
ar
X

iv
:2

40
4.

18
33

7v
1

 [
cs

.D
S]

 2
9

A
pr

 2
02

4

Additive Spanner Lower Bounds with Optimal Inner Graph

Structure

Greg Bodwin1, Gary Hoppenworth1, Virginia Vassilevska Williams2, Nicole Wein1, and

Zixuan Xu2

1University of Michigan EECS. {bodwin,garytho,nswein}@umich.edu∗

2MIT, EECS. {virgi,zixuanxu}@mit.edu†

Abstract

We construct n-node graphs on which any O(n)-size spanner has additive error at least +Ω(n3/17),
improving on the previous best lower bound of Ω(n1/7) [Bodwin-Hoppenworth FOCS ’22]. Our construc-
tion completes the first two steps of a particular three-step research program, introduced in prior work
and overviewed here, aimed at producing tight bounds for the problem by aligning aspects of the upper
and lower bound constructions. More specifically, we develop techniques that enable the use of inner
graphs in the lower bound framework whose technical properties are provably tight with the correspond-
ing assumptions made in the upper bounds. As an additional application of our techniques, we improve
the corresponding lower bound for O(n)-size additive emulators to +Ω(n1/14).

1 Introduction

Suppose that we want to compute shortest paths or distances in an enormous graph G. When G is too big
to store in memory, a popular strategy is to instead use a spanner of G, which is a much sparser subgraph H
with approximately the same shortest path metric as G. This can substantially improve storage or runtime
costs, in exchange for a small error in the distance information. Perhaps the most well-applied case is when
the spanner is asymptotically as sparse as possible; that is, |E(H)| = O(n) for an n-node input graph G
(note that Ω(n) edges are needed just to preserve connectivity).

There are several ways to measure the quality of approximation of a spanner. The two most popular are
as follows:

Definition 1.1 (Multiplicative and Additive Spanners) Given a graph G, a subgraph1 H ⊆ G is a multi-
plicative ·k spanner if for all nodes s, t we have distH(s, t) ≤ distG(s, t) · k. It is an additive +k spanner if
we have distH(s, t) ≤ distG(s, t) + k.

The parameter k is called the (additive or multiplicative) stretch of the spanner. A famous paper of
Althöfer, Das, Dobkin, Joseph, and Soares [ADD+93] settled the optimal multiplicative stretch for O(n)-size
spanners:2

Theorem 1.2 ([ADD+93]) Every n-node graph has a spanner H of size |E(H)| = O(n) and multiplicative
stretch O(log n). This stretch cannot generally be improved to o(logn).

∗Bodwin and Hoppenworth were supported by NSF:AF 2153680.
†V. Williams and Xu (partially) were supported by NSF Grant CCF-2330048, BSF Grant 2020356 and a Simons Investigator

Award.
1Throughout the paper, for brevity, we write “subgraph” to specifically mean a subgraph over the same vertex set as the

original graph.
2Although we generally treat input graphs G as undirected and unweighted in this paper, this particular theorem also extends

to the setting where G is weighted.

1

http://arxiv.org/abs/2404.18337v1

Upper Bound Lower Bound

O(n)-size Spanners

Ω(logn) [Woo06]

Õ(n9/16) [Pet09] Ω(n1/22) [AB17]

Õ(n1/2) [BV15] Ω(n1/11) [HP18, Lu19]
O(n3/7+ε) [BV21] Ω(n2/21) [LVWX22]

O(n
15−

√
54

19
<0.403) [TZ23] Ω(n1/7) [BH22]

Ω(n3/17) this paper

Table 1: The progression of upper and lower bounds on the additive error associated to n-node spanners
on O(n) edges; current state of the art bounds are highlighted in red. See also [BCE05, Che13, BKMP10,
ACIM99, ABP18] for work on additive spanners of superlinear size.

The goal of this paper is to make progress on the corresponding question for additive error. This question
has been intensively studied; see Table 1 for the progression of results. Our contributions are on the lower
bounds side:

Theorem 1.3 (Main Result) There exists an infinite family of n-vertex undirected graphs for which any
additive spanner on O(n) edges has additive stretch Ω(n3/17).

Our techniques also lead to progress on related questions for O(n)-size emulators, which we discuss further
in Section 1.2. Before we explain this, we contextualize Theorem 1.3 by explaining in more depth the sense
in which it moves the upper and lower bounds closer together.

1.1 Our Contribution and Next Steps for the Area

There are well-established frameworks in place for proving upper and lower bounds for O(n)-size spanners,
and the current sentiment among experts is that these two frameworks could eventually produce near-
matching (likely within nε factors) upper and lower bounds. Both frameworks can be broken down into
three corresponding steps, and over the last few years, a research program has emerged in which the long-
term goal is to find optimal bounds for the problem by making each of these three steps align.3 That is,
we can investigate what “should” happen in each step if a hypothetical optimal version of the upper bound
framework were run on the graph from a hypothetical optimal version of the lower bound framework. This
thought experiment leads to a list of three concrete features that should be realized in an ideal lower bound,
which we overview at a high level in Table 2.

However, it is easier to write down this wishlist for the lower bound than it is to actually achieve the
listed features in a construction; we discuss the various technical barriers in Section 2. The contribution
of the current paper is to achieve the first two steps of alignment (i.e., the first two items in Table 2)
simultaneously, which both have to do with optimizing properties of the so-called inner graph in the lower
bound construction. That said, the ideal structure of an inner graph has been known since [BV21], and well
before that Coppersmith and Elkin [CE06] found graph constructions achieving this ideal structure (“subset
distance preserver lower bound graphs”). Our main technical contributions are not in designing new inner
graphs, but rather, in improving the outer graph in a way that allows these previously known optimal inner
graphs to be used within the framework for the first time.

This paper makes no real progress on the third and final point of alignment, which contends with opti-
mizing certain quantitative properties of the shortest paths in the outer graph. Here there is still significant
misalignment between the upper and lower bounds, which is responsible for essentially all of the remaining
numeric gap between the current upper and lower bounds for O(n)-size spanners. Improving this third point,
either on the upper bounds side or the lower bounds side, is the clear next step for the area and it may first
require advances in our understanding of distance preservers [CE06]; see [BH22] for discussion.

3This program was made somewhat explicit in [BH22] (c.f. Section 2.4), but was implicit in work before that.

2

Step in Upper Bounds Step in Lower Bounds What should ideally happen
when we run the upper bound
framework on a lower bound
graph?

Cover the input graph by clusters
C of radius r each. These clus-
ters are classified as either small
or large, depending on whether
their number of nodes is smaller
or larger than r4/3.

Start with an outer graph, and
systematically replace each node
with a disjoint copy of an inner
graph.

The upper bound should select
the inner graphs as its clus-
ters. All inner graphs should
have Θ(r4/3) nodes, since the
worst case for the upper bound
is when all clusters are near the
large/small threshold.

Small clusters C have a node sep-
arator of size≤ |C|1/4. Construct
a subset distance preserver on
each small cluster, preserving all
shortest paths between separator
nodes, at cost O(|C|) [CE06].

The inner graphs should be se-
lected as the union of many
long unique shortest paths among
nodes that form a separator for
the graph, and also any two of
these shortest paths may inter-
sect on at most one node.

The inner graph should be a lower
bound graph against subset dis-
tance preservers with Θ(|C|1/4)
source nodes (with a large im-
plicit constant), so that the ap-
proach of constructing a subset
distance preserver is too expen-
sive to be used in an attack
against the lower bound.

Large clusters C are handled by
adding some additional shortest
paths in the spanner to connect
far-away clusters to each other.
Using the path-buying framework
[BKMP10], we can limit the total
number and length of the short-
est paths we need to add.

The outer graph is selected to be
the union of as many long unique
shortest paths as possible, and
any two of these shortest paths
may intersect on at most one
edge. That is, the outer graph is
a slightly modified distance pre-
server lower bound graph.

The shortest paths added for
large clusters should coincide
with the shortest paths in the
original outer graph (before inner
graph replacement). The path-
buying bounds on the number
and length of these shortest paths
should coincide with the number
and length of these shortest paths
in the outer graph.

Table 2: A point-by-point comparison of the frameworks used to prove upper and lower bounds. Our main
technical contributions are to satisfy the first point of alignment by enabling the use of inner graphs with
Θ(r4/3) nodes (where +Ω(r) is the desired lower bound on spanner error), and to satisfy the second point
of alignment by enabling the use of subset distance preserver lower bounds for our inner graphs. Neither of
these properties were fully achieved in prior work.

3

1.2 Additional Results

The technical improvements to the construction that enable our improved spanner lower bounds also imply
improvements for two nearby objects, which we overview next. First, an emulator is similar to a spanner,
but not required to be a subgraph:

Definition 1.4 (Additive Emulators) Given a graph G, a graph H on the same vertex set as G is an additive
+k emulator if for all nodes s, t we have

distG(s, t) ≤ distH(s, t) ≤ distG(s, t) + k.

An emulator H is allowed to be weighted, even when the input graph G is unweighted. Emulators
generalize spanners, and hence the upper and lower bounds known for O(n)-size emulators are a bit lower
than the corresponding bounds for spanners. See Table 3 for the progression of results on the additive error
that can be obtained for O(n)-size emulators.

Upper Bound Lower Bound

O(n)-size Emulators

O(n1/3+ε) [BV15] Ω(logn) [Woo06]
O(n3/11+ε) [BV21] Ω(n1/22) [AB17]

Õ(n1/4) [Pet09] Ω(n1/18) [HP18]

Õ(n2/9−1/1600<0.222) [KP23] Ω(n2/29) [LVWX22]

O(n
1

3+
√

5
+ε<0.191

) [Hop24] Ω(n1/14) this paper

Table 3: The progression of upper and lower bounds on the additive error associated to n-node emulators
on O(n) edges; current state of the art bounds are highlighted in red. See also [DHZ00].

A similar lower bound framework is used to achieve lower bounds for emulators, and hence our new
technical machinery improves the current lower bounds for emulators as well:

Theorem 1.5 There exists an infinite family of n-vertex undirected graphs for which any additive emulator
on O(n) edges has additive stretch Ω(n1/14).

Our numeric improvement in the lower bound for emulators is more modest than our improvement for
spanners; at a high level, this is because our main improvement is to enable stronger inner graphs in the
lower bound framework, but the role of the inner graph is generally less important in emulator lower bounds.

We next provide a more fine-grained overview of our lower bound framework, and we describe our technical
improvements that lead to our new results in more detail.

2 Technical Overview

In this section we will give an overview of the different technical components in our lower bound graph
construction. We start by reviewing the obstacle product framework in Section 2.1 and recalling some ideas
from prior work in Section 2.2. Finally we will discuss the new components in our construction in Section 2.3.

2.1 The obstacle product framework

Similar to all previous works including [AB17, HP18, LVWX22, BH22] on proving stretch lower bounds for
linear-sized additive spanners, our construction falls under the obstacle product framework introduced in
[AB17]. Any construction under this framework consists of an outer graph GO = (VO, EO) and an inner
graph GI = (VI , EI) where every vertex in the outer graph is replaced by a copy of the inner graph. The
desired outer graph should contain a set pairs PO ⊆ VO × VO often called the critical pairs such that the
following holds:

4

1. For each pair (s, t) ∈ PO, the shortest path from s to t is unique. These unique shortest paths
connecting between pairs in PO are often called the critical paths.

2. The critical paths have roughly the same length Θ(k).

3. The critical paths are pairwise edge disjoint.

When we replace each vertex in the outer graph with a copy of the inner graph GI , we make sure that
the critical paths remain the unique shortest paths between their endpoints and pairwise edge-disjoint by
attaching each incoming edge and outgoing edge to distinct vertices of the inner graph. Finally, we subdivide
the edges originally in GO into paths of length Θ(k). Now in the resulting graph denoted as Gobs =
(Vobs, Eobs) with critical pairs Pobs, each critical path between the endpoints in Pobs uniquely corresponds
to a critical path in GO and it takes the form of traveling alternatingly between subdivided edges in GO and
paths in GI . In particular, each critical path travels through Θ(k) subdivided paths of length Θ(k), and
Θ(k) inner graph copies.

Now let us see how to show that any sparse spanner on Gobs must suffer additive distortion +Ω(k). The
goal is to argue that if lots of edges are missing in the spanner H ⊆ Gobs compared to Gobs, then there exists
some pair (s, t) ∈ Pobs whose shortest path π in H falls into one of the following two cases:

1. If π traverses the same sequence of inner graph copies as the critical path in Gobs, then it must use
at least one extra edge in each inner graph copy compared to the critical path in the original graph
due to missing edges. Since the critical path passes through Θ(k) inner graph copies, the path π must
suffer a +Ω(k) distortion in total.

2. If π traverses a different sequence of inner graph copies, then it must traverse a different set of subdi-
vided paths corresponding to the edges in GO. Since the critical paths in GO are the unique shortest
paths between its endpoints, π must traverse at least one more subdivided path of length Θ(k) and
thus suffer a +Ω(k) distortion.

Furthermore, note that the reason behind doing inner graph replacement is that without the inner graphs,
subdividing each edge of the outer graph would significantly sparsify the graph so that even a trivial spanner
including all the edges would have linear size. Adding the inner graphs helps balance the overall density of
the graph so that any linear-sized spanner needs to be nontrivial. Thus, ideally we would want the inner
graphs to be dense.

2.2 The outer graph: distance preservers and the alternation product

In this subsection, we review the two key components for the outer graph construction: the distance preserver
lower bound graph given in [CE06] and the alternation product first used in [Hes03].

Distance preserver lower bound graph. Given a graph G = (V,E) and a set of pairs P ⊆ V ×
V , a distance preserver H is a sparse subgraph of G that preserves the distances for every pair in P
exactly. Previously, Coppersmith and Elkin [CE06] obtained a lower bound instance for distance preservers
by constructing a large set of vertex pairs with pairwise edge-disjoint unique shortest paths that are as long
as possible; the union of the edges of these paths is the lower bound instance. Following the intuition outlined
in Section 2.1, it is natural to consider using the distance preserver lower bound construction of [CE06] as
the outer graph. From now on, we will abbreviate the term “distance preserver lower bound graph” to “DP
LB graph” and the term “Coppersmith-Elkin construction” to “CE construction” for convenience.

Indeed, all prior work uses some version of the CE construction of DP LB graph as the outer graph, and so
do we. The CE construction is a geometric construction where the vertex set corresponds to a d-dimensional
integer grid [n]d and edges are added corresponding to a d-dimensional convex set Bd(r) defined to be the
vertices of the convex hull of integer points contained in a ball of radius r > 0. More specifically, the vertices
corresponding to the points ~x, ~y are connected by an edge if ~y − ~x ∈ Bd(r). Then the critical paths are
defined to be the paths corresponding to the straight lines starting from a “start zone” passing through the

5

grid, i.e. the paths that repeatedly take the edge corresponding to the same vector in Bd(r). By convexity
of the set Bd(r), one can show that these critical paths are edge-disjoint and they are the unique shortest
paths between their endpoints.

Prior to the work of [BH22], works including [HP18, LVWX22] all considered a layered version of the
DP LB graph as the outer graph. Namely the graph contains ℓ + 1 layers where each layer corresponds to
a d-dimensional integer grid [n]d and edges are added between adjacent layers corresponding to the convex
set Bd(r) similarly as defined in [CE06]. Then the critical paths are defined to be the paths that start in the
first layer and end in the last layer that repeatedly take the edge corresponding to the same vector in Bd(r).
This layering simplifies the stretch analysis for additive spanner lower bounds because it is easy to argue
that all the critical paths have length exactly ℓ and the shortest path should not take any backward edges as
it will then need to traverse more layers. However, the layered version resulted in worse bounds compared to
the original unlayered version but it was unclear at the time how to analyze an unlayered outer graph. Most
recently, Bodwin and Hoppenworth [BH22] developed a new analysis framework and successfully analyzed
an obstacle product graph with a modified version of the unlayered DP LB graph as the outer graph. As
a result, they improved the lower bound to Ω(n1/7) from Ω(n1/10.5) where the former remains the current
best known lower bound before this work. We use the unlayered outer graph construction in [BH22] as an
ingredient in our construction.

