plication have evolved from naive simulation environment to com-
plicated real-world scenarios. DriveDreamer and UniSim [43, 50]
implicitly learns the visual state transition pattern by learning con-
ditional video generation, where the model is trained to generate
future videos (i.e. future states) conditioned on past videos (i.e.
past states) and driving actions. GAIA-1, WorldDreamer and Genie
[6, 19, 44] considers world modelling as a state-action sequence
modeling problem, where they convert all inputs to tokens in an
unified space and employ transformer to do next token (i.e. state)
prediction in an auto-regressive manner. Table 1 summarizes the
similarities and differences of various world models. Models la-
belled with ✓ –in ‘Continuous Prediction’ column can receive history
information but may not use it properly without specialized train-
ing.
Multimodal Data Synthesis. While extensive studies focus on



generating textual instructions for a broad range of tasks [32, 45, 52],
the synthesis of multimodal instruction data is still confined to the
following applications: 1) Given real images, generate textual in-
structions with LLM [28, 30]. For instance, LLaVA [28] and Macaw-
LLM [30] pre-collect multimodal data from existing datasets and
then prompt ChatGPT [1] to generate textual instructions. 2) Given
collected captions, generate images with generation models [9, 37].

The synthesized image-caption pairs can then serve as reliable pre-
training resources. 3) Given real images, apply an image editing
model that takes specific types of instructions, such as color, style,
and object change [5, 25]. For example, VPG-C [25] synthesizes
counterfactual images using Blended Diffusion [2] given original
images and editing instructions.
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Figure 1: (Left) Progressively pretraining stage. (Right) Cognitive-augmented tuning stage.

3 WORLDGPT
WorldGPT is composed of three modules: multimodal encoders that
uniformly represent various modalities, a Large Language Model
(LLM) integrated with the cognitive architecture, and multimodal
decoders that project the LLM’s output into the desired modality
space. After developing this MLLM structure 3.1, WorldGPT can
naturally process multimodal states as well as utilize the inherent
textual knowledge within LLM. Next, we adopt a progressively pre-
training procedure 3.2 to learn any-to-any state transition patterns
from WorldNet-Wild.

3.1 MLLM as Foundation of World Model
Pretrained LLMs [1, 41, 42] contain extensive world knowledge
summarized by human, making itself generalist world models. How-
ever, its abilities are constrained to textual tasks. To enable LLM
processing multimodal information, we adopt the state-of-the-art
language-enteric multimodal encoder LanguageBind [58] as the
bridge between language and other modalities. The details are pre-
sented as follows.

For multimodal encoding, we first utilize LanguageBind to obtain
a unified representation for the multimodal state. Then, similar with
other MLLMs [16, 47], a linear projection layer will be applied to
convert features from multimodal embedding into LLM embedding.
To help LLM better utilize multimodal information, we introduce
special tokens to specify the multimodal inputs. For example, a state
represented by both video and audio will be transformed into the

following sequence "<VID> [video embedding] </VID> <AUD>
[audio embedding] </AUD>" before sending to LLM.

For multimodal decoding, inspired by recent work [55], we in-
clude special tokens into LLM’s vocabulary as multimodal signals.
When these special tokens have been decoded exhaustively, i.e.,
"[<IMG1><IMG2>...<IMGn>]", we decode the corresponding hid-
den states with a trainable transformer-based projection layer. In
this paper, we investigate two types of target output space: original
modality space and language-aligned feature space. For the first one,
the output of transformer-based projection layer will be trained to
aligned with corresponding conditional text representations of the
diffusion models. This allows states predicted in abstract spaces to
be accurately reconstructed in real-world modality spaces. Some-
times, we don’t need to reconstruct the features because they will
be re-encoded into the abstract space for the next input step, such
as for downstream multimodal agents. In this cases, the output
of transformer-based projection layer will map the signal back to
the unified multimodal encoding space (i.e. LanguageBind feature).
Since most multimodal agents take the multimodal inputs using
a similar language-aligned multimodal encoder (e.g., CLIP [33]),
an applicable way would be applying a lightweight projector (e.g.
linear layer) to connecting the output of WorldGPT to their input
encoding space which avoids the cumbersome process of decoding
to real-world process and encoded back again.



