
Robust Resource Sharing in Network Slicing
via Hypothesis Testing

Panagiotis Nikolaidis and John Baras
Department of Electrical & Computer Engineering and the Institute for Systems Research

University of Maryland, College Park, MD 20742, USA
Email: {nikolaid, baras}@umd.edu

Abstract—In network slicing, the network operator needs to
satisfy the service level agreements of multiple slices at the
same time and on the same physical infrastructure. To do so
with reduced provisioned resources, the operator may consider
resource sharing mechanisms. However, each slice then becomes
susceptible to traffic surges in other slices which degrades
performance isolation. To maintain both high efficiency and high
isolation, we propose the introduction of hypothesis testing in
resource sharing. Our approach comprises two phases. In the
trial phase, the operator obtains a stochastic model for each slice
that describes its normal behavior, provisions resources and then
signs the service level agreements. In the regular phase, whenever
there is resource contention, hypothesis testing is conducted
to check which slices follow their normal behavior. Slices that
fail the test are excluded from resource sharing to protect the
well-behaved ones. We test our approach on a mobile traffic
dataset. Results show that our approach fortifies the service level
agreements against unexpected traffic patterns and achieves high
efficiency via resource sharing. Overall, our approach provides
an appealing tradeoff between efficiency and isolation.

Index Terms—network slicing, resource sharing, multiplexing,
overbooking, isolation, anomaly detection, LTE, 5G

I. INTRODUCTION

The need to support applications with diverse Quality of
Service (QoS) requirements introduces several challenges in
networking. A promising solution approach is to leverage net-
work virtualization and software-defined networking to deploy
multiple virtual networks on the same physical infrastructure.
Each virtual network is then tailored to a specific application.

For instance, a virtual network deployed for autonomous
driving applications may drop packets whose age is larger
than the sampling period at the vehicle to avoid congesting
the network with outdated information. In contrast, virtual
networks for file transfer may instead optimize throughput.
Also, virtual networks used by private companies may require
increased authentication functionality for security concerns.

The special case of customized virtual networks on the
cellular infrastructure has attracted a lot of attention given
that many applications require wireless connectivity. These
virtual networks are often referred to as Network Slices (NSs).
They span the Radio Access Network (RAN), the Transport
Network (TN) and the Core Network (CN) of the cellular
infrastructure. Typically, the customer requesting a NS and the
network operator sign a Service Level Agreement (SLA) that

.

specifies the desired QoS delivered to the customer’s traffic
and the price paid to the operator.

The fulfillment of multiple SLAs at the same time and on
the same physical infrastructure is a difficult problem that
operators need to solve. It is necessary that the operator
provisions enough network resources in advance so that the
network functions of each NS can deliver the promised QoS.
Based on the provisioned resources, the operator can then
compute the cost of the SLA and charge the customer.

Network functions that require provisioned resources span
the whole cellular infrastructure. For example, in the RAN, the
operator needs to provision Physical Resource Blocks (PRBs)
for the Medium Access Control (MAC) scheduler of each
NS. In the TN, routing paths need to be selected, and in the
CN, processing units need to be reserved to execute various
network functions such as the Access and Mobility Function
(AMF) and the User Plane Function (UPF) of 5G systems.

An efficient provisioning approach is to enable resource
sharing among NSs for statistical multiplexing gains. Resource
sharing allows the deployment of an increased number of
NSs on the same infrastructure which translates to lowered
costs for the customers. Unfortunately, sharing may degrade
the performance isolation of a NS. Indeed, unexpected traffic
surges in a NS may result in resource contention. As a result,
some NSs may not receive their fair share. This is highly
undesirable since customers request a NS for premium service
that should remain unaffected by the traffic in other NSs.

On the other hand, the operator may provision resources
exclusively for each NS which provides full isolation but at the
cost of low resource efficiency. Motivated by this tradeoff, we
propose the use of hypothesis testing to enhance performance
isolation in resource sharing. Our approach consists of two
phases, the trial phase and the regular phase.

In the trial phase, the traffic and the resources required by
each NS are collected over a long period of time. This data
is used as follows. First, a stochastic model is constructed for
each NS that describes its normal traffic patterns. Specifically,
a Markov Chain (MC) is used whose states describe the traffic
and the resource demand in the NS. Second, the required pro-
visioned resources are computed by estimating the percentiles
of the resource demands of the NSs. All these quantities are
computed based on Maximum Likelihood Estimation (MLE).

We note that the operator commits to fulfilling the SLA
under the condition that the NS follows its normal behavior.

ar
X

iv
:2

40
4.

18
25

4v
1

 [
cs

.N
I]

 2
8

A
pr

 2
02

4

This is a reasonable condition since the operator cannot
provide QoS guarantees without any knowledge regarding the
traffic of the NS. Indeed, the operator needs to know the
traffic that the NS normally generates to compute the required
provisioned resources and to charge the customer accordingly.

In the regular phase, the operator declines service to NSs
that deviate from their normal behavior in case of resource
contention. This is done to ensure that the well-behaved NSs
receive their fair share of resources. The operator checks if
such a deviation is present via hypothesis testing based on
the Neyman-Pearson framework. Next, the operator splits the
provisioned resources among the NSs that pass the test. Any
remaining resources are then split among the rest of the NSs.

We apply our approach in the RAN where resource sharing
is needed the most since the licensed spectrum is a scarce
and expensive resource. Specifically, we wish to reduce the
Physical Resource Blocks (PRBs) needed at the Base Station
(BS) to satisfy the QoS requirements of all NSs.

To test our approach, we use a dataset that contains real
traffic as observed in base stations of a cellular network.
The dataset is used to simulate the trial phase and derive
the aforementioned stochastic models. Then, in the regular
phase, we consider that some NSs follow traffic patterns
that deviate from the previous models. Next, we analyze the
effect of this excess traffic on the performance of the other
NSs. We compare our approach to two baselines; exclusive
bandwidth provisioning for each NS without resource sharing,
and resource sharing without hypothesis testing.

The results show that our approach enhances the robustness
of the SLAs to anomalous traffic patterns while maintaining
high efficiency via resource sharing. Overall, we provide evi-
dence that resource sharing augmented by hypothesis testing
strikes a good balance between efficiency and isolation.

Our paper is structured as follows. In Sec. II, we present
the related literature and compare it with our work. In Sec.
III, we present the considered system architecture. In Sec. IV,
we formulate the overall goal of the system architecture as
an optimization problem. In Sec. V, we propose our solution
approach. The simulation setup is described in Sec. VI and
the results in Sec. VII. Lastly, Sec. VIII concludes the paper.

II. RELATED LITERATURE

In [1], the authors studied the effect of overbooking
strategies on resource allocation and service violations. Two
schemes were investigated; perfect sharing and network slicing
which correspond to resource sharing and exclusive resource
reservation respectively. In perfect sharing, the BS sums the
resource demands of all NSs and provisions PH -percentile
resources. In network slicing, performance isolation is consid-
ered by allocating exclusive PL-percentile resources to each
NS. The remaining resources needed to achieve PH − PL

fraction of time acceptance for each NS are computed based
on past data. The authors provide insight regarding the tradeoff
between resource efficiency and performance isolation via ex-
perimentation. However, no mechanisms to enhance isolation
for the PH − PL fraction of time are proposed.

The aforementioned tradeoff is also investigated in [2]. The
authors consider PL

i -percentile resources assigned exclusively
to each NS i. For the rest fraction of time PH

i − PL
i ,

each NS i relies on resource sharing. The authors show that
the multiplexing strategy that requires the least provisioned
resources to satisfy the SLAs of all NSs is the Max-Weight
scheduler if the resource demands follow MCs. However, no
isolation mechanisms are provided in case of traffic anomalies.

A similar strategy is developed in [3]. The authors consider
a fixed amount of provisioned resources and reserve some of it
exclusively for each NS. The remaining resources are viewed
as auxiliary and are dynamically provided to the NSs. The
main focus of the paper is on developing overbooking strate-
gies for the auxiliary resources with probabilistic guarantees.
To do so, the authors assume that the operator has a model
that forecasts the traffic of the NSs in the short term future.
The NSs are then priced on a resource basis. Once again, this
approach is susceptible to unexpected traffic patterns.

In [4] and [5], a prediction model for the short-term demand
of a NS is developed. The predictions are used to dynamically
adapt the allocated resources for higher utilization. However,
bandwidth adaptation alone cannot ensure the fulfillment of
a SLA. Resources need to be provisioned so that the ones
requested by the prediction model are available on short notice
as often as the SLA requires.

The authors in [6] conduct a survey on resource allocation
schemes in network slicing. The schemes are coarsely divided
into reservation-based and share-based. The authors conclude
that the former provide higher isolation while the latter higher
efficiency. Moreover, the schemes are also compared based on
customizability, complexity, privacy and cost predictability.

A survey dedicated to the different interpretations of iso-
lation is presented in [7]. The authors discuss the concept of
isolation in terms of performance, security, and dependability
for various network functions in the RAN, TN, and CN. Here,
we are primarily concerned with performance isolation.

A research area that is closely related to our approach
is anomaly detection for which multiple methods have been
suggested over the years [8]–[12]. Here, we use a statistical
method since we consider hypothesis testing. We note that
anomaly detection has been used before in network slicing
[13]–[15]. However in these works, the motivation behind its
use is primarily security and data privacy. Here, we leverage
anomaly detection to enhance isolation in resource sharing.