The alternation product. Another important idea that goes in to the outer graph construction is the
alternation product first used in [Hes03]. Subsequent works including [AB17, HP18, LVWX22] all use the
alternation product in the outer graph construction. Consider two copies G1, G2 of the same 2-dimensional
layered DP LB graph with ℓ+1 layers and convex set B2(r). Namely, each layer corresponds to the [n]2 grid
and the edges correspond to the 2-dimensional convex set B2(r) of radius r. The original implementation of
the alternation product graph Galt used in [Hes03, AB17, HP18] of G1 and G2 is a graph on 2ℓ+1 layers with
each layer corresponding to the 4-dimensional grid [n]4. Each vertex in Galt corresponds the pair (v1, v2)
where v1 ∈ G1, v2 ∈ G2 and the edges are added alternatingly between adjacent layers according to G1 and
G2, respectively. Specifically, between layer i and i+ 1 for i odd, we connect the vertex (~x, ~y) for ~x, ~y ∈ [n]2

to (~x + ~w, ~y) for ~w ∈ B2(r); for i even, we connect the vertex (~x, ~y) to (~x, ~y + ~w) for ~w ∈ B2(r). In other
words, Galt keeps track of G1 using the first two coordinates and G2 using the last two coordinates. Then
a critical path π in Galt corresponds to a pair of critical paths π1 in G1 and π2 in G2 by taking alternating
steps from π1 and π2. So the main advantage of the alternation product for us is that it gives an extra
product structure over the set of critical paths that we want in our construction.

Unlike in our construction, prior works including [Hes03, AB17, HP18, LVWX22] apply the alternation
product in order to obtain a different relative count between the number of vertices and the number of
critical pairs rather than to obtain the extra product structure. However, these changes in parameters
are in fact unfavorable to the construction for linear-sized spanner lower bounds. To see this, notice that
one can equivalently think of Galt as 4-dimensional CE construction graph using the smaller convex set
{(~w1, ~w2) | ~w1, ~w2 ∈ B2(r)} instead ofB4(r), which means thatGalt has fewer critical pairs (see Section 2.3 for
a more detailed discussion). In fact, in [HP18], Huang and Pettie gave an Ω(n1/11) lower bound construction
without the alternation product that improved on their own construction that uses the alternation product
which gave a bound of Ω(n1/13) in the same paper. Later in [LVWX22], Lu, Vassilevska Wiliams, Wein
and Xu improved on the alternation product that reduces the loss in the number of critical pairs compared
to the CE construction, thereby obtaining an Ω(n1/10.5) lower bound that improved on the previous best
bound of Ω(n1/11). Most recently, Vassilevska Wiliams, Xu and Xu implicitly constructed an alternation
product graph in their O(m)-shortcut lower bound construction in [VXX24] that asymptotically matches the
number critical pairs in the CE construction. Unfortunately, their construction is under a different setting
so we cannot directly apply their technique to our construction as a blackbox. However, by isolating a main
observation implied in their work, we were able to integrate such an alternation product into our construction
(see Section 2.3).

6

Citation Lower bound Outer graph Inner graph

Woodruff [Woo06] Ω(log n) Butterfly Biclique

Abboud, Bodwin [AB17] Ω(n1/22) Layered DP LB + Alt Product Biclique

Huang, Pettie [HP18] Ω(n1/13) Layered DP LB + Alt Product Biclique

Huang, Pettie [HP18] Ω(n1/11) Layered DP LB Layered DP LB

Lu, Vassilevska W., Wein,
Xu [LVWX22]

Ω(n1/10.5) Layered DP LB + Improved Alt Product Biclique

Bodwin, Hoppenworth
[BH22]

Ω(n1/7) Unlayered DP LB DP LB

This work Ω(n3/17) Unlayered DP LB + Optimal Alt Product Subset DP LB

Table 4: All known lower bound constructions

2.3 Our construction: optimal unlayered alternation product and optimal inner

graph structure

Our main technical contribution is a linear-sized additive spanner lower bound construction that carefully
combines the following ideas:

1. An unlayered DP LB graph as the outer graph, as in [BH22].

2. An optimal alternation product implicit in [VXX24].

3. An optimal subset DP LB graph as the inner graphs, as motivated in Table 2.

We start with comparing our construction with the previously known lower bound constructions in Table 4.
In the following, we will discuss the main components of our construction.

Outer Graph: Unlayered DP LB graph with optimal alternation product. As mentioned in
Section 2.2, we would like to be able to apply the implicit alternation product in [VXX24] to unlayered DP
LB graphs. By isolating the main idea that one can use the set {(x, y, x2 + y2) | x, y ∈ [r]} as the convex
set in the alternation product graph, we are able to apply the implicit alternation product in [VXX24] on
unlayered DP LB graphs successfully after certain modifications (See Section 4.1 for more details). In the
following, we give a more detailed discussion of the informal intuition behind why the alternation product
we use is more desirable than the alternation product used in prior works including [AB17, HP18, LVWX22].

Recall that in Section 2.2, one may view an alternation product graph as a CE construction with a
different convex set that determines the set of edges of the graph. In addition, a vector from the convex set
and a vertex in the “start zone” determines a critical path, so we get more critical pairs if we use a larger
convex set. More precisely, we want to use a convex set that is “large” with respect to the total number

of integer points contained in the convex hull of the set. We recall from [BL98] that |Bd(r)| = Θ(rd·
d−1

d+1).
Let us compare the convex sets used in the various alternation product graphs against Bd(r) in the same
number of dimension that is scaled to contain the same number of points in its convex hull asymptotically in
Table 5. Then we can see from Table 5 that all prior constructions use a convex set that contains less points
than the respective Bd(r) while the convex set we use in this work matches the quality of B3(r), which is
optimal in 3-dimensions (see [BL98] for more details). That is, the construction that we use is as good as
the CE construction in 3-dimensions.

One may wonder why we do not simply use the CE construction as our outer graph. The reason is that
the alternation product has extra structure that is crucial for allowing us to use our desired inner graph.
The CE construction lacks these properties. We elaborate on this below.

7

Citation Convex Set Used Size of Convex Set Size of Convex Hull

4-dim [CE06] B4(r) Θ(r12/5) Θ(r4)

[AB17, HP18] {(~x, ~y) | ~x, ~y ∈ B2(r)} Θ(r4/3) Θ(r4)

3-dim [CE06] B3(r) Θ(r3/2) Θ(r3)

[LVWX22] {(x1, x2 + y1, y2) | ~x, ~y ∈ B2(r)} Θ(r4/3) Θ(r3)

3-dim [CE06] B3(r
4/3) Θ(r2) Θ(r4)

This work (based
on [VXX24])

{(x, y, x2 + y2) | x, y ∈ [r]} Θ(r2) Θ(r4)

Table 5: Comparison between known constructions of the alternation product and the CE construction. The
top row in each pair is the corresponding CE construction in the same number of dimensions and scaled to
contain the same number of points in its convex hull. The bottom row in each pair indicates the alternation
product construction used in the work cited.

Inner graph: Optimal subset DP LB graph. For our inner graphs, we use the CE construction of
subset DP LB graphs in the regime where the pairs S×S has size |S| = Θ(n1/4) where n denotes the number
of vertices in the graph. In fact, this construction is tight in the sense that it has Ω(n) edges while on the
other hand it is known that there exists subset distance preservers of size O(n) for every set of sources S of
size O(n1/4). So not only are we using an inner graph structure that aligns with the upper bound algorithm
as illustrated in Table 2, we are in fact using a tight construction of the desired structure.

The main reason why we are able to use subset DP LB graphs as inner graphs in our construction is that
we have an alternation product graph as our outer graph. We discuss below why an alternation product is
necessary for using subset DP LB graphs as inner graphs. In the inner graph replacement step under the
obstacle product framework, we need to attach the incoming edges and outgoing edges adjacent to a vertex
v to vertices in the corresponding inner graph copy so that each critical path passing through v in the outer
graph will pass through a unique critical path in the inner graph copy as well. Since the subset DP LB
graph has critical pairs of the form S × S for some subset S of the vertex set, it is required that the critical
paths passing through v in the outer graph also be equipped with a product structure. In DP LB graphs, we
have no such product structure over the critical paths. However, notice that applying an alternation product
would exactly give us a product structure over the critical paths as desired.

3 Preliminaries

We use the following notations:

• We use Conv(·) to denote the convex hull of a set.

• We use 〈·, ·〉 to denote the standard Euclidean inner product, ‖ · ‖ the Euclidean norm, and proj~w(·)
the Euclidean scalar projection onto ~w.

• We use [x, y], where x ≤ y ∈ Z, to denote the set {x, x+1, . . . , y− 1, y}. We use [x], where x > 0 ∈ Z,
to denote [1, x].

4 Outer Graph GO

The goal of this section will be to construct the outer graph GO of our additive spanner and emulator lower
bound constructions. The key properties of GO are summarized in Theorem 4.1.

Theorem 4.1 (Properties of Outer Graph) For any a, r > 0 ∈ Z, there exists a graph GO(a, r) = (VO, EO)
with a set ΠO of critical paths in GO that has the following properties:

8

1. The number of nodes, edges, and critical paths in GO is:

|VO| = Θ(a3r),

|EO| = Θ(a3r2),

|ΠO| = Θ(a2r4).

2. Every critical path π ∈ ΠO is a unique shortest path in GO of length at least |π| ≥ a
4r .

3. Every pair of distinct critical paths π1, π2 ∈ ΠO intersect on at most two nodes.

4. Every edge e ∈ EO lies on some critical path in ΠO.

The rest of the section is devoted to constructing the graph GO(a, r) and paths ΠO that satisfy Theo-
rem 4.1.

4.1 Convex Set of Vectors

Before specifying the construction of the graph GO, we begin by specifying our construction of a set of
vectorsW ⊆ R

3 that is crucial to the construction of GO. Set W will be parameterized by a positive integer
r, i.e., W = W (r). The vectors in W will satisfy a certain strict convexity property that we will use to
ensure the unique shortest paths property of paths ΠO in GO.

Definition 4.2 (W (r)) Given a positive integer r, let

W1(r) := {(x, 0, x2) | x ∈ {r/2, . . . , r}} and W2(r) := {(0, y, y2) | y ∈ {r/2, . . . , r}}.

We define W (r) to be the sumset

W (r) :=W1(r) +W2(r) = {(x, y, x2 + y2) | x, y ∈ {r/2, . . . , r}}.

We now verify that sets of vectors W1(r),W2(r),W (r) have the necessary convexity property to ensure
that graph GO has unique shortest paths (Property 2 of Theorem 4.1). The convexity property of W stated
in Lemma 4.3 is roughly similar to the notion of ‘strong convexity’ in [BH22], but is in fact stronger.

Lemma 4.3 (Convexity property) Let W1,W2,W be the sets defined in Definition 4.2 for some positive
integer r. Let W ′ be the set

W ′ =W ∪ (−W) ∪ (W1 −W2) ∪ (W2 −W1).

Then each vector ~w ∈W is an extreme point of the convex hull Conv(W ′) of W ′.

Proof. Let W1 = W1(r), W2 = W2(r), and W = W (r) for some positive integer r. Let W ′ = W ∪ (−W) ∪
(W1−W2)∪ (W2−W1). Fix a vector ~w = (x, y, x2+ y2) ∈ W . Let ~c be the vector ~c = (2x, 2y,−1). Then we
claim that ~w is the unique vector in W ′ such that ~w = max~u∈W ′〈~c, ~u〉. Note that this immediately implies
that ~w is an extreme point of Conv(W ′). We now verify this claim:

• The inner product of ~c and ~w is 〈~c, ~w〉 = x2 + y2.

• If ~u = (u1, u2, u
2
1 + u22) ∈W , then

〈~c, ~u〉 = 2xu1 + 2yu2 − u21 − u22 = u1(2x− u1) + u2(2y − u2).

It is straightforward to verify that u1(2x− u1) + u2(2y − u2) is uniquely maximized when u1 = x and
u2 = y (e.g., using the second partial derivative test). Then 〈~c, ~u〉 ≤ 〈~c, ~w〉, with equality only if ~u = ~w.

9

• If ~u = (−u1,−u2,−u21 − u22) ∈ −W , then

〈~c, ~u〉 = −2xu1 − 2yu2 + u21 + u22 = u1(u1 − 2x) + u2(u2 − 2y) ≤ 0 < 〈~c, ~w〉,

using the fact that u1 ≤ 2x and u2 ≤ 2y, since u1, x, u2, y ∈ [r/2, r].

• If ~u = ~u1 + ~u2 ∈W1 −W2, where ~u1 ∈W1 and ~u2 ∈ −W2, then by the previous analyses,

〈~c, ~u2〉 ≤ 0 and 〈~c, ~u1〉 ≤ x2.

Then 〈~c, ~u〉 = 〈~c, ~u1〉+ 〈~c, ~u2〉 ≤ x2 < 〈~c, ~w〉. The case where ~u ∈W2 −W1 is symmetric.

We have shown that for all ~u ∈W ′, 〈~c, ~u〉 ≤ 〈~c, ~w〉, with equality only if ~u = ~w.

4.2 Construction of GO

Let a, r > 0 ∈ Z be the input parameters for our construction of outer graph GO = (VO, EO). Let W1 =
W1(r), W2 = W2(r), and W = W (r) be the sets of vectors constructed in Definition 4.2 and parameterized
by our choice of r.

Vertex Set VO.

• Our vertex set VO will correspond to two copies of integer points arranged in a grid in R
3. These two

copies will be denoted as V LO and V RO . For a point p ∈ R
3, we will use pL to denote the copy of point

p in V LO , and pR to denote the copy of point p in V RO . Likewise, for a set of points P ⊆ R
3, we will use

PL to denote the copy of set P in V LO , and PR to denote the copy of set P in V RO . Then we define V LO
and V RO as:

V LO = ([a]× [a]× [ar])L, and V RO = ([a]× [a]× [ar])R.

When denoting a node vL or vR in VO, we will drop the subscript and simply denote this node as v
when its membership in V LO and V RO is clear from the context or otherwise irrelevant.

Edge Set EO.

• The edges EO in GO will pass between V LO and V RO , so that EO ⊆ V LO × V RO .

• Just as the nodes in VO are integer points in R
3, we will identify the edges in EO with integer vectors

in R
3. Specifically, for each edge (xL, yR) in EO, we identify xL → yR with the vector y−x ∈ R

3. Note
that y − x corresponds to the orientation xL → yR of edge (xL, yR); we would use vector x − y ∈ R

3

to denote yR → xL.

• For each node vL ∈ V LO and each vector ~w ∈ W1, if (v + ~w)R ∈ V RO , then add edge (vL, (v + ~w)R)
to EO. Likewise, for each node vR ∈ V RO and each vector ~w ∈ W2, if (v + ~w)L ∈ V LO , then add edge
(vR, (v + ~w)L) to EO.

Critical Paths ΠO.

• Let S ⊆ R
3 denote the set of points S = [a]× [a]× [r2/8].

