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Abstract

Identifying latent interactions within complex systems is key to unlocking deeper insights
into their operational dynamics, including how their elements affect each other and con-
tribute to the overall system behavior. For instance, in neuroscience, discovering neuron-
to-neuron interactions is essential for understanding brain function; in ecology, recognizing
the interactions among populations is key for understanding complex ecosystems. Such
systems, often modeled as dynamical systems, typically exhibit noisy high-dimensional and
non-stationary temporal behavior that renders their identification challenging. Existing dy-
namical system identification methods often yield operators that accurately capture short-
term behavior but fail to predict long-term trends, suggesting an incomplete capture of
the underlying process. Methods that consider extended forecasts (e.g., recurrent neural
networks) lack explicit representations of element-wise interactions and require substantial
training data, thereby failing to capture interpretable network operators. Here we introduce
Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS),
a robust learning procedure for identifying hidden dynamical interactions in noisy time-
series data. LINOCS integrates several multi-step predictions with adaptive weights during
training to recover dynamical operators that can yield accurate long-term predictions. We
demonstrate LINOCS’ ability to recover the ground truth dynamical operators underlying
synthetic time-series data for multiple dynamical systems models (including linear, piece-
wise linear, time-changing linear systems’ decomposition, and regularized linear time-varying
systems) as well as its capability to produce meaningful operators with robust reconstruc-
tions through various real-world examples.
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1 Introduction

Uncovering the dynamics underlying high-dimensional time-series data is crucial for deciphering the fun-
damental principles that govern temporally evolving systems. This is apparent across significant scientific
domains, including neuroscience (where neurons or ensembles interact over time (34; 7; 23)), immunology
(where cells regulate immune responses (29)), and ecology (where understanding population interactions
yields insights into ecosystem dynamics (30)). Hence, scientific research necessitates the development of pro-
cedures adept at learning dynamic operators that can accurately capture the non-linear and non-stationary
evolution of real systems.

Existing approaches for dynamical systems identification, though, often rely on either “black-box” deep
learning methods, which while powerful, yield uninterpretable representations, or on simple learning pro-
cedures that maximize reconstruction between consecutive samples, and thus fail to accurately predict the
system’s behavior for long scales. Specifically, common dynamical systems identification models often rely
on optimizing the dynamics by minimizing the prediction error for each time point based on projecting the
preceding one through the dynamics. Consequently, when using such procedures to learn the operators,
post-learning long-term predictions of the system’s values (by iteratively estimating the system’s state at
the next time point) often result in undesired divergence away from the system. This difficulty in long-term
predictions, importantly, implies that operators recovered by these models based on local cost functions may
not capture the underlying system correctly. The challenge in identifying such underlying operators, there-
fore, lies in the need to incorporate long-term predictions directly into the learning procedure, which can be
especially challenging in cases where the dynamics are non-stationary, non-linear, or otherwise constrained
in ways that reflect real-world system behavior.

To address this challenge, we present a learning procedure that introduces Lookahead Inference of Networked
Operators for Continuous Stability (LINOCS). LINOCS bridges the gap between minimizing reconstruction
costs based on single time-step projections (which often result in operators that quickly diverge in long-term
forecasts), and optimizing multi-step training that relies on reconstructions from a past time point(which
can lead to unstable predictions). LINOCS achieves this by integrating adaptively re-weighted multi-step
reconstructions into the dynamics inference. LINOCS also avoids relying on massive amounts of data (like
RNNs, for example, require). LINOCS’ re-weighting progressively builds up the cost over training iterations,
simultaneously considering several multi-step reconstruction terms for identifying operators that enable sta-
ble, long-term reconstruction post-training. We demonstrate the effectiveness and adaptability of LINOCS
across a range of dynamical systems models, including linear, switched linear, decomposed systems, and
smoothly linear time-varying systems, achieving significantly improved accuracy in operator identification
and long-term predictions. Our contributions in this paper notably include:

• We propose LINOCS, a novel learning procedure that incorporates re-weighting multi-step predic-
tions into the cost for operator identification.

• We demonstrate that applying LINOCS improves the ability to recognize ground-truth operators.

• We show LINOCS’ efficacy across a diverse range of dynamical systems, including linear, periodically
linear, linear time-varying (LTV), and decomposed linear.

• Finally, we demonstrate LINOCS’ ability to work on real-world brain recordings, resulting in better
long-term reconstruction compared to baselines.

2 Background and Terminology

Consider a system with p interacting elements (e.g., neurons in the brain) whose time-changing state
X ∈ Rp×t evolves over discrete time points t = 1 . . . T as xt+1 = g(xt, bt, t), where xt ∈ Rp refers to
the state at time t, bt ∈ Rp represents an external input or driving force at time t, and g is a function
g : Rp × Rp × Z→ Rp. For example, xt can represent the time-evolving activity of p recorded neurons over
T time points in neuroscience applications, or xt can represent the activation levels of p immune cells when
modeling the immune system.
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In this paper we focus on linear, piece-wise linear, and linear time-varying systems. Specifically, we limit our
analysis to functions g(·) that can be written as:

xt+1 = g(xt, bt, t) := Atxt + bt, (1)

where At ∈ Rp×p represent the transition matrices at each time t. Our focus on locally linear dynamics
is supported by the fact that even highly nonlinear functions can be well approximated over small time
intervals using local linearization (15; 28). Importantly, this formulation’s advantage lies in its retention of
the ability to easily extract the system’s pairwise interactions, including non-stationary changes in At and
bt over time. Specifically, any operator entry [At]i,j for i, j = 1 . . . p at every t = 1 . . . T can be interpreted
as the effect of element j on element i at time t.

In practice, however, robustly recovering operators that can accurately describe the system’s evolution in
non-stationarity and non-linear settings, faces numerous computational challenges. Chiefly, if we adopt a
naive approach to identify the operators as: Ât, b̂t = arg minAt,bt

∥xt −Atxt − bt∥2
2 for every t = 1 . . . T ,

this problem is statistically unidentifiable. Specifically, the problem has p2 +p unknowns for each time point,
but only p equations.

One approach to improve inference in these settings is to introduce additional structure via a prior over
At and bt, that constrains the solution space and is often grounded in application-driven assumptions. For
instance, in many scientific settings, it is reasonable to assume that interactions change smoothly over time.
Therefore, adding a temporal smoothness constraint on A and b (e.g., ∥At −At−1∥2

F and ∥bt − bt−1∥2
2) can

be beneficial for both interpretability and accuracy. Additionally, the inclusion of such constraints can be
crucial, particularly in noisy settings, to prevent overfitting. The addition of such constraints transforms the
problem to:

Ât, b̂t = arg min
At,bt

∥xt+1 −Atxt − bt∥2
2 +R(At, bt), (2)

where R(At, bt) can represent regularization on the dynamics operators.

While these solutions may offer good short-term predictions (i.e., predicting xt from xt−1) with minor
errors, they often struggle to fully reconstruct the dynamics over longer time-scales due to the build-up of
estimation errors over multiple predictions (e.g., if xt|xt−1 has a variance of vt, then xt|xt−K will have a
variance of

∑K−1
k=0 vt−k due to the property of variance summation). This issue of multiple potential solutions

for the operators is further complicated by the practical consideration that we typically can only observe
noisy observations of xt (x̃t = xt + ϵt, where ϵ ∈ Rp×T represents some noise). Noisy observations further
complicate the accurate identification of robust dynamics since if Ât is obtained from arg minAt

∥xt+1 −
Atx̂t∥2

2, the distance between the real and the estimated operators {∥At − Ât∥2
F }T

t=1 may increase with ϵt.

As the accuracy of a dynamical system’s fit to data is often evaluated based on its ability to accurately
predict future values (31), the inability to capture long-term prediction suggests that the learned operators
may have limited capacity to fully describe the system. Consequently, we define below three prediction styles
for dynamical systems assessment that we will adhere to throughout this work:

• 1-Step Prediction (xt+1|xt): 1-Step Prediction involves using the state at each time point t to
estimate the state at the next time point (t + 1).