Next, we note that similar issues regarding the fulfillment of
SLAs while maintaining high resource utilization also appear
in cloud computing. In [16], the authors relate the resource
allocation problem to a variation of an online knapsack prob-
lem. The authors then note that various other aspects need
to be included such as SLA violation costs and resource
migration delays that further complicate the problem. The
authors in [17] consider a neural network to predict user usage
and dynamically allocate resources for higher utilization, an
approach that is similar to [4].

Another related work in cloud computing is [18] where
the tradeoff between performance isolation and fairness is

addressed. The authors also consider the possibility of mis-
behaving customers with skewed and shifted demands. They
propose the decomposition of the system-wide fair sharing
problem into four smaller mechanisms and show robustness
to customer misbehavior.

Overall, we believe that the related literature mostly con-
siders a fixed set of provisioned resources that should be
split among customers in a fair manner based on a utility
maximization problem. However, a customer is interested in
receiving the promised QoS as stated in the SLA. Hence, the
fact that the customers receive their fair share according to
utility maximization is of little value to them if the promised
QoS is not delivered. Thus, resource provisioning and dynamic
resource allocation must be studied jointly. Also, we believe
that mechanisms to protect the SLAs from misbehaving traffic
have not been investigated in detail. Here, we wish to address
these two gaps in the literature by proposing provisioning
mechanisms and hypothesis testing in resource sharing.

III. SYSTEM ARCHITECTURE

We consider N NSs served by a single BS in the RAN.
Each NS may have different type of QoS requirements. For
instance, a NS may wish to upper bound the average packet
delay of its users by a threshold, whereas another NS may wish
to provide a constant target bitrate to each of its users. Thus,
we consider that NSs may use different MAC schedulers.

Let vector Wi(t) denote the bandwidth demand of NS i at
slot t. Bandwidth demand Wi(t) corresponds to the number
of PRBs that the MAC scheduler of NS i needs in order to
provide the desired QoS throughout slot t to NS i.

To determine demand Wi(t), the operator may need to
observe the state of the NS i at time t denoted by Xi(t). For
instance, suppose that NS i needs to deliver a constant target
bitrate to each of its users. To do so, the operator first collects
the Modulation and Coding Scheme (MCS) of each user at
slot t, which composes the state Xi(t) of the NS. Then, given
the target bitrate, the operator may use Table 7.1.7.1-1 and
Table 7.1.7.2.1-1 in 3GPP document [19] to find the necessary
number of PRBs Wi(t).

Note that for complex QoS requirements, the online deter-
mination of Wi(t) based on Xi(t) is not trivial. As a result,
we consider a network function deployed at the BS which we
call the Bandwidth Demand Estimator (BDE) whose objective
is to compute Wi(t) based on Xi(t). Notice that the BDE
enables bandwidth adaptation which is needed to achieve high
efficiency in resource sharing. In [20], a BDE for packet delay
requirements is developed based on a Reinforcement Learning
(RL) algorithm and is then tested by experimentation on a
3GPP compliant cellular testbed. The design of new BDE is
out of the scope of this paper.

Next, since the provisioned PRBs at the BS may not suffice
for all demands W(t)

△
= (Wi(t))i∈[N], the operator needs to

decide which ones to accept. For this reason, we consider
another network function at the BS which we call the Network
Slice Multiplexer (NSM) that at each slot t decides whether to
allocate the Wi(t) PRBs to the MAC scheduler of NS i. The

demandBandwidth Demand Estimator
traffic state

X1(t) W1(t)

demandBandwidth Demand Estimator
traffic state

Xi(t) Wi(t)

demandBandwidth Demand Estimator
traffic state

Xn(t) Wn(t)

NS
Multiplexer

decision
u1(t)

decision
ui(t)

decision
un(t)

⋮

⋮

⋮

⋮

⋮

⋮

⋮

⋮

Fig. 1. We consider two network functions deployed at the BS. First, the BDE
observes the state Xi(t) of a NS and estimates the number of PRBs Wi(t)
needed to meet its desired QoS. Second, the NSM receives all bandwidth
demands and decides which ones to satisfy given the limited bandwidth at
the BS by producing binary decisions ui(t). The length of each slot t depends
on the timescales supported by these two network functions.

NSM outputs a binary decision vector u(t) where ui(t) = 1
denotes acceptance of demand Wi(t). Figure 1 depicts the
overall system architecture.

Notice that resource sharing is performed by the NSM.
Therefore, in this paper, we focus only on the development
of a NSM. We note that a preliminary solution was provided
in [2] where this system architecture was introduced. How-
ever, no mechanisms to protect SLAs against anomalies were
considered and resource provisioning was not fully addressed.

IV. PROBLEM FORMULATION

We consider that each customer i states in the SLA that the
operator needs to deliver the desired QoS for PH

i fraction of
time. Such availability requirements are widely used in real
networks for resource provisioning purposes, as in Google’s
software-defined network B4 [21].

Notice that the previous statement is equivalent to the
requirement that ui(t) = 1 for at least PH

i fraction of
time. Let Ts denote the number of slots during which all
NSs are deployed and W c denote the provisioned bandwidth
at the BS. Clearly, the operator wishes to satisfy all SLAs
with minimum provisioned bandwidth. Thus, whenever a new
NS needs to be deployed, the operator wishes to solve the
following optimization problem:

minimize
W c,{u(t)}t∈[Ts]

W c

s.t.:
1

Ts

Ts∑
t=1

ui(t) ≥ PH
i , ∀i ∈ [N],

u(t)⊤W(t) ≤ W c, ∀t ∈ [Ts],

u(t) ∈ {0, 1}N , ∀t ∈ [Ts]. (1)

The first constraint is the availability requirement as stated
in the SLA. The second constraint states that the total accepted
demand must be less than the provisioned resources W c. The
third constraint implies that the NS either receives the desired
QoS or it does not. Next, note that (1) is a Mixed Integer
Linear Programming (MILP) problem. Unfortunately, to solve
it, the operator must know the future demands {W(t)}t∈Ts

and the exact system duration Ts which is not possible.

V. PROPOSED SOLUTION APPROACH

To approximately solve (1), we propose an approach with
two phases; the trial phase and the regular phase. During the
trial phase, a long sequence of traffic states and bandwidth
demands (Xi(t),Wi(t)) is observed for each NS i. Based
on these, a stochastic model is constructed for each NS that
describes its normal behavior and the required provisioned
bandwidth at the BS is estimated.

In the regular phase, the operator provisions the previously
estimated bandwidth at the BS. Then, if the total bandwidth
demand at some time exceeds the provisioned bandwidth, the
NSM checks if the traffic generated by each NS was in accor-
dance to its normal behavior as observed during the trial phase.
The NSM performs this check by conducting a composite
hypothesis test for each NS based on the Neyman-Pearson
framework. The NSs that pass this test have prioritized access
to the provisioned bandwidth. Any remaining bandwidth is
then split among the other NSs. A flowchart of the overall
solution approach is shown in Fig. 2.

A. Trial Phase

This phase is initiated when a new NS is deployed on the
BS. To monitor the unknown resource demands of the new NS,
the operator assigns as much bandwidth as possible to the BS
to avoid situations where the poor QoS affects the behavior
of the NS, e.g., users quitting due to large packet delays. The
main goal during this phase is to describe the normal behavior
of each NS by a stochastic model and estimate the provisioned
bandwidth required at the BS to satisfy the SLAs of all NSs.

The stochastic model used greatly affects the estimation of
the provisioned bandwidth. To gain insight on what model
is appropriate, it is helpful to consider the models used by
the BDE. For instance, in [20], the BDE is based on Rein-
forcement Learning (RL). In this case, the stochastic model
for (Xi(t),Wi(t)) is a Markov Decision Process (MDP). Let
Hi(t)

△
={(Xi(τ),Wi(τ))}t−1

τ=1 be the past state-action pairs.
The MDP models the process {(Xi(t),Wi(t))}t∈N as follows:

P(Xi(t+ 1) = x′|Xi(t) = x,Wi(t) = w,Hi(t) = hi)

= Pi(x
′|x,w). (2)

Suppose that the NS is deployed for a large amount of time,
i.e., Ts → ∞, and that the BDE wishes to minimize some
total expected cost that depends on the state Xi(t) and action
Wi(t). Then, it suffices to consider stationary policies [22]
that allocate bandwidth Wi(t) given state Xi(t) as follows:

P(Wi(t) = w|Xi(t) = x,Hi(t) = hi) = µi(w|x). (3)

From (2) and (3), it is easy to see that the process
Zi(t)

△
=(Xi(t),Wi(t)) follows a stationary MC:

P(Zi(t+ 1) = (x′, w′)|Zi(t) = (x,w), Hi(t) = hi)

= Pi(x
′|x,w)µi(w

′|x′)
△
=PZi

((x′, w′)|(x,w)). (4)

Note that it is further reasonable to assume that the random
processes Zi(t) and Zj(t) are conditionally independent for

Maximum Likelihood Estimation

෡𝑊𝑐: provisioned
bandwidth

෠𝑃𝑖: model for the normal

behavior of slice 𝑖

{𝑿 𝑡 ,𝑾 𝑡 }𝑡≤𝑇

Yes

Hypothesis Testing

A(t): set of NSs

that follow their ෠𝑃𝑖

Allocate Bandwidth to NSs in A(t)