• Let s be a point in S. Additionally, let ~w1 be a vector in W1, and let ~w2 be a vector in W2, where
~w1 + ~w2 ∈ W .4 If s+ ~w1 6∈ S, then we define a corresponding path in GO starting from sL ∈ SL as

sL → (s+ ~w1)R → (s+ ~w1+ ~w2)L → (s+2~w1+ ~w2)R → (s+2~w1+2~w2)L → · · · → (s+ i · ~w1+ i · ~w2)L,

where i is the largest integer i such that node (s+ i · ~w1 + i · ~w2)L ∈ V LO . Let t = (s+ i · ~w1 + i · ~w2)L
be the endpoint of this path, and add this s t path to our set of critical paths ΠO.

4Note that ~w1 + ~w2 ∈ W for all ~w1 ∈ W1 and ~w2 ∈ W2, since W = W1 + W2. However, in Section 6.1, we will modify W

so that W is a strict subset of W1 +W2, which will make this requirement relevant.

10

• Note that every critical path π ∈ ΠO constructed this way is uniquely specified by a start node sL ∈ SL
and vectors ~w1 ∈W1 and ~w2 ∈W2.

• For every critical path π ∈ ΠO where |π| < a
4r , remove π from ΠO.

As a final step in our construction of GO, we remove all edges in GO that do not lie on some critical path
π ∈ ΠO.

4.3 Properties of GO

We will now verify that GO and ΠO satisfy the properties specified in Theorem 4.1.

Claim 4.4 Every critical path π ∈ ΠO is the unique shortest path between its endpoints in GO. Moreover,
|π| ≥ a

4r .

Proof. Let π ∈ ΠO be a critical path with endpoints s, t that uses vectors ~w1 ∈ W1 and ~w2 ∈ W2. By
definition we must have |π| ≥ a

4r since otherwise the path π would have been discarded in the construction.
It remains to show that π is the unique shortest path between its endpoints. Observe that by construction
the graph GO is bipartite and endpoints s, t both lie in V LO , so any path from s to t has an even number of
edges.

Suppose for the sake of contradiction that π is not a unique shortest path. Then there exists a path
π′, where π′ 6= π and |π′| = |π| = 2k, for some positive integer k. Let ~ui denote the vector associated
with the ith edge of π′, for i ∈ [1, 2k]. Define vector ~vi to be ~vi := ~u2i−1 + ~u2i for i ∈ [1, k]. Let W ′ =
W ∪ (−W) ∪ (W1 −W2) ∪ (W2 −W1). It is straightforward to verify that by construction, ~vi ∈ W ′ for
i ∈ [1, k].

Since π and π′ are both s t paths, it follows that

k(~w1 + ~w2) = t− s =

k∑

i=1

~vi.

Let ~w = ~w1 + ~w2 ∈W . Then this implies that

~w =
1

k

k∑

i=1

~vi,

where ~vi ∈ W ′ for all i ∈ [1, k]. Additionally, note that ~vj 6= ~w for some j ∈ [1, k], since π′ 6= π. However,

this implies that ~w is a convex combination of points in ~W ′ \ {~w}, contradicting Lemma 4.3.

Claim 4.5 Every pair of distinct critical paths π1, π2 ∈ ΠO can intersect on either a single vertex or a single
edge.

Proof. Note that since critical paths are unique shortest paths between their endpoints by Claim 4.4, if two
critical paths intersect on two vertices, then they must share the subpath between the two vertices. We show
that any pair of critical paths cannot possibly share a subpath of length 2.

Let σ = (xL, yR, zL) be a subpath of a critical path π of length 2. We will show that π ∈ ΠO is the
unique critical path in ΠO that contains σ. The vectors y− x and z − y correspond to two vectors ~w1 ∈W1

and ~w2 ∈ W2. Note that any critical path π′ in ΠO that contains σ must take edges corresponding to ~w1

and ~w2 in an alternating fashion. In particular, any path π′ containing subpath σ must have a start node
sL ∈ SL where

sL = x− i · ~w1 − i · ~w2 ∈ SL,

where i is a positive integer. We claim that there is a unique positive integer i such that x−i · ~w1−i · ~w2 ∈ SL.
This follows from the fact that the third coordinates of ~w1 and ~w2 lie in the range [r2/4, r2] by Definition 4.2,

11

while the third coordinate of any point in S only lies in the range [r2/8]. This implies that there is a unique
start node sL ∈ SL shared by all critical paths π′ in ΠO that contain subpath σ. By construction of GO
and ΠO, every critical path in ΠO is uniquely identified by a start node sL ∈ SL and associated edge vectors
~w1 ∈W1 and ~w2 ∈W2. Then path π is the unique critical path in ΠO containing subpath σ.

Claim 4.6 Every edge in GO is used by at most r/2 critical paths π ∈ ΠO.

Proof. This follows immediately from the proof of Claim 4.5. Given an edge e, any critical path π that uses
the edge e will use the vector ~e ∈ W1 ∪W2 corresponding to e. There are max(|W1|, |W2|) = r/2 possible
choices for the other vector used by π, which together with the nodes incident to e will uniquely determine
a critical path. Thus e can be used by at most r/2 critical paths.

Claim 4.7 The number of nodes, edges, and critical paths in GO(a, r) is:

|VO| = Θ(a3r),

|EO| = Θ(a3r2),

|ΠO| = Θ(a2r4).

Proof. We will show |EO| = Θ(a3r2) last.

• |VO|: Clear from definition.

• |ΠO|: Notice that each critical path is uniquely identified by a vertex in S and a pair of vectors
~w1 ∈ W1, ~w2 ∈ W2, where ~w1 + ~w2 ∈ W , so there are at most O(|SL| · |W |) = O(a2r4) critical paths.
On the other hand, although we remove the critical paths π of length |π| < a/4r, we argue that at
least a constant fraction of the critical paths remain. To see this, notice that for the vertices in the
set S′ = {1} × [a/4] × [a/4] × [r2/8] ⊆ S and all possible pairs of vectors ~w1 ∈ W1, ~w2 ∈ W2, the
corresponding unique critical path has length at least a/(4r). This proves that |ΠO| = Θ(a2r4) as
desired.

• |EO|: By construction of the edge set, every vertex in VO has degree at most |W1|+ |W2| = O(r). Then
|EO| = O(r · |VO|) = O(a3r2). What remains is to show that |EO| = Ω(a3r2). By Claim 4.6 and the
fact that all critical paths have length at least a/(4r), we have

|EO| ≥
1

r
· |ΠO| ·

a

4r
= Ω(a3r2).

Proof of Theorem 4.1. Note that graph GO and critical paths ΠO satisfy Properties 1, 2, and 3 of Theo-
rem 4.1 by Claims 4.4, 4.5 and 4.7. Moreover, Property 4 of Theorem 4.1 follows immediately from the final
step in our construction of GO. This completes the proof of Theorem 4.1.

5 Emulator Lower Bound

In this section we will finish our emulator lower bound by constructing the obstacle product graph G specified
in Theorem 1.5.

5.1 Construction of Obstacle Product Graph G

Let a, r > 0 ∈ Z be construction parameters to be specified later. Let GO = GO(a, r) be an instance of our
outer graph with parameters (a, r) from Theorem 4.1. We will construct our final graph G by performing
the obstacle product. The obstacle product is performed in two steps: the edge subdivision step and the
inner graph replacement step.

12

Inner Graph GI . Our inner graph GI(r) = (VI , EI) will be the biclique Kr,r. We denote the two sides of
the biclique by LI = {x1I , . . . , x

r
I} and RI = {y1I , . . . , y

r
I}.

Edge Subdivision. We subdivide each edge in GO into a path of length ψ = Θ
(
a
r

)
. Denote the resulting

graph G′
O. For any edge e = (u, v) ∈ EO, let Pe denote the resulting u v path of length ψ. We will refer

to the paths in G replacing edges from GO as subdivided paths.

Inner Graph Replacement. Let GI = GI(r) be an instance of our inner graph with input parameter r.
We perform the following operations on graph G′

O.

• For each node v in V (G′
O) originally in GO, replace v with a copy of GI . We refer to this copy of GI

as GvI . Likewise, we refer to the partite sets LI and RI in GvI as LvI and RvI .

• After applying the previous operation, the endpoints of the subdivided paths Pe in G
′
O no longer exist

in the graph. If e = (u, v) ∈ EO, then Pe will have endpoints u and v. We will replace the endpoints
u and v of Pe with nodes in GuI and GvI respectively.

• In order to precisely define this replacement operation, it will be helpful to define two injective functions,
φ1 : W1 7→ LI × RI and φ2 : W2 7→ LI × RI . Let ~wi1 (respectively, ~wi2) denote the ith vector in W1

(respectively, W2), for i ∈ [1, r/2]. Then we define our injective functions to be

φ1(~w
i
1) = (xiI , y

i
I) and φ2(~w

i
2) = (xiI , y

i
I) for i ∈ [1, r/2].

• Let e = (u, v) ∈ EO. If v−u ∈W1, then let φ1(v−u) = (x, y) ∈ LI×RI . We will replace the endpoints
u and v of Pe with nodes y ∈ RuI in GuI and x ∈ LvI in GvI , respectively. Otherwise, if v− u ∈ W2, then
let φ2(v−u) = (x, y) ∈ LI ×RI , and replace the endpoints u and v of Pe with nodes y ∈ RuI in GuI and
x ∈ LvI in GvI , respectively. We repeat this operation for each e ∈ EO to obtain the obstacle product
graph G.

• Note that after performing the previous operation, every subdivided path Pe, where e = (u, v), will
have a start node in RuI and an end node in LvI . We will use re to denote the start node of Pe in RuI
and le to the end node of Pe in LvI .

Critical Paths Π.

• Fix a critical path πO ∈ ΠO with associated vectors ~w1 ∈W1 and ~w2 ∈W2.

• Let ei denote the ith edge of πO for i ∈ [1, k].

Then we define a corresponding path π in G:

π = Pe1 ◦ (le1 , re2) ◦ Pe2 ◦ · · · ◦ Pek−1
◦ (lek−1

, rek) ◦ Pek

Note that if ei = (x, y) and ei+1 = (y, z), then (lei , rei+1
) corresponds to an edge from LI to RI in

inner graph copy GyI . We add path π to our set of critical paths Π.

• We repeat this process for all critical paths in ΠO to obtain our set of critical paths Π in G. Each
critical path π ∈ Π is uniquely constructed from a critical path πO ∈ ΠO, so |Π| = |ΠO|. We will use
φ : Π 7→ ΠO to denote the bijection between Π and ΠO implicit in the construction.

As the final step in our construction of obstacle product graph G, we remove all edges in G that do not
lie on some critical path π ∈ Π. Note that this will only remove edges in G that are inside copies of the
inner graph GI .

13

5.2 Analysis of G.

Our stretch analysis follows a similar argument to the emulator stretch analysis in [LVWX22]. In the analysis,
we will crucially use the fact that in our inner graph replacement step, we attach the incoming edges incident
to a node v ∈ VO to nodes in LvI , and we attach the outgoing edges incident to v to nodes in RvI . Then the
image of any path of length 2 in GO will pass through a unique edge in some inner graph copy in G. From
now on, we will call the set of edges in the inner graph copies clique edges for convenience. Then the key
observation is that each critical path in Π will pass through a set of unique clique edges. In particular, since
a path of length 2 in GO uniquely identifies a clique edge, by Claim 4.5 we know that the critical paths in Π
do not intersect on clique edges. So in the following, we first argue that any spanner on G cannot miss too
many clique edges, then we will show that any emulator can effectively be turned into a spanner with the
same stretch using some more edges. This will give us a lower bound on the additive stretch of linear-sized
emulators.

We begin with a lemma formalizing the above described property of clique edges.

Claim 5.1 Every pair of distinct critical paths π, π′ ∈ Π do not intersect on clique edges.

Proof. Consider the corresponding critical paths πO, π
′
O ∈ ΠO. If (x, y, z) is a subpath of πO, then π and π′

intersect on a clique edge in GyI only if (x, y, z) is a subpath of π′
O. However, by Claim 4.5, paths πO, π

′
O ∈ ΠO

do not intersect on a path of length 2, so (x, y, z) 6⊆ πO ∩ π′
O.

Claim 5.2 Every critical path π ∈ Π contains at least a
4r − 1 clique edges.

Proof. By construction of π ∈ Π from πO ∈ ΠO, every node on πO except for the endpoints will correspond
to a unique clique edge. Since |πO| ≥ a/4r, the critical path in π ∈ Π constructed from πO will go through
at least a

4r − 1 clique edges.

Now we show that any spanner on G must include many clique edges in order to have small additive
stretch.

Lemma 5.3 Any spanner H ⊆ G that contains < (a8r − 1) · |P | clique edges must have additive stretch
Ω(min{ψ, a/r}).

Proof. The proof follows similarly to the proof of [LVWX22, Lemma 6.1]. Let H ⊆ G be a spanner containing
< (a8r −1) · |Π| clique edges. Then by Claim 5.1 and the pigeonhole principle, there exists some s t critical
path π ∈ Π with less than a

8r −1 clique edges. By Claim 5.2, this means that at least a
8r clique edges on π are

missing in H . Let πH denote the shortest path between s and t in H and let πOH denote the corresponding
path in GO obtained by contracting subdivided paths in G into single edges and contracting inner graph
copies GI in G into single nodes. We compare πOH against the critical path πO = φ−1(π) ∈ ΠO in GO:

• πOH = πO: This means that πH and π traverse the same set of subdivided paths but possibly different
clique edges. Furthermore, this implies that πH and π enter and exit inner graph copyGyI through nodes
l(x,y), r(y,z), where (x, y, z) ⊆ πO ∩ πOH is a subpath of πO and πOH . For each clique edge (l(x,y), r(y,z))
in π missing from H , πH must use at least two extra clique edges to go between l(x,y) and r(y,z) in G

y
I

because the inner graphs are bipartite. Since there are a
8r clique edges in π missing from H , we have

|πH | ≥ |π|+ 2 · a
8r = |π|+ a

4r .

• Path πOH 6= πO: πO is the unique shortest path between s and t in GO, so π
O
H must use at least one

more edge than πO. Since the edges in GO are subdivided to paths of length ψ, we have |πH | ≥ |π|+k.

This concludes the proof.

Then we show that any emulator can be turned into a spanner with the same additive stretch using some
more edges.

14

Lemma 5.4 Any emulator H of G containing < |Π|/32 edges must have additive stretch Ω(min{ψ, a/r}).

The proof follows almost identically from [LVWX22, Lemma 6.2], but we repeat the proof for complete-
ness.

Proof. Let H be such an emulator for G. We will construct a spanner H ′ ⊆ G with similar additive
stretch. Note that we may assume without loss of generality that every edge (u, v) ∈ E(H) has weight
wt(u, v) = distG(u, v). For each edge (u, v) ∈ E(H) such that u, v ∈ π for some critical path π in Π, we add
a u v path π′ to H ′, where |π′| = distG(u, v) and π′ ⊆ G. Then by construction, for all (u, v) ∈ E(H)
such that u, v ∈ π for some π ∈ Π, distH(u, v) = distH′ (u, v).

Now we compute the number of clique edges in H ′. We claim that each edge (u, v) in E(H) such that
u, v ∈ π for some π ∈ Π can contribute at most 2a/r clique edges to H ′. Indeed, the number of clique edges
contributed by an edge (u, v) ∈ E(H) to H ′ is at most the number of clique edges in π ∈ Π. This is at most
the length of the path πO = φ−1(π), the path in ΠO associated with π. Since |πO| ≤ 2a/r, the claim follows.

Thus the number of clique edges in H ′ is < 2a
r · |Π|

32 < (a8r − 1) · |Π|. Then by Lemma 5.3, H ′ must have
stretch Ω(min{ψ, a/r}), so H must have stretch Ω(min{ψ, a/r}) as well.

