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Superclimbing dynamics is the signature feature of transverse quantum fluids describing wide su-
perfluid one-dimensional interfaces and/or edges with negligible Peierls barrier. Using Lagrangian
formalism, we show how the essence of the superclimb phenomenon—dynamic conjugation of the
fields of the superfluid phase and geometric shape—clearly manifests itself via characteristic modes
of autonomous motion of the insulating domain (“droplet”) with superclimbing edges. In the trans-
lation invariant case and in the absence of supercurrent along the edge, the droplet demonstrates
ballistic motion with the velocity-dependent shape and zero bulk currents. In an isotropic trapping
potential, the droplet features a doubly degenerate sloshing mode. The period of the ground-state
evolution of the superfluid phase (dictating the frequency of the AC Josephson effect) is sensitive
to the geometry of the droplet. The supercurrent along the edge dramatically changes the droplet
dynamics: The motion acquires features resembling that of a 2D charged particle interacting with
a perpendicular magnetic field. In a linear external potential (uniform force field), the state with a
supercurrent demonstrates a spectacular gyroscopic effect—uniform motion in the perpendicular to
the force direction.

I. INTRODUCTION

Recent progress in developing the theory of transverse
quantum fluids (TQF)—quasi-one-dimensional edge su-
perfluids featuring (at low enough temperature) sta-
ble persistent currents and off-diagonal long-range order
thanks to their infinite effective compressibility enabled
by the coupling to a particle reservoir in the transverse to
the superflow direction [1–5]—was originally motivated
by supertransport through a structurally imperfect crys-
tal of 4He phenomena [6–14]. Lately, quantum fluctu-
ations of the edge shape were systematically addressed
and demonstrated to be as interesting and informative
as superfluid properties [5]. For a review of all these ac-
tivities, see Ref. [15].

The long-wave shape dynamics of the (microscopically)
quantum rough superfluid edge stems from the super-
climb effect—the edge motion in the direction transverse
to its orientation supported by the supertranport of mat-
ter to/from the corresponding edge element [16]. Quan-
titatively, the superclimbing dynamics is described by
Hamiltonian formalism in which the field of the trans-
verse (say, vertical) displacements of the edge is canoni-
cally conjugate to the field of the superfluid phase [16].
In other words, the role of the density as a conjugate
variable to the phase (as explained in textbooks on su-
perfluidity; see, e.g., Ref. [17]) is played by the verti-
cal displacement of the edge. At the quantum level, the
ground-state and low-temperature fluctuations of the two
fields are statistically coupled. This allows one to access
superfluid properties of the edge by studying fluctuations
of its shape [5].

In this work, we observe that there exists yet another—
purely classical-field—way of revealing the key aspects of
the superclimbing dynamics, including the ones involv-
ing persistent-current states, through dynamics of the
insulating domain with superclimbing edges. Such a do-
main in the system of hard-core bosons with the nearest-

FIG. 1. Insulating domain with 1260 particles in model (1)
at V = −2.2t (symbol sizes are proportional to the average
occupation number). Simulations were performed at temper-
ature T = t/128. The red line is a circle used for better
visualization of the domain shape. By symmetry, a void in
the insulator occupying the outer space has the same proper-
ties.

neighbor hopping and interaction terms on the square
lattice is shown in Fig. 1 (numerous alternative setups
are mentioned in Sec. VI). To be more specific, the self-
bound domain state is described by the Hamiltonian

Hhc = −t
∑
⟨i,j⟩

b†jbi + V
∑
⟨i,j⟩

njni (V < −2t) , (1)

where bi is the bosonic annihilation operator and occu-
pation numbers obey ni ≤ 1. It can be re-written identi-
cally as the easy-axis spin-1/2 ferromagnetic model with
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Jx = Jy = 2t and Jz = −V . The width of the do-
main edge and its superfluid stiffness are controlled by
the nearest neighbor attraction and diverge at V → −2t.
As demonstrated in Ref. [5], when the edge width ex-
ceeds several lattice periods, the edge enters the TQF
regime when the Peierls barrier can be neglected on ex-
ponentially large scales—much larger than the domain
perimeter. Under these conditions, the discrete trans-
lation symmetry and the square-lattice discrete rotation
symmetry become irrelevant as well and the equilibrium
domain shape is expected to be a perfect circle; see Fig. 1.