No

𝑊𝑅 𝑡 > 0

𝟏⊤𝑾 𝑡 > ෡𝑊𝑐

t = 0

𝐴 𝑡 ← 𝐴𝑐(𝑡)

Yes

Return 𝒖 𝑡

𝒖 𝑡 :

decisions
𝑊𝑅 𝑡 : leftover

bandwidth

No

Regular Phase

𝑡 ← 𝑡 + 1

Collect 𝑇 samples

Return ෠𝑃𝑖 and ෡𝑊𝑐

Trial Phase

Fig. 2. When a new NS is deployed, the trial phase is initiated to obtain
a stochastic model for the normal behavior of each NS and to estimate the
required provisioned bandwidth. Next, the regular phase is initiated using
the previously estimated provisions and models. Whenever there is resource
contention, the NSM checks if each NS behaves as expected via hypothesis
testing. Anomalous NSs are deprioritized in bandwidth allocation.

j ̸= i since information regarding other NSs j do not
provide any value to NS i if (Xi(t),Wi(t)) are known. Let
X(t)

△
= (Xi(t))i∈[n]. Then, the vector Z(t) = (X(t),W(t))

follows the MC:

P(Z(t+ 1) = z′|Z(t) = z,H(t) = h)

=

N∏
i=1

PZi
(z′i|zi)

△
=PZ(z

′|z). (5)

Hence, the stochastic model of interest is a MC. We further
consider that all the above MCs are ergodic since state spaces
Xi and action spaces Wi are finite. Also, each MC Zi(t) is

expected to contains self-loops and to be possible to reach
each state from all the other states. Therefore, each MC
Zi(t) eventually converges to its unique stationary distribution
πZi

(zi). Thus, the MC Z(t) has a unique stationary distribu-
tion πZ(z) =

∏N
i=1 πZi

(zi).
Since we wish to deliver the desired QoS to NS i for at

least PH
i fraction of time, let WH

i be defined as:

WH
i

△
= argmin

w
lim

Ts→∞

1

Ts

Ts∑
t=1

1Wi(t)≤w ≥ PH
i . (6)

Let πW(w)
△
=
∑

x πZ(x,w) be the stationary probability of
W(t) = w. Due to ergodicity, it follows that:

WH
i = argmin

w

∑
w:wi≤w

πW(w) ≥ PH
i . (7)

Since the SLA dictates that the NS should be satisfied
for PH

i fraction of time, we may ignore any bandwidth
demand Wi(t) > WH

i . Although treating demands higher than
WH

i as 0 is optimal for resource provisioning purposes, we
consider it to be quite punishing. So instead we may transform
all demands Wi(t) > WH

i as WH
i , i.e., we may consider

a transformed demand gi(Wi(t)) = min(Wi(t),W
H
i). Let

g(W(t))
△
=(gi(Wi(t))i∈[N] Thus, to satisfy all SLAs, the

provisioned bandwidth W c should be:

W c = argmin
w

lim
Ts→∞

1

Ts

Ts∑
t=1

11⊤g(W(t))≤w ≥ max
i

PH
i . (8)

Similarly as before, due to ergodicity, (8) is equivalent to:

W c = argmin
s

∑
w:1⊤g(w)≤s

πW(w) ≥ max
i

PH
i . (9)

If the stationary distribution πW(w) is known, then each
WH

i can be found from (7) via binary search. Then, functions
gi are also known and W c can be computed from (9) also
via binary search. Unfortunately, in practice we do not know
the transition matrix of the MC Z(t) and therefore we cannot
compute any of these quantities. As a result, we need to esti-
mate the above quantities from the observed data. To estimate
WH

i and W c, we first estimate the stationary distribution πw

and proceed as described in (7) and (9).
We use the Maximum Likelihood Estimator (MLE) of

πW(w) denoted by π̂W(w) which is simply the fraction of
time that W(t) ≤ w in the observed sequence of length T and
can be easily updated online. We note that the above MLEs
converge almost surely to the estimated quantities and the
asymptotic rate of convergence is known due to asymptotic
normality [23].

Unfortunately, both these results are asymptotic and hold
for large data sequences as T → ∞. However, in practice,
we are interested in the number of samples T needed to
obtain a specific accuracy of the estimated quantity with a
certain probability. Hence, concentration inequalities such as
the Chernoff-Hoeffding bounds are particularly useful here.

Unfortunately, most of these bounds apply only to Independent
Identically Distributed (IID) random processes.

There are only few results that extend such bounds to MCs.
For instance, the result in [24] provides such a bound but
requires the knowledge of a quantity that equals the largest
expected time to transition from a state x to a state y for the
first time among all (x, y) pairs. Applying the result in [24]
for the MC Z(t), it follows that ∀ϵ > 0:

P

(
1

T

∣∣∣∣∣
T∑

t=1

f(Z(t))− E[f(Z(1))]

∣∣∣∣∣ > ϵ

)

≤ 2exp
(
− 2Tϵ2

(b− a)2H2
Z

)
. (10)

In the above, function f maps states to a value in [a, b] and
HZ = maxx,y E[Ty|Z(1) = x] where Ty = inf{t ≥ 0 :
Z(t+1) = y}. The result in [24] applies if the concerned MC
has finite states, is irreducible and its initial distribution is one
of its stationary distributions.

Note that HZ is not known in practice since it depends on
the transition matrix of the MC Z(t). Nonetheless, we argue
that the periodic traffic patterns observed in real networks
provide insight for its value. For instance, the period of the
traffic patterns can be considered as an approximation of HZ.

To leverage (10) for the estimation of πw, we consider
fw(Z(t)) = 1W(t)=w and hence a = 0 and b = 1. Then,
to bound by δ the probability that the absolute deviation
of |π̂W(w) − πW(w)| exceeds ϵ, the following sufficient
condition is obtained from (10):

T ≥ H2
Z ln(2/δ)/(2ϵ2). (11)

Another Hoeffding bound for MCs is provided in [25]. The
authors show an optimal bound which requires the knowledge
of the spectral gap 1 − λ of its transition matrix, where λ is
its second largest eigenvalue in absolute value. Similarly as
before, it follows from [25] that it suffices to consider:

T ≥ 1 + λ

1− λ
ln(2/δ)/(2ϵ2). (12)

It is known that λ ∈ [0, 1), thus the lower bound is
minimized when λ = 0 which occurs when the rows of the
transition matrix are equal [25]. In this case (12) coincides
with the classical Hoeffding bound for the IID case. Thus, at
best case scenario, the number of samples T is ln(2/δ)/(2ϵ2).

For some transition matrices obtained during experimenta-
tion, the lower-bound in (12) was significantly lower than the
one in (11). Thus, suppose that we consider ϵ = 0.01 and
δ = 0.01 in ln(2/δ)/(2ϵ2). We readily obtain T ≈ 120K.
Next, suppose that we observe a sample every 10 seconds, i.e.,
the slot length in Fig. 1 is 10 seconds. Then, the trial phase
should be at least 2 weeks. If we further wish to model every
8-hour period in the day with a different MC, the duration of
the trial phase needs to be at least 1.5 month.

Unfortunately, we do not have a dataset with that many con-
tiguous samples. However, we noticed during experimentation
that even the best-case scenario bound may be loose since a

smaller number of samples did not lead to SLA violations.
Hence, we consider small T values such as 7200. Once the
T samples are obtained, the estimates of WH

i and W c are
obtained from (7) and (9) respectively via binary search.

Apart from the above estimates, we further need to estimate
the transition matrix PZi

of MC Zi(t) that describes the
normal behavior of each NS i. The MLE for the transition
probabilities PZi

(z′i|zi) is simply the number of times there
was a transition from state zi to state z′i over the total number
of times state zi occurred. Once again, it is known that the
MLE converges almost surely to the estimated quantity and
that asymptotic normality holds [23]. Unfortunately, we were
not able to obtain any bounds for finite samples as previously
even though [24] provides a Chernoff-Hoeffding bound when
the function f receives two arguments.

The overall estimation procedure during the trial phase is
summarized in Algorithm 1. We note that the algorithm can
be simplified if certain conditions are met. First, given the
independence assumption regarding the processes Zi(t), we
may use the estimator π̂W(w) =

∏N
i=1 π̂Wi

(wi) and estimate
the distribution of the total transformed demand 1⊤ĝ(w) by
convolution. Even though we consider the processes Zi(t) to
be independent, we do not follow the previous method and
instead directly estimate the distribution of the whole demand
vector πW for simplicity. Next, note that if the demands are
not transformed, i.e., gi(x) = x, then we may skip many steps
in Algorithm 1 since we can directly estimate the cdf of 1⊤w.

A procedure in Algorithm 1 that requires a large amount of
memory involves the estimation of the transition matrices PZi .
Note that each Zi(t) = (Xi(t),Wi(t)) is composed by a vector
of dimension dim(Xi)+1 and the size of observed transitionsi
may be |Xi ×Wi|2. However, notice that if the NSM knows
the stationary policy µi(w|x) used by the BDE which is
likely to be the case since both the BDE and the NSM
run at the BS, then the NSM needs to estimate only the
transition probabilities Pi(x

′|w, x) as in (4). Furthermore, if
the stationary policy used by the BDE is deterministic, i.e.,
Wi(t) = µi(Xi(t)), then the NSM needs to estimate only the
MC that its state Xi(t) follows. Since ϵ-soft polices are used
in many popular RL algorithms and they can be approximated
by a deterministic policy, we may estimate only the MC of
process Xi(t). Also, the estimation of the MC of Xi(t) may
be further simplified if its of each components follows an
independent MC. Lastly, a crude approximation of the normal
behavior of a NS may be obtained by assuming that each
process Wi(t) follows an independent MC.