We are now finally ready to proof Theorem 1.5.

Proof of Theorem 1.5. We set ψ = Θ(a/r). Then the graph G satisfies:

|V | = Θ(ψ · |EO|+ r · |VO|) = Θ(a4r + a3r2)

|Π| = |ΠO| = Θ(a2r4).

We set |Π| = Θ(|V |) so we get that a = Θ(r3/2). Then we have |V | = Θ(r7). By Lemma 5.4, any emulator
on Θ(|V |) edges must have stretch Ω(min{ψ, a/r}) = Ω(a/r) = Ω(r1/2). Since n = |V | = Θ(r7), we can
conclude that any linear-sized emulator on G with n vertices must have additive stretch Ω(n1/14).

6 Spanner Lower Bound Construction

In this section we present our lower bound construction for additive spanners. This construction will have
a similar structure to the obstacle product graph G constructed for our emulator lower bound in Section 5,
but with several complications. We now describe these modifications to the obstacle product argument:

• Convex Sets W1,W2, and W . In Section 6.1, we modify the convex sets of vectors W1,W2, and
W3 that we defined in Section 4. The purpose of this modification is technical, but it has to do
with the projection argument we employ in our analysis in Section 7. Our new convex sets of vectors
W1(r, c),W2(r, c),W (r, c) will now be parameterized by an additional integer c > 0. These new sets
of vectors will roughly resemble the outer graph vectors in Lemma 8 of [BH22] and will play a similar
role in our analysis of G.

• Inner Graph GI . Instead of choosing our inner graphs to be bicliques as in Section 5, we will choose
our inner graphs to be the sourcewise distance preserver lower bound graphs constructed in [CE06].
Lemma 6.7 specifies the exact properties of these new inner graphs GI that we require in our analysis.
See Subsections 1.1 and 2.2 for an overview of why we make this design choice.

6.1 Modifying Convex Sets W1,W2, and W in GO

In this section, we modify the definitions of the convex sets of vectors W1,W2, and W used to construct
outer graph GO. Let r, c > 0 ∈ Z be the input parameters to our convex sets of vectors W1,W2, and W .

We define Ii be the interval

Ii :=

[
r

2
+

(2i− 2) · r

4c
,

r

2
+

(2i− 2) · r

4c
+

r

16c3

]
,

15

for i ∈ [1, c]. Our specific choice of intervals Ii will be come relevant in the proofs of Claims 7.9 and 7.11.
The following claim is immediate from the definition of intervals Ii.

Claim 6.1 Intervals {Ii}i∈[1,c] satisfy the following properties:

• Ii ⊆ [r/2, r],

• |Ii| =
r

16c3

• if x, y ∈ Ii, then |x− y| ≤ r
16c3 , and

• if x ∈ Ii and y ∈ Ij , where i 6= j, then |x− y| ≥ r/(2c).

We will use intervals {Ii}i∈[1,c] to construct our sets of vectors W1(r, c) and W2(r, c).

Definition 6.2 (W1(r, c) and W2(r, c)) Let r, c be positive integers. We define W1(r, c) and W2(r, c) as

W1(r, c) :=
{
(x, 0, x2) | x ∈ Ii, i ∈ [1, c]

}
and W2(r, c) :=

{
(0, y, y2) | y ∈ Ii, i ∈ [1, c]

}
.

Now we partition the vectors in W1(r, c) into c sets S1
1 , . . . ,S

1
c we call stripes. We define the ith stripe

S1
i of W1(r, c) as {(x, 0, x2) | x ∈ Ii}. Likewise, we define the ith stripe S2

i of W2(r, c) as {(0, y, y2) | y ∈ Ii}.
The key properties of our stripes are summarized in Claim 6.3, which follows immediately from Claim 6.1.

Claim 6.3 Stripes {S1
i }i∈[1,c] satisfy the following properties:

• S1
i ⊆ [r/2, r],

• |S1
i | =

r
16c3 ,

• if (x, 0, x2), (y, 0, y2) ∈ S1
i , then |x− y| ≤ r

16c3 , and

• if (x, 0, x2) ∈ S1
i and (y, 0, y2) ∈ S1

j , where i 6= j, then |x− y| ≥ r
2c .

Moreover, stripes {S2
i }i∈[1,c] satisfy analogous properties.

Roughly, Claim 6.3 states that vectors in the same stripe in W1(r, c) or W2(r, c) are “close” to each other
in some sense, and vectors in different stripes in W1(r, c) and W2(r, c) are “far” from each other in some
sense. This notion of partitioning a set of vectors into stripes satisfying these properties was introduced in
the spanner lower bound construction of [BH22]. We are now ready to define our set of vectors W (r, c).

Definition 6.4 (W (r, c)) Let r, c be positive integers. Unlike in Definition 4.2, we will define W (r, c) to be
a subset of the sumset W1(r, c) +W2(r, c). In particular, for ~w1 ∈ W1(r, c) and ~w2 ∈ W2(r, c), we only add
~w1 + ~w2 to W (r, c) if ~w1 and ~w2 share the same stripe index i ∈ [1, c]. Formally,

W (r, c) :=
{
(x, y, x2 + y2) | x, y ∈ Ii, i ∈ [1, c]

}
⊂W1(r, c) +W2(r, c).

The following claim is immediate from the definitions of W1(r, c), W2(r, c) and W (r, c).

Claim 6.5 Sets W1(r, c), W2(r, c) and W (r, c) satisfy the following properties:

• |W1(r, c)| = |W2(r, c)| = Θ
(
r
c2

)
,

• |W (r, c)| = Θ
(
r2

c5

)
,

• W1(r, c) ⊂ W1(r), W2(r, c) ⊂ W2(r), and W (r, c) ⊂ W (r), so W (r, c) satisfies the convexity property
stated in Lemma 4.3.

16

We modify the construction of outer graph GO in Section 4 by replacing sets W1(r),W2(r), and W (r)
defined in Section 4.1 with the new sets W1(r, c),W2(r, c), and W (r, c). Note that our new choice of sets
W1(r, c) and W2(r, c) changes the the set of vectors EO in GO, while our new choice of set W (r, c) changes
the set of critical paths ΠO (see Footnote 4).

By inserting convex sets W1(r, c),W2(r, c), and W (r, c) into GO in place of the sets W1(r),W2(r), and
W (r), we obtain the following theorem about our modified outer graph GO = GO(a, r, c).

Theorem 6.6 (Properties of Modified Outer Graph) For any a, r, c > 0 ∈ Z, there exists a graph GO(a, r, c) =
(VO, EO) with a set of critical paths ΠO that has the following properties:

1. The number of nodes, edges, and critical paths in GO is:

|VO| = Θ(a3r),

|EO| = Θ

(
a3r2

c2

)
,

|ΠO| = Θ

(
a2r4

c5

)
.

2. Every critical path π ∈ ΠO is a unique shortest path in GO of length at least |π| ≥ a
4r .

3. Every pair of distinct critical paths π1 and π2 intersect on at most two nodes.

4. Every edge e ∈ EO lies on some critical path in ΠO.

Just like in the original construction of GO in Section 4, every critical path π ∈ ΠO corresponds to
a unique vector ~w ∈ W (r, c). Specifically, by the definition of W1(r, c),W2(r, c), and W (r, c), path π is
constructed using vectors ~w1 ∈ W1(r, c) and ~w2 ∈W2(r, c), where

• ~w = ~w1 + ~w2, and

• ~w1 ∈ S1
i and ~w2 ∈ S2

i , for some i ∈ [1, c].

Critically, ~w1 and ~w2 both lie in the ith stripe S1
i and S2

i , respectively.

6.2 Inner Graph GI

In this subsection, we formally state the properties of the family of graphs we choose for our inner graphs
GI when constructing the obstacle product graph G. We will choose our inner graphs to be the sourcewise
distance preserver lower bound graphs constructed in [CE06]. Lemma 6.7 formally captures the exact
properties of this family of graphs that we need for spanner lower bound argument. We will defer our proof
of Lemma 6.7 to Appendix A, as it largely follows from the proof of Theorem 5.10 in [CE06].

Lemma 6.7 (cf. Theorem 5.10 of [CE06]) For any a, c > 0 ∈ Z, there exists a graph GI(a, c) = (VI , EI)
with a set SI ⊆ VI of sources, a set TI ⊆ VI of sinks, and a set PI ⊆ SI × TI of critical pairs that has the
following properties:

1. The number of nodes, edges, sources, sinks, and critical pairs in GI is:

|VI | = Θ(a2),

|EI | = Θ(a2c),

|SI | = Θ(a1/2c11/4),

|TI | = Θ(a1/2c11/4),

|PI | = Θ(ac5/2).

17

2. Every path πs,t, where (s, t) ∈ PI , contains Θ(a/c3/2) edges that do not lie on any other path πs′,t′ ,
where (s′, t′) ∈ PI .

3. For every source s ∈ SI and sink t ∈ TI , the distance between s and t in GI satisfies the following:

distGI (s, t) = Θ(ac1/2).

4. The set of sources SI can be partitioned into b = Θ(c3) sets S1
I , . . . , S

b
I , where |SiI | = Θ(a1/2c−1/4) for

all i ∈ [b]. Let T iI = {t ∈ TI | (SiI × {t}) ∩ PI 6= ∅} be the set of all sinks that belong to a critical pair
with a source in SiI . Then for all i ∈ [b] the following properties hold:

• |T iI | = Θ(a1/2c−1/4) for all i ∈ [b],

• SiI × T iI ⊆ PI , and

• for all (s, t) ∈ PI such that s ∈ SiI and t ∈ T iI ,

distGI (s, t) ≤ distGI (S
i
I , T

i
I),

where distGI (S
i
I , T

i
I) denotes the minimum distance between SiI and T iI in GI .

Proof. We defer the proof of this statement to Appendix A.

6.3 Construction of Obstacle Product Graph G

Let a, r, c > 0 ∈ Z be the input parameters of an instance of outer graphGO = GO(a, r, c). LetW1 =W1(r, c),
W2 = W2(r, c), and W = W (r, c) be the sets of vectors constructed in Section 6.1. Additionally, let
a′, c′ > 0 ∈ Z be the input parameters of an instance of inner graph GI = GI(a

′, c′). We will specify the
precise values of a, r, c, a′, and c′ later, as needed. Roughly, our choices of parameters a, r, and a′ will grow
with the size of our final graph G, while parameters c and c′ will be (sufficiently large) integer constants.

We will construct our final graph G by performing the obstacle product. The obstacle product is per-
formed in two steps: the edge subdivision step and the inner graph replacement. In the inner graph replace-
ment step, we will need to carefully define two functions, φ1 :W1 7→ SI ×TI and φ2 :W2 7→ SI ×TI between
vectors in W1 and W2 and pairs of nodes in SI × TI in inner graph GI .

Edge Subdivision. We subdivide each edge in GO into a path of length ψ. Denote the resulting graph
as G′

O. For any edge e = (u, v) ∈ EO, let Pe denote the resulting u v path of length ψ. We will take

ψ = Θ
(

r3

c29/3

)
.

Inner Graph Replacement. We now perform the inner graph replacement step of the obstacle product.

• For each node v in V (G′
O) originally in GO, replace v with a copy of GI . We refer to this copy of GI

as GvI . Likewise, refer to the sources and sinks SI and TI in GvI as SvI and T vI .

• After applying the previous operation, the endpoints of the subdivided paths Pe in G
′
O no longer exist

in the graph. If e = (u, v) ∈ EO, then Pe will have endpoints u and v. In the next step, we will replace
the endpoints u and v of Pe with nodes in GuI and GvI , respectively.

• In order to precisely define this replacement operation, it will be helpful to define two functions,
φ1 : W1 7→ SI × TI and φ2 : W2 7→ SI × TI . For ease of understanding, we will first assume the
existence functions φ1 and φ2. We will specify our choices of φ1 and φ2 later.

• Let e = (u, v) ∈ EO. If v−u ∈W1, then let φ1(v−u) = (x, y) ∈ SI ×TI . We will replace the endpoints
u and v of Pe with nodes y ∈ T uI in GuI and x ∈ SvI in GvI , respectively. Otherwise, if v− u ∈ W2, then
let φ2(v−u) = (x, y) ∈ SI ×TI , and replace the endpoints u and v of Pe with nodes y ∈ T uI in GuI and
x ∈ SvI in GvI , respectively. We repeat this operation for each e ∈ EO to obtain the obstacle product
graph G.

18

• Note that after performing the previous operation, every subdivided path Pe, where e = (u, v), will
have a start node in T uI and an end node in SvI . We will use te to denote the start node of Pe in T uI
and se to the end node of Pe in SvI .

This completes the construction of the obstacle product graph G (up to defining functions φ1 and φ2).

Defining functions φ1 and φ2. Let S1
1 , . . . ,S

1
c be the stripes of W1, and let S2

1 , . . . ,S
2
c be the stripes of

W2. Let S1
I , . . . , S

b
I and T 1

I , . . . , T
b
I be the partition of sources SI and sinks TI as described in Lemma 6.7,

where b = Θ(c′3). In order to construct our desired functions, we will require the following relations to hold:

• b ≥ c,

• |SiI | ≥ |Sji |, for all i ∈ [1, c] and j ∈ {1, 2}, and

• |T iI | ≥ |Sji |, for all i ∈ [1, c] and j ∈ {1, 2}.

This can be achieved by setting

c′ = Θ(c1/3) and a′ = Θ

(
r2

c35/6

)
,

using the fact that b = Θ(c′3), |Sji | = Θ(r/c3), |SiI | = Θ(a′1/2c′−1/4), and |T iI | = Θ(a′1/2c′−1/4) by Claim 6.3
and Lemma 6.7.

We are now ready to define our functions φ1 and φ2. Let ~w
k
i,j denote the jth vector of Ski , where i ∈ [1, c],

j ∈ [1, |Ski |], and k ∈ {1, 2}. Let sij denote the jth node of SiI , where i ∈ [1, c] and j ∈ [1, |SiI |]. Likewise, let

tij denote the jth node of T iI , where i ∈ [1, c] and j ∈ [1, |T iI |]. We define φ1 and φ2 as follows:

φ1(~w
1
i,j) = (sij , t

i
j) and φ2(~w

2
i,j) = (sij , t

i
j) for i ∈ [1, c], j ∈ [1, |S1

j |].

The key properties of functions φ1 and φ2 are summarized in Claim 6.8.

Claim 6.8 Functions φ1 and φ2 satisfy the following properties:

1. Our choice of φ1 and φ2 imply that for each node u ∈ SI ∪ TI in an inner graph copy GvI , there is at
most one subdivided path Pe incident to u in G.

2. φk(S1
i) ⊆ SiI × T iI for k ∈ {1, 2} and i ∈ [1, c], where φk(S1

i) denotes the image of S1
i under φk.

Proof. Note that Property 2 is immediate from the definition of φ1 and φ2. What remains is to prove
Property 1. Note that φ1 and φ2 are injective functions. Each pair (sij , t

i
j) ∈ SI × TI is uniquely determined

by vector ~wij . Let ~w, ~w′ ∈ Wk, k ∈ {1, 2}. Then φk(~w) = (sij , t
i
j) and φk(~w

′) = (si
′

j′ , t
i′

j′), for i, i
′ ∈ [1, c] and

j, j′ ∈ [1, |Skj |]. If s
i
j = si

′

j′ or t
i
j = ti

′

j′ , then i = i′ and j = j′. This implies that ~w = ~w′ since φk is injective.

By the construction of graph G, we conclude that nodes sij , t
i
j ∈ SI ∪ TI are each incident to at most one

subdivided path Pe.

Critical Paths Π.