3.2 Progressively State Transition Training

Figure 2: Loss for three types
of tasks during progressively
state transition training.

Figure 3: Loss for three types
of tasks during naive state
transition training.

WorldGPT is designed to solve state transition tasks with arbitrary
modality as input and arbitrary modality as output. This requires a
more delicate training paradigm, as training with mixture modality
could cause unexpected loss escalation easily [29]. Therefore, we
propose a gentle pretraining method, inspired by previous studies
in Curriculum Learning [3]. Left part of Figure 1 briefly illustrates
the training process.

Specifically, we train WorldGPT in an easy-to-hard paradigm by
dividing the modality combinations into four types according to
the learning difficulty: single&unimodal, single&cross-modal, multi-
ple&unimodal, multiple&cross-modal and progressively introduc-
ing new combinations during training. As shown in Figure 2, by
conducting such gentle training strategy, the learning curve is con-
verged smoothly, and even the most challenging multimodal com-
bination problems can eventually be handled just like unimodal
ones after progressive training. We have also implemented the
naive state transition training, where models are trained to predict
multiple&cross-modal transition containing all combinations at first.
According to Figure 3, this results in a non-converging training
process which highlights the necessity of progressively training.

We pick Vicuna-7B-v0 [41, 56] as the base LLM. Since the pur-
pose of this stage is to build a generalist world model in this stage,
therefore we only include WorldNet-Wild. And the whole cognitive
architecture is not involved, only the LLM within WorldGPT is
efficiently trained with only a small subset of parameters tuned uti-
lizing LoRA [20] technique, which effectively decreases the number
of trainable parameters. For each modality besides language, we
choose LanguageBind which utilize a 24-layer, 1024-dimensional
vision transformer with a patch size of 14 to encode multimodal
states, and add 16 unique tokens into LLM’s output vocabulary as
modality signal. The whole training procedure is conducted on 8
× 80GB NVIDIA A100 GPUs, with a total batch size of 256. We
train for 16 epochs, with each epochs trained on 1M samples. In the
first 4 epochs, we only require single&unimodal predictions. More
difficult modality compositions are gradually introduced every 4
epochs, with all compositions involved in the last 4 epochs.

4 COGNITIVE ARCHITECTURE
After pretraining on WorldNet-Wild, WorldGPT is already a strong
world model since it has seen various scenes and actions from
millions of videos. However, in practical applications, there will
inevitably be specific tasks that were not included in the pretrain-
ing dataset, resulting in sub-optimal performance. Therefore, we

arm WorldGPT with the cognitive architecture 4.1, which enables
WorldGPT to utilize external knowledge as well as past predic-
tions through the ContextReflector. The ContextReflector is trained
through Cognitive-Augmented Tuning 4.2 on WorldNet-Crafted
with continuous prediction tasks and knowledge-augmented tasks.

4.1 Details of the Cognitive Architecture
Working memory mechanism will be activated when dealing
with long-sequence prediction task. As shown in left part of Fig-
ure 4, past states, actions as well as predictions will be managed
by the memory system. For future predictions, the memory sys-
tem is capable of responding with historical information across
any time horizon, including any content in any form (raw or re-
flected or other processed format), as long as it is requested by
WorldGPT. Through utilizing history, WorldGPT will be able to
generate temporal-consistent predictions more easily. For exam-
ple, to simulate a first-person cooking case where the subject of
the state constantly switches during the process, predicting next
states solely on current state may lead to some mistakes such as
displacement of objects. Utilizing historical infomation would help
to maintain the consistency.
Knowledge retrieval system manages external knowledge, such
as collections of state transitions, and supports retrieval actions
through dense retrieval. All states and actions within these collec-
tions are encoded by a unified encoder, enabling efficient retrieval.
When applied to a new domain, WorldGPT enhances its capabilities
by retrieving the most similar experiences from the pre-collected
knowledge base. For instance, consider a scenario where WorldGPT
is employed as a simulator of a chemical laboratory, an environment
replete with unique cases not encompassed in the training datasets,
such as chemical reactions. If similar cases can be supplied by the
knowledge retrieval system, WorldGPT could effectively predict
outcomes by "imitating" the retrieved samples.
ContextReflector serves as an information extractor. Given an
retrieved experience as context, the reflector will analyze the dy-
namics and derive the relevant knowledge based on the condition
(i.e., current state and action). Specifically, as illustrated in the right
part of Figure 4, the reflecting process is conducted in following
steps: (1) Project the condition to the same dimension of learnable
queries using a trainable linear layer. (2) Add the projected embed-
ding with each query, obtaining a new set of conditional queries.
(3) Send conditional queries and context embedding to the Query-
ing Transformer [24], where the conditional queries will extract
information from the context embedding by doing cross attention.
(4) The extracted information (i.e. context tokens) will attach to
the front of the inputs (i.e. current state and action) and send to
WorldGPT.We built ContextReflector upon Q-Former [24] and train
it from scratch. Considering ContextReflector is designed to extract
task-relevant information rather than generic information, we only
use 4 learnable queries which will produce 4 context tokens for
each context.