B. Regular Phase

At this point, each NS has been through the trial phase
and a MC that describes its normal behavior has already been
obtained. Also, the provisioned bandwidth should satisfy all
NSs for maxi P

H
i fraction of time. Nonetheless, for the rest

of the time, the bandwidth may not suffice. Moreover, a NS
may generate unexpected traffic patterns, e.g, due to a special
event, that increase its bandwidth demand. In such cases, the
NSM needs to reject some of the demands.

Algorithm 1: Estimation Procedure in Trial Phase

1 Input: parameters ϵ, δ,HZ, P
H
i

2 Output: ŴH
i , P̂Zi

, Ŵ c

3 T ≈ 7200
/* Collect statistics online */

4 for t ≤ T do
5 get Z(t) = (X(t),W(t))
6 observed demands.add(W(t))
7 counts(W(t))+=1
8 observed sums.add(1⊤W(t))
9 total demand count(1⊤W(t))+ = 1

10 for each NS i do
11 observed transitionsi.add((Zi(t− 1),Zi(t)))
12 transition countsi(Zi(t− 1), Zi(t))+ = 1
13 Z countsi(Zi(t))+ = 1

14 Z(t− 1) = Z(t)

/* MLE of pmf πw */
15 for w ∈ observed demands do
16 π̂W(w) = counts(w)/T
17 countsi(wi)+ = counts(w)

/* MLE of PH
i -percentiles WH

i */
18 for each NS i do
19 sort W in increasing order
20 for w ∈ W do
21 π̂Wi

(w) = countsi(w)/T
22 s+ = π̂Wi

(w)
23 if s ≥ PH

i then
24 ŴH

i = s
25 break

/* MLE of provisioned bandwidth W c
*/

26 ĝi(x) = min(x, ŴH
i)

27 for w ∈ observed demands do
28 observed gsums.add(1⊤ĝ(w))

29 sort observed gsums in increasing order
30 for s ∈ observed gsums do
31 cdf+ = total demand count(s)
32 if cdf ≥ maxi P

H
i then

33 Ŵ c = s
34 break

/* MLE of transition matrices Pi */
35 for each NS i do
36 for (z, z′) ∈ observed transitionsi do
37 P̂Zi

(z′|z) =
transition countsi(z, z′)/Z countsi(z)

Given that the provisioned bandwidth Ŵ c was computed
by considering that each NS follows its normal behavior as
described by its MC Zi(t), it is fair to reject NSs that do
not follow these MCs. For this reason, we consider that the
NSM performs hypothesis testing when

∑N
i=1 Wi(t) > Ŵ c.

The null hypothesis H0
i (t) is that NS i follows so far the MC

P̂Zi
obtained during the trial period. The alternative hypothesis

H1
i (t) is that the NS at some time t − n + 1 switched to a

different MC. Hence, a composite hypothesis test is consid-
ered. Selecting H0

i (t) implies that NS i behaves normally so
far and thus has prioritized access to the bandwidth.

To conduct the hypothesis test, we consider the Neyman-
Pearson framework [26]. In this framework, we wish to bound
the false alarm rate, i.e., the probability that we incorrectly
select the alternative hypothesis H1

i (t), while maximizing the
detection power, i.e., the probability that we correctly select
H1

i (t). To do so, we check the likelihood ratio of the hypothe-
ses and pick the alternative hypothesis if and only if the ratio
is larger than a parameter γi. Let Zi(n, t) = {Zi(τ)}tτ=t−n+1

denote the last n samples at time t. Then, the hypothesis H1
i (t)

is selected if and only if:

L(Zi(n, t)) =

t∏
τ=t−n+1

Q̂Zi
(Zi(τ)|Zi(τ − 1))

t∏
τ=t−n+1

P̂Zi(Zi(τ)|Zi(τ − 1))

≥ γi, (13)

where Q̂Zi
is the MLE of the transition matrix of the MC that

samples Zi(n, t) follow.
The γi in (13) that maximizes the detection power while

bounding the false alarm rate by αi is selected as follows:

γi = argmin
γ
P(Zi(n) : L(Zi(n)) > γ|H0

i) ≤ αi, (14)

where the subscript t was dropped since the MC Zi(t) is
stationary. The Neyman-Pearson Theorem [26] states that this
likelihood ratio test achieves the highest detection power given
a bound on the false alarm rate out of all possible tests.

Note that ideally we wish to perform the hypothesis test
∀n ≤ t in order to check whether the transition matrix changed
at any time in the past which corresponds to model change
detection with unknown change time [26]. However, such a
test is too computationally intense to be conducted online.
For this reason, we consider a fixed sample size n and hence
only check whether the MC changed at time t− n+ 1.

Unfortunately, even for a fixed n, (14) is quite complex to
solve and therefore γi cannot be computed exactly. Thus, we
consider the asymptotic result that as n → ∞, the random
variable 2 lnL(Zi(n)) follows the chi-square distribution χ2

r

under hypothesis H0
i (t) [26]. The distribution parameter r is

equal to the total degrees of freedom in the test.
In our case, the transition probabilities Q̂Zi(z

′|z) are |Zi|2
in total. However, for each z, it holds that

∑
z′ Q̂Zi

(z′|z) = 1.
Since the transition matrix P̂Zi is fixed, then r = |Zi|2−|Zi|.
Thus, in the asymptotic regime, it follows from (14):

γi = exp(F−1
r (1− αi/2)), (15)

where Fr denotes the cdf of χ2
r and r = |Zi|2 − |Zi|.

Since (15) holds only for large data records as n → ∞,
then we may not consider small n to detect model changes
that occurred in the recent past. Hence, if the behavior of the
NS changes only for very brief periods of time and then reverts
back to normal, we may never detect any anomalies. However,
we argue that such fast and brief changes of time may not have
a large effect on the resource allocation process. Lastly, note
that the memory required for the test depends on n.

Let A(t)
△
={i ≤ N : H0

i (t) selected} denote the set of NSs
that behave normally at time t according to the hypothesis tests
and let B(t) denote the set of NSs that do not. We then split
the resources among the NSs in A(t) using the Max-Weight
scheduler [27]. Specifically, we consider a deficit di(t) owed
to each NS i that is defined as follows:

di(t+ 1) = [di(t)− ui(t)]
+ + PH

i , ∀i. (16)

The bandwidth Ŵ c is split among the NSs in A(t) as follows:

maximize
{ui(t)}i∈A(t)

∑
i∈A(t)

ui(t)di(t)

s.t.:
∑
i:A(t)

ui(t)Wi(t) ≤ Ŵ c,

ui(t) ∈ {0, 1},∀i ∈ A(t). (17)

The above scheduling procedure is motivated by the fact
that if the deficits in (16) are strongly stable, then the first
constraint in (1) holds w.p.1 as Ts → ∞ [27]. Although (17)
is a binary knapsack problem and thus NP-Hard, we utilize
the Google OR-Tools solver in [28] to obtain an exact solution
relatively fast using a branch and bound method. Lastly, we
mention that this scheduler is also used in [2].

Let u∗
i (t) for i ∈ A(t) denote a solution of (17) and

let WR(t)
△
= Ŵ c −

∑
i∈A(t) u

∗
i (t)Wi(t) denote the remaining

bandwidth. Upon splitting bandwidth Ŵ c as in (17), either all
NSs in A(t) are satisfied, i.e., u∗

i (t) = 1 for all i ∈ A(t) or
there are some NSs in A(t) whose demand Wi(t) is not fully
met. Let AR(t)

△
={i ∈ A(t) : u∗

i (t) = 0} denote the NSs in
A(t) whose demand was not fully met.

Notice that if AR(t) ̸= ∅, then the remaining bandwidth
WR(t)

△
= Ŵ c −

∑
i∈A(t) u

∗
i (t)Wi(t) ≤ mini∈AR(t) Wi(t).

Otherwise, u∗(t) would not be an optimal solution to (17). To
fully utilize the remaining bandwidth WR(t), we may solve
a utility maximization problem for the NSs in AR(t). Let
WR

i (t) denote the bandwidth received by NS i. Then, we may
consider a simple utility function Ui(W

R
i (t))

△
=WR

i (t)/Wi(t)
for each NS i, and maximize the total utility as follows:

maximize
{WR

i (t)}i∈AR(t)

∑
i∈AR(t)

WR
i (t)

Wi(t)

s.t.:
∑
i:A(t)

WR
i (t) ≤ WR(t),

0 ≤ WR
i (t) ≤ Wi(t),∀i ∈ AR(t),

WR
i (t) ∈ Wi. (18)

Note that the solution to the above problem is to sequentially
find the currently smallest Wj(t) and assign as much band-
width as possible to WR

j (t). Notice that if Wj = R, then
we simply assign the whole remaining bandwidth WR

j (t) =
WR(t), where Wj(t) ≤ Wi(t) ∀i ∈ AR(t), since WR(t) ≤
mini∈AR(t) Wi(t) as explained previously.