• Iterative Multi-Step Prediction (IMS) of order K ∈ R (xt+k|xt): IMS involves iteratively
forecasting one-step ahead values and using these forecasts as inputs for further one-step ahead
forecasts for K times (i.e., ∀k ∈ [0, K − 1], x̂t+k|x̂t+k−1, where x̂t−1 := x̃t−1). Here, we will
notate an IMS prediction of order K by x̂K

t . We chose to name this term IMS as to be consistent
with the literature (4).

• Full Lookahead Prediction (xk|x0): This method enhances IMS by forecasting the state at
each time point xt starting from the initial observations (x̃0). It achieves this by sequentially
applying transition matrices to the estimation from the previous time point x̂t|x̂t−1, starting from
x̃0, resulting in: x̂t = Ât−1 . . . Â0x̃0 ∀t = 1 . . . T.
(Note: the formula above is presented without bt for simplicity, though they may be included).

3
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Importantly, IMS Prediction and Full Lookahead Prediction often result in instability due to the accumula-
tion of errors in the sequential reconstructing process (Fig. 1A).

2.1 Specific models considered in this work:

Of particular interest in this work is improving the model fit of a core set of linear dynamical systems with
different temporal constraints on the system evolution: 1) Time-Invariant Linear Dynamical Systems (LDS),
2) Switched Linear Dynamical Systems (SLDS), 3) decomposed Linear Dynamical Systems (dLDS), and 4)
regularized Linear Time-Varying (LTV) Dynamical Systems.

Time-Invariant Linear Dynamical Systems (LDS). In linear systems analysis, the evolution of a
general state X over T + 1 time points can be typically represented as xt+1 = Axt + b, where A ∈ Rp×p

is the time-invariant dynamics matrix and b ∈ Rp×1 remain constant over time. One common method for
determining A (and b if it is assumed that an unknown offset exists) involves a 1-step optimization approach
that includes applying least squares across all time points. This entails solving

Â, b̂ = arg min
A,b
∥X̃[:,1:T ] −AX̃[:,0:T −1] − [1]1×T ⊗ b∥2

F , (3)

where X̃[:,1:T ] and X̃[:,0:T −1] represents the noisy observations of the state from the second time point (t = 1)
up to the last time point (T ) and from the first time point (t = 0) up to T − 1, respectively, and [1]1×T ⊗ b
represents the horizontal concatenation of the column vector b horizontally T times. Here, A captures the
average influence from xt−1 to xt for all t = 1 . . . (T +1). This setting is advantageous in terms of “network”
interpretability, however often cannot capture the complexity of real-world time-series which is non-linear
and non-stationary.

Switching Linear Dynamical Systems (SLDS). Switched Linear Dynamical Systems (SLDS) (1; 2; 12;
11; 25; 10; 19) aim to provide interpretable representations of dynamics by identifying linear operators that
govern periods of linear behavior, with the system transitioning between these operators over time. Variations
of SLDS include, e.g., recurrent SLDS (rSLDS), which introduces an additional dependency between discrete
switches and the previous state’s location in space (19); and tree-structured recurrent SLDS, which extends
rSLDS by incorporating a generalized stick-breaking procedure (26).

While SLDS models often involve transitioning from an observed to a latent low-dimensional space, here
we chose to focus on the case where switches occur within the observation space, essentially enforcing the
transition to the latent space to be the identity operator. If we denote X̃ ∈ RN×T as the noisy observations
subjected to i.i.d Gaussian noise, SLDS models the evolution of x̃t using a set of J discrete states (j = 1 . . . J),
each state j associated with its own linear dynamical system fj . These discrete states switch between them
abruptly at certain time points following an HMM model. During each inter-switch period, if the system
is in the j-th discrete state, SLDS models the evolution of the state linearly as xt = fjxt−1 + bj , where
fj represents the linear transition matrix for the j-th discrete state and bj denotes a constant offset term
for that discrete state. SLDS can be trained by an alternating set of steps between the dynamics learning
and the HMM update of the operators. SLDS tackles the crucial task of capturing non-stationarities while
preserving interpretability, but it inherently lacks the capability to distinguish between multiple co-occurring
processes or overlapping subsystems.

decomposed Linear Dynamical Systems (dLDS). The Decomposed Linear Dynamical Systems
(dLDS, (24)) model relaxed the time-invariant or piecewise constant limitation of LDSs and SLDSs to
support the discovery of co-occurring processes while maintaining interpretability. Here, for simplicity, we
focus on the case where the dynamics evolution is described directly in the observation space, while the
full model presented in (24) supports learning the dynamics within an identified latent state. Specifically,
dLDS models the dynamics evolution x̃t = Atx̃t−1 using a sparse time-changing decomposition of linear
dynamical operators such that At =

(
ΣJ

j=1fjcjt

)
, resulting in x̃t =

(
ΣJ

j=1fjcjt

)
x̃t−1. These dynamical

operators ({fj}J
j=1) are global, i.e., not time dependent, and hence are interpretable globally. However, their

time-changing weights (ct) enable modeling non-stationary and non-linear dynamics (Fig. 2 right). Notably,
dLDS is trained through an Expectation-Maximization (EM) procedure where the global dynamics operators

4
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{fj}J
j=1 and their time-changing coefficients {cjt}T

t=1 are updated iteratively to maximize the posteriors as:

{ĉt}T
t=1 = arg max

{c}
P ({ct}t|X̃, {fj}) (4)

{f̂j}J
j=1 = arg max

{fj}
P ({fj}|X̃, {ct}). (5)

Interestingly, dLDS can also capture linear or switching behaviors described earlier, by fixing the dLDS
coefficients over time (for linear behavior, Fig. 2 far left) or supporting abrupt change of coefficients in
specific time points (for switching behaviors, Fig. 2 middle left). As dLDS estimates the parameters for
each time t solely based on the values of the preceding state at time t − 1, it does not address the issue of
inaccurate long-term prediction due to accumulated deviations.

Smooth or Sparse Linear Time-Varying Systems (LTV). In this paper, we refer to LTV systems that
can be described by: xt+1 = Atxt for all t = 1 . . . T . We further assume that a regularization R(At) may be
applied to the operators {At}T

t=1. This regularization can be inspired by the application (e.g., smoothness
of operators over time, ∥At−At−1∥2

F < ϵ2 or operator sparsity ∥vec(At)∥0 < ϵ1) and mitigates the ill-posed
nature of finding At separately for each time point.

2.1.1 Prior relevant approaches:

Theoretical literature on long-term prediction instability traces back to (5) and (16), who respectively in-
troduced exponential smoothing and direct estimation of distant future states. Subsequent studies, includ-
ing (8; 9; 36; 32; 18; 14), evaluated the effectiveness of dynamical-systems identification methods in yielding
long-term predictions. Specifically, the first approach focuses on identifying dynamical operators by minimiz-
ing the reconstruction error of projecting the state from one time point to the next, which can subsequently
be used for long-term predictions through IMS. The second method, direct forecasting, aims to identify a
mapping function Fkt : Rp → Rp that predicts states further into the future by xt+k = Fkt(xt), thereby skip-
ping the explicit identification of intermediate dynamic operators. While direct estimation naturally results
in more stable long-term predictions compared to 1-step optimization, it fails to provide an interpretable
“network” meaning to the operators (e.g., in neuroscience, understanding the brain’s interactions entails dis-
cerning the time-changing fast transitions from xt to xt+1). In fact, when (22) compared between iterated
and direct estimations using macroeconomic data, they found that in contrast to previous assumptions, iter-
ated forecasts outperform direct forecasts, especially when models can select long-lag specifications—raising
questions about the appropriate approach for learning dynamical operators.