The emergent (upon coarse-graining) translational in-
variance guarantees that the droplet can perform ballistic
motion with velocity-dependent shape in the absence of
the bulk currents. The droplet confined by an isotropic
external potential has to demonstrate a doubly degener-
ate sloshing mode. In the presence of persistent current
around the droplet edge, the degeneracy of the sloshing
mode is lifted, and the sloshing motion is accompanied
by Foucault-like precession. In a linear external poten-
tial (uniform force field), the state with a supercurrent
demonstrates a spectacular gyroscopic effect—uniform
motion in the perpendicular to the force direction.

II. THE MODEL

Quantitative analysis is conveniently performed with
the Lagrangian formalism in terms of the edge position,
r(ξ, t) = (x(ξ, t), y(ξ, t)), and the superfluid phase along
the edge, ϕ(ξ, t), as functions of time t, with parame-
ter ξ labelling the edge points. The structure of the
Lagrangian readily follows from the continuity equation,
the form of the latter expressing the law of conservation
of matter under specific conditions of (i) supertransport
along the edge and (ii) insulating incompressible bulk.

A. Parameterization freedom

Formally, it is convenient to view the three func-
tions x(ξ, t), y(ξ, t), ϕ(ξ, t) as dynamical fields despite
that there should be only two conjugate variables. The
redundancy in this approach is associated with the pa-
rameterization freedom. If r(ξ, t), ϕ(ξ, t) is a solution to
our dynamic problem, then, treating parameter ξ as an
arbitrary function of a new parameter, ξ′, and time, that
is, substituting ξ ≡ ξ(ξ′, t) into the solution, we get an
equivalent solution, r′(ξ′, t), ϕ′(ξ′, t), where

r′(ξ′, t) = r ( ξ(ξ′, t), t) , ϕ′(ξ′, t) = ϕ ( ξ(ξ′, t), t) . (2)

Thus, for the three variables there should be only two
physical equations of motion, with a freedom of choos-
ing this or that condition fixing the “gauge,” that is by
selecting a specific parameterization.

In the vast majority of cases, one would ultimately pre-
fer to work with two rather than three unknown functions

using parameterization of the following type:

x(ξ, t) = X(η(ξ, t), ξ, t), y(ξ, t) = Y (η(ξ, t), ξ, t). (3)

HereX(η, ξ, t) and Y (η, ξ, t) are certain fixed functions of
three variables and η(ξ, t) is the unknown field conjugate
(but not necessarily canonically) to the field ϕ(ξ, t). A
very important practical example of parameterization (3)
is the polar coordinate system with a moving origin:

x(θ, t) = x0(t) + r(θ, t) cos θ , (4)

y(θ, t) = y0(t) + r(θ, t) sin θ , (5)

where the radius r(θ, t) plays the role of the function
η(ξ, t) with ξ ≡ θ.
Fixing the gauge by Eqs. (3) can be implemented at

three different stages: Option 1 is to introduce the La-
grangian or Hamiltonian description directly in terms of
two rather than three fields. Such an approach was used
in Ref. [16], where the role of parameter ξ was played
by the coordinate x, in which case the field y(x) was ar-
gued to be canonically conjugate to the field ϕ(x). Along
similar lines, in polar coordinates, identifying parameter
ξ with the polar angle θ, one can see that the variable
canonically conjugate to ϕ(θ) is one half of the square of
the polar radius, r2(θ)/2. This observation then imme-
diately leads to the Hamiltonian of the system.
More flexible is Option 2 where one formulates

a generic Lagrangian in terms of the three fields,
x(ξ), y(ξ), ϕ(ξ), and then substitutes Eqs. (3) into the
Lagrangian to get a gauge-specific Lagrangian in terms
of ϕ(ξ) and η(ξ). Even more flexible is Option 3, where
the substitution (3) is implemented at the level of the
generic equations of motion, obtained from the generic
Lagrangian; or not used at all, so that the gauge is fixed
by a different protocol explained in Sec. II B.