In case that AR(t) = ∅, we may decide to split the
remaining bandwidth WR(t) to the NSs in B(t) that do not
behave normally according to the hypothesis test. Thus, we
may then solve (17) for the set B(t) instead of the set A(t).

The overall detection and bandwidth allocation procedure
during the regular phase is described in Algorithm 2. Similarly
as in the trial phase, the algorithm can be significantly sim-
plified under certain conditions. For instance, if NSM knows
the stationary policy µi(w|x) used by the BDE, then we may
instead perform two simpler hypothesis tests; one that checks
whether the stationary policy µi(w|x) is followed and one
to check whether the transition probabilities P̂i(x

′|x,w) are
followed as implied by (4). These tests have smaller numbers
of total degrees of freedom and can be performed in parallel.

Furthermore, in case the stationary policy is deterministic,
i.e., Wi(t) = µi(Xi(t)), then the NSM may simply first check
if Wi(τ) = µi(Xi(τ)), ∀τ in the observation window. If
the condition does not hold, then the alternative hypothesis
H1

i (t) is selected. Otherwise, the hypothesis test needs to only
involve the parameters Q̂i(x

′|x, µi(x)). Similarly as before, if
the state components of a NS follow independent MCs, then
we may consider a simpler hypothesis test for each of them.

VI. SIMULATION SETUP

A. Schemes

To properly evaluate our approach, we compare it to two
other baselines. Overall, the three schemes are the following:

Sharing and Testing (ShT): This scheme is the proposed
solution approach in Sec. V. In this scheme, resource sharing
is augmented by hypothesis testing to enhance isolation. By
ShTn, we refer to this scheme run with sample size n in
hypothesis testing.

Sharing (Sh): In the trial phase, this scheme is identical
to the previous one. In the regular phase ,the scheme skips
hypothesis testing and sets A(t) = [N] in Algorithm 2.

No Sharing (NoSh): This scheme provisions ŴH
i band-

width for each NS i which is the estimation of the PH
i -

percentile of process Wi(t) as obtained in the trial phase.
Clearly, the total provisioned bandwidth is

∑
i Ŵ

H
i . In the

regular phase, the demand Wi(t) is guaranteed to be accepted
if Wi(t) ≤ ŴH

i . Any leftover bandwidth is split among the
other NSs. The scheme is run by skipping hypothesis testing
and considering i ∈ A(t) iff Wi(t) ≤ ŴH

i in Algorithm 2.

B. Metrics

The schemes are compared based on two metrics. The
first one is the required provisioned bandwidth Ŵ c as es-
timated during the trial phase. The second one is the re-
sulting acceptance ratio in the regular phase denoted by

Algorithm 2: Resource Sharing in Regular Phase

1 Input: ŴH
i , P̂Zi

, Ŵ c, n
2 Output: u(t),WR(t)
3 set ri = |Zi|2 − |Zi| and γi = exp(F−1

ri (1− αi/2))
4 set di(0) = PH

i

5 for t ≤ Ts do
6 set u(t) = 0 and get Z(t) = (X(t),W(t))
7 for each NS i do
8 n samplesi.add(Zi(t))

9 if t > n then
10 n samplesi.pop()

11 if 1⊤W(t) ≤ Ŵ c then
12 u(t) = 1

13 else
14 for each NS i do
15 an=hypothesis test(n samplesi, γi, P̂Zi

)
16 if an==False then
17 A(t).add(i)

18 else
19 B(t).add(i)

20 bandwidth allocation()
21 if AR(t) = ∅ then
22 set Ŵ c = WR(t) and A(t) = B(t)
23 bandwidth allocation()

24 di(t+ 1) = [di(t)− u∗
i (t)]

+ + PH
i

/* Functions */
25 hypothesis test(n samples, γi, P̂Zi

):
26 for 2 ≤ k ≤ n do
27 z′ = n samples[k]
28 z = n samples[k-1]
29 t counts(z, z′)+ = 1
30 Z counts(z′)+ = 1

31 L0 = L1 = 1
32 for 2 ≤ k ≤ n do
33 z′ = n samples[k], z = n samples[k-1]
34 Q̂Z(z

′|z) = t counts(z, z′)/Z counts(z′)
35 L1 = Q̂Zi(z

′|z)L1, L0 = P̂Zi(z
′|z)L0

36 if L1 ≥ γiL0 then
37 return True

38 else
39 return False

40 bandwidth allocation():
41 solve Binary Knapsack Problem (17)
42 for each NS i ∈ A(t) do
43 if u∗

i (t) == 0 then
44 AR(t).add(i)

45 if WR(t) > 0 then
46 solve linear optimization problem (18)

Fig. 3. A small sample of a parquet file found in the dataset. Here, two lines
exist with the same timestamp and direction = 1. This indicates that two UEs
were receiving traffic from the BS during that subframe.

ai
△
=
∑Ts

t=1 ui(t)/Ts. Notice that ai should be at least PH
i as

shown in the first constraint of optimization problem (1).
Moreover, to gain more insight regarding the performance

of each scheme, we also plot the ratio of correct and wrong
rejections of each NS i denoted by rci and rwi respectively.
The first ratio is the number of times that hypothesis testing
rejected NS i and it was indeed anomalous at that time over
the number of times that hypothesis testing occurred and NS
i was anomalous. The second quantity measures the ratio of
wrong rejections similarly.

Notice that rci and rwi seem similar to the power and
false alarm rate of the detector used in hypothesis testing.
However, they differ from them since the detector checks if all
n previous samples where generated by the expected stochastic
model, not just the most recent one. Hence, if a NS i stops
misbehaving at t, the detector is designed to reject it at time
t = t + n/2 even if NS i is not anomalous at that time.
Therefore, the quantities rci and rwi allow us to investigate
the effect of sample size n on performance during transition
periods where a NS starts or stops misbehaving.

C. Dataset

To evaluate the aforementioned schemes, we use the dataset
in [29] which was made publicly available by the IMDEA
Networks Institute1. It contains LTE mobile traffic at several
BSs in Spain that was captured around 2020. The authors
obtained these measurements by running a passive monitoring
tool called Falcon [30] on a Linux laptop that was connected
to a USRP B210 Software Defined Radio (SDR). The authors
then connected to various BSs and used Falcon to decode the
Physical Downlink Control Channel (PDCCH) sent by the BS
to the connected User Equipments (UEs) in order to extract
resource allocation information with millisecond granularity.

The obtained raw data is stored as parquet files. Each line in
the files contains the following: the unix timestamp, the system
frame and the subframe number in LTE, the Radio Network
Temporary Identifier (RNTI) of the UE, the direction of the
traffic, i.e., uplink or downlink, the MCS index used by the UE
and the number of PRBs utilized by the UE at that particular
subframe. A sample of the file is shown in Fig. 3.

D. Extraction of state time series {Xi(t)}t∈N
Since the system architecture proposed in Fig. 1 is not

deployed at the BSs, we use the dataset to create a time series
for Z(t) for the evaluation of our proposed approach. We
primarily focus on downlink traffic since it comprises most of
the mobile traffic. Hence, we wish to obtain a time series for

1https://git2.networks.imdea.org/wng/madrid-lte-dataset

the states Xi(t) and their corresponding bandwidth demands
Wi(t) for each NS i in downlink.

To do so, we consider that the state Xi(t) includes the
number of UEs in Radio Resource Control (RRC) Connected
state and their average MCS at time t. Notice that the number
of RRC connected UEs at some time t differs from the UEs
that are actively transmitting or receiving at time t. This is the
case since the MAC scheduler may wish to prioritize some
UEs and allocate the whole bandwidth to them. Therefore,
although some UEs may have data to transmit or receive, the
MAC scheduler may not schedule them for transmission. As a
result, we cannot simply count the number of lines in the data
file at some time t as in Fig. 3 to approximate the number of
UEs in RRC Connected state.

Instead, we utilize the approach as in [29] where the
authors use a method that maps the temporary RNTIs to UE
identifiers. This method was originally developed in [31] and
it essentially attempts to find the expiration period of the
temporary RNTIs. Based on this estimation, the number of
UEs in RRC Connected state can be estimated since an RNTI
acts as a UE identifier within its expiration period. The authors
applied the method in [31] on their raw data files and obtained
an estimation of the number of RRC Connected UEs with one
second granularity which is also included in their final dataset.
Hence, for the first component of the state Xi(t) we use this
readily available data.

Regarding the second component of the state Xi(t), we
consider the average MCS over all users actively transmitting
at time t. We compute this simply by taking the average of
the ”mcs idx” column in Fig. 3 for lines with timestamp = t
and direction = 1 since we are interested in downlink traffic.

E. Definition of desired QoS

In order to derive the time series for Zi(t) based on the
times series Xi(t), it is necessary to define the desired QoS
of each NS i. We consider a simple QoS requirement that
facilitates an easy map from Xi(t) to Wi(t). Specifically, we
consider each NS i requires a constant bitrate Ri for each UE
that is in RRC Connected state at each slot t.