More recently, (35) proposed a general approach called DAD that reuses training data to build a no-regret
learner with multi-step prediction. However, DAD includes “fixing” and updating the model itself based
on every step within the multi-step prediction. Moreover, the authors presented it as a general abstract
non-specific approach to consider without specific implementation details. More imporantly, DAD does not
discuss the possibility for priors over the operators (e.g. temporal smoothness) during the training nor did
they consider the need to find operators that are not only expressive but also interpretable. Other learning
procedures, including full forward and/or backward passes through e.g., Backpropagation Through Time
(BPTT) as in Recurrent Neural Networks (RNNs), can partially handle long-term prediction instability as
well as Lookahead extensions to RNNs, including (33; 37; 38), that leverage the Koopman operator for
improved long-term prediction. However, these methods often require extensive learning data and remain
uninterpretable in the “network” sense, as non-linear state measurements in Koopman operators can obscure
understanding of pairwise state interactions.

An additional approach to understanding dynamical systems involves identifying a sparse set of functions
that jointly decompose the observations. For example, SINDy (Sparse Identification of Nonlinear Dynam-
ics, (3)) utilizes a data-driven approach to discover governing fundamental equations from data using sparse
regression. Although SINDy and its extensions (e.g., (13)) are promising for discovering governing data
equations, such representation does not provide explicit insight into the time-changing interactions between
the state elements.
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Figure 1: Illustration of the problem and approach. A: Models that perform well on 1-step pre-
diction (i.e., prediction order 0, in red) , often fail in higher orders reconstruction (e.g., order-T , in green).
B: LINOCS (e.g., for training order K = 3) integrates weighted multi-step reconstructions for all k = 0 . . . K
orders. It adapts the weights of these reconstruction orders to prioritize minimizing large errors at lower
orders before addressing higher orders. The system gradually increases the weight of the most effective looka-
head reconstruction until convergence conditions are met. C: LINOCS improves long-term reconstruction
during training iterations. D: Weights of different lookahead training orders (k). wk : R2 → R is a function
of the order k and the k-th order reconstruction error e. Top: Illustration of an exemplary effect of e on w
when fixing k. Bottom: Illustration of an exemplary effect of k on w when fixing e.

3 LINOCS

In LINOCS we aim to learn the unknown dynamic operators {Ât}T
t=1 by integrating several multi-step

predictions simultaneously into the inference procedure. This approach yields not only a more accurate
full-lookahead post-learning reconstruction but also operators that are more closely aligned with the ground
truth. Particularly, for every t = 1 . . . T , LINOCS finds the most likely estimate of {At, bt} given K+1
(K ∈ Z≥0 hyper-parameter) multi-step reconstructions of orders k = 0...K with different weights {wk}K

k=0:

Ât = arg min
At

K∑
k=0

wk∥x̃t+1 −Atx̂
k
t ∥2

F , (6)

where x̃t, x̃t+1 are the observations at time t and t + 1, respectively. Let x̂k
t+1 (k = 0 . . . K) denote the

recursive rule for predicting the state at time t + 1, starting from the observations at t−k, where x̂t−k is set
to the observations at time t− k, i.e., x̂t−k := x̃t−k. Particularly, the (k + 1)-th order multi-step prediction
is defined by:

x̂k
t+1 = ÂtÂt−1Ât−2 . . . Ât−kx̃t−k. (7)

The weights {wk}K
k=0 associated with the orders k = 0 . . . K are dynamically adjusted throughout the infer-

ence process (Fig. 1B). This adjustment considers both the order number (k) and the current reconstruction
error related to that order, ek (e.g., the ℓ2 norm, ek = ∥x̃t − x̂k

t ∥2
2). Unlike other multi-step methods

(e.g., (35)), LINOCS adapts the weights of the reconstruction orders to prioritize the minimization of large
errors in lower orders before considering higher orders (Fig. 1B). Specifically, it gradually increases the weight
of the best lookahead reconstruction until convergence conditions are satisfied. In our implementations, the
weights can be chosen from a list of built-in choices such as uniform, linearly decreasing, and exponentially
decreasing weights. Additionally, our framework allows custom weight functions that suit their specific
needs. In the experiments presented in this paper, we concentrate on showcasing three specific options for
the weights:

• Adapting the weights to sequentially introduce higher multi-step reconstruction orders once the
error for each preceding order falls below a designated threshold, while continuing to maintain the
activation of lower orders. Specifically, in the initial iterations, only w0 > 0, with all other weights

6
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Figure 2: Example time-varying LDS systems A: The baseline linear time-invariant dynamical system
will present constant dynamical operator constant over time. B: Switching linear dynamical systems (SLDS)
jump between different linear operators that are time-invariant between jumps. C: “Pseudo-Switching”
dynamics is similar to SLDS with the inclusion of smoother transitions between periods of constant linear
dynamics. D: The decomposed linear dynamical systems (dLDS) model is a generalization of SLDS to sparse
time-changing linear combinations of linear operators. dLDS can also model negative coefficients.

wj = 0 for j ∈ [1, K]. As the error of each step’s reconstruction falls below this threshold, the
subsequent weight wj+1 is activated. For instance, if w0 is the last activated weight and the error
for the first (1-step) reconstruction falls below the threshold, w1 becomes active (w1 > 0), and
this sequence of activation continues for higher-order weights as each subsequent step achieves the
required accuracy.

• Constant weights over iterations with an exponential decay over k, defined as wk = exp−σk for some
scalar σ ∈ R>0.

• A weight function that considers both k and ek, exhibiting a monotonic decrease in k and an increase
in e, with k decreasing faster than e increases (Fig. 1 D).

Importantly, throughout this paper, we distinguish between two concepts: training order and prediction
order. We denote “training order” (Ktrain) as the maximum order considered during LINOCS training.
Throughout this work “1-step” optimization specifically refers to the use of the 1-step cost (∥xt−Atxt−1|22),
while excluding higher orders, during training. In contrast, prediction order refers to post-training predictions
that involve iteratively propagating the identified operators for Kpred steps into the future.

Here, we demonstrate the contribution of LINOCS for accurate long-scale predictions in four types of systems:
1) time-invariant linear; 2) switching linear; 3) decomposed linear; and 4) LTV systems. Importantly, in
our experiments, we assume that we observe the underlying system under additive i.i.d Gaussian noise
conditions, however LINOCS can be easily adjusted to other noise statistics.

3.1 LINOCS for Linear Dynamics

We first present the LINOCS learning rule for the simplest case of time-invariant linear dynamical systems
(TI-LDS). Let X̃ ∈ Rp×T be the observations of state X, such that X̃ = X + η, with η being an i.i.d
Gaussian noise (η ∼ N (0, σ2)). In the TI-LDS case, X evolves linearly as xt+1 = Axt + b for all t = 1 . . . T ,
where b ∈ Rp×1 is a constant offset.

In this case, LINOCS estimates A and b by

Â, b̂ = arg min
A,b

K∑
k=0

wk∥x̃t+1 −Ak+1x̃t−k −
k∑

j=0
Ajb∥2

2,

where K is an hyperpameter that dictates the maximum reconstruction order, and the set {wk}K
k=0 can be

either pre-defined or automatically adapted over training based on each order error.