Leveraging the cognitive architecture, past prediction histories
as well as task-relevant knowledge can be automatically retrieved,
further reflected to assist WorldGPT’s prediction.
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4.2 Cognitive-Augmented Tuning
As illustrated in the right part of Figure 1, we construct uncertain
samples for knowledge-enhanced training and sequential samples
for memory-enhanced training. Considering data quality and a
more concentrated data distribution, all samples are derived from
WorldNet-Crafted. Specifically, to generate memory-augmented
samples, we first randomly determine the history length for each
state within long sequences, ranging from 2 to 5. Then, only his-
torical information of the specified length will be included in the
training samples. For the creation of knowledge-augmented sam-
ples, we randomly select 200 samples from each scenario within
the WorldNet-Crafted dataset to serve as the knowledge base, with
the remain of the data served for training. Throughout the training
process, each sample is augmented by retrieved knowledge from
the corresponding scenario knowledge base. Our goal is to train
WorldGPT to utilize the knowledge as well as memory through
the ContextReflector, therefore we keep the entire LLM (including
LoRA parameters) frozen and train ContextReflector only to extract
useful information. The training is conducted on 8 × 80GB NVIDIA
A100 GPUs, with a total batch size of 128. We totally train 2 epochs,
with each epoch trained on 1M samples.

5 WORLDNET
To foster research in building realist world models, we manually
collect state transition datasets from various source and construct
a comprehensive dataset named WorldNet. WorldNet consists
of two subsets: WorldNet-Wild and WorldNet-Crafted. WorldNet-
Wild encompasses millions of samples from a broad spectrum of
real-world scenarios and tasks, ensuring comprehensive coverage.
Conversely, WorldNet-Crafted focuses on high-quality data, featur-
ing specialized scenarios, extended sequence tasks, and meticulous
annotations. The data statics of WorldNet is listed in Table 2. Some
representative cases across six scenarios are plotted in Figure 5.

Table 2: Detailed statistics of WorldNet.

Videos Num. Modal Compositions

Num. Avg. Avg. Single Multi Multi
Modal Words. Cross Uni Cross

Wild 11M 2.61 7.15 ≈60M ≈40M ≈400M
Crafted 0.3M 1.78 5.67 ≈1.3M ≈0.9M ≈10M

5.1 Constructing WorldNet-Wild from
Unlabelled Videos

Existing video datasets with fine-grained action annotations are
relatively small in scale and constrained to specific domains. To
improveWorldGPT’s generalization ability, we turn up to utilize un-
labelled public videos sourced from internet, then leveraging dense
video captioning method (i.e. Vid2Seq [49]) to generate the time
intervals and specific event descriptions occurring in the video. The
derived samples will be further filtered with the criteria being rea-
sonable time length and reasonable action description complexity.
All activity descriptions will be rewritten by ChatGPT [1] to ensure
clean and correct in grammar. The whole procedure produces over
ten million state transition samples, with most represented by all
three modalities: video, audio and image (sampled from video). We
name this dataset WorldNet-Wild.

WorldNet-Crafted is collected from following datasets:
YT-Temporal-180M [54] originates from a diverse collection

of 6 million public YouTube videos, intentionally encompassing
a wide array of domains, datasets, and subjects to ensure broad
coverage and variety.

HowTo100M [31] is a substantial dataset comprised of narrated
videos, with a strong emphasis on instructional content. It features
content creators teaching complex tasks, specifically designed with
the explicit intention of elucidating the visual content displayed on
screen.



5.2 Constructing WorldNet-Crafted from
Various Sources.

Wemanually collect human-labelled action datasets covering a wide
range of domains, including cooking [57], egocentric activities [11],
etc. These datasets are generally focused on some specific scenarios,
together with detailed annotations of the action descriptions and
time interval. What’s more, some datasets are initially designed to
pay more attention on a specific modality, such as audio in AVQA
[51]. After aggregating all datasets, we briefly define six scenarios
based on their original annotations, namely cooking, domestic work,
entertainment, outdoor activity, sports and labor. Then we leverage
ChatGPT to classify the most appropriate scenario for each sample
within the collected datasets. We preserve the original temporal
context of the sequential samples by retaining their annotations.
This curated dataset is named as WorldNet-Crafted.

WorldNet-Crafted is collected from following datasets:
Ego4D [11] is a massive-scale egocentric video dataset and

benchmark suite. It offers 3,670 hours of daily-life activity video
spanning hundreds of scenarios (household, outdoor, workplace,
leisure, etc.) captured by 931 unique camera wearers from 74 world-
wide locations and 9 different countries.

Something-Something V2 [10] represents a vast compilation
of labeled video clips showcasing humans executing pre-determined
fundamental actions using everyday objects. Generated through the
efforts of a broad network of crowd workers, this dataset facilitates
the development of a detailed comprehension of basic actionswithin
the physical world for machine learning models.

YouCook2 [57] stands as one of themost extensive task-oriented,
instructional video datasets within the vision community. It com-
prises 2,000 lengthy, unedited videos across 89 cooking recipes,
with an average of 22 videos for each unique recipe. The procedural
steps within each video are meticulously annotated with temporal
boundaries and described using imperative English sentences.

AVQA [51] is an audio-visual question answering dataset com-
prising 57,015 videos that encapsulate daily audio-visual activi-
ties. Accompanying these videos, there are 57,335 uniquely crafted
question-answer pairs. These pairs are designed to hinge on cues
from both audio and visual modalities, where information from a
single modality would be inadequate or ambiguous.

Charades [38] features recordings from hundreds of individuals
in their own homes, engaging in routine daily activities. It consists
of 9,848 annotated videos, each with an average duration of 30
seconds, capturing the actions of 267 people across three conti-
nents. The annotation for each video includes multiple free-text
descriptions, action labels, temporal intervals for these actions, and
categories of objects interacted with.

6 APPLYINGWORLDGPT AS A MULTIMODAL
INSTRUCTION SYNTHESIZER

To enhance the ability of multimodal agents to follow instructions,
recent studies have developed various methods for synthesizing
multimodal instructions [5, 25, 28, 30]. However, given that existing
visual generators are only conditioned on descriptions (e.g., Stable
Diffusion [34]) or simple editing instructions (e.g., InstructPix2Pix
[5]), all these methods are limited to synthesizing instructions suit-
able for specific tasks, such as image classification or image editing.
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Figure 5: Representative cases selected from WorldNet.
WorldNet contains state transition samples across diverse
domains.

In this paper, we investigate WorldGPT as a universal world simula-
tor, capable of interacting with agents through a variety of actions.
The high degree of interactivity naturally expands the diversity of
instructions. For example, as shown in Figure 6, WorldGPT com-
bined with GPT-4 can generate complex, image-text interleaved
recipes. By fine-tuning downstream agents on these synthetic in-
structions (we call it dream tuning since the whole scenario comes
from WorldGPT’s imaginations), task-specific knowledge can ef-
ficiently transferred from WorldGPT to agents. The generation
pipeline consists of three steps: 1) textual instruction generation
6.1, 2) multimodal instruction completion 6.2, and 3) filtering and
post-processing 6.3.

6.1 Textual Instruction Generation
Given a small seed set of instructions, similar with Self-Instruct
[45], we first initialize the instruction pool with seed instructions.
Then for every step, we randomly pick 8 instructions from pool
as in-context examples. Unlike Self-Instruct, which restricts the
proportion of original and synthesized instructions in the context,
we do not impose this limitation hoping to enhance the diversity of
the synthesized dataset, considering that multimodal instructions
are inherently richer than pure text instructions. Then We use GPT-
4 [1] to generate novel instructions based on in-context examples.

6.2 Multimodal Instruction Completion
After obtaining the textual part of the instruction, we further utilize
WorldGPT to complete the multimodal part. The current version
of WorldGPT supports two types of input as condition: 1) textual
state description, similar with text to image/video/audio model
and 2) past state and current action. Therefore, before sending to
WorldGPT, we use GPT-4 for another time to identify the instruc-
tion pattern and extract states and actions from instructions. For
example, as shown in Figure 6, when it’s required to synthesis
recipes similar with samples from YouCook2, the first step of the
recipe will be considered as the description of the first state while
the rest of the steps will be treated as actions which trigger transi-
tion to new states. After extracting entities from textual instruction
as conditions, we use WorldGPT to generate the corresponding
content. For long-sequence prediction tasks, past prediction histo-
ries will be utilized through ContextReflector to maintain temporal
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Figure 6: The process of constructing a multimodal instruction pool.

consistency. Considering most multimodal agents take the multi-
modal inputs using a language-aligned multimodal encoder (e.g.,
CLIP [33]), the output of transformer-based projection layer will
map the signal back to WorldGPT’s unified multimodal encoding
space (i.e. LanguageBind feature). During dream tuning, it would be
highly efficient by using a lightweight projector (e.g. linear layer)
to connect the output of WorldGPT to agent’s input encoding space
which saves both rendering and encoding time.

6.3 Filtering and Post-processing
To ensure the diversity of the curated instruction pool, we preemp-
tively calculate the similarity between new instructions and existing
ones, aiming to filter out repetitive content. In early experiments,
we observed that instructions similar in text could have significant
differences in their multimodal components, thus maintaining good
diversity. Therefore, our criterion for determining the similarity
of instructions from a textual perspective is whether the ROUGE-
L overlap exceeds 0.8, which is relatively lenient compared with
[45]. In early experiments, we also tried using methods like CLIP
similarity to calculate the similarity of the multimodal components.
However, due to the high computational complexity and the lack of
significant improvement in the quality of the selected instructions,
we ultimately considered only the textual part of the instructions
during filtering.

7 EVALUATION
To comprehensively evaluate WorldGPT’s potential as a gener-
alist world model, we conducted the following two experiments:
1) State transition ability benchmarking 7.1 on WorldNet-Crafted,
which encompasses evaluations of cross-modal, modal combination,
long-sequence, and knowledge-enhanced capabilities. 2) Quality
assessment of synthesized instructions 7.2 by comparing the per-
formance of fine-tuned multimodal agents on three categories of
tasks: visual understanding, embodied planning, and audio-video
question answering.

7.1 Benchmarking State Transition on
WorldNet-Crafted

Experiment Setting. Before training, we pre-sample a subset from
the dataset to serve as the test set, ensuring that the test set never
appeared during the training phase, neither as samples nor as part
of the knowledge base. For each scenario within the six scenarios,
we collect 25 samples as the test dataset and re-select 50 samples

from the training dataset as the knowledge base. For the continuous
prediction task, we select a total of 200 sequential samples originally
collected from Ego-4D and YouCook2 . All sequences are uniformly
set to a length of 7. As for the evaluation metric, we use the cosine
similarity between the predicted results of each model and the real
data in the model’s encoding space.
Baseline. For WorldGPT, we consider itself (without cognitive
architecture) and its four variants:

• WorldGPT + CK, which stands for "in context knowledge,"
meaning the retrieved knowledge embedding will be directly
appended before the input state embedding.

• WorldGPT + RK, which stands for "reflected knowledge,"
meaning the retrieved knowledge embedding will be first
sent to ContextReflector, then appended.

• WorldGPT + CM, which stands for "in context memory,"
meaning the retrieved memory embedding will be directly
appended before the input state embedding.

• WorldGPT + RM, which stands for "reflected memory,"
meaning the retrieved memory embedding will be first sent
to ContextReflector, then appended.

For comparison, we select two multimodal models that also
support any-to-any generations:

• CoDi [40], a diffusion-based generative model capable of
generating any combination of output modalities, such as
text, image, video, or audio, from any combination of input
modalities.