B. Covariant representation

Gauge redundancy associated with the parameteri-
zation freedom implies that the system of three equa-
tions of motion following from the generic Lagrangian
should be degenerate: One should be able to reduce it to
two independent—and incomplete in view of the gauge
freedom—equations and a trivial identity. From super-
fluid hydrodynamics it is clear that the system of two
independent equations can be cast into the form when
one of them is the continuity equation expressing the law
of conservation of matter and the other one is the gener-
alized Beliaev–Josephson–Anderson (BJA) equation de-
scribing the time evolution of the field ϕ. In what follows
we will see that that is indeed the case. Meanwhile, it is
important to discuss the optimal representation of these
equations.
We want the two dynamic equations to be maximally

insensitive (covariant) with respect to the choice of pa-
rameterization. To this end, we employ the tools of differ-
ential geometry. Let l be the (algebraically understood)
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arc length, with its infinitesimal element being

dl = lξ dξ , lξ =
√

x2
ξ + y2ξ (6)

(xξ ≡ ∂ξx, yξ ≡ ∂ξy, ∂ξ ≡ ∂/∂ξ). The unit vectors

n̂ = l−1
ξ (yξ,−xξ) , t̂ = l−1

ξ (xξ, yξ) , (7)

are normal and tangent to the line, respectively. We will
also need the signed line curvature (xξξ ≡ ∂2

ξx, yξξ ≡
∂2
ξy):

κ = l−3
ξ (xξyξξ − yξxξξ) . (8)

Finally, an important role will be played by the arc-length
derivative:

∂l = l−1
ξ ∂ξ . (9)

The vectors n̂ and t̂, the scalar κ, and the operator ∂l
have purely geometric meaning rendering them covariant.
Expressing the two dynamic equations in terms of these
objects leaves potentially non-covariant only the terms
with time derivatives: ṙ and ϕ̇.
Considering time derivatives, our first observation is

that the scalar n̂ · ṙ is also gauge invariant. This can
be shown purely mathematically but is also immediately
clear from the physical meaning of this quantity—the
velocity of the displacement of the edge in the vertical
direction. Our second observation is that the scalar t̂· ṙ
definitely depends of the gauge and by no means can be
unambiguously defined unless some extra (gauge-fixing)
condition is applied. Indeed, the meaning of this quan-
tity is the velocity of the motion of the label ξ along
the edge. There are absolutely no physical consequences
associated with this “motion” leaving the shape of the
edge intact. But there is a mathematical consequence—
a “conspiracy” between t̂·ṙ, ϕ̇, and ∂lϕ that can be cast
in the form of the invariance with respect to the gauge
transformation,

t̂·ṙ → t̂·ṙ + g(ξ, t) (10)

ϕ̇ → ϕ̇ + g(ξ, t) ∂lϕ , (11)

where g(ξ, t) is an arbitrary function; in terms of the

reparameterization (2) it is expressed as g = lξ ξ̇(ξ
′, t).

The meaning of the transformation (10)–(11) is purely
geometrical (and, in particular, has nothing to do with
the physical meaning of ϕ). The transformation expresses
the rather obvious fact that the motion of the label along
the line creates an apparent contribution to time deriva-
tives of the fields proportional to the velocity t̂·ṙ and the
arc gradient of the field.