• Fix a critical path πO ∈ ΠO with associated vectors ~w1 ∈W1 and ~w2 ∈W2.

• By our construction of GO, there exists ~w ∈ W such that ~w = ~w1 + ~w2 (see Footnote 4). Then by
the construction of W there exists some index i ∈ [1, c] such that every edge (u, v) ∈ πO satisfies
v − u ∈ {~w1, ~w2} ⊆ S1

i ∪ S2
i . Let χ ∈ [1, c] denote this index.

• Let ei denote the ith edge of πO for i ∈ [1, k]. Note that by Property 2 of Claim 6.8, it follows that
sei ∈ SχI and tei ∈ T χI for i ∈ [1, k]. Then by Property 5 of Lemma 6.7, (sei , tei+1

) ∈ PI . By Property
2 of Lemma 6.7, path πsei ,tei+1

is a unique shortest sei tei+1
path in GI .

19

• We now define a corresponding path π in G:

π = Pe1 ◦ πse1 ,te2 ◦ Pe2 ◦ · · · ◦ Pek−1
◦ πsek−1

,tek
◦ Pek ,

Note that if ei = (x, y) and ei+1 = (y, z), then πsei ,tei+1
corresponds to the unique shortest path

between sei ∈ SχI and tei ∈ T χI in inner graph copy GyI . We add path π to our set of critical paths Π.

• We repeat this process for all critical paths in ΠO to obtain our set of critical paths Π in G. Each
critical path π ∈ Π is uniquely constructed from a critical path πO ∈ ΠO, so |Π| = |ΠO|. We will use
φ : Π 7→ ΠO to denote the bijection between Π and ΠO implicit in the construction.

As the final step in our construction of obstacle product graph G, we remove all edges in G that do not
lie on some critical path π ∈ Π. Note that this will only remove edges in G that are inside copies of the inner
graph GI . Theorem 6.9 summarizes some of the key properties of obstacle product graph G. The proof of
Theorem 6.9 follows from straightforward calculations and arguments similar to those in Section 5.2.

Theorem 6.9 (Properties of Obstacle Product Graph) For any a, r, c > 0 ∈ Z, there exists a graph
G(a, r, c) = (V,E) with a set of critical paths Π that has the following properties:

1. The number of nodes, edges, and critical paths in G is:

|V | = Θ(a3r5c−23/2),

|E| = Θ
(
c1/4 · |V |

)
,

|Π| = Θ

(
a2r4

c5

)
.

2. Every path π ∈ Π that passes through inner graph copy GvI contains Θ(a′/c′3/2) edges that do not lie
on any other path π′ ∈ Π, for all v ∈ VO.

Proof. We will prove the size bounds of |E| last.

1. The number of nodes in G is

|V | = ψ · |EO|+ |VI ||VO| = Θ

(
r3

c29/3
·
a3r2

c2
+ a′2 · a3r

)
= Θ

(
a3r5

c35/3

)

and the number of paths in Π is |Π| = |ΠO| = Θ
(
a2r4

c5

)
, by Theorem 6.6.

2. By Property 3 of Lemma 6.7, if path π ∈ Π passes through GvI , then the subpath πs,t of π induced
on GvI contains Θ(a′/c′3/2) edges that do not lie on any other path πs′,t′ where (s′, t′) 6= (s, t) and
(s′, t′) ∈ PI . Then if path π ∈ Π does not contain Θ(a′/c′3/2) edges that do not lie on any other path
π′ ∈ Π, it follows that (s, t) = (s′, t′).

Let Pes be a subdivided path incident to s in GvI , and let Pet be a subdivided path incident to t in
GvI . Note that subdivided paths Pes and Pet must exist by the construction of critical path π ∈ Π. By
Property 1 of Claim 6.8, Pes and Pet are the unique subdivided paths incident to s and t respectively
in GvI . Then this implies that Pes and Pet are both subpaths of critical paths π and π′.

Let πO = φ−1(π), and let π′
O = φ−1(π′). Then if Pes , Pet ⊆ π ∩ π′, it follows that πO and π′

O intersect
on at least two edges, contradicting Property 3 of Theorem 6.6. We conclude that π and π′ do not
intersect on any inner graph edges in E(GvI) for any v ∈ VO.

We are now ready to prove the size bounds of |E|. The number of edges in G is at most

|E| ≤ ψ · |EO|+ |EI ||VO| = O

(
r3

c29/3
·
a3r2

c2
+ a′2c′ · a3r

)
= O

(
a3r5

c34/3

)
= O(c1/3 · |V |).

To obtain a lower bound on |E|, observe the following:

20

• Every critical path π ∈ Π passes through at least a
4r − 1 distinct inner graph copies by Theorem 6.6.

• By Property 3 of this theorem, every path π ∈ Π that passes through inner graph copy GvI contains
Θ(a′/c′3/2) edges that do not lie on any other path π′ ∈ Π, for all v ∈ VO.

Then combining these three observations we obtain:

|E| ≥ |Π| ·
(a
4r

− 1
)
·Θ

(
a′

c′3/2

)
= Ω

(
a2r4

c5
·
a

r
·
r2

c19/3

)
= Ω

(
a3r5

c34/3

)
= Ω(c1/4 · |V |).

7 Spanner Lower Bound Analysis

Fix a critical path π∗ ∈ Π with endpoints s, t in G. We may assume that s, t ∈ SI are source nodes
in two distinct copies of inner graph GI (e.g., by truncating path π∗ so that this condition holds). Let
~w∗
1 = (x, 0, x2) ∈ W1 and ~w∗

2 = (0, y, y2) ∈ W2 be the two vectors used to construct path π∗. Let π be any
alternate simple s t path. The majority of our analysis will be towards proving that if π takes a subdivided
edge not in π∗, then π is much longer than π∗; specifically, we show that in this case, |π| − |π∗| = Ω(ψ) (see
Lemma 7.19). Once we prove this lemma, the remainder of the proof will follow from standard arguments
in prior work.

We begin our analysis by importing some basic definitions and claims from [BH22].

Definition 7.1 (cf. [BH22], Moves) Let π be a u v path in G from some source u ∈ SI in some inner

graph copy G
(1)
I to some source v ∈ SI in some inner graph copy G

(2)
I . If no internal node of π is a source

node in SI in some inner graph copy G
(3)
I , where G

(3)
I 6= G

(1)
I , then we call π a move. We define the following

categories of moves in G.

• Forward Move. We say that a path π is a forward move if it travels from u ∈ SI to some sink w ∈ TI
in G

(1)
I , and then takes a subdivided path Pe from w to reach a source v ∈ SI in G

(2)
I .

• Backward Move. We say that a path π is a backward move if it travels from u ∈ SI to some source

node u1 ∈ SI in G
(1)
I , and then takes a subdivided path Pe incident to u1 to reach some sink w ∈ TI

in G
(2)
I , and then travels to a source v ∈ SI in G

(2)
I .

• Zigzag Move. We say that a path π is a zigzag move if it travels from u ∈ SI to some source node

u1 ∈ SI in G
(1)
I , and then takes a subdivided path Pe1 incident to u1 to reach a sink w1 ∈ TI in some

inner graph copy G
(3)
I , and then travels to a sink w2 ∈ TI in G

(3)
I and takes a subdivided path Pe2

incident to w2 to reach a source vertex v ∈ SI in G
(2)
I .

Claim 7.2 (cf. [BH22]) Each simple s t path π in G can be decomposed into a sequence of pairwise
internally vertex-disjoint moves.

Proof. Let source node s ∈ SI be in inner graph copy G
(1)
I . Let s1 ∈ SI be the first source node in π

that belongs to an inner graph copy G
(2)
I , where G

(1)
I 6= G

(2)
I . Then subpath π[s, s1] is either a forward,

backward, or zigzag move, by construction. More generally, if si ∈ SI is in inner graph copy G
(i)
I , then define

si+1 ∈ SI to be the first source node in subpath π[si, t] that belongs to an inner graph copy G
(i+1)
I , where

G
(i+1)
I 6= G

(i)
I . Then each subpath π[si, si+1] is either a forward, backward, or zigzag move. Moreover, these

subpaths will be pairwise internally vertex-disjoint since π is simple.

Note that critical path π∗ is an s t path that decomposes into a sequence of forward moves. The
forward moves in π∗ alternate between taking the subdivided path corresponding to vector ~w1 ∈ W1 and the

21

subdivided path corresponding to vector ~w2 ∈ W2. We will compare the length of the critical path π∗ with
the length of the arbitrary path π by comparing the moves in the move decompositions of the two paths.

Borrowing notation from [BH22], let m1, . . . ,mk be the move decomposition of a simple s t path π,

where mi is a move from source node si ∈ SI in inner graph copy G
(i)
I to source node si+1 in inner graph

copy G
(i+1)
I , and s1 = s and sk+1 = t. If inner graph G

(i)
I is the image of a vertex v ∈ VO in GO (i.e.,

G
(i)
I = GvI), then we let coord(G

(i)
I) be the integer vector in R

2 with the coordinates of v.

Definition 7.3 (cf. [BH22], Move vector) The move vector ~mi corresponding to move mi is

~mi := coord(G
(i+1)
I)− coord(G

(i)
I).

We define the direction vector ~d∗ associated with π∗ as ~d∗ = (2x, 2y,−1). We will use the projection of ~mi

onto ~d∗ in order to measure how much progress move mi is making in travelling towards the end node t.

Definition 7.4 (cf. [BH22], Move distance) The move distance di of move vector ~mi is defined to be

di := proj~d∗ ~mi,

where proj~d∗ ~mi denotes the scalar projection of ~mi onto ~d
∗.

We now define a quantity µ called the unit length of π∗ that relates distances in G to Euclidean distances.

Definition 7.5 (cf. [BH22], Unit length of π∗) Let ν = proj~d∗(coord(G
(k+1)
I) − coord(G

(1)
I)). We define

the unit length µ of π∗ as

µ :=
|π∗|

ν
.

We are ready to define the key quantity ∆(mi) associated with each move mi in the move decomposition.
The move length difference ∆(mi) captures (in an amortized sense) the difference between the length |mi|
of move mi and an equivalent move in π∗.

Definition 7.6 (cf. [BH22], Move length difference) We define the move length difference of a move mi as

∆(mi) := |mi| − µ · di.

The following claim verifies our intuition about ∆(mi).

Claim 7.7 (cf. [BH22])
∑

i∆(mi) = |π| − |π∗|

Proof. We restate this proof for completeness. We have:

∑

i

∆(mi) =
∑

i

|mi| − µ
∑

i

di = |π| −
|π∗|

ν
·
∑

i

di = |π| − |π∗|.

The final equality is due to the sequence of equalities:

∑

i

di =
∑

i

proj~d∗ ~mi = proj~d∗(coord(G
(k+1)
I)− coord(G

(1)
I)) = ν,

since π being an s t path implies
∑
i ~mi = coord(G

(k+1)
I)− coord(G

(1)
I).

Now what remains is to lower bound ∆(mi) for each of the moves mi in our move decomposition. The
following technical claim will be useful in that respect.

Claim 7.8

µ = (2ψ +Θ(a′c′1/2)) ·
‖~d∗‖

x2 + y2

22

Proof. Let m1,m2 be two consecutive moves in π∗. Then

m1 = πs1,t1 ◦ Pe1 and m2 = πs2,t2 ◦ Pe2 ,

for some critical pairs (s1, t1), (s2, t2) ∈ PI and some subdivided paths Pe1 and Pe2 . We may assume wlog

that ~m1 = ~w∗
1 and ~m2 = ~w∗

2 . Then using the fact that coord(G
(k+1)
I)− coord(G

(1)
I) = i(~w∗

1 + ~w∗
2) for some

positive integer i, we calculate as follows:

µ =
|π∗|

proj~d∗(coord(G
(k+1)
I)− coord(G

(1)
I))

=
|m1|+ |m2|

proj~d∗(~m1 + ~m2)

=
|πs1,t1 |+ |Pe1 |+ |πs2,t2 |+ |Pe2 |

proj~d∗(~m1 + ~m2)

=
(ψ + Θ(a′c′1/2)) + (ψ +Θ(a′c′1/2))

proj~d∗(~m1 + ~m2)
Property 4 of Lemma 6.7

=
2ψ +Θ(a′c′1/2)

proj~d∗(~m1 + ~m2)
Claim 7.12

=
(2ψ +Θ(a′c′1/2))‖~d∗‖

〈~w∗
1 + ~w∗

2 ,
~d∗〉

=
(2ψ +Θ(a′c′1/2))‖~d∗‖

x2 + y2
.

We will now lower bound the move length difference ∆(mi) of backward moves mi.

Claim 7.9 Let mi be a backward move. Then ∆(mi) = Ω(ψ).

Proof. Note that if mi is a backward move, then it takes a subdivided path Pe that corresponds to a vector
−~w ∈ R

2, where in ~w ∈ W1 ∪ W2. We may assume wlog that ~w ∈ W1, as the case where ~w ∈ W2 is
symmetric. Let ~w = (w, 0, w2) ∈ W1. Then we obtain the following upper bound on di:

di = proj~d∗ ~mi =
〈~mi, ~d

∗〉

‖~d∗‖
=

〈−~w, ~d∗〉

‖~d∗‖
=

−2xw + w2

‖~d∗‖
=

(w − 2x)w

‖~d∗‖
≤ 0,

where the final inequality follows from the fact that x,w ∈ [r/2, r] and so w ≤ 2x due to Claim 6.1. Then

∆(mi) = |mi| ≥ ψ,

since mi contains a subdivided path Pe of length |Pe| = ψ.

We will now lower bound the move length difference ∆(mi) of zigzag moves mi.

Claim 7.10 Let mi be a zigzag move. Then ∆(mi) = Ω(ψ).

Proof. Let G
(1)
I , G

(2)
I , G

(3)
I and Pe1 , Pe2 be the inner graph copies and subdivided paths, respectively, asso-

ciated with zigzag move mi, as defined in Definition 7.1. Note that subdivided path Pe1 corresponds to a
vector −~w1 ∈ R

2, where ~w1 in ~w1 ∈W1 ∪W2. Then by an argument identical to that of Claim 7.9,

proj~d∗(coord(G
(2)
I)− coord(G

(1)
I)) = proj~d∗(−~w1) ≤ 0.

23

On the other hand, Pe2 corresponds to a vector ~w2 ∈W1 ∪W2. We may assume wlog that ~w2 = (w, 0, w2) ∈
W1, as the case where ~w ∈W2 is symmetric. Then

proj~d∗(coord(G
(3)
I)− coord(G

(2)
I)) = proj~d∗ ~w2 =

2xw − w2

‖~d∗‖
.

Taking the above two inequalities together we get

di = proj~d∗ ~mi = proj~d∗(coord(G
(2)
I)− coord(G

(1)
I)) + proj~d∗(coord(G

(3)
I)− coord(G

(2)
I)) ≥

2xw − w2

‖~d∗‖
.

Now note the following brief observations:

• di ≥ 0, since 2xw − w2 ≥ 0, as w ≤ 2x by Claim 6.3,

• |x− y| ≤ r/(16c3) by Claim 6.3, since ~w∗
1 = (x, 0, x2) and ~w∗

2 = (0, y, y2) satisfy ~w∗
1 , ~w

∗
2 ∈ S1

i ∪ S2
i for

some i ∈ [1, c], and

• r ≤ 2x, since r/2 ≤ x by Claim 6.3.