3.2 LINOCS for Switching Linear Dynamical Systems (SLDS)

For SLDS (Fig. 2, middle-left), we integrate LINOCS into the SLDS operator inference stage (to infer {f}J
j=1,

{b}J
j=1, see Sec. 2.1) using the SSM framework proposed by (20). We maintain the existing SLDS approach

7
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Figure 3: Linear System Experiment. A: Real vs. identified operators and offsets. B: Quiver plots of real
and identified operators. C: Highlighted differences in effects between real operators and inferred operators
showing how small differences in dynamic operators gain prominence during lookahead reconstruction (cal-
culation details in Section A.1). D: Full lookahead reconstructions (ground truth vs. baselines) show swift
convergence to the origin for the 1-step optimization (yellow) and divergence for DAD-based results (three
most right subplots). E: Frobenius norm of the differences between the ground truth operators (A) and
the identified operators (Â). F: MSE under increasing prediction orders. For all orders, LINOCS achieves
better (lower) MSE compared to 1-step optimization. G: Full lookahead post-training predictions using
operators identified by 1-step optimization (yellow) vs. the predictions using those identified by LINOCS
(blue) under various training orders (rows) and prediction orders (columns). H, I: LINOCS reconstruction
compared to 1-step optimization under increasing noise levels demonstrates its robustness. J: Propagating
the identified operators until reaching a relative reconstruction error of ∼ 1. LINOCS identifies operators
that can accurately predict ∼ 35,000 time points, much higher than 1-step training that decay immediately.

to estimating switch times that delineate the boundaries of the linear periods between switches (i.e., for this
stage, we have kept it as implemented by (20)). To find the operators within these identified linear periods,
we integrate the learning rule for the TI-LDS case described above in Section 3.1.

8
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3.3 LINOCS for decomposed Linear Dynamical Systems (dLDS)

For dLDS, as in SLDS, we incorporate LINOCS into the dynamical systems update step. Let x̂k
t+1 denote

the k-th order reconstruction of xt+1, calculated by iteratively propagating the dLDS reconstruction k + 1
times, starting from xt−k. Furthermore, let xt+1 ≈ ΣJ

j=1ĉjtf̂jxt, where ĉt represents the current estimate
of the dLDS coefficients and {f̂j}J

j=1 denotes the current estimate of the basis operators. We can now write
the k-th order reconstruction (x̂k

t+1) as

x̂k
t+1 ←

 J∑
j=1

ĉjtf̂j

  J∑
j=1

ĉj(t−1)f̂j

 · · ·
 J∑

j=1
ĉj(t−k)f̂j

 x̃t−k,

as follows from the recursive update rule x̂k
t ← (

∑J
j=1 ĉjtf̂j)x̂k−1

(t−1), where x̂0
t−1 := x̃t−1.

To effectively integrate LINOCS into dLDS, we incorporate multi-step predictions into the training procedure
of dLDS itself. Specifically, in each iteration, we start with the update of the dynamics coefficients ct. Second,
we define Fxk

t
∈ Rp×J as the horizontal concatenation

Fxk
t

:= [f1x
k
t ,f2x

k
t , . . . ,fJx

k
t ] for all k = 0 . . . K.

Next, we define a new matrix F̃K
xt

that extends Fxt
to all K + 1 reconstructions stacked vertically, resulting

in F̃K
xt
∈ R(K+1)p×J

F̃K
xt

=


w0Fxt

w1Fx1
t

...
wK−1FxK

t

 ,

where wk is the weight of the k-th multi-step order. This matrix can then be used to infer to coefficients
(ct) while considering different reconstruction orders with varying weights.

To mirror this concatenated matrix of dynamics that represents multiple time-steps, we further de-
fine a matching concatenated state vector (x̃t+1)vert ∈ Rp(K+1)×1 by (x̃t+1)vert := w ⊗ x̃t+1 where
w = [w0; w1; · · · ; wK ] ∈ R(K+1)×1. I.e., (x̃t+1)vert is obtained by vertically stacking K + 1 times the ob-
servations x̃t+1 ∈ Rp×1 at time t + 1 weighted by their corresponding wk values (resulting in (x̃t+1)vert =
[w0x̃t+1; w1x̃t+1; · · · ; wK x̃t+1]).

The coefficients, ct, are thus updated in every iteration by minimizing the squared ℓ2 norm
ĉt = arg min

ct

∥(x̃t+1)vert − F̃K
xt
ct∥2

2. (8)

Note that [F̃K
xt
ct] ∈ R(K+1)p×1 produces a vector of estimates of xt+1 computed from all different K + 1

past states. This way, the estimator in Equation (8) seeks the ct vector that best predicts xt+1 considering
all K + 1 lookaheads.

One additional modification we make (compared to the original learning of dLDS as presented by (24)) is
that rather than updating each fj using gradient descent, we infer the dLDS’ basis dynamics operators
{fj}J

j=1 by fully and directly minimizing the cost. Specifically, let Fall := [1]1×J = [f1,f2, . . . ,fJ ] ∈ Rp×pJ ,

be the concatenated matrix of all {fj}J
j=1.

Also, let (xc)t := ([1]J×1 ⊗ xt) ◦ (ct ⊗ [1]p×1) ∈ RpJ×1, where ⊗ denoted the Kronecker product
and ◦ denotes element-wise multiplication, and let Xc ∈ RpJ×T be the horizontal concatenation of all
(xc)t (for t = 0 . . . T − 1).

With these definitions, the dLDS operators {fj}J
j=1 are updated by

F̂all = arg min
Fall

∥X̃:,2: − Fall(Xc)∥2
F , (9)

with each {fj}J
j=1 being extracted from F̂all and normalized to a Frobenius norm of 1.

9
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3.4 LINOCS for regularized Linear Time-Varying Systems (LTV)

Finally, we focus on the more general case of regularized linear time varying systems that are not necessarily
switched or decomposed. Particularly, we focus on two types of regularizations, 1) that the operators change
smoothly over time, i.e., ∥At −At−1∥2

F is small, and 2) that the operators are sparse, i.e., ∥At∥0 is small.

For the LTV case, we apply LINOCS to find the time-changing operators {At}T
t=1 by iteratively integrating

multi-step reconstruction with the appropriate regularization. The operators are initialized with a regularized
1-step optimization

Ât = arg min
At

∥x̃t −Atx̃t−1∥2
F +R(At).

We integrate LINOCS into the estimation process by iteratively updating the operator estimates one at a
time. Specifically, during each round of updates, we loop over every time point t = 0 . . . T and, holding all
other operators {Aτ}τ ̸=t fixed at their former estimates, and update At by

Ât = arg min
At

K∑
k=0

[
wk

k∑
ki=1
∥x̃t−ki+k − Ât−ki+k−1Ât−ki+k−2 · · ·At · · · Ât−ki+1Ât−ki

x̃t−ki
∥2

2

]
+R(At)

where k = 0 . . . K denotes the order of the reconstruction and t − ki denotes the starting point of the
reconstruction. The weights wk are set as in all other models.

4 Results

To showcase LINOCS’ ability to capture the dynamics in multiple models, we applied LINOCS to the
above systems under diverse settings. The hyper-parameters used in each experiment are summarized in
Section A.2.

4.1 LINOCS more accurately identifies ground truth linear systems under noisy observations

We first test LINOCS’ ability to robustly learn time-invariant linear dynamical systems from noisy ob-
servations. We then simulate the dynamics A ∈ R2×2 as a rotational transition operator and a ran-
dom offset b ∈ R2×1, where each bi ∼ Uniform(0, 1). We build the synthetic state xt ∈ R2×1 as
xt = Axt−1 + b starting from random initial value xt ∈ Uniform(0, 1)2×1, such that the noisy observa-
tions are x̃ = x + η, where η ∼ N (0, 0.32) (Fig. 3A,B).

We compare the learned operators using LINOCS with four baselines. First we compare to traditional
1-step optimization (Eqn. (3)). We further compare the linear LINOCS to our implementations of the
conceptual framework presented in DAD (35), as it is the approach closest to LINOCS in terms of integrating
multi-step predictions into model training. Our implementation of DAD integrates expert and non-expert
demonstrations for model training, inspired by the Dataset-Aggregation (DAgger) approach (27). Specifically
we test three implementations of DAD. For each implementation we initialized the transition matrix (Ainit)
and the offset (binit) using the optimal estimate from 1-step optimization. We then train the model through
100 iterations where at each iteration, we used our latest estimates of A and b to perform full lookahead
reconstruction, starting from time t = 0. We then update our estimates of A and b using the optimal 1-step
optimization, and tested all three options outlined below:

• DAD with full model update:
At each iteration, we update A and b based on the lookahead reconstruc-
tion of the state (x̂t) calculated based on the last operators estimate. Namely,
{Âiter+1, b̂iter+1} = arg min{A,b}

1
T

∑T −1
t=0 ∥x̃t+1 − (Ax̂t + b)∥2

2.