• NExT-GPT [47], an end-to-end general-purpose any-to-any
multimodal Large Language Model. By connecting an LLM
with multimodal adaptors and different diffusion decoders,
NExT-GPT is capable of understanding inputs and generat-
ing outputs in any combination of language, images, videos,
and audio.

We hope to conduct similar evaluations on other advanced realist
world models, such as UniSim and WorldDreamer. Unfortunately,
before the submission deadline, none of these models were open-
sourced or replicable. We plan to extend this evaluation in the
future.
Evaluating Result of Different Modality Compositions. As
shown in Table 3, we evaluated eight modality combinations, com-
prising three basic unimodal prediction tasks, four cross-modal
prediction tasks, and one all-to-all prediction task. Based on the
results, we delineate three key insights:



Table 3: Evaluation results for different modality combination inputs and outputs, with the best values highlighted in bold.
Unimodal Crossmodal All

Input Modality image video audio image&audio video&audio image video image&video&audio
Output Modality image video audio video image video&audio image&audio image&video&audio

CoDi [40] 62.6 65.8 21.3 52.4 57.6 58.3/13.0 54.9/10.2 62.7/62.6/16.7
NexT-GPT [47] 57.1 62.4 26.5 41.5 53.6 49.1/22.5 56.9/28.4 53.5/59.6/28.1
WorldGPT 71.6 72.2 45.6 58.0 79.2 65.2/41.7 79.6/34.6 78.0/82.7/37.1

WolrdGPT+CK 72.4 72.0 44.3 58.3 79.1 65.6/41.2 76.1/33.4 75.7/74.1/34.1
WorldGPT+ RK 75.6 76.4 50.1 62.7 81.5 71.6/45.3 82.4/43.6 80.1/82.5/42.4

• WorldGPT consistently outperforms CoDi and NeXT-GPT by
a significant margin across all tasks, which underscores its
superior capability in modeling complex interactions within
the world.

• WorldGPT effectively handles multimodal tasks, showing
strong performance inmodal combination input, cross-modal
generation, and joint generation tasks.

• The prediction accuracy of WorldGPT for audio tasks is
significantly lower than that for video and audio tasks. This
may be due to the data collection being primarily visually
oriented, resulting in weaker causality in the audio modality.

Table 4: Evaluating performance on long sequence samples
using cosine similarity.

Sequence Length 1 3 5 7
WorldGPT 72.5 72.3 72.6 73.1

WorldGPT+CM 72.5 72.1 71.8 69.6
WorldGPT+RM 72.5 74.1 74.4 73.8

Ablation Study ofContextReflector. For the knowledge-augmented
prediction task, it is evident fromTable 3 thatWorldGPT+RK achieves
the highest scores in the majority (11 out of 12) of cases. Similar out-
comes are observed in Table 4, where WorldGPT+RM consistently
achieves the highest similarity scores in all cases. We attribute
this success to ContextReflector, which effectively extracts useful
knowledge from retrieved samples and temporal information from
previous history. However, we also note that the performance gain
may diminish when processing excessively long input sequences,
such as those combining three modalities with reflected embed-
dings, or for the 7th samples in sequential predicting. This suggests
a potential overload for WorldGPT’s processing capacity.

7.2 Evaluating WorldGPT as a World Simulator
Constructing Tasks based on WorldNet-Crafted. In order to
comprehensively evaluate the quality of the synthesized instruc-
tions, we manually design three tasks based on WorldNet-Crafted:

• Visual Understanding requires models to output the changes
between two visual states. All samples are selected from
Something-Something V2 [10] and Charades [38].

• Embodied Planning requires models to plan future actions
based on historical egocentric video records. All samples are
selected from Ego-4D [11] and YouCook2 [57]. Similar to
EgoPlan-Bench [8], we utilize ChatGPT [1] to process origi-
nal annotations to obtain goal-oriented action sequences.

• Audio-Video Question Answering requires the model to an-
swer questions based on information organized in both audio
and video. Here, we directly use the annotations from the
original AVQA [51] dataset.