Hence, if all the time derivatives in the (otherwise co-
variant) equations of motion are expressed in terms of

n̂·ṙ, t̂·ṙ, and ϕ̇, then ϕ̇ and t̂·ṙ have to enter the equations
of motion in the form of

ϕ̇− (t̂·ṙ) ∂lϕ (covariant time derivative) . (12)

Furthermore, since the time derivative of ϕ̇ is not the
part of continuity equation, the term (12) should enter
only the BJA equation.
Gauge-invariance relations (10)–(11) suggest the fol-

lowing on-the-fly gauge-fixing protocol, which appears
very appropriate for numeric simulations. In this pro-
tocol, one assigns any desired value, including zero, to
the longitudinal velocity t̂ · ṙ at the time t and param-
eter ξ. The covariant time derivative (12) in the BJA
equation then automatically assigns the matching value
to ϕ̇.

C. Continuity equation

The superfluid current along the edge is given by

j = ns∂lϕ , (13)

where ns is the superfluid stiffness. As long as we are
interested in the regime of an appropriately wide edge
and not so large values of j, we can safely treat ns as
a constant. (Otherwise, we would need to take into ac-
count the dependence of ns on j, as well as on the line
orientation and curvature.)
The divergence of the superfluid current, ∂lj, yields

the local (and algebraically understood ) accumulation of
matter. Since the bulk is incompressibile, the edge shifts
accordingly in the transverse direction and the matter
balance is expressed by the continuity equation:

n̂ · ṙ + ∂lj = 0 ⇔ n̂ · ṙ = −ns∂
2
l ϕ . (14)

Here and in what follows the unit of length is defined by
the condition that the 2D particle number density in the
bulk equals unity.
Integrating Eq. (14) over the total arc length yields the

law of conservation of the area of the droplet, A:

A =
1

2

∮
dl n̂ · r , (15)

dA
dt

=

∮
dl n̂ · ṙ ∝

∮
dl ∂lj ≡ 0 . (16)

D. Lagrangian

The total energy of the system,

Etot[ϕ, r] = ESF[ϕ, r] + Ecnf [r] , (17)

splits into two distinct parts: the kinetic energy of su-
perfluid currents,

ESF[ϕ, r] =
ns

2

∮
dl(∂lϕ)

2 , (18)
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and the configurational energy, which, in a general case
of external potential, includes two terms:

Ecnf [r] = χ

∮
dl + Epot[r] . (19)

The first term is proportional to the total arc length. As
it was done previously with ns, we ignore the effects of
curvature, anisotropy, etc., and treat χ as a constant.
The second term is the potential energy of the droplet in
an external potential, U(r′):

Epot =

∫
A
U(r′) d2r′ (20)

(the integration is over the position r′ inside the droplet
area).

To produce the Lagrangian, we need to combine the
energy with the term conjugating superfluid phase field
to the edge shape degrees of freedom. The structure of
this term can be guessed based on the special case of an
almost straight edge with the parameterization ϕ ≡ ϕ(x),
y ≡ y(x) considered in Ref. [16]. In this case, the conju-
gating term has the form

∫
dxϕẏ suggesting a straight-

forward generalization to∮
dl ϕ n̂·ṙ =

∫
ϕ(yξẋ− xξ ẏ) dξ , (21)

thus leading to the Lagrangian

L =

∮
dl ϕ n̂·ṙ − Etot[ϕ, r] . (22)

The validation of the correctness of the form of the first
term of Lagrangian (22) comes from the fact that varia-
tion over ϕ correctly reproduces continuity equation (14).

E. Central potential

Of a particular interest is the case of central potential
U(r) = U(r), where polar parameterization (4)–(5) with
x0(t) = y0(t) = 0 is the most natural. In this case,
Lagrangian (22) takes the form

L = −
∮

dθ

[
ϕ̇r2

2
+

nsϕ
2
θ

2
√
r2θ + r2

+ χ
√
r2θ + r2 + Λ(r)

]
,

(23)

Λ(r) =

∫ r

0

U(r′)r′dr′ . (24)

Note that (as we already mentioned) the variable r2/2 is
canonically conjugate to ϕ.