• DAgger-inspired DAD (reweighed DAD):
For reweighted DAD, we estimate A and b at each iteration using both the observations and the
lookahead reconstruction from the last estimates of A and b. In particular, let [x̂t, x̃t] ∈ Rp×2 be
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a horizontal concatenation of the lookahead reconstruction and of the observations at time t. Then
we iteratively solve: {Âiter+1, b̂iter+1} = arg min{A,b}

1
T

∑T −1
t=0 ∥ [x̂t+1, x̃t+1]− (A [x̂t, x̃t] + b)∥2

2.

• DAgger with ℓ2 constraint (reweighted DAD with ℓ2):
This option is solved similarly to the reweighted DAD, with the addition of the Frobenius norm
(∥ · ∥F ) on the operators (A) and on (b) during training.

We find that LINOCS identifies operators that yield accurate dynamics in long-time scale predictions
(Fig. 3D). The other methods we tested, including 1-step optimization (Fig. 3C,E cyan) and DAD-based
implementations (Fig. 3D, reds), instead decay to zero (away from the real system), indicating a less accu-
rate estimation of the dynamics. The improved accuracy of the operators identified by LINOCS (Fig. 3E)
becomes apparent when examining the effects of the operators’ estimation errors (Fig. 3C). These errors are
larger for the other methods, showcasing that those methods accumulate more errors over shorter time spans
than LINOCS’ does.

We next investigated the effect of the training order in LINOCS on long-term reconstruction. We trained
LINOCS on the noisy observations with increasing training orders (e.g. 5, 10, 30, 80) and then tested the
performance under multiple prediction orders (Fig. 3G). Compared to the baselines tested, LINOCS exhibits
increased performance even with very low training orders (e.g., 5), with higher orders resulting in almost
perfect reconstruction (Fig. 3G bottom-right subplot). Additionally, exploring LINOCS’s robustness to noise
reveals that, unlike one-step reconstruction, LINOCS is robust even under very high levels of noise (Fig. 3G,
H, blue). The resulting MSE compared to the ground truth dynamics is much lower in LINOCS, even under
very high σ noise levels (Fig. 3H blue vs. orange-red).

When examining the duration for which LINOCS remains robust without converging, we observe that our
approach accurately predicts approximately 35,000 time points into the future before deviating from the real
system and decaying to 0—demonstrating stability over exceptionally long time scales (Fig. 3J).

Additionally, when examining LINOCS’ long-term prediction robustness to increasing noise levels introduced
during training, we find it to be robust to even extreme Gaussian noise levels, σ = 0.9 (Fig. 3D, blue), in
contrast to 1-step optimization (Fig. 3 D, orange-red).

We further tested LINOCS on linear systems with structured noise (Fig. 12) as well as on a simulation of
3-dimensional cylinder (Fig. 13), yielding similar results. For structured noise, we modeled the observation
as x̃ = x+σ sin(γt) with σ = 0.5 and γ = 3 for t = 1 . . . 501. Unlike other methods, LINOCS found operators
that led to accurate long-term predictions (Fig. 12 D). Moreover, when examined under increasing training
and prediction orders, we found that LINOCS is robust for long-term predictions, even for full lookahead
reconstructions (kpred = 501, Fig. 12 E,H). When evaluating its robustness to increasing noise levels (σ),
we found that even for very high noise levels (σ = 0.9), LINOCS achieved much more robust results than
1-step optimization (Fig. 12 F,G). Additionally, when exploring how far into the future it enables robust
reconstruction before converging, we found that it is capable of full lookahead for approximately 70,000 time
points—a testament to its ability to find more robust operators that can independently describe the system
(Fig. 12 I).

For the 3D cylinder case (Fig. 13), with Gaussian noise (σ = 0.4), we similarly demonstrate that LINOCS
recovers more accurate operators, leading to significantly more robust long-term predictions and enabling full
recovery of the process (Fig. 13 A,B,C,D), both under increasing prediction orders (Fig. 13 E, G) and noise
(σ) levels (Fig. 13 H), as well as exhibiting an impressive ability to reconstruct lookahead predictions (starting
from x0) for very long periods (approximately 70,000 time points) before converging to similar error as 1-step
does (Fig. 13 I). In contrast, 1-step optimization yields high-error within a few IMS prediction orders.

4.2 LINOCS identifies accurate interactions in switching systems

We next tested LINOCS-driven SLDS as detailed in Section 3.2 on simulated data comprising of J = 3
discrete states. The transition operators for each of the distinct states was set to a 3× 3 rotational matrix
oriented in a different direction. Additionally, the offset for each state (bj ∈ R3×1) was set to a random
vector drawn from a uniform distribution between 0 and 1 (Fig. 16).
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Figure 4: Results on switching systems. A: Active discrete states for LINOCS (blue) compared to base-
lines, including SLDS and rSLDS with 10 or 100 training epochs. B: Correlation between the ground truth
dynamics (x) and the full-lookahead reconstructed dynamics (x̂). C: Correlation between the ground truth
operators (f) and the identified operators (f̂). D: Correlation between the ground truth coefficients (c) and
the identified coefficients (ĉ). E: Difference between the ground-truth sub-dynamics (F̂ ) and reconstructed
basis dynamics by different models. LINOCS was able to achieve sub-dynamics that are much closer to the
ground truth than the other baselines.

Notably, since the method is invariant to the order of the operators, to compare the identified operators to
the ground truth operators, we sorted the operators using the “linear sum assignment” problem (SciPy’s
implementation, by (6)), with the cost function being the Frobenius norm between each pair of fs (ground
truth vs. estimated for each model). As baselines, we compare the results of LINOCS-augmented SLDS
with standard SLDS and recurrent SLDS (21) with varying numbers of iterations.

When comparing LINOCS-SLDS to the baselines (Fig. 4), LINOCS consistently outperformed the other
approaches across multiple metrics including operator recovery (Fig. 4C,E), switching times recovery
(Fig. 4A,D), and dynamics reconstruction (Fig. 4B, Fig. 14B). In particular, LINOCS-SLDS accurately
identified switching times, whereas classical SLDS and rSLDS tended to introduce additional redundant
switches (Fig. 4A). Moreover, the discrepancies between the ground truth operators and those identified by
LINOCS (Fig. 4E, right-most four columns) were substantially smaller than the differences observed with
classical SLDS/rSLDS (Fig. 4 E, left columns)„ as evidenced by the higher correlations between LINOCS’
operators and the ground truth (Fig. 4 C). Furthermore, when examining the eigenvalues of the identi-
fied operators compared to the ground truth (Fig. 15), the eigenspectrum derived from the LINOCS-driven
solver closely resembled the ground truth eigenspectrum more than the classical SLDS and rSLDS cases,
highlighting the effectiveness of LINOCS in capturing the underlying dynamics.

4.3 LINOCS finds dLDS operators that yield accurate dLDS lookahead predictions

Next, we applied LINOCS to dLDS, as described in Section 3.3. First we generated ground-truth data that
represent a “pseudo-switching” (Fig. 2) process—i.e. linear dynamics that switch more smoothly (in our case
between J = 3 systems) compared to SLDS where operators switch abruptly. This creates overlap periods
where two dynamical systems are active at once as they trade off (Fig. 17). LINOCS-dLDS demonstrated
significantly improved stability in full lookahead reconstruction compared to single-step dLDS (Fig. 5). No-
tably, training with orders approximately greater than 35 (Ktrain > 35) on our synthetic dataset (containing
1000 time points) resulted in high-quality full reconstruction (Fig. 5A). Additionally, when comparing MSE
and correlation of the time-evolving operator Ft =

∑J
j=1 cjtfj to the ground truth, we observed a monotonic

decrease in MSE with increasing maximal LINOCS training orders (Ktrain), while the correlation showed
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a monotonic increase (Fig. 5B). Moreover, when comparing the largest eigenvalue of Ft over time between
the ground truth operator and the identified operators, the high-order LINOCS-dLDS achieved a structure
much closer to the ground truth (Fig. 18).