F. Extraction of bandwidth demand time series {Wi(t)}t∈N
We compute the required PRBs Wi(t) to provide bitrate

Ri to each connected UE at time t based on Table 7.1.7.1-1
and Table 7.1.7.2.1-1 in 3GPP document [19] as mentioned
previously in Sec. III. Notice that the second component of
Xi(t), i.e., the average MCS over all users at time t and the
bitrate Ri are the two elements needed to obtain the PRBs
needed for a single UE based on the previous tables. Then, we
multiple this amount of PRBs by the first component of Xi(t),
i.e., the number of connected users, to compute the bandwidth
demand Wi(t). Lastly, we assume that all UEs support 2x2 and
thus we multiple the contents of the second table by 2.

We note that it would be more accurate to repeat this process
for each UE individually. However, this would require that
Xi(t) contains the MCS index of each UE which requires large
memory. Although this is feasible, we consider the average

MCS index over all UEs and then multiple the resulting PRBs
by the number of UEs for simplicity.

We mention that an alternative way to derive the bandwidth
demand at time t would be to use the raw data files by sum-
ming the ”nof prb” column for all entries with timestamp = t
and direction = 1. In this case, the bandwidth demand Wi(t)
is approximated by the total number of PRBs allocated to the
NS at time t. This is reasonable assuming that the BS delivered
the desired QoS to the UEs.

Although this is a simple approach, we noticed that the total
PRBs for some subframes t exceeded 100 PRBs which cannot
be true since the cell bandwidth at the BS is 20 MHz. Upon
contacting the authors in [29], we were informed that such
anomalies happen when the PDCCH is decoded erroneously
due to low Signal to Noise Ratio (SNR) at the SDR. For this
reason, we consider the method described previously to derive
the bandwidth demands Wi(t) over time. We note that we
could not find any other publicly available dataset that contains
granular resource allocation information at the BS.

Lastly, notice that the above procedure creates a determin-
istic map Wi(t) = µi(Xi(t)) and hence it suffices to consider
only the MC of Xi(t) when conducting hypothesis testing as
explained in the last paragraph of Sec. V.

G. Time, State and Action Aggregation

With the previous procedures, we obtain a time series Zi(t)
with one second granularity. However, it may not be realistic
that the BDE operates in such a fast time scale. For this reason,
we create a new time series Zi(t) by aggregating every D
seconds where D corresponds to the slot length in Fig. 1. Here,
we typically consider D = 10 seconds. The time aggregation
of the state series Xi(t) is conducted by sampling the original
series every D entries. In general, the aggregation of the Wi(t)
series is performed by representing every D entries by their
maximum to approximate the output of a BDE based on RL
that operates every D seconds and learns a map between Xi(t)
and Wi(t). However, here we aggregate demands in time by
Wi(t) = µi(Xi(t)) as previously.

We also consider another form of aggregation. Given that
the BDE may run a RL algorithm, we consider aggregation in
the state and action space. For instance, we may consider that
the first component of Xi(t) takes values that are multiples
of a constant Ui = 10. Thus, if the actual number of
UEs at time t is between [10, 20), then Xi(t) = 10. Such
aggregations in the state and action space may significantly
reduce the convergence time and the memory requirements in
the BDE with little performance loss. Thus, we consider such
aggregation constants for each NS i denoted by Ui, Mi and
Wi for the first state component, the second state component
and the action respectively.

H. Extraction of time series {Z(t)}t∈N
So far we described how to extract a single time series Zi(t).

However, we need to extract multiple such series to compose
Z(t) when considering multiple NSs. To this end, each time
series Zi(t) should be extracted from traffic data from the

same BS and time period to consider traffic that competes for
the same resources. This data should then be split into chunks
by associating different groups of UEs to different NSs.

Unfortunately, this is not feasible since the dataset does
not contain unique UE identifiers as mentioned earlier. Thus,
we should then consider data samples that may originate
from different BSs but still correspond to the same time
period. However, we could not find any such data samples. A
possible explanation is that the authors in [29] used only one
SDR for their measurements and thus could not obtain data
from different BSs at the same time. As a result, we collect
data samples from different BSs and time periods which we
then associate to different NSs. Nonetheless, the time periods
considered have certain common characteristics.

Specifically, we consider data collected between specific
hours, e.g., from 17:00 to 22:00 every day from Monday to
Friday. Then, the samples collected from Monday to Thursday
are used for the trial phase and the ones collected on Friday
are used for the regular phase. The previous example results
to T = 7200 samples. We note that the selection of a certain
range of hours is motivated by the fact that real traffic varies
considerably throughout the day. Thus, we consider that a
single MC PZi cannot model the traffic during the whole day
but only during specific hours of each day.

Lastly, we note that the measurement in the raw data files
are sometimes sparse. Therefore, the specific hours considered
vary from experiment to experiment in order to obtain data
samples that are dense. As a result, we do not utilize (11)
to determine the number of samples needed during the trial
phase. Instead, we obtain the data as described previously.

I. Creation of anomalies

As mentioned in Sec. V, the anomalies considered are
changes in the transition matrix of the process Zi(t). In case
Wi(t) = µi(Xi(t)), then it suffices to consider variations for
the PXi transition matrix. Moreover, if the state components
follow independent MCs, then it suffices to consider variations
to one of these MCs. As a result, we primarily modify the
transition matrix PUi

that the number of connected users Ui(t)
follows. Such modifications may model an increase in the
number of connected UEs to the BS.

Let P ′
Ui

denote the new transition matrix followed by Ui(t)
and let P ′

Ui
(u′|u) denote its elements. To properly evaluate our

approach, the new matrix P ′
Ui

must be constructed carefully.
Otherwise, the anomalies may be easily detected by the
hypothesis testing procedure. For instance, the matrix P ′

Ui

should not contain any new entries, i.e., P ′
Ui
(u′|u) = 0 if

the old entry PUi(u
′|u) = 0. In addition, we are interested in

new matrices P ′
Ui

that produce higher demands µi(Xi(t)) and
result in resource contention that may negatively impact the
performance of the other NSs.

Due to the above, we construct the new matrix P ′
Ui

by
deleting the lowest β% of states in the MC of Ui(t). To do so
without creating new entries, the transition probability from a
state s to a removed state s′ is added to the largest transition
probability from s. As a result, we create a new matrix that

1 32 4

0.7

0.3

0.2

0.3

0.2

0.3

0.2

0.5

0.1

0.6

0.6 3 4

0.2

0.3

0.70.8

Fig. 4. Anomalies are created by changing the MC of a NS. Here, we remove
the lowest β = 50% states of the MC. Then, each state’s largest transition
probability is increased so that each row of the new matrix sums to 1.

is similar to the original one but whose states correspond
to higher number of users. Thus, the new matrix skews the
behavior of the NS towards generating higher bandwidth
demands. Figure 4 illustrates the previous procedure.

Once the new matrix P ′
Ui

is obtained, an anomalous se-
quence {Ui(t)}ts≤t ≤te can be generated where ts and te
denote its start and end respectively. Notice that ts must be
chosen carefully so that there is a smooth transition between
the old and new sequence. Otherwise, the anomaly is easy
to detect. For this reason, we choose ts as the earliest time
that the old sequence arrives at one of the new states in P ′

Ui
.

However, we also wish that the anomaly starts once the sample
size n is complete to consider the effect of old samples in the
detection. Thus, we impose that ts > n. For similar reasons,
we wish that te < Ts−n. Lastly, we set te as high as possible
given the previous constraints so that the anomaly can have an
effect on resource allocation and create resource contention.

VII. SIMULATION RESULTS

A. Test Scenario 1

In the first test scenario, we consider two NSs. Each NS
needs to constantly deliver R0 = R1 = 1 Mbps to each
connected UE for at least PH

0 = PH
1 = 0.9 fraction of slots.

The data for NS 0 and NS 1 are taken from the ”I-1815-raw-df-
ms.parquet” and ”I-2650-raw-df.ms.parquet” files respectively.
The data collection period for both NSs is from 17:00 to 22:00
each day from Monday, May 25 to Friday, May 29, 2020.
The days from Monday to Thursday comprise the trial phase,
whereas Friday comprises the regular phase.

We first consider that all NSs behave normally during the
regular phase to obtain a reference point. Then, we consider
that NS 0 is anomalous for various β. We plot the metrics
mentioned previously for each scheme and for each case. We
vary the sample size n to determine its effect on performance.
We depict some traffic statistics of this test scenario in Fig. 5
and Fig. 6. The results are shown in Tables I-IV.

In Table I, we verify that the provisioned bandwidths
estimated in the trial phase suffice for both NSs and the
SLAs are fulfilled. Notice that a0 and a1 in the regular phase
are slightly higher than the target PH

0 = PH
1 = 0.9. This

may indicate a small discrepancy between the statistics of the
data in the trial phase and in the regular phase. However, the
increase is probably due to the fact that the no sharing scheme
allows the use of the idle WH

i of NS i by other NSs j.

20 40 60 80 100 120 140
Number of Connected Users

0.00

0.25

0.50

0.75

1.00

E
C

D
F

Test Scenario 1: Connected Users

NS 0
NS 1
total

Fig. 5. The ECDF of the connected users in the regular phase.

0 500 1000 1500 2000 2500
Bandwidth Demand (PRBs)

0.00

0.25

0.50

0.75

1.00

E
C

D
F

Test Scenario 1: Bandwidth Demands

NS 0
NS 1
total

Fig. 6. The ECDF of the bandwidth demand in the regular phase.