Then we can lower bound ∆(mi) as follows:

∆(mi) = |mi| − µ · di

≥ |Pe1 |+ |Pe2 | − µ · di

≥ 2ψ − (2ψ +Θ(a′c′1/2)) ·
‖~d∗‖

x2 + y2
·
2xw − w2

‖~d∗‖
by Claim 7.8

≥ 2ψ − (2ψ +Θ(a′c′1/2)) ·
2xw − w2

x2 + y2

≥ 2ψ − (2ψ +Θ(a′c′1/2)) ·
2xw − w2

x2 + (x− r/(16c3))2
by Claim 6.3

≥ 2ψ − (2ψ +Θ(a′c′1/2)) ·
2xw − w2

2x2 − xr/c

≥ 2ψ − (2ψ +Θ(a′c′1/2)) ·
2xw − w2

(1 − 1/c) · 2x2
. by Claim 6.3

Note that 2xw − w2 is maximized when w = x, so 2xw − w2 ≤ x2. Then we conclude that

∆(mi) ≥ 2ψ − (2ψ +Θ(a′c′1/2)) ·
x2

(1 − 1/c) · 2x2

≥ 2ψ − (2ψ +Θ(a′c′1/2)) ·
1

(3/4) · 2
by taking c ≥ 4

= 2ψ − (2ψ +Θ(a′c′1/2)) ·
2

3

≥
2ψ

3
−Θ(a′c′1/2) = Ω(ψ) since a′c′1/2 = o(ψ).

Recall that ψ = Θc
(
r3
)
and a′c′1/2 = Θc(r

2). Since input parameter r will grow with the input size while c
will be taken to be a sufficiently large constant, the final equality follows.

All subdivided paths Pe in π∗ correspond to vectors ~w∗
1 = (x, 0, x2) ∈ W1 and ~w∗

2 = (0, y, y2) ∈ W2.
Moreover, by construction there exists some index i ∈ [1, c] such that ~w∗

1 ∈ S1
i and ~w∗

2 ∈ S2
i . Denote this

index as i∗. Now consider a forward move m. Move m begins at source node u ∈ SiI in inner graph copy

24

G
(1)
I and contains a subdivided path Pe as a suffix. This subdivided path Pe is incident to a unique sink

w ∈ T jI in G
(1)
I .

To analyze forward moves in our move decomposition of π, it will be useful to partition them into three
different sets:

• Forward Move with Different Sink Stripe. We say that a movem is a forward move with different
sink stripe than π∗ if m is a forward move from source node u ∈ SiI to sink node w ∈ T jI , where j 6= i∗.

• Forward Move with Different Source Stripe. We say that a move m is a forward move with
different source stripe than π∗ if m is a forward move from source node u ∈ SiI to sink node w ∈ T jI ,
where i 6= i∗ and j = i∗.

• Forward Move with Same Stripes. We say that a move m is a forward move with the same stripes
as π∗ if m is a forward move from source node u ∈ SiI to sink node w ∈ T jI , where i = j = i∗.

Claim 7.11 Let mi be a forward move with a different sink stripe than π∗. Then ∆(mi) ≥ Ω(ψ/c2).

Proof. Since mi is a forward move with a different sink stripe than π∗, it follows that the subdivided
path Pe taken by mi corresponds to a vector ~w in S1

j ∪ S2
j , where j 6= i∗. We may assume wlog that

~w = (w, 0, w2) ∈ S1
j ⊆W1, as the case where ~w ∈W2 is symmetric. Moreover, by Claim 6.3, |w−x| ≥ r/(2c)

and x ≤ r. Then we obtain the following inequality for di:

di = proj~d∗ ~mi =
〈~w, ~d∗〉

‖~d∗‖
=

2xw − w2

‖~d∗‖
=
x2 − (w − x)2

‖~d∗‖
≤
x2 − r2/(4c2)

‖~d∗‖
≤

(
1−

1

4c2

)
·
x2

‖~d∗‖
.

By Claim 6.1, since ~w∗
1 , ~w

∗
2 ∈ S1

i∗ ∪ S2
i∗ , it follows that |x− y| ≤ r

16c3 , so

x2 + y2 ≥ x2 +
(
x−

r

16c3

)2
≥ 2x2 −

2xr

16c3
≥

(
1−

1

8c3

)
· 2x2.

Combining our two inequalities, we can now bound ∆(mi) as follows:

∆(mi) ≥ |mi| − µ · di

≥ |Pe| − (2ψ +Θ(a′c′1/2)) ·
‖~d∗‖

x2 + y2
·

(
1−

1

4c2

)
·
x2

‖~d∗‖

≥ ψ − (2ψ +Θ(a′c′1/2)) ·
x2

x2 + y2
·

(
1−

1

4c2

)

≥ ψ − (2ψ +Θ(a′c′1/2)) ·
x2(

1− 1
8c3

)
· 2x2

·

(
1−

1

4c2

)

≥ ψ − (ψ +Θ(a′c′1/2)) ·

(
1− 1

4c2

)
(
1− 1

8c3

)

= ψ − (ψ +Θ(a′c′1/2)) ·
8c3 · (4c2 − 1)

4c2 · (8c3 − 1)

= ψ − (ψ +Θ(a′c′1/2)) ·
8c3 − 2c

8c3 − 1

≥ ψ − (ψ +Θ(a′c′1/2)) ·

(
1−

1

4c2

)

≥
1

4c2
· ψ −Θ(a′c′1/2)

= Ω(ψ/c2).

The final equality holds since ψ = Θc
(
r3
)
and a′c′1/2 = Θc(r

2), and input parameter r will grow with the
input size while c will be taken to be a sufficiently large constant.

25

Note that since the critical path π∗ has associated vectors ~w∗
1 , ~w

∗
2 ∈ S1

i∗ ∪ S2
i∗ , it follows that path π∗

contains a path πu,v between critical pair (u, v) ∈ Si
∗

I × T i
∗

I . By Property 5 of Lemma 6.7, distGI (u, v) =
distGI (S

i∗

I , T
i∗

I). Let λ = distGI (S
i∗

I , T
i∗

I). Then we have the following two claims.

Claim 7.12 Let m be a move in π∗. Then |m| = λ+ ψ.

Proof. Each movem in π∗ is of the formm = πs,t ◦Pe, where πs,t is an s t path such that (s, t) ∈ Si
∗

I ×T i
∗

I

of length |πs,t| = λ and Pe is a subdivided edge of length |Pe| = ψ.

Claim 7.13

µ =
2(λ+ ψ)‖~d∗‖

x2 + y2

Proof. Let m1,m2 be two consecutive moves in π∗. We may assume wlog that ~m1 = ~w∗
1 and ~m2 = ~w∗

2 . Then

using the fact that coord(G
(k+1)
I) − coord(G

(1)
I) = i(~w∗

1 + ~w∗
2) for some positive integer i, we calculate as

follows:

µ =
|π∗|

proj~d∗(coord(G
(k+1)
I)− coord(G

(1)
I))

=
|m1|+ |m2|

proj~d∗(~m1 + ~m2)

=
2(λ+ ψ)

proj~d∗(~m1 + ~m2)
Claim 7.12

=
2(λ+ ψ)‖~d∗‖

〈~w∗
1 + ~w∗

2 ,
~d∗〉

=
2(λ+ ψ)‖~d∗‖

x2 + y2
.

We can now bound the move length difference of forward moves with different source stripes than π∗.
These moves can actually have negative move length difference, which will pose difficulties in our analysis
later.

Claim 7.14 Let mi be a forward move with a different source stripe than π∗. Then ∆(mi) ≥ −ψ/c3.

Proof. Move mi containing a subdivided path Pe, so mi ≥ |Pe| = ψ. The subdivided path Pe taken by mi

corresponds to a vector ~w in W1 ∪W2. We may assume wlog that ~w = (w, 0, w2) ∈ W1, as the case where
~w ∈W2 is symmetric. Then we have the following bound on ∆(mi):

∆(mi) ≥ |mi| − µ · di

≥ ψ −
2(λ+ ψ) · ‖~d∗‖

x2 + y2
·
2wx− w2

‖~d∗‖
Claim 7.13

≥ ψ −
2(λ+ ψ) · x2

x2 + y2
since 2wx− w2 is maximized when w = x

≥ ψ −
2(λ+ ψ) · x2(
1− 1

8c3

)
· 2x2

Claim 6.3

≥ ψ − (λ+ ψ) ·
8c3

8c3 − 1

≥ −
ψ

4c3
− 2λ sufficiently large c

≥ −ψ/c3,

26

where the final inequality follows from the fact that ψ/c3 = Θc
(
r3
)
and λ = Θ(a′c′1/2) = Θc(r

2), and that
input parameter r will grow with the input size of our graph construction.

Note that while a forward move mi with a different source stripe than π∗ can have negative move length
difference, this move is always preceded by a move mi−1 with a large positive move length difference. This
will allow us to ‘charge’ the negative length of forward moves with different source stripes to the moves
preceding them in an amortized argument in Claim 7.17. We now verify our desired claim about forward
moves with different source stripes.

Claim 7.15 Every forward move mi with a different source stripe than π∗ is immediately preceded by a move
mi−1, where mi−1 is either a backward move, a zigzag move, or a forward move with different sink stripe
than π∗.

Proof. Note that by definition, the start node of move mi is a source node u in SiI , where i 6= i∗. If move
mi−1 is a forward move, then it must take a subdivided path Pe that ends at source node u. Since u 6∈ Si

∗

I ,
Property 1 of Claim 6.8 implies that if move mi−1 is a forward move, then it must be a forward move with
different sink stripe than π∗. We conclude that move mi−1 is either a backward move, a zigzag move, or a
forward move with different sink stripe than π∗.

Claim 7.16 Let mi be a forward move with the same source and sink stripe as π∗. Let Pe be the subdivided
path used by move mi, and let ~w ∈ W1 ∪W2 be the vector corresponding to Pe. Then we have the following
bound on ∆(mi):

• if ~w ∈W1, then ∆(mi) ≥ (λ+ ψ)− 2(λ+ψ)x2

x2+y2 , and

• if ~w ∈W2, then ∆(mi) ≥ (λ+ ψ)− 2(λ+ψ)y2

x2+y2 .

Moreover, this implies that ∆(mi) ≥ −ψ/c3.

Proof. Let Pe be the subdivided path used by move mi. Let si ∈ Si
∗

I be the first source node in mi and let
ti ∈ T i

∗

I be the last sink node in mi. By Lemma Property 5 of 6.7,

distGI (si, ti) = distGI (S
i∗

I , T
i∗

I) = λ.

It follows that |mi| = |πsi,ti |+ |Pe| = λ+ ψ. We now split our analysis into two cases:

• ~w ∈ W1. Let ~w = (w, 0, w2). Then 〈~w, ~d∗〉 = 2wx − w2 ≤ x2, by the same argument as in Claim 7.14.
It follows that by Claim 7.13,

∆(mi) = |mi| − µ · di = (λ+ ψ)−
2(λ+ ψ) · ‖~d∗‖

x2 + y2
·
〈~w, ~d∗〉

‖~d∗‖
≥ (λ+ ψ)−

2(λ+ ψ)x2

x2 + y2
.

• ~w ∈ W2. Let ~w = (0, w, w2). Then 〈~w, ~d∗〉 = 2wy − w2 ≤ y2 by the same argument as in Claim 7.14.
It follows that by Claim 7.13,

∆(mi) = |mi| − µ · di = (λ + ψ)−
2(λ+ ψ) · ‖~d∗‖

x2 + y2
·
〈~w, ~d∗〉

‖~d∗‖
≥ (λ+ ψ)−

2(λ+ ψ)y2

x2 + y2
.

The final claim follows from the inequalities x2 + y2 ≥
(
1− 1

8c3

)
· 2x2 and x2 + y2 ≥

(
1− 1

8c3

)
· 2y2 proved

27

in Claim 7.11 and following from Claim 6.3. Formally,

∆(mi) ≥ min

(
(λ+ ψ)−

2(λ+ ψ)x2

x2 + y2
, (λ+ ψ)−

2(λ+ ψ)y2

x2 + y2

)

≥ min

(
(λ+ ψ)−

2(λ+ ψ)x2(
1− 1

8c3

)
· 2x2

, (λ+ ψ)−
2(λ+ ψ)y2(
1− 1

8c3

)
· 2y2

)

≥ min

(
(λ+ ψ)−

8c3(λ+ ψ)

8c3 − 1
, (λ+ ψ)−

8c3(λ+ ψ)

8c3 − 1

)

≥ −ψ/c3. since λ = o(ψ/c3)

We are now ready to prove our amortized argument about the sums of move lengths
∑
i∆(mi). Our goal

will be to prove a lower bound for
∑

i∆(mi) and then use Claim 7.7 to obtain a lower bound for |π| − |π∗|.

Claim 7.17 Let π be an s t path in G that contains a backwards move, a zigzag move, or a forward move
with different sink stripe than π∗. Then |π| − |π∗| = Ω(ψ/c2).

Proof. Let m1, . . . ,mk be the move decomposition of π. Recall that
∑
i∆(mi) = |π| − |π∗| by Claim 7.7. In

order to prove this claim, we will need to introduce a simple charging scheme to our analysis. We define the
following operation on pairs of moves mi,mj in the move decomposition:

∆(mi) := ∆(mi) + ∆(mj)

∆(mj) := 0.

If this operation is performed, we say that we charged the cost of move mj to move mi. Note that the sum∑
i∆(mi) is invariant under this operation.
By our earlier analysis, if ∆(mi) < 0, then move move mi is either a forward move with a different source

stripe than π∗ or a forward move with the same source and sink stripes as π∗. We handle these two cases
separately as follows:

• If move mi is a forward move with a different source stripe than π∗, then by Claim 7.15, move mi−1

is either a backward move, a zigzag move, or a forward move with different sink stripe than π∗. In
any of these cases ∆(mi−1) ≥ Ω(ψ/c2) by Claims 7.9, 7.10, and 7.11. Then since ∆(mi) ≥ −ψ/c3 by
Claim 7.14, we can safely charge the cost of move mi to move mi−1 by taking c to be a sufficiently
large constant.

• If move mi is a forward move with the same source and sink stripes as π∗, then we will again split our
analysis as follows:

– If move mi−1 or move mi−2 is a backward move, a zigzag move, or a forward move with different
sink stripe than π∗, then we will charge the cost of move mi to move mi−1 or move mi−2,
respectively.

– If move mi−1 is a forward move with the same source and sink stripe as π∗, then since forward
moves alternate between taking subdivided paths in W1 and W2, it follows that by Claim 7.16,

∆(mi−1) + ∆(mi) ≥

(
(λ+ ψ)−

2(λ+ ψ)x2

x2 + y2

)
+

(
(λ+ ψ)−

2(λ+ ψ)y2

x2 + y2

)
= 0.

We charge ∆(mi) to ∆(mi−1). After this operation, ∆(mi−1) ≥ ∆(mi) ≥ 0.

– If move mi−1 is a forward move with a different source stripe than π∗, then by Claim 7.15, move
mi−2 is either a backward move, a zigzag move, or a forward move with different sink stripe than
π∗, so move mi is handled by the first case.

28

Note that the above cases cover all possibilities for a move mi, i 6∈ {1, 2}. To handle moves mi, i ∈ {1, 2},
we will charge moves mi+1 and mi+2 in an analogous way as above.

After completing our charging operations, every forward move mi with the same source and sink stripes
as π∗ now satisfies ∆(mi) ≥ 0, so we may ignore all of these moves. Likewise, every forward move mi with
a different source stripe than π∗ satisfies ∆(mi) = 0, so we may ignore all of these moves.

Note that all remaining moves are either backwards moves, zigzag moves, or forward moves with different
sink stripes than π∗. Every time a remaining move mi is charged by a move mj , we have that ∆(mi) =
Ω(ψ/c2) and ∆(mj) ≥ −ψ/c3. Moreover, each move is charged by at most four other moves (the two moves
immediately preceding mi and the two moves immediately following mi). Therefore, after all charging
operations are finished, move mi satisfies ∆(mi) ≥ Ω(ψ/c2).