Interestingly, although the 1-step reconstruction exhibited good performance even for non-LINOCS or low-
order LINOCS-dLDS (Fig. 5D left), the importance of LINOCS became more apparent in full lookahead
reconstruction (Fig. 5D right). This underscores the necessity of multi-step reconstructions for accurately
estimating dynamical system dynamics, where errors might be obscured when only assessing the single-
step reconstructions. It also highlights the importance of integrating multiple orders simultaneously during
training.

Figure 5: Decomposed linear dynamical systems results. A: Ground truth dynamics compared to
1-step (top) and full lookahead (bottom) reconstructions for non-LINOCS dLDS (Ktrain = 1) and LINOCS-
dLDS with different training orders. B: MSE (pink) and correlation (green) between ground truth operators
and the operators identified by LINOCS under different orders. C: MSE (pink) and correlation (green)
between ground truth dynamics and full lookahead reconstructions using the different LINOCS training
orders. D: Local MSE for 1-step (left) and for full lookahead reconstruction (right) over the time points of
the dynamics.

We further extended our study to encompass more nuanced dLDS scenarios, exhibiting prolonged time scales
and recurring patterns of identical active operators across distinct intervals (Fig. 19). We found analogous
enhancements of LINOCS over the traditional 1-step dLDS implementation. Specifically, LINOCS demon-
strates robust accurate long-term predictions, including full lookahead prediction (Fig. 6B), in contrast to
1-step optimization, which yield high lookahead error (Fig. 6C, last three subplots). Furthermore, also for this
more complex example, upon comparing the identified time-varying transition operators Ft =

∑J
j cjtfj to

the ground truth, LINOCS revealed operators with eigenvalues significantly more correlated with the real op-
erators’ evaluations (Fig. 6D, E) compared to the 1-step optimization results. Additionally, when comparing
the operators themselves against the ground truth, those identified by LINOCS exhibited higher correlation
and smaller MSE with the ground truth compared to these identified by 1-step dLDS (Fig. 6F,G,H).

4.4 LINOCS finds interactions that yield robust lookahead predictions in time-varying systems

To test the applicability of LINOCS to more general LTV systems, we implemented LINOCS-LTV to capture
the chaotic behavior of the Lorenz attractor (Sec. A.3) through a smoothly changing LTV approximation
(Fig. 7). We compared LINOCS-LTV with several other LTV solvers with varying constraints, including
smoothness and sparsity. Unlike methods relying on 1-step optimization, LINOCS, despite similar regular-
ization constraints, achieved superior full lookahead reconstruction (Fig. 7A bottom).

Also here, while different methods performed satisfactorily in the 1-step (post-training) prediction (Fig. 7A
top, B red, C red), disparities emerged in higher-orders lookahead predictions where alternative methods
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Figure 6: Additional decomposed linear dynamical systems results. A: Ground truth dynamics
compared to (B) LINOCS results and (C) 1-step optimization results, for increasing prediction orders.
D,E: Correlation between the eigenvalues of the ground truth transition matrix (Ft =

∑J
j cjtfj) and the

eigenvalues of the one identified by LINOCS. D: imaginary part; E: real part. Results display the average
correlation over time. Eigenvalues were matched using the “linear sum assignment problem” (Scipy’s (6)).
F,G: Comparing the identified time-changing transition matrix (Ft) identified by LINOCS vs. 1-step opti-
mization in terms of correlation (F) and MSE (G). H: Comparing the MSE of the identified Ft over time.

failed. While all methods, including LINOCS, achieved commendable 1-step reconstruction, LINOCS demon-
strated a markedly lower full lookahead error (Fig. 7B green, 5 most right bar pairs) and superior correlation
with the ground truth (Fig. 7C green, five most right bar pairs).

In addition, we analyzed operators identified across various training iterations of LINOCS to assess their
proficiency in achieving lookahead reconstruction (Fig. 20). For this analysis, we used the Lorenz attractor
with 900 time points with intervals of 0.1/9 arbitrary units (a.u.), and applied a smoothness constraint with
a weight of λ = 0.1. We observed that over training iterations, LINOCS adaptively influenced the predicted
lookahead dynamics to gradually converge towards the ground truth dynamics (Fig. 20 C), with a monotonic
decrease MSE (Fig. 20A, B).

When analyzing which time points of the dynamics contributed to higher MSEs in the full post-training
lookahead prediction, we noticed that early training iterations tended to produce higher full lookahead
prediction errors at later time points of the dynamics (Fig. 20B, top right). However, over subsequent
iterations, the effect of LINOCS managed to mitigate the accumulation of errors at these late time points
(Fig. 20B, bottom right).

4.5 LINOCS finds robust interactions in real-world neural data

Finally, we applied LINOCS to real-world dataset described by (17), which consists of high density electrode
array of populations of single units in the human medial temporal and medial frontal lobes while subjects
were engaged in a screening task. We applied linear LINOCS, SLDS and dLDS-LINOCS, and LTV-LINOCS
to a single recording session that includes recordings from five brain areas (amygdala left and right, cingulate
cortex, hippocampus, pre-supplementary motor area). Dynamical systems models were trained on the firing
rate data, which we inferred from the spike-sorted electrophysiology via a Gaussian kernel convolution.
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Figure 7: LTV approximation of the Lorenz attractor. A: 1-step post-training prediction (top, pink-
red) vs. full lookahead prediction (bottom, green) for different baselines, including LINOCS with various
smoothness levels or ℓ0 regularization. Color indicates the local MSE. B: Squared ℓ2 of the error between
the ground truth and 1-step prediction (red) vs. full lookahead predictions (starry green), for the different
methods. C: Correlations between the ground truth and 1-step prediction (red) vs. full lookahead predictions
(starry green), for the different methods.

We investigated several LINOCS models to showcase their distinct characteristics. First, we examined the
linear case for each brain area individually and explored the mean field interactions between areas (Fig. 8).
Importantly, while typical real-world brain dynamics are assumed to be non-linear and non-stationary,
our aim in starting with the linear model was to demonstrate how LINOCS can identify the fundamental
background neural interactions under linear assumptions and check how its identified interactions defer from
these identified by the 1-step approach. We first applied the linear LINOCS on the firing rate activity
from all neurons within each region to identify between-region interactions. We observed that LINOCS
identified different linear interactions within areas compared to the 1-step approximation. Drawing from our
conclusions based on synthetic data linear results, this suggests that LINOCS may better capture the linear
approximation of brain activity than the common 1-step optimization (Fig. 8 A).

Then, we also applied the linear LINOCS on the mean activity of each region, and found that when examining
the full lookahead reconstructions (Fig. 8 C) the 1-step optimization, in contrast to LINOCS, decayed to zero
activity due to small accumulated deviations in operator values. In contrast, LINOCS managed to maintain
activity closer to the average values of the dynamics. However, due to linear enforcement, neither approach
could capture fluctuations in dynamics. Moreover, the full lookahead reconstruction error for LINOCS-linear
was overall much smaller compared to the classical 1-step (Fig. 8B).