In Table II, NS 0 is anomalous with β = 0.5. As expected,
the no sharing scheme protects the performance of NS 1.
However, in the sharing scheme, the SLA of NS 1 is violated
since a1 < 0.9. In contrast, the sharing and testing scheme
protects the SLA of NS 1 when n ≥ 100. This is also
reflected in the fair rejection ratio where rc0 becomes high at
n = 100. This indicates that hypothesis testing starts to detect
anomalies for n ≥ 100. Also, notice that rw0 also increases
as n does since more outdated samples are stored which is
detrimental when an anomaly stops. Since the anomaly exists
almost throughout the simulation, these detrimental effects are
particularly pronounced here. However, these effects would
wash off in longer simulations. Also, we note that the above
issue affects only NSs that at some point were anomalous for
which the operator is not required to fulfill their SLA.

Similar observations can be made for the cases where β =
4/6 and β = 5/6 in Tables III and IV respectively. Here, also
note that anomalies can be detected for a smaller sample size
n = 50 since they are more pronounced and thus the detector
requires fewer samples to accurately detect them. Overall, in
the cases where the simple sharing scheme fails, the proposed
scheme satisfies the SLAs with 19% less bandwidth than the
no sharing scheme.

TABLE I
TEST SCENARIO 1: RESULTS WHEN ALL NSS BEHAVE NORMALLY.

Scheme PRBs a0 (%) a1 (%)
NoSh 940 98 95
Sh 760 94 93
ShT50 760 94 93
ShT100 760 94 93
ShT150 760 94 93
ShT200 760 94 93
ShT250 760 94 93

TABLE II
TEST SCENARIO 1: RESULTS WHEN NS 0 IS ANOMALOUS WITH β = 0.5.

Scheme PRBs a0 (%) a1 (%) rc0 (%) rw0 (%)
NoSh 940 91 95 - -
Sh 760 84 83 - -
ShT50 760 84 83 0 0
ShT100 760 69 95 97 2
ShT150 760 69 95 98 12
ShT200 760 69 95 98 26
ShT250 760 68 95 98 40

TABLE III
TEST SCENARIO 1: RESULTS WHEN NS 0 IS ANOMALOUS WITH β = 0.67.

Scheme PRBs a0 (%) a1 (%) rc0 (%) rw0 (%)
NoSh 940 73 94 - -
Sh 760 73 89 - -
ShT50 760 69 95 99 2
ShT100 760 69 95 99 12
ShT150 760 69 95 99 25
ShT200 760 69 95 99 36
ShT250 760 69 95 99 40

B. Test Scenario 2

In the second test scenario, we consider again two NSs. We
consider required constant bitrates R0 = 1 and R1 = 2 Mbps
and QoS delivery for PH

0 = PH
1 = 0.9 fraction of slots. The

data for NS 0 and NS 1 are taken from the ”I-1796-raw-df-
ms.parquet” and ”I-1815-raw-df.ms.parquet” files respectively.
The data collection period for NS 0 is from 14:00 to 19:00
each day from June 17 to June 19, 2020 and for NS 1 from
14:00 to 19:00 each day from May 25 to May 27, 2020. The
last day corresponds to the regular phase.

Here, we consider all possible β for each NS to test the
schemes for various anomalies. For brevity, we do not depict
the granular information provided by the previous tables. In
Fig. 7, we depict ECDF of the users. Table V shows that
all schemes satisfy both SLAs when no NS misbehaves, but
resource sharing schemes do so with 21% less bandwidth. In
Fig. 8, we show the performance of the schemes as we vary
the number of low states removed from the user MC of NS 0.
The results show that hypothesis testing protects the SLA of
the well-behaved NS 1. The corresponding results when NS 1
is anomalous are shown in Fig. 9. In this case, no hypothesis
testing was needed, possible because the traffic in NS 1 is
lighter as shown in Fig. 7.

TABLE IV
TEST SCENARIO 1: RESULTS WHEN NS 0 IS ANOMALOUS WITH β = 0.83.

Scheme PRBs a0 (%) a1 (%) rc0 (%) rw0 (%)
NoSh 940 73 94 - -
Sh 760 73 89 - -
ShT50 760 69 95 99 2
ShT100 760 69 95 99 12
ShT150 760 69 95 99 25
ShT200 760 69 95 99 36
ShT250 760 69 95 99 40

25 50 75 100 125 150 175 200
Number of Connected Users

0.00

0.25

0.50

0.75

1.00

E
C

D
F

Test Scenario 2: Connected Users

NS 0
NS 1
total

Fig. 7. The ECDF of the connected users in the regular phase.

TABLE V
TEST SCENARIO 2: RESULTS WHEN ALL NSS BEHAVE NORMALLY.

Scheme PRBs a0 (%) a1 (%)
NoSh 1990 97 97
Sh 1570 94 94
ShT50 1570 94 94
ShT100 1570 94 94
ShT150 1570 94 94
ShT200 1570 94 94
ShT250 1570 94 94

C. Test Scenario 3

In the third test scenario, we consider 3 NSs. The required
constant bitrates are R0 = R2 = 1 and R1 = 2 Mbps
with PH

0 = PH
1 = PH

2 = 0.9. The data for NS 0, NS 1
and NS 2 are taken from the ”I-1796-raw-df-ms.parquet”, ”I-
1815-raw-df.ms.parquet” and ”II-816-raw-df.ms.parquet” files
respectively. The collection period for NS 0 is from 9:00 to
17:00 each day from June 15 to June 19, 2020. For NS 1, we
collect data from 9:00 to 17:00 each day from May 11 to May
15, 2020. Lastly, for NS 2, the collection period is from 9:00
to 17:00 each day from April 7 to April 11, 2021.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Removed States

0

50

100

150

200

250

Sa
m

pl
e

Si
ze

 n

n=0 Sh scheme

Test Scenario 2: Results when NS 0 is anomalous
SLAs of normal NSs satisfied
SLA of a normal NS violated

Fig. 8. The kth column corresponds to case where the k lowest states have
been removed from the user MC of NS 0.

1 2 3 4 5 6
Number of Removed States

0

50

100

150

200

250

Sa
m

pl
e

Si
ze

 n

n=0 Sh scheme

Test Scenario 2: Results when NS 1 is anomalous
SLAs of normal NSs satisfied
SLA of a normal NS violated

Fig. 9. The kth column corresponds to case where the k lowest states have
been removed from the user MC of NS 1.

0 50 100 150 200 250 300
Number of Connected Users

0.00

0.25

0.50

0.75

1.00
E

C
D

F
Test Scenario 3: Connected Users

NS 0
NS 1
NS 2
total

Fig. 10. The ECDF of the connected users in the regular phase.

TABLE VI
TEST SCENARIO 3: RESULTS WHEN ALL NSS BEHAVE NORMALLY.

Scheme PRBs a0 (%) a1 (%) a2 (%)
NoSh 2980 98 97 99
Sh 2200 95 94 95
ShT50 2200 95 94 95
ShT100 2200 95 94 95
ShT150 2200 95 94 95
ShT200 2200 95 94 95
ShT250 2200 95 94 95

As previously, we consider all possible β for each NS to
test the schemes for various anomalies In Fig. 10, we depict
the ECDF of the users for each NS. Table VI shows that
all schemes satisfy all SLAs when no NS misbehaves, but
resource sharing schemes do so with 26% less bandwidth. In
Fig. 11, we show the performance of the schemes as we vary
the number of low states removed from the user MC of NS
0. The results show that hypothesis testing protects the SLAs
of the well-behaved NSs 1 and 2. The corresponding results
when NS 1 and NS 2 are anomalous are shown in Fig. 12 and
in Fig. 13. In these cases, hypothesis testing is not needed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Removed States

0

50

100

150

200

250

Sa
m

pl
e

Si
ze

 n

n=0 Sh scheme

Test Scenario 3: Results when NS 0 is anomalous
SLAs of normal NSs satisfied
SLA of a normal NS violated

Fig. 11. The kth column corresponds to case where the k lowest states have
been removed from the user MC of NS 0.

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Removed States

0

50

100

150

200

250

Sa
m

pl
e

Si
ze

 n

n=0 Sh scheme

Test Scenario 3: Results when NS 1 is anomalous
SLAs of normal NSs satisfied
SLA of a normal NS violated

Fig. 12. The kth column corresponds to case where the k lowest states have
been removed from the user MC of NS 1.

1 2 3 4 5 6 7
Number of Removed States

0

50

100

150

200

250

Sa
m

pl
e

Si
ze

 n

n=0 Sh scheme

Test Scenario 3: Results when NS 2 is anomalous

SLAs of normal NSs satisfied
SLA of a normal NS violated

Fig. 13. The kth column corresponds to case where the k lowest states have
been removed from the user MC of NS 1.

50 100 150 200 250
Sample size n

0.1

0.3

0.4

0.5

0.6

E
xe

cu
tio

n
tim

e
(m

s) Total hypothesis tests: 1912560

Time Complexity: Hypothesis Testing

Fig. 14. The mean execution time of the hypothesis tests in test scenario 3.

D. Time Complexity

The two most time consuming online procedures in Algo-
rithm 2 are the bandwidth allocation and hypothesis testing.
The former involves the solution of a BKP which is NP-Hard.
The simulations results in [2, Fig. 3] show that the BKP can
be solved optimally within 5 ms if the number of NSs is less
than 100. This can be reduced if fully polynomial time approx-
imation schemes are used. The results were obtained using a
computer with an Intel i7-10700K @3.8 GHz processor.