F. Generalized Beliaev–Josephson–Anderson
equation

Observing that the variation of the term Epot[r] with
respect to the edge position can be written as

δEpot[r] =

∮
(yξδx− xξδy)U(x(ξ), y(ξ)) dξ , (25)

we then find that variations of (22) with respect to x and
y yield, respectively, two equations:

−ϕ̇yξ + ẏϕξ − ∂ξ

[(
nsϕ

2
ξ

2l3ξ
− χ

lξ

)
xξ

]
− yξU = 0 , (26)

ϕ̇xξ − ẋϕξ − ∂ξ

[(
nsϕ

2
ξ

2l3ξ
− χ

lξ

)
yξ

]
+ xξU = 0 . (27)

Multiplying (26) by xξ and (27) by yξ, and then adding
the results produces the anticipated identity, if the con-
tinuity equation (14) is taken into account. Multiplying
(26) by yξ and (27) by xξ and then subtracting the re-
sults, we obtain the the BJA relation as

ϕ̇− (t̂·ṙ) ∂lϕ = κ(r)
[ns

2
(∂lϕ)

2 − χ
]
− U(r) . (28)

Note the covariant form of this equation.

III. NON-GALILEAN BALLISTICS

Here we are interested in the motion of the droplet
as a whole, that is, without changing its shape in time.
In what follows, we will consider the case ṙ = 0 in the
parametrization (4)–(5), and use the reference frame of
the stationary lattice unless otherwise specified. With
the equations of motion (14) and (28) we can readily
prove (by contradiction) the absence of Galilean ballis-
tics of the droplet. As a by-product, we will establish that
the droplet will perform a uniform motion while having
a circular shape only in the presence of the fine-tuned
external potential in the transverse to the motion direc-
tion.
Suppose we have a circular droplet of radius r =

R =const moving along the x-axis with the velocity v0.
In Eqs. (5) we then have y0 = 0, x0 = v0t, that is,
n̂ · ṙ = v0 cos θ and ∂l = R−1∂θ, so that Eq. (14) im-
plies

ϕ(θ, t) =
v0R

2

ns
cos θ +Mθ − µt , (29)

where M is the phase winding number and µ is a cer-
tain constant. If the lattice frame of reference—the one
we work in—is inertial, then M is an integer. If the
lattice rotates with angular velocity Ω, then in its ref-
erence frame integer values of M have to be shifted by
∆M = φ0/(2π) = m0ΩR

2, where m0 is the particle mass
and φ0 ∈ [−π, π] is the rotation-induced phase shift; here
and in what follows we set ℏ = 1. The dependence on
φ0 adds a gyrometric aspect to the problem. Linearity of
the time-dependent additive term in (29) is required by
consistency with the time-independent r.h.s. of Eq. (28).
Substitution of ϕ(θ, t) of Eq. (29) into Eq. (28) shows

that there should be a fine-tuned external potential

U(y) =
3v20y

2

2nsR
− 2Mv0y

R2
, (30)
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and the constant has been dropped.
The M = 0 result reveals inconsistency between the

uniform motion and circular droplet shape in the ab-
sence of the external potential. To satisfy Eq. (28) at
low velocity,

v0 ≪
√
nsχ

R
, (31)

one has to assume small deformation of the droplet shape
(and thus its curvature), r(θ) = R− ϵf(θ). Keeping only
linear in ϵ terms in (28) we obtain

ϵ =
v20R

3

4nsχ
≪ R , f = cos(2θ) , (32)

i.e., in the absence of external potential, the distortion of
the circular shape (elongation in the y-direction) of the
moving droplet (withM = 0) vanishes quadratically with
v0 at v0 → 0. The parabolic confining potential in (30)
is required to “compress” the droplet back to its circular
shape. From the flow kinetic energy, ESF = πR3v20/2ns,
we also obtain the droplet effective mass as

meff =
πR3

ns
+O(ϵ2) . (33)