Then, from the transformed set of task instructions, we selected
4,000 as the authentic training set, 400 as the test set, and an addi-
tional 200 as the seed instruction set, which will be used to synthe-
size 4,000 instructions with WorldGPT.
MLLM Agents. In this experiment, we employ four MLLM agents:
MiniGPT-4 [59], mPLUG-Owl [53], Video-LLaVA [26], and ImageBind-
LLM [16]. For the Visual Understanding task, we test MiniGPT-4
and mPLUG-Owl, both of which are commonly used baselines in
research. For the Embodied Planning task, we test Video-LLaVA and
mPLUG-Owl, both of which support processing and training on
video inputs. For the Audio-Video Question Answering task, we test
ImageBind-LLM, which encodes multiple modalities with a uniform
ImageBind encoder. During the training and inference phases, we
use the default configurations of these models.
Baseline Setting.We conduct experiments on following settings:

• Zero-shot: Direct evaluation using the original MLLM agents
without any fine-tuning.

• Real data: Using authentic data to fine-tune MLLM agents.
• WorldGPT: Using synthetic instructions from WorldGPT to
fine-tune MLLM agents.

• Diffusion Model: Using synthetic instructions from modality
expert diffusion model to fine-tune MLLM agents. For image
generation, we use Stable Diffusion [34] and InstructPix2Pix
[5]. For video generation, we use Zeroscope1and StableVideo
[7]. For audio generation, we use AudioLDM [27].

Evaluation details. We utilize ChatGPT to assess the correctness
of the models’ output. The design of the prompt is referenced from
[36]. Both the training and inference procedures are conducted on
a single NVIDIA A100 80G GPU.
Results Analysis. As shown in Table 5, agents trained on syn-
thetic instructions from WorldGPT perform as effectively as those
trained on authentic instructions, demonstrating the reliability of
WorldGPT as a universal world model. Furthermore, agents trained
on instructions generated bymodality expert diffusionmodels show
relatively small improvements over the original agents, indicating
that these models lack an understanding of the world’s dynamics.
Additionally, WorldGPT has an absolute advantage in terms of effi-
ciency, as illustrated in Table 6. For Audio-Video Question Answering
tasks, WorldGPT is 30 times faster than traditional diffusion-based
methods. We attribute this to the prediction of state transitions

1https://huggingface.co/cerspense/zeroscope_v2_576w

https://huggingface.co/cerspense/zeroscope_v2_576w


Table 5: Evaluation results of baseline models across three tasks. The
best result is in bold, and the second best is underlined. DM is short for
Diffusion Model.

Zero-shot Fine-tuned
Real Data WorldGPT DM

Visual Understanding
MiniGPT-4 [59] 15.0 36.3 34.8 23.8
mPLUG-Owl [53] 13.0 32.3 31.5 20.0
Embodied Planning
Video-LLaVA [26] 12.0 40.5 38.3 18.8
mPLUG-Owl [53] 15.8 37.8 38.8 21.5

AVQA
ImageBind-LLM [17] 18.0 47.5 48.5 21.0

Table 6: The detailed generation time for
WorldGPT andmodality expert to complete mul-
timodal instructions. DM is short for Diffusion
Model.

Time (minute) WorldGPT DM
Visual Understanding 50 134
Embodied Planning 47 2176

AVQA 80 2,449

in the feature space, which avoids the time-consuming rendering
process in the modality space. We plot some cases in Figure 7. The
compared generation model failed to understand actions, whereas
ours demonstrates powerful capabilities in learning world dynam-
ics.

Statei Statei+1 Actioni

A tornado moves forward 

and destroys the forest.

Instruct-Pix2PixWorldGPT

The plane landed on the 

ground.

Figure 7: Some representative state transition prediction
cases.

8 CONCLUSION
In conclusion, this paper introduces WorldGPT, a novel generalist
world model which can understand and predict state transition
across any combination of modalities. To improve WorldGPT’s ca-
pability in specialized domain as well as long sequence prediction,
we design a cognitive architecture which can automatically extract
relevant information from external knowledge and history predic-
tions. We construct a comprehensive multimodal transition dataset,
namelyWorldGPT, which can serve as both pretraining resources or
evaluation benchmark. We further explore WorldGPT as a univer-
sal world simulator, which can transfer internal knowledge about
the world dynamics to downstream agents through synthesizing
instruction data.
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