We next applied LINOCS-SLDS with three discrete states and compared it with regular SLDS using the
same number of iterations. LINOCS identified operators that exhibit slight differences compared to those
found by classical SLDS (Fig. 9B vs Fig. 21; Fig. 22 A vs. B) as well as slightly different switching patterns
between the two approaches (Fig. 22 C,D). These operators resulted in significantly more robust lookahead
predictions. Specifically, differences are evident in both connection presence, weights, and distribution among
global operators. For example, in the “Amygdala left” region, both classical SLDS and LINOCS-driven SLDS
identify a connection from neuron 10 to neuron 2 as part of f3, albeit with varying weights. Additionally,
both methods identify connections from 5 to 3 (in f1 for classical SLDS and in f2 for LINOCS-SLDS) as well
as from 6 to 3 (in f2 for classical SLDS and in f1 for LINOCS-SLDS), but with differing weights. Similar
discrepancies are observed in other regions. Furthermore, LINOCS-SLDS and classical-SLDS each identify
connections that the other overlooks; for instance, in the “Amygdala right” region, LINOCS-SLDS identifies
a strong connection from 11 to 6, whereas classical SLDS does not. Conversely, classical SLDS identifies a
connection from 3 to 6 (in f3), which LINOCS-SLDS does not recognize.
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Figure 8: Application of linear-LINOCS to multi-region neural recordings. A: The per-region and
between-region mean field linear dynamics operators identified by 1-step linear optimization vs. LINOCS
with a linear time-invariant system. Each within-region network describes the linear operator Âregion derived
by applying LINOCS to the firing rate matrix constrained to include only the neurons from that region.
B: Full-lookahead reconstruction error for 1-step linear optimization vs. LINOCS-linear approach. C:
Ground truth mean activity per region compared to the lookahead prediction trace of the mean field activity
by 1-step linear optimization vs. LINOCS-linear.

Importantly, the operators found by LINOCS enable full lookahead reconstruction without diverging, in
contrast to regular classical SLDS that diverge to extreme values in full lookahead prediction (Fig. 9C).
Moreover, the reconstruction error for the full lookahead prediction was overall much smaller for LINOCS-
SLDS compared to the classical SLDS (Fig. 9A). These observations suggest that if the real neural process
follows switched dynamics, LINOCS may capture the underlying dynamics more effectively, as inferred from
our analysis of the synthetic case.

We observed similar patterns using dLDS-LINOCS, which revealed underlying global brain interactions
potentially fundamental to brain function (Fig. 10 A). When examining their dynamic activations (ct), we
noted a “background” interaction consistently active, with slight modulations over time (Fig. 10 B, brown),
alongside gradually changing activities of other interactions (Fig. 10 B, gray-blue-purple). Importantly,
these results provided lookahead predictions that did not decay and maintained a high correlation with the
observations (Fig. 10 C).

Finally, employed the LTV-LINOCS on all neurons from all regions simultaneously while imposing a smooth-
ness constraint on consecutive operators (with regularization of λ = 0.1 on ∥At − At−1∥2

2, Fig. 11). Our
findings reveal that LINOCS identifies operators capable of producing full lookahead reconstructions with-
out divergence, closely approximating observed data. Comparative analysis against 1-step optimization with
various smoothness levels (Fig. 11A,B,E) underscores the superiority of LINOCS in achieving reconstructions
faithful to the data. Additionally, examination of error evolution over time suggests a monotonic increase
in error for non-LINOCS approaches (Fig. 11C). Moreover, we observed notable discrepancies between the
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Figure 9: SLDS results on real data. A: Relative error of the full lookahead prediction compared to the
ground truth, for both LINOCS-SLDS vs. classical SLDS,for each brain area. B: The networks identified by
LINOCS-SLDS (see Fig. 21 for the networks identified by the classical-SLDS). C: Lookahead reconstruction
using LINOCS-SLDS (full curve) vs. classical SLDS (dashed curve). Classical-SLDS diverge to extreme
values in the full lookahead reconstruction.

Figure 10: dLDS-LINOCS results on the real neural data. A: The identified operators {fj}J=8
j=1 .

B: The identified sparse coefficients ct. C: Correlation between the full-lookahead reconstruction results and
the observations. D: The two largest eigenvalues of the time-varying transition operator F̃t =

∑8
j=1 cjtfj .

Black: real part. Red: imaginary part.

operators identified by by LINOCS and the baselines (Fig. 11D). These results highlight the efficacy of
LTV-LINOCS in capturing complex temporal dynamics in real world data while maintaining data fidelity.
Overall, we showed that in all these real-world neural versions, LINOCS was able to recover more robust
descriptions of the dynamic evolution for the long run, which, based on our synthetic results, may imply
that these are closer to the real unknown interactions.
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Figure 11: LTV-LINOCS results on real neural data. A: MSE between the ground truth data and
the full lookahead reconstructions. B: The ground truth data (left) compared to the predictions produced
by LINOCS-LTV (2nd left) and 1-step optimization with increasing smoothness constraints. C: MSE of
the reconstruction over time points, compared to 1-step optimization with different smoothness levels. D:
Frobenius norm of the differences between As identified by the different models, normalized by the magni-
tude of the operator identified by LINOCS. E: Difference between the observations and the full lookahead
reconstruction for LINOCS-LTV vs. 1-step optimization with increasing smoothness levels.

5 Discussion

In this paper we introduced LINOCS (Lookahead Inference of Networked Operators for Continuous Stabil-
ity), a learning procedure to improve stability and accuracy of dynamical system inference that leverages
lookahead estimation. By iteratively integrating re-weighted multi-step reconstructions with additional con-
straints on the operators, LINOCS enables robust inference of networked operators in dynamical systems,
even in the presence of noise and nonlinearity.

Our experimental results highlight LINOCS’ effectiveness across various dynamical systems, including Linear
Systems (LDSs), Switched Linear Systems (SLDS), decomposed LDSs (dLDS) (24), and Linear Time-Varying
Systems (LTV) in both simulation and real-world neural data. LINOCS not only achieves more precise full
lookahead reconstruction compared to baseline methods but also successfully retrieves ground truth operators
in synthetic data, signifying its superior capacity to capture underlying systems. These findings suggest that
LINOCS holds greater potential than alternative approaches for accurately identifying unknown hidden
interactions also in real-world data, where the real underlying interactions are often obscured but pivotal for
robust scientific interpretation.

Looking ahead, several promising avenues exist for future directions and extensions, including applying
LINOCS to improve the reconstruction robustness of highly non-linear systems and integrate it to advance
robust RNN training. Particularly, if incorporating LINOCS to deep networks, the integration of multi-
step reconstructions into the networks’ training, may help mitigate issues such as vanishing or exploding
gradients. Additionally, extending LINOCS to handle non-Gaussian noise could enhance its applicability to
a wider range of real-world scenarios.
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A Appendix

A.1 calculation details for operators differences (Fig. 3C)

We computed the operator differences illustrated in Figure 3C using the expression:

((Â− I)x− (A− I)x)× factor

Here, Â represents the operators identified by the different methods, A denotes the ground-truth operators,
and "factor" is a scalar used for visualization purposes only (identical for all methods).

A.2 Hyperparamters used in experiments

Table 1: Hyperparameter settings for DAD baseline in linear experiment
Parameter Value Additional Info
seed 0 random seed
T 500 number of time points
wℓ2 0 weight of ℓ2 regularization on dynamics
wdecay 1 decay of regularization coefficient over itera-

tions
Niterations 100 number of iterations
A_init_type step initialize A with 1-step optimization
reweight False whether to reweight the observations and the

lookahead during training.

Table 2: Hyperparameter settings for “DAD reweigh” baseline in linear experiment
Parameter Value Additional Info
seed 0 random seed
T 500 number of time points
wℓ2 0 weight of ℓ2 regularization on dynamics
wdecay 1 decay of regularization coefficient over itera-

tions
Niterations 100 number of iterations
A_init_type ’step’ initialization type for matrix A
reweight True whether to reweight the observations and the

lookahead during training.