The same result follows from the analysis of the sloshing
mode considered in Sec. V. When the condition (31) is
violated, the superflow at the edge is no longer protected
by small parameters against either quantum phase slips
or dynamic spectrum instability [2]; also, at such values
of v0, the bi-linear in ∂lϕ form of ESF cannot be justified.
The M ̸= 0 case is fundamentally different. To begin

with, in the absence of external potential it is impossi-
ble to satisfy Eq. (28) by deforming the droplet shape:
Mathematically, the problem reduces to solving equation

f + fθθ = −3 cos(2θ) + b sin θ ,

which has no 2π-periodic solutions when b ∝ M is non-
zero. In other words, persistent current at the droplet
edge eliminates the possibility of the ballistic propagation
in free space! Uniform motion at the velocity v0 along x
becomes possible, if both the droplet deformation

r = R− ϵ cos(2θ) (34)

occurs and the uniform force

F =
2Mv0
R2

, (35)

with U = −Fy along y is applied. [It is assumed that
M2ns/(2χR

2) ≪ 1]. It is worth mentioning that such
linear potential can be induced by accelerating the whole
lattice.

Of special interest is the case U = 0, M ̸= 0. As shown
above, no uniform motion is possible in this case. The so-
lution to the system of equations (14) and (28) exits when
the droplet performs a centripetal motion with some ra-
dius Rc at some angular velocity ωc and simultaneously

is deformed. We consider the case of small deformation
r = R−ϵf(θ). Then, we find n̂·r = Rcωc sin(θ−ωct) and
t̂ ·r = Rcωc cos(θ − ωct). The continuity equation gives
ϕ = (RcωcR

2/ns) sin(ω − ωct) +Mθ − µt. Substituting
ϕ into Eq. (28) gives

r = R− (Rcωc)
2R3 cos[2(θ − ωct)]

4nsχ
+O(ϵ2) (36)

and

ωc =
2Mns

R3
. (37)

This situation resembles centripetal motion of a particle
with mass (33) carrying some charge q in the magnetic
field B = 2πM/q.

IV. GROUND-STATE SOLUTION AND AC
JOSEPHSON EFFECT

As in any superfluid, the ground state of the droplet
features broken time-translation symmetry—the time-
crystallization effect—manifested by the linear growth of
the phase with time:

ϕ̇ = −µ , (38)

where µ = dE/dN is the chemical potential that depends
on the area and shape of the droplet. The latter is sensi-
tive to the presence of anisotropic trapping potential, in
which case the shape becomes also sensitive to the pres-
ence of the supercurrent. The continuity equation states
that the phase gradient along the edge is constant:

∂lϕ = ζ . (39)

The two parameters, µ and ζ, control the shape of the
droplet via the stationary BJA equation:(

χ− nsζ
2

2

)
κ(r) + U(r) = µ . (40)

In the general case of an anisotropic potential U(r) and
nonzero supercurrent, the parameter ζ can be viewed at
the eigenvalue of the problem at a given value of µ. It
has to satisfy the phase-winding quantization condition

ζ

∮
dl = 2πM . (41)

(Equivalently, µ can be viewed as an eigenvalue of the
problem at a given value ζ.) For a given phase winding
M , we thus get a single-parametric family of solutions
controlled by the pair (µ, ζM (µ)) that implicitly defines
the shape of the droplet as a function of the total amount
of matter and M .
In the case of isotropic potential, the situation is very

simple. The droplet has a circular form, meaning that
κ = 1/R and ζ = M/R, where R is the radius of the
droplet. Equation (40) then simply relates µ to R and
M :

µ = U(r) +
1

R

(
χ− nsM

2

2R2

)
. (42)
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V. NORMAL MODES.
EFFECT OF A SUPERCURRENT

To find normal modes of a circular droplet of radius
R trapped in a rotationally symmetric potential we need
to linearize equations of motion in the vicinity of the
equilibrium solution with µ given by Eq. (42). This is
done by substituting

ϕ(θ, t) = −µt+Mθ + φ(θ, t) , (43)

r(θ, t) = R+ h(θ, t) , (44)

either into equations of motion (14) and (28) or di-
rectly into the Lagrangian (23). In the latter case—
implemented below, the linear in φ and h terms automat-
ically nullify and the resulting bi-linear Lagrangian gen-
erates the desired pair of linear in φ and h dynamic equa-
tions describing the normal modes, including the ballistic
motion in the absence of the trapping potential.