Then after we have performed all our charging operations, every move mi in the move decomposition
satisfies ∆(mi) ≥ 0. Moreover, if the move decomposition of π contains a move mi that is a backwards move,
or a zigzag move, or a forward move with different sink stripe than π∗, then after our charging operations,
∆(mi) = Ω(ψ/c2). We conclude that |π| − |π∗| =

∑
i∆(mi) = Ω(ψ/c2).

Claim 7.18 Let π be an s t path in G such that

• π does not contain a backwards move, nor a zigzag move, nor a forward move with different sink stripe
than π∗, and

• π takes a subdivided path Pe not in π∗.

Then |π| − |π∗| = Ω(ψ).

Proof. Note that since π does not contain a backwards move, nor a zigzag move, nor a forward move with
different sink stripe than π∗, by Claim 7.15 it follows that π does not contain a forward move with a different
source stripe than π∗ either. Then π contains exclusively forward moves with the same source and sink
stripes as π∗. Then each move mi of π is of length |mi| = distGI (S

i∗

I , T
i∗

I) + |Pe| = λ + ψ, where Pe is the
subdivided path taken by move mi.

Let m1, . . . ,mk be the move decomposition of π and let m1, . . . ,mk∗ be the move decomposition of π∗.
Then since each move m of π is of length |m| = λ+ψ, it follows that |π| = k(λ+ψ). Likewise, by Claim 7.13,
|π∗| = k∗ · (λ+ ψ).

Now observe that π and π∗ are the images of paths φ−1(π) = πO and φ−1(π∗) = π∗
O, respectively, in

outer graph GO. Moreover, |πO| = q and |π∗
O| = q∗. Recall that π∗

O is a critical path between endpoints
(sO, tO) ∈ PO in GO. Additionally, πO is a sO tO path in GO that contains an edge not in π∗

O. Then
since π∗

O is a unique shortest path in GO by Lemma 6.6, it follows that |πO| ≥ |π∗
O|+ 1. We conclude that

|π| ≥ |π∗|+ (λ+ ψ), as desired.

Claims 7.17 and 7.18 immediately imply the following lemma.

Lemma 7.19 Let π be an s t path in G that takes a subdivided path not in π∗. Then |π|−|π∗| = Ω(ψ/c2).

We are ready to complete the proof of our spanner lower bounds.

Theorem 7.20 For any sufficiently large parameter c, there are infinitely many n for which there is an
n-node graph G such that any spanner of G with at most cn edges has additive distortion +Ωc(n

3/17).

Proof. Let c > 0 be a sufficiently large constant. Then we will construct the infinite family of obstacle
product graphs G from Theorem 6.9 with parameters a, r, c1, where c1 = Θ(c3). Specifically, we choose c1
to be large enough so that every graph G on n nodes and m edges in our family satisfies cn

m < 1
2 . This is

possible to achieve by setting c1 = Θ(c3) due to Property 1 of Theorem 6.9.
Let H be a spanner of G with at most cn edges. Then H contains at most half the edges in G. By

Lemma 7.19 and Property 2 of Theorem 6.9, if H is missing an edge in a subdivided path Pe in G, then H
has additive error +Ω(ψ/c2).

29

Otherwise, if H contains all edges in the subdivided paths in G, then at least half of the inner graph
edges E(GvI), v ∈ VO, must be missing from H . Let EI := ∪v∈VOE(GvI). Since the paths in Π partition the
edges in EI by Property 3 of Theorem 6.9, it follows that there must exist a critical path π ∈ Π missing at
least half of its edges in EI in H .

Let s, t be the endpoints of a critical path π ∈ Π in G, and let π′ be a simple s t path in H . If π′ takes
a subdivided path not in π, then π′ suffers +Ω(ψ/c2) additive error by Lemma 7.19. Then we may assume
that π′ takes the exact same sequence of subdivided paths as π.

If path π is missing an edge in inner graph copy GvI in H , then path π′ must suffer at least +1 additive
error in H while passing through this inner graph, since π[V (GvI)] is a unique shortest path in GI by Property
2 of Lemma 6.7 and the construction of critical path π. Since π is missing half of its edges in EI in H ,
path π is missing an edge in at least half of the inner graph copies that it passes through. As path π passes
through Θ

(
a
r

)
inner graph copies by Property 2 of Theorem 6.6, it must suffer +Θ

(
a
r

)
additive error.

We can balance our parameters by letting ψ/c2 = Θ(ar). Since ψ/c
2 = Θc

(
r3
)
, this implies a = Θc

(
r4
)
.

Then |V (G)| = Θc(r
17) by Property 1 of Theorem 6.9, and the additive error suffered by spanner H is at

least

min

(
Ω

(
ψ

c2

)
,Ω
(a
r

))
= Ωc(r

3) = Ωc

(
|V (G)|3/17

)
.

References

[AB17] Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. Journal of the
ACM (JACM), 64(4):1–20, 2017.

[ABP18] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear additive
spanners. SIAM Journal on Computing, 47(6):2203–2236, 2018.

[ACIM99] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of
diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing,
28(4):1167–1181, 1999.

[ADD+93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse spanners
of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

[BCE05] Béla Bollobás, Don Coppersmith, and Michael Elkin. Sparse distance preservers and additive
spanners. SIAM Journal on Discrete Mathematics, 19(4):1029–1055, 2005.

[BH22] Greg Bodwin and Gary Hoppenworth. New additive spanner lower bounds by an unlayered
obstacle product. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022, pages 778–788. IEEE, 2022.

[BKMP10] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners and
(α, β)-spanners. ACM Transactions on Algorithms (TALG), 7(1):1–26, 2010.

[BL98] Imre Bárány and David G. Larman. The convex hull of the integer points in a large ball. Math.
Ann., 312(1):167–181, 1998.

[BV15] Gregory Bodwin and Virginia Vassilevska Williams. Very sparse additive spanners and emulators.
In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pages
377–382, 2015.

[BV21] Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive span-
ners. ACM Transactions on Algorithms (TALG), 17(4):1–24, 2021.

30

[CE06] Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers. SIAM
J. Discret. Math., 20(2):463–501, February 2006.

[Che13] Shiri Chechik. New additive spanners. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 498–512. SIAM, 2013.

[DHZ00] Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2000.

[Hes03] William Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, page 665–669,
USA, 2003. Society for Industrial and Applied Mathematics.

[Hop24] Gary Hoppenworth. Simple linear-size additive emulators. In 2024 Symposium on Simplicity in
Algorithms (SOSA), pages 1–8. SIAM, 2024.

[HP18] Shang-En Huang and Seth Pettie. Lower Bounds on Sparse Spanners, Emulators, and Diameter-
reducing shortcuts. In David Eppstein, editor, 16th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT 2018), volume 101 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 26:1–26:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[KP23] Shimon Kogan and Merav Parter. New additive emulators. In 50th International Colloquium on
Automata, Languages, and Programming (ICALP 2023). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2023.

[Lu19] Kevin Lu. New methods for approximating shortest paths. PhD thesis, Massachusetts Institute
of Technology, 2019.

[LVWX22] Kevin Lu, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. Better lower bounds for
shortcut sets and additive spanners via an improved alternation product. In Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3311–3331, 2022.

[Pet09] Seth Pettie. Low distortion spanners. ACM Transactions on Algorithms (TALG), 6(1):1–22,
2009.

[TZ23] Zihan Tan and Tianyi Zhang. Almost-optimal sublinear additive spanners. arXiv preprint
arXiv:2303.12768, 2023.

[VXX24] Virginia Vassilevska Williams, Yinzhan Xu, and Zixuan Xu. Simpler and Higher Lower Bounds
for Shortcut Sets, pages 2643–2656. 01 2024.

[Woo06] David P Woodruff. Lower bounds for additive spanners, emulators, and more. In 2006 47th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages 389–398. IEEE,
2006.

A Proof of Lemma 6.7

The goal of this section will be to prove the following lemma.

Lemma A.1 (cf. Theorem 5.10 of [CE06]) For any a, c > 0 ∈ Z, there exists a graph GI(a, c) = (VI , EI)
with a set SI ⊆ VI of sources, a set TI ⊆ VI of sinks, and a set PI ⊆ SI × TI of critical pairs that has the
following properties:

31

1. The number of nodes, edges, sources, sinks, and critical pairs in GI is:

|VI | = Θ(a2),

|EI | = Θ(a2c),

|SI | = Θ(a1/2c11/4),

|TI | = Θ(a1/2c11/4),

|PI | = Θ(ac5/2).

2. Every path πs,t, where (s, t) ∈ PI , contains Θ(a/c3/2) edges that do not lie on any other path πs′,t′ ,
where (s′, t′) ∈ PI .

3. For every source s ∈ SI and sink t ∈ TI , the distance between s and t in GI satisfies the following:

distGI (s, t) = Θ(ac1/2).

4. The set of sources SI can be partitioned into b = Θ(c3) sets S1
I , . . . , S

b
I , where |SiI | = Θ(a1/2c−1/4) for

all i ∈ [b]. Let T iI = {t ∈ TI | (SiI × {t}) ∩ PI 6= ∅} be the set of all sinks that belong to a critical pair
with a source in SiI . Then for all i ∈ [b] the following properties hold:

• |T iI | = Θ(a1/2c−1/4) for all i ∈ [b],

• SiI × T iI ⊆ PI , and

• for all (s, t) ∈ PI such that s ∈ SiI and t ∈ T iI ,

distGI (s, t) ≤ distGI (S
i
I , T

i
I),

where distGI (S
i
I , T

i
I) denotes the minimum distance between SiI and T iI in GI .

A.1 Construction of GI

Let a, c > 0 ∈ Z be the input parameters for our construction of inner graph GI = (VI , EI). Parameter a
will grow with the input size, while c will be assumed to be a sufficiently large integer much smaller than
a. For simplicity of presentation, we will frequently ignore issues related to non-integrality of expressions
that arise in our analysis; these issues affect our bounds only by lower-order terms. The nodes of GI will
correspond to integer points in R

2, while the edges in GI will correspond to vectors in a set W , where we
define W to be

W = {(w,w2) | w ∈ [c/2, c]}.

Let ~wi = (wi, w
2
i), where wi = c/2− 1 + i, denote the ith vector of W for i ∈ [1, c/2].

Vertex Set VI . Our vertex set VI will initially be defined to be the set of points

VI =
[
ac1/2

]
×
[a

c1/2

]
⊆ R

2.

We will add more nodes to VI in a later step of the construction.

Edge Set EI . Our edge set EI in GI will be initially defined to be the set

EI = {(u, v) ∈ VI × VI | v − u ∈W}.

For analysis purposes, we will additionally add the edges (v, v ± (0, 1)) and (v, v ± (1, 0)) to every vertex
v ∈ VI . This will become relevant in the proof of Claim A.4. We will remove some of the edges in EI from
GI in a later step of the construction.

32

Rectangles RSi , R
T
i of GI . In order to define our sources, sinks, and critical pairs, it will be helpful

to define a collection of c pairs of sets of nodes (RS1 , R
T
1), . . . , (R

S
|W |, R

T
|W |) ⊆ VI × VI . We refer to sets

RSi , R
T
i ⊆ VI , i ∈ [|W |], as rectangles of GI . Each rectangle of GI will correspond to the collection of points

in VI contained in a ‘true’ rectangle in R
2. We construct rectangles RSi , R

T
i in GI as follows:

• Let
~xi = (wi, 2wi),

and let ~̂xi denote the unit vector in the direction ~xi. Let

~yi =

(
wi,−

1

2wi

)

be a vector perpendicular to ~xi, and let ~̂yi denote the unit vector in the direction ~yi. The rationale
behind our choice of associating vectors ~xi and ~yi with ~wi will become clear in the proof of Claim A.9.

• Let p1 = (0, 0), p2 = ac1/2

100 · ~̂xi, p3 = c
100 · ~̂yi, and p4 = p2 + p3. Let Ri = Conv(p1, p2, p3, p4). Then

Ri ⊆ R
2 is a rectangle in R

2 with one vertex at the origin.

• Let d be the positive integer ⌈a/100⌉. Let RS
i = Ri + (d, d). It is straightforward to verify that

RS
i ⊆ Conv(VI). Let f be the positive integer f =

⌈
a

100c3/2

⌉
. Let RT

i = RS
i + f · ~wi. Again it is

straightforward to verify that RT
i ⊆ Conv(VI).

• We define rectangles RSi , R
T
i in GI as

RSi = VI ∩RS
i , and RTi = VI ∩RT

i .

• Note that |RSi | = |RTi | = Θ(ac3/2), by taking a and c to be sufficiently large.

The following claim is immediate by the construction of rectangles RSi and RTi .

Claim A.2 For each node v ∈ RSi and each vector ~wj ∈ W , v + ~wj 6∈ RSi .

Bands BSi , B
T
i of GI . As the next step in defining our sources, sinks, and critical pairs, it will be helpful

to define a collection of b pairs of sets of nodes (BS1 , B
T
1), . . . , (B

S
b , B

T
b) ⊆ VI × VI , where b = Θ(c3). We

refer to sets BSi , B
T
i ⊆ VI as bands of GI . We construct bands in GI as follows:

• Fix a pair of rectangles RSi , R
T
i in GI , i ∈ [|W |].

• Let q1 = (0, 0), q2 = c
100 · ~̂xi, q3 = c

100 · ~̂yi, and q4 = q2 + q3, where ~̂xi and ~̂yi are as defined in the
previous paragraph.

• Let Bi = Conv(q1, q2, q3, q4) + (d, d) be a rectangle in R
2. Then Bi ⊆ RS

i . Let Bi = VI ∩ Bi.

• Note that |Bi| = Θ(c2), by taking a and c to be sufficiently large. Let v1, . . . , v|Bi| denote the nodes in
Bi.

• For each node vj ∈ Bi we will define associated bands BSj and BTj . Given a vj ∈ Bi, we define B
S
j and

BTj as

BSj = {u ∈ RSi | u = vj + k · ~xi, k ∈ Z} and BTj = BSj + f · ~wi.

• Observe that |BSj | = |BTj | = Θ
(

a
c1/2

)
. We will assume that |BSj | = |BTj | = z2 for some positive integer

z ∈ Z. This is without loss of generality because we can delete a constant fraction of elements in BSj
and BTj to ensure this property holds.

33

• We can define bands in this way for all pairs of rectangles RSi , R
T
i in GI , i ∈ [|W |]. This will yield a

collection of b = |W | ·Θ(c2) = Θ(c3) distinct pairs of bands BSi , B
T
i . This completes our construction

of the bands of GI . We summarize the properties of our collection of bands in the following claim.

Claim A.3 Our collection of bands {BSi , B
T
i }i∈[b] satisfies the following properties:

• b = Θ(c3),

• |BSi | = |BTi | = Θ
(

a
c1/2

)
, and |BSi | = |BTi | = z2 for some z ∈ Z.

• Band BSi and band BTi are of the form {v + k · ~xi | k ∈ [ℓ]} for some v ∈ VI and ℓ = Θ
(

a
c1/2

)
.

• For all j, k ∈ [|Bi|] such that j 6= k, we have that BSj ∩BSk = ∅, since for all u ∈ RSi , there is at most

one node vj ∈ Bi such that u ∈ {vj + ℓ · ~xi | ℓ ∈ Z}. Likewise, BTj ∩BTk = ∅.