Regarding hypothesis testing, we first note that it can be
performed in parallel for each NS. Therefore, it suffices to
consider a single NS. Next, it is easy to see that its execution
time scales linearly w.r.t. the sample size n. In Fig. 14, we
depict the mean execution time per sample size n over all the
tests conducted in test scenario 3. The results were obtained
using a laptop with an Intel i5-7200U @2.5 GHz processor.

Overall, the total execution time of the online procedures
in the regular phase are in the order of a few milliseconds.
Since the slot length D is in the order of tens of seconds, the
proposed scheme can be performed online.

E. Comments on Results

First of all, we address the high number of PRBs reported
in the previous test scenarios. This may be caused since the
total number of connected users as obtained from the dataset is
high and the desired QoS is to constantly provide 1 or 2 Mbps
to each user throughout their connection time. Also, note that
each NS comprises all the traffic served by a single BS.

Next, we summarize all the previous results in a single table
to compare the resource efficiency and performance isolation
that each scheme provides. To this end, we consider that the
resource efficiency of a scheme is the percentage decrease in
PRBs it achieves when compared to the no sharing scheme.

TABLE VII
SUMMARY OF RESULTS

Scheme PRB Savings (%) Performance Isolation (%)
NoSh 0 100
Sh 22 37
ShT50 22 88
ShT100 22 100

Performance isolation is measured by the percentage of cases
where a NS was anomalous and the SLAs of all well-behaved
NSs were satisfied. Both these metrics are computed for each
test scenario using the previous simulation results. Next, we
combine the results by assuming that the test scenarios are
equiprobable and then we report the averages in Table VII.
The table clearly shows that hypothesis testing provides both
high resource efficiency and high performance isolation.

Finally, the code we developed to analyze the dataset in [29]
is available on GitHub2. All the previous tables and figures can
be reproduced using the dataset in [29] as input to our code.

VIII. CONCLUSION

We considered the problem of satisfying the SLAs of mul-
tiple NSs. We argued that resource provisioning and dynamic
resource adaptation need to be considered jointly to solve this
problem. We proposed a solution approach that consists of two
phases; the trial phase and the regular phase. In the trial phase,
the operator estimates the required provisioned resources and
obtains a model for each NS that describes its normal behavior.
In the regular phase, if resource contention occurs, the operator
uses the previous models to fairly decide which NSs should
be rejected via hypothesis testing. Results showed that our
approach is robust against traffic anomalies and satisfies the
SLAs of well-behaved NSs with reduced bandwidth.

We note that there are several directions for improvement.
First, a bayesian approach may be considered for hypothesis
testing if priors can be estimated from past data. Alternatively,
the worst case prior may be considered to formulate a minimax
detection problem. Second, it may be beneficial to only check
whether a NS generates more traffic than it normally does.
Third, the parametric models may be used to simplify the
tests. These directions may facilitate a complete performance
analysis to derive the metrics in Table VII without simulations.

REFERENCES

[1] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Pérez,
“Resource sharing efficiency in network slicing,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 3, pp. 909–923, 2019.

[2] P. Nikolaidis, A. Zoulkarni, and J. Baras, “Resource efficiency vs
performance isolation tradeoff in network slicing,” in 2023 IEEE WiOpt,
2023, pp. 33–40.

[3] C. Sexton, N. Marchetti, and L. A. DaSilva, “On provisioning slices
and overbooking resources in service tailored networks of the future,”
IEEE/ACM Trans. Ntw., vol. 28, no. 5, pp. 2106–2119, 2020.

[4] C. Gutterman, E. Grinshpun, S. Sharma, and G. Zussman, “Ran resource
usage prediction for a 5g slice broker,” in ACM Mobihoc ’19, New York,
NY, USA, 2019, p. 231–240.

2https://github.com/pnikolaid/robust resource sharing

[5] S. Alcalá-Marı́n, A. Bazco-Nogueras, A. Banchs, and M. Fiore,
“kansaas: Combining deep learning and optimization for practical over-
booking of network slices,” in ACM MobiHoc ’23, 2023, p. 51–60.

[6] A. Banchs, G. de Veciana, V. Sciancalepore, and X. Costa-Perez,
“Resource allocation for network slicing in mobile networks,” IEEE
Access, vol. 8, pp. 214 696–214 706, 2020.

[7] A. J. Gonzalez et al., “The isolation concept in the 5g network slicing,”
in 2020 EuCNC, 2020, pp. 12–16.

[8] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, jul 2009.

[9] ——, “Anomaly detection for discrete sequences: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 24, no. 5, pp. 823–839, 2012.

[10] S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K. G. Chavez,
and B. Rubinstein, “Machine learning in network anomaly detection: A
survey,” IEEE Access, vol. 9, pp. 152 379–152 396, 2021.

[11] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection for
temporal data: A survey,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 9,
pp. 2250–2267, 2014.

[12] V. V. Veeravalli and T. Banerjee, “Chapter 6 - quickest change detection,”
in Academic Press Library in Signal Processing: Volume 3. Elsevier,
2014, vol. 3, pp. 209–255.

[13] W. Wang, Q. Chen, T. Liu, X. He, and L. Tang, “A distributed online
learning approach to detect anomalies for virtualized network slicing,”
in 2021 GLOBECOM, 2021, pp. 1–6.

[14] A. Chawla, A.-M. Bosneag, and A. Dalgkitsis, “Graph-based inter-
pretable anomaly detection framework for network slice management
in beyond 5g networks,” in 2023 IEEE/IFIP NOMS, 2023, pp. 1–6.

[15] A. Kumar and V. L. Thing, “Malicious lateral movement in 5g core with
network slicing and its detection,” in 2023 ITNAC. Los Alamitos, CA,
USA: IEEE Computer Society, dec 2023, pp. 110–117.

[16] S. A. Baset, L. Wang, and C. Tang, “Towards an understanding of
oversubscription in cloud,” in USENIX Hot-ICE ’12, 2012.

[17] F. Caglar and A. Gokhale, “ioverbook: Intelligent resource-overbooking
to support soft real-time applications in the cloud,” in 2014 IEEE
CLOUD, 2014, pp. 538–545.

[18] D. Shue, M. J. Freedman, and A. Shaikh, “Performance isolation and
fairness for Multi-Tenant cloud storage,” in 2012 OSDI. Hollywood,
CA: USENIX Association, Oct. 2012, pp. 349–362.

[19] 3GPP, “LTE; E-UTRA; Physical layer procedures,” 3GPP, TS 36.213,
02 2015, version 12.4.0.

[20] P. Nikolaidis, A. Zoulkarni, and J. S. Baras, “Data-driven bandwidth
adaptation for radio access network slices,” arXiv:2311.17347, 2023.

[21] C.-Y. Hong et al., “B4 and after: Managing hierarchy, partitioning, and
asymmetry for availability and scale in google’s software-defined wan,”
in SIGCOMM. Budapest, Hungary: ACM, 2018, p. 74–87.

[22] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II,
3rd ed. Athena Scientific, 2007.

[23] S. M. Kay, Fundamentals of statistical signal processing: estimation
theory. USA: Prentice-Hall, Inc., 1993.

[24] V. Moulos, “A hoeffding inequality for finite state markov chains and its
applications to markovian bandits,” in 2020 ISIT, 2020, pp. 2777–2782.

[25] J. Fan, B. Jiang, and Q. Sun, “Hoeffding’s inequality for general markov
chains and its applications to statistical learning,” J. Mach. Learning
Research, vol. 22, no. 139, pp. 1–35, 2021.

[26] S. Kay, Fundamentals of statistical signal processing: Detection theory.
USA: Prentice-Hall, Inc., 1998.

[27] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[28] Google-OR-tools, “The knapsack problem,” 2023. [Online]. Available:
https://developers.google.com/optimization/pack/knapsack

[29] P. F. Pérez, C. Fiandrino, and J. Widmer, “Characterizing and modeling
mobile networks user traffic at millisecond level,” in WiNTECH ’23.
New York, NY, USA: ACM, 2023, p. 64–71.

[30] R. Falkenberg and C. Wietfeld, “Falcon: An accurate real-time monitor
for client-based mobile network data analytics,” in 2019 GLOBECOM,
2019, pp. 1–7.

[31] G. Attanasio, C. Fiandrino, M. Fiore, J. Widmer, N. Ludant, B. Bloessl,
K. Kousias, Özgü Alay, L. Jacquot, and R. Stanica, “In-depth study
of rnti management in mobile networks: Allocation strategies and
implications on data trace analysis,” Computer Networks, vol. 219, p.
109428, 2022.

https://developers.google.com/optimization/pack/knapsack

	Introduction
	Related Literature
	System Architecture
	Problem Formulation
	Proposed Solution Approach
	Trial Phase
	Regular Phase

	Simulation Setup
	Schemes
	Metrics
	Dataset
	Extraction of state time series {Xi(t)}t N
	Definition of desired QoS
	Extraction of bandwidth demand time series {Wi(t)}t N
	Time, State and Action Aggregation
	Extraction of time series {Z(t)}t N
	Creation of anomalies

	Simulation Results
	Test Scenario 1
	Test Scenario 2
	Test Scenario 3
	Time Complexity
	Comments on Results

	Conclusion
	References