The bi-linear Lagrangian reads

Lbl = −R
∮
dθ

[
φ̇h+

Aφ2
θ

2
−Bφθh+

Ch2
θ

2
+

Dh2

2

]
,

(45)

A =
ns

R2
, B =

nsM

R3
, (46)

C =
χ

R2
− nsM

2

2R4
, D = U ′(R)− χ

R2
+

3nsM
2

2R4
. (47)

The solution to the equations of motion,

ḣ+Aφθθ −Bhθ = 0 , (48)

φ̇−Bφθ − Chθθ +Dh = 0 , (49)

is a linear combination of normal modes

hm = Reαmeimθ−iω±
mt, φm = Reβmeimθ−iω±

mt (50)

ω±
m = Bm ± m

√
A(m2C +D), m = 1, 2, 3, . . . . (51)

With Eqs. (46)–(47) we have

ω±
m =

mnsM

R3
±m

√
nsU ′(R)

R2
+

n2
sM

2

R6
+

(m2−1)nsχ̃

R4
,

(52)
where

χ̃ = χ− nsM
2

2R2
(53)

is a renormalized (due to the supercurrent) parameter χ.
In what follows, we assume that this renormalization is
small because the condition

|M | ≪
√
χ/ns R , (54)

protects supercurrent states from quantum phase slips.

A. Fundamental Modes

Of special interest are fundamental solutions corre-
sponding to m = 1. Their frequencies do not depend
on χ but do depend on M :

ω±
1 =

nsM

R3
±

√
ns

R2

[
U ′(R) +

nsM2

R4

]
. (55)

In the absence of supercurrents, both frequencies are
equal (up to the global sign) and the fundamental solu-
tion corresponds to the doubly degenerate sloshing mode
with frequency

ωsl =

√
ns U ′(R)

R
. (56)

In the limit of U ′(R) → 0, this mode corresponds to
ballistic motion with near-circular droplet shape; i.e., it
is identical to that of a point particle with effective mass
(33) in the potential πR2U(r).
Supercurrent qualitatively changes the picture of mo-

tion. The two frequencies become different leading to
two characteristic regimes controlled by the value of the
parameter

γ =
|M |
R2

√
ns

U ′(R)
. (57)

At γ ≪ 1, the relative difference between the magnitudes
of the two frequencies is small:

|ω±
1 | = ωsl

(√
1 + γ2 ± γ

)
. (58)

Here we are dealing with the previously-discussed slosh-
ing mode that now demonstrates slow Foucault-type pre-
cession.
In the regime γ ≫ 1, we have |ω−

1 | ≪ |ω+
1 |:

|ω±
1 | = ω∗

√
1 + γ−2 ± 1

2
, ω∗ =

2ns|M |
R3

. (59)

Here the motion is similar to that of a 2D charged particle
in perpendicular to the plane magnetic field and weak
harmonic trap. In particular, this means that there is no
ballistic motion at M ̸= 0. Indeed, in the absence of the
external potential, |ω+

1 | = ω∗ and ω−
1 = 0, implying that

the center of mass performs uniform circular motion with
the angular frequency ω∗.

B. Modes with m ≫ 1

At m ≫ 1 we can neglect the middle term under the
square root in Eq. (52) because inequality (54) guarantees
that it is small and is getting progressively less relevant
with increasing m, and omit 1 compared to m2:

|ω±
m| → m

√
ns

R2

[
U ′(R) +

m2χ̃

R2

]
± mnsM

R3
(m ≫ 1) .