Proof. The first three properties follow immediately from the above discussion; what remains is to verify the
fourth property. Suppose for the sake of contradiction that there exists a node u ∈ RSi and distinct nodes
v, v′ ∈ Bi such that

u = v + ℓ1 · ~xi = v′ + ℓ2 · ~xi,

where ℓ1, ℓ2 ∈ Z and ℓ1 6= ℓ2. Then ‖v−v′‖ ≥ ‖~xi‖ > q2−q1, contradicting our assumption that v, v′ ∈ Bi.

Band Factors FSi,j , F
T
i,j of GI . As the next step in defining our sources, sinks, and critical pairs, it will

be helpful to partition each band BSi in GI into sets FSi,1, . . . , F
S
i,ν , where ν = |BSi |

1/2, and partition each

band BTi in GI into sets FTi,1, . . . , F
T
i,ν . We refer to sets FSi,j and FTi,j as band factors of GI . We construct

band factors in GI as follows:

• Fix a pair of bands BSi , B
T
i , where i ∈ [b].

• By Claim A.3, there exists nodes v, v′ ∈ VI and integer ℓ = |BSi | = Θ
(

a
c1/2

)
such that

BSi = {v + k · ~xi | k ∈ [ℓ]} and BTi = {v′ + k · ~xi | k ∈ [ℓ]}.

Moreover, ℓ = z2 for some z ∈ Z.

• For j ∈ [1, ℓ], let sj ∈ BSi denote node sj = v + j · ~u, and let tj ∈ BTi denote node tj = v′ + j · ~u.

• Let ν = |BSi |
1/2. We define band factors FSi,j , F

T
i,j , j ∈ [ν], as follows:

FSi,j = {sk ∈ BSi | k ∈ [(j − 1) · ν + 1, j · ν]} and FTi,j = {tk ∈ BTi | k ≡ j mod ν}.

We summarize the key properties of band factors FSi,j , F
T
i,j in the following claim.

Claim A.4 Our collection of band factors {FSi,j , F
T
i,j}i∈[b],j∈[ν] satisfies the following properties:

1. |FSi,j | = |FTi,j | = ν = Θ
(
a1/2

c1/4

)
for all i ∈ [b], j ∈ [ν],

2. {FSi,j}j∈[ν] (respectively, {F
T
i,j}j∈[ν]) is a partition of BSi (respectively, BTi) for all i ∈ [b],

3. |{k ∈ [ν] | sk ∈ FSi,j and tk ∈ FTi,j′}| = 1 for all i ∈ [b] and j, j′ ∈ [ν], and

4. distGI (sk, sk′) = O(|k − k′| · c) and distGI (tk, tk′) = O(|k − k′| · c) for all k, k′ ∈ [ν].

34

Proof. Properties 1 and 2 are immediate from the construction of of our collection of band factors. What
remains is to prove Properties 3 and 4.

We begin with Property 3. Note that FSi,j contains only the nodes sk, where k is in an interval [(j − 1) ·

ν + 1, j · ν] of size ν. Moreover, since FSi,j only contains nodes tk where k ≡ j mod ν. Every interval of ν
consecutive integers contains exactly one integer equivalent to j modulo ν, so there is exactly one integer k
such that sk ∈ FSi,j and tk ∈ FTi,j .

Property 4 follows from two observations:

• We can travel from any node v ∈ FSi,j ∪ F
T
i,j to nodes v ± (0, 1) ∈ VI and nodes v ± (1, 0) ∈ VI using a

single edge in GI .

• ‖sk − sk′‖ = |k − k′| · ‖~xi‖ ≤ |k − k′| · 3c and ‖tk − tk′‖ = |k − k′| · ‖~xi‖ ≤ |k − k′| · 3c.

Combining these observations, we conclude that for all k, k′ ∈ [ν], there exists an sk sk′ path and a
tk tk′ path of each of length at most O(|k − k′| · c) in GI .

Trees T Si,j , T
T
i,j of GI . As the final step in defining our sources, sinks, and critical pairs, we will construct a

binary tree with subdivided edges for each band factor in GI . Band factors FSi,j and F
T
i,j will have associated

trees T Si,j and T
T
i,j , respectively. The leaves of each tree associated with each band factor will be merged with

the nodes of the band factor. We will first construct the trees T Si,j , T
T
i,j, and will later merge them with their

respective band factors in a subsequent step. We define trees T Si,j, T
T
i,j to be disjoint copies of the following

tree:

• Let T be a binary tree with root r such that

– T has ν leaves and

– every leaf of T has depth d = Θ(log ν).

• For each edge e ∈ E(T), if the parent node incident to e has depth i, then replace e with a path Pe of
length ψi = 2d−i · a1/2c.

• Let ℓ1, . . . , ℓν be the leaves of binary tree T labeled from left to right. The key properties of tree T are
summarized in the following claim.

Claim A.5 Tree T satisfies the following properties:

1. T has ν leaves and |T | = Θ(ac1/2 log a) nodes,

2. every root to leaf path in T is of length ψ :=
∑d
i=0 ψi = Θ(ac1/2), and

3. distT (ℓk, ℓk′) = Ω(|k − k′| · a1/2c) for all k, k′ ∈ [ν].

Proof.

1. T has ν leaves by construction. The number of nodes in the long edges of depth i in T is 2i · ψi =
Θ(ν · a1/2c). Since the original binary tree had depth Θ(log ν), the claim follows.

2. Every root to leaf path has length ψ :=
∑d
i=0 ψi = Θ(a1/2c · ν), as claimed.

3. Note that the lowest common ancestor of leaves ℓk and ℓk′ in the original binary tree had depth at
most d′ = d− ⌈log2(|k − k′|)⌉. Then the distance in T from ℓk to ℓk′ is at least

distT (ℓk, ℓk′) ≥
d∑

i=d′

ψi = a1/2c ·
d∑

i=d′

2d−i = a1/2c · Ω(2log(|k−k
′|)) = Ω(a1/2c · |k − k′|).

35

We define T Si,j and T
T
i,j to be copies of the tree T constructed above for all i ∈ [b] and j ∈ [ν]. We let r(i, j, S)

denote the root of T Si,j, and we let ℓk(i, j, S) denote the kth leaf of T Si,j. We define identical notation for T Ti,j .
We will now merge our collection of trees Ti,j with GI , by fusing the leaves of the trees with their associated
band factors. This will complete our construction of graph GI .

• For all i ∈ [b], j ∈ [ν], and k, merge leaf ℓk(i, j, S) in tree T Si,j with the kth node in band factor FSi,j .

Likewise, merge leaf ℓk(i, j, T) in tree T Ti,j with the kth node in band factor FTi,j .

• This completes our construction of graph GI . We now verify two simple claims about GI . In particular,
we will verify that inserting our trees into GI did not decrease distances in GI between nodes in VI .

Claim A.6 Distances in GI between nodes in VI do not decrease after inserting trees {T Si,j , T
T
i,j}i∈[b],j∈[ν]

into GI .

Proof. Let v, v′ be the kth and k′th nodes in FSi,j . By Claim A.4 and the definition of FSi,j , the distance in

GI from v to v′ is at most O(|k−k′| · c). On the other hand, the distance in T Si,j from ℓk(i, j, S) to ℓk′(i, j, S)

is at least Ω(a1/2c · |k − k′|). This implies the inequality

distTS
i,j
(ℓk(i, j, S), ℓk′(i, j, S)) ≥ distGI (v, v

′).

Then inserting tree T Si,j into GI will not decrease distances in GI between nodes in VI .

Likewise, let v, v′ be the kth and k′th nodes in FTi,j . By Claim A.4 and the definition of FTi,j , the distance

in G from v to v′ is at most O(|k− k′| · c · ν) = O(|k− k′| · a1/2c3/4). On the other hand, the distance in T Si,j
from ℓk(i, j, S) to ℓk′(i, j, S) is at least Ω(a

1/2c · |k− k′|). Then by taking a and c to be sufficiently large, we
can guarantee that

distTS
i,j
(ℓk(i, j, S), ℓk′(i, j, S)) ≥ distGI (v, v

′).

We conclude that distances in GI between nodes in VI do not decrease after inserting trees {T Si,j , T
T
i,j}i∈[b],j∈[ν]

into GI .

Claim A.7 |V (GI)| = Θ(a2)

Proof. Note that |VI | = a2 by construction. What remains is to bound the contribution of the nodes in our

collection of trees {T Si,j, T
T
i,j} in GI . There are Θ(bν) = Θ

(
c3 · a

1/2

c1/4

)
trees in our collection of trees. Moreover,

each tree has Θ(ac1/2 log a) nodes by Claim A.5. Then our trees contribute Θ(a3/2c13/4 · log a) = o(a2) nodes
to GI .

Sources SI , Sinks TI, and Critical Pairs PI . We define our sources SI and sinks TI as follows:

• let SI = {r(i, j, S) | i ∈ [b], j ∈ [ν]},

• let SiI = {r(i, j, S) | j ∈ [ν]} for all i ∈ [b],

• let TI = {r(i, j, T) | i ∈ [b], j ∈ [ν]},

• let T iI = {r(i, j, T) | j ∈ [ν]} for all i ∈ [b], and

• let PI = ∪i∈[b]S
i
I × T iI .

The following claim is immediate.

Claim A.8 Our sources, sinks, and critical pairs have the following sizes:

• |SI | = Θ
(
a1/2c11/4

)
,

• |SiI | = Θ(a1/2c−1/4) for all i ∈ [b],

36

• |TI | = Θ
(
a1/2c11/4

)
,

• |T iI | = Θ(a1/2c−1/4) for all i ∈ [b], and

• |PI | = Θ(ac5/2).

Critical Paths for PI . For each index i ∈ [b], and each node s ∈ SiI and each t ∈ T iI , we will define a
critical path πs,t in GI as follows.

• Let FSi,j and T Si,j be the band factor and tree associated with node s ∈ SiI (note in particular, s is the

root r(i, j, S) of T Si,j). Likewise, let FTi,j′ and T Ti,j′ be the band factor and tree associated with node

t ∈ T iI .

• By Property 3 of Claim A.4, there is a unique node sk ∈ FSi,j and tk ∈ FTi,j′ such that sk is the kth

node of BSi and tk is the kth node of BTi .

• By the construction of BSi and BTi , it follows that tk = sk + f · ~wi.

• Note that since sk ∈ FSi,j and tk ∈ FTi,j′ , node sk was merged with a leaf in T Si,j and node tk was merged

with a leaf in T Ti,j .

• We define our critical path πs,t as

πs,t = T Si,j [s, sk] ◦ (sk + ~wi, sk + 2~wi, · · · , sk + (f − 1) · ~wi, sk + f · ~wi) ◦ T
T
i,j′ [tk, t].

• Observe that for all (s, t) ∈ SiI × T iI ⊆ PI , we have that |πs,t| = (f − 1) + 2
∑d
i=0 ψi = Θ(f + ac1/2) =

Θ(ac1/2), by Claim A.5. In particular, this implies that |πs,t| = |πs′,t′ | for all (s, t), (s
′, t′) ∈ SiI × T iI .

• Let ΠI = {πs,t | (s, t) ∈ PI} denote the critical paths associated with critical pairs PI .

As a final step in our construction of GI , we will remove all edges in GI that do not lie on a critical path
πs,t ∈ ΠI . We now finish our analysis by proving a few claims about critical paths πs,t ∈ ΠI .

Claim A.9 Path πs,t is a unique shortest path for all (s, t) ∈ PI .

Proof. Let s ∈ SiI and let t ∈ T iI . Let F
S
i,j and T

S
i,j be the band factor and tree associated with node s ∈ SiI ,

and let FTi,j′ and T Ti,j′ be the band factor and tree associated with node t ∈ T iI . Let ~wk = (wk, w
2
k) ∈ W

be the vector associated with the construction of path πs,t. We observe that by an identical argument to
Lemma 4.3, vector ~wk ∈W is the unique vector in W ∪−W that maximizes the inner product of 〈~wk, ~xk〉.

Let π be an s t path in GI . Let π = π1 ◦ π2 ◦ π3, where π1 ⊆ T Si,j and π3 ⊆ T Ti,j . Then |π1| = |π3| =∑d
i=0 ψi = Θ(ac1/2) without loss of generality. What remains is to argue that if π 6= πs,t, then |π2| > πs,t[VI],

where πs,t[VI] denotes path πs,t induced on VI .
Note that |πs,t[VI]| = f − 1 by the earlier discussion in the construction of critical paths for PI . Let x, y

be the endpoints of π2. Then by applying an argument similar to Claim 4.4, if π2 contains an edge e = (u, v)
where v − u 6= ~wk, then |π2| > |πs,t[VI]|. Then π2 contains only edges (u, v) where v − u = ~wk. (Note that
πs,t[VI] also contains only edges (u, v) where v − u = ~wk.) Let x′ and y′ be the endpoints of path πs,t[VI].
If x = x′ and y = y′, then πs,t[VI] = π2. Then x 6= x′ or y 6= y′. However, recall that by Property 3 of
Claim A.4, there is exactly one index k ∈ [ν] such that sk ∈ FSi,j and tk ∈ FTi,j′ . Then this implies that
x = x′ and y = y′, a contradiction. We conclude that if |π2| = |πs,t[VI]|, then π2 = πs,t[VI], so π is a unique
shortest s t path in GI .

Claim A.10 Every critical path πs,t, where (s, t) ∈ PI , contains Θ(a/c3/2) edges that do not lie on any other
path πs′,t′ , where (s′, t′) ∈ PI .

37

Proof. Every edge e = (u, v) in GI [VI] belongs to at least one path πs,t in ΠI by the final step of our
construction. By construction, πs,t contains a node x in rectangle RSi for some i ∈ [|W |] such that x =
u− i · (u− v) for some positive integer i. Then edge e belongs to at most one path in πs,t ∈ ΠI because any
additional path in ΠI containing e must also contain a node x′ in RSi such that x′ = u− i′ · (u− v) for some
positive integer i′. However, this is not possible by our choice of RSi due to Claim A.2.

We have shown that every edge e ∈ GI [VI] belongs to exactly one path πs,t, where (s, t) ∈ PI . Now note
that each path has f − 1 = Θ(a/c3/2) paths in GI [VI], so the claim follows.

We are finally ready to wrap up our proof of Lemma 6.7.

Proof of Lemma 6.7.

1. The size bounds of |VI |, |SI |, |TI |, and |PI | follow from Claim A.7 and Claim A.8. To bound the size
of EI , note that by Claim A.10, each path πs,t, where (s, t) ∈ PI contains Θ(a/c3/2) edges that do not
lie on any other path πs′,t′ , where (s′, t′) ∈ PI . Then |EI | = Θ(|PI | ·

a
c3/2

) = Θ(a2c), as claimed.

2. This property follows from Claim A.10.

3. Note that for all s ∈ SI and t ∈ TI , the distance between s and t in GI is at least Ω(ac
1/2) by Claim A.5.

Moreover, the diameter of GI [VI] = Θ(a) by the argument in Claim A.4. Then distGI (s, t) = Θ(ac1/2).

4. This property follows from Claim A.8, the construction of critical pairs PI and critical paths ΠI , and
the argument in Claim A.9.

38

	Introduction
	Our Contribution and Next Steps for the Area
	Additional Results

	Technical Overview
	The obstacle product framework
	The outer graph: distance preservers and the alternation product
	Our construction: optimal unlayered alternation product and optimal inner graph structure

	Preliminaries
	Outer Graph GO
	Convex Set of Vectors
	Construction of GO
	Properties of GO

	Emulator Lower Bound
	Construction of Obstacle Product Graph G
	Analysis of G.

	Spanner Lower Bound Construction
	Modifying Convex Sets W1, W2, and W in GO
	Inner Graph GI
	Construction of Obstacle Product Graph G

	Spanner Lower Bound Analysis
	Proof of lem:sourcewisedp
	Construction of GI