Table 3: Hyperparameter settings for “reweigh ℓ2” baseline in linear experiment
Parameter Value Additional Info
seed 0 random seed
T 500 number of time points
wℓ2 1 weight of ℓ2 regularization on dynamics
wdecay 1 decay of regularization coefficient over itera-

tions
Niterations 100 number of iterations
A_init_type ’step’ initialization type for matrix A
reweight True whether to reweight the observations and the

lookahead during training.
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Table 4: Hyperparameter settings for LINOCS in linear experiment
Parameter Value Additional Info
K 80 maximum training order
with offset True whether to look for an offset term b
cal_offset True whether to calculate offset
weights_style exponential weight style for orders
σw exponential param-

eter for the weights
0.01

infer_b_way ’each’ approach to infer the onset. Based on each
order.

Kb 20 maximum lookahead training order for the off-
sets b

weights_style_b ’exponential’ weights style for the offsets b

Table 5: Hyperparameter settings for dLDS experiment
Parameter Value Additional Info
K 50 maximum lookahead order
additional_update True whether to include an additional update step
ℓ1_init 0 value of ℓ1 on the coefficients for the 1-st iter-

ation
max_iters 200 maximum number of iterations
∥F∥2 0 ℓ2 norm on the basis of dLDS dynamics
frequpdateF

5 frequency of updating {fj}J
j=1

ℓ2decay 0.99 decay of the ℓ2 norm on the coefficients
ℓ1decay 0.9999, decay of the ℓ1 norm on the coefficients
wsmoothdecay 1.01, decay of smoothing weight on coefficients
l_smooth_time 1.1, regularization weight on coefficients smooth-

ing ct

ℓ2 0, ℓ2 on the coefficients
wsmoothtime

0.1, smoothness on ct over time
σnoisyc

0.05 std of the noise to add to coefficients during
training

ℓ1 2.5, ℓ1 regularization on ct

decor False wether to decorrelate the basis dynamics
max_interval_k 1 maximum interval to increase k during train-

ing
to_norm_F True whether to normalize the basis dynamics
x0 [0.2160895,

0.97627445,
0.00623026]

ground truth initial state (at t = 0)

J 3 number of basis dynamics operators (fs)

A.3 Lorenz equations

The Lorenz attractor follows:
dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz,
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Table 6: Hyperparameter setting for the LTV-Lorenz experiment
Parameter Value Additional Info
K 5 maximum lookahead order
wsmooth 2 (or 20) smoothness weight
estimatethres 2 threshold to increase k value
with_future_cost_or True consider both fast and future reconstructions
withfuture True wether to apply time smoothness to future

weights
wsmoothfuture

0.05 weights future smoothness
weightsstyle ’uni’ Uniform weight style.
∥w∥F 0 Frobenius norm weights
init_style ’step’ initialize based on optimal 1-step
maxiters 40 maximum number of iterations
errorthres 8 threshold to increase error
withreverse False whether to include reverse update
Nzeros 0 or 1 or 2 or 3 how many zeros (relevant only to the sparse

networks)

where x, y, and z represent the state variables, and σ, ρ, and β are the system parameters, set to σ = 10,
ρ = 28, and β = 8

3 .

B Appendix: Neural data additional information

We further demonstrated LINOCS on multiple additional linear settings including data with structured noise
(i.e., x̃ = x+σsin(3t), with σ = 0.5, Fig. 12) and a 3-dimensional cylinder (Fig. 13). We found that LINOCS
was able to identify the ground truth dynamics for different training orders and under increasing noise levels
also under these settings.

C Code and Data Availability

All algorithm implementation and figure creation codes will be shared over GitHub upon publication, and
are attached as a supplement to the submission. The human neural recordings data is available at (17).
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Figure 12: Linear System under Structured Noise. A: Real vs. identified operators and offsets. B:
Quiver plots of real and identified operators present patterns that appear similar, rendering it challenging
to discern differences when examined in isolation. C: The differences in effects between real operators and
inferred operators highlight how minor distinctions in dynamic operators gain prominence during lookahead
reconstruction (calculation details in A.1). D: Full lookahead reconstruction (ground truth vs. baselines)
shows swift convergence to the circle’s center for the one-step optimization results due to small differences
in dynamic values (mid-yellow subplot) and divergence for DAD-based results (three most-right subplots).
E, H: MSE under increasing prediction orders. LINOCS achieves better (lower) MSE compared to 1-step
optimization. F, G: LINOCS reconstruction compared to 1-step optimization under increasing noise values
reveals that LINOCS maintains good reconstruction even under extreme noise conditions. I: By propagating
identified operators until a relative reconstruction error of ∼ 1, LINOCS enables future predictions of ∼
70,000 time points, contrasting with immediate convergence in one-step optimization. Black indicates error
differences between one-step optimization and LINOCS.
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Figure 13: Linear System for 3D Cylinder. A: Real vs. identified operators and offsets. B: Quiver plots
of real and identified operators present patterns that appear similar, rendering it challenging to discern differ-
ences when examined in isolation. C: The differences in effects between real operators and inferred operators
highlight how minor distinctions in dynamic operators gain prominence during lookahead reconstruction (cal-
culation details in A.1). D: Full lookahead reconstruction (ground truth operators vs. baselines) shows swift
convergence to the cylinder’s center for the 1-step optimization results due to small differences in dynamic
values (yellow) and divergence for DAD-based results (three most-right subplots). E, G: MSE under increas-
ing prediction orders. LINOCS achieves better (lower) MSE compared to 1-step optimization with perfect
full lookahead reconstruction under high-enough training order (E right bottom). F,H: LINOCS reconstruc-
tion compared to 1-step optimization under increasing noise values reveals that LINOCS maintains good
reconstruction even under extreme noise conditions. I: Propagating the identified operators until reaching a
relative reconstruction error of ∼ 1 shows that LINOCS identifies operators that enable a future prediction
of ∼ 70,000 time points before converging, unlike one-step optimization that converges immediately. black:
error difference between one-step optimization and LINOCS.
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Figure 14: Operators and reconstructions by the LINOCS-driven SLDS compared to classical
SLDS. A: Dynamical operators identified by LINOCS-driven SLDS. B: Full lookahead reconstruction.
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Figure 15: Eigenvalues of identified operators by the different systems compared to the eigen-
values of the ground truth operators. Rows represent different methods, with LINOCS (with different
parameter combination) in the four last rows. Columns represent the three eigenvalues of each of the three
different 3 × 3 linear operators. LINOCS enabled the identification of almost perfect eigenvalues while the
other methods found at least one wrong eigenvalue per operator, explaining the decaying/divergence of their
reconstruction.

Figure 16: Ground Truth operators and coefficients for the SLDS experiment. A: The ground truth
basis dynamics operators {fj}J

j=1 consist of rotational matrices oriented in various directions. B: Ground
truth operators’ coefficients (c). C: Ground truth state x.
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Figure 17: Ground Truth operators and coefficients for the “pseudo-switching” dLDS experi-
ment. A: The ground truth basis dynamics operators {fj}J

j=1 consist of rotational matrices oriented in
various directions. B: Ground truth operators’ coefficients (c). C: Ground truth state x.

Figure 18: Real and imagery parts of the eigenvalues of the time-changing operator Ft captured by LINOCS-
driven dLDS

Figure 19: Ground Truth operators and coefficients for the second dLDS experiment. A: The
ground truth basis dynamics operators {fj}J

j=1 consist of rotational matrices oriented in various directions.
B: Ground truth operators’ coefficients (c). C: Ground truth state x.
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Figure 20: Demonstration of LINOCS’ effect over iterations for Lorenz attractor with 900 time
points. A: MSE over iterations (curve corresponds to median values; shade represents 25%-75% percentiles
over time. B: MSE over time points over training iterations. C: Full lookahead reconstruction based on
operators identified under different iterations.
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Figure 21: Classical SLDS results (non LINOCS) on the real world data. The identified networks
({fj}J

j=1) by the non-LINOCS SLDS code (20), for each region in the real world data (17).
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Figure 22: SLDS results on real data. A: Identified operators per region by LINOCS. B: Identified
operators per region by classical SLDS. C: Switch times by LINOCS-SLDS vs classical SLDS. D: Number
of switches for LINOCS-SLDS vs. classical SLDS.
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