(60)
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For the same reasons the second term is a small correc-
tion. If the external potential U is appropriately weak or
absent, we can also omit the term U ′(R):

|ω±
m| → m2

√
nsχ̃

R2
± mnsM

R3

(
R2 U ′(R)

χ
≪ m2

)
,

(61)
to recover the quadratic dispersion of elementary exci-
tations in the TQF state of a straight edge [1]. At
U ′(R) ≫ χ/R2, there emerges a range of m values where
the dispersion is linear inm and independent of χ, reflect-
ing the fact that the potential of that strength converts
the edge into a Luttinger liquid.

VI. CONCLUSIONS AND OUTLOOK

A two-dimensional insulating domain (“droplet”) with
a superclimbing edge, see Fig. 1, can be formed in a sys-
tem of hard-core bosons with nearest-neighbor attraction
tuned to guarantee, on the one hand, a phase-separated
ground state, and, on the other hand, wide enough—and
thus microscopically quantum-rough—edge. The coun-
terintuitive autonomous dynamics of such a domain is
controlled by and is characteristic of the most unusual
properties of Transverse Quantum Fluid (TQF) formed
at the droplet edge.

The supertransport along the edge enables coherent
(dissipation-free) displacement of the edge—the super-
climbing motion. For an isolated droplet, as opposed to
an infinitely long edge, or an edge with pinned ends, the
supeclimbing motion features fundamental modes sensi-
tive to the presence of circulating supercurrent along the
edge. In the translation invariant case and in the ab-
sence of circulating current, the droplet moves pseudo-
ballistically while preserving its near circular shape—
apart from slight, proportional to the square of the ve-
locity, elongation in the transverse to the displacement
direction. “Pseudo” refers to the fact that the bulk cur-
rents are zero: the insulating domain propagates in space
exclusively through the matter transfer by edge super-
currents. An isotropic trapping potential converts the
pseudo-ballistic motion into the sloshing mode.

The circulating supercurrent along the edge dramati-
cally changes the droplet dynamics: The motion acquires
features resembling that of a gyroscope or a 2D charged

particle in a perpendicular magnetic field. In a linear
external potential (uniform force field), a droplet with a
circulating supercurrent demonstrates a spectacular gy-
roscopic effect—uniform motion in the perpendicular to
the force direction. This effect has a natural gyromet-
ric aspect when the lattice rotates; the rotation-induced
phase twist results in finite superrcurrent circulation in
the reference frame of the lattice.

As in any superfluid, the ground state of the droplet
features broken time-translation symmetry—the time-
crystallization effect—manifested in the linear growth of
the phase with time, ϕ̇ = −µt. The period, 2π/µ, of the
superfluid phase evolution in the ground-state (dictating
the frequency of the AC Josephson effect) is sensitive to
the size (as well as other geometric details) of the droplet;
see Eq. (42) for the case of a circle.

On the technical side, dynamics of the droplet is de-
scribed by Lagrangian formalism in terms of the edge po-
sition, r(ξ, t) = (x(ξ, t), y(ξ, t)), and the superfluid phase
along the edge, ϕ(ξ, t), as functions of time t, with pa-
rameter ξ labelling the edge points. The structure of the
Lagrangian, Eq. (22), readily follows from the continu-
ity equation, the form of the latter expressing the law
of conservation of matter under specific conditions of (i)
supertransport along the edge and (ii) insulating incom-
pressible bulk. The two Euler-Lagrange equations im-
plied by the Lagrangian (22) are (i) the continuity equa-
tion (14) and (ii) the generalized Beliaev–Josephson–
Anderson equation (28).

Numerous other possible physical implementations
of the autonomous superclimbing droplet include
multi-component bosons and higher-spin XY -magnets,
fermionic rather than bosonic systems of ultracold atoms,
4He and/or 3He domains on substrates or complete layers
of similar atoms, superclimbing edge dislocation loops in
4He and/or 3He. Finally, similar phenomena may takes
place in 3D with an insulating ball having a superclimb-
ing surface.
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