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Abstract—Base station densification is one of the key ap-

proaches for delivering high capacity in radio access networks.

However, current static deployments are often impractical and

financially unsustainable, as they increase both capital and

operational expenditures of the network. An alternative paradigm

is the moving base stations (MBSs) approach, by which part of

base stations are installed on vehicles. However, to the best of

our knowledge, it is still unclear if and up to which point MBSs

allow decreasing the number of static base stations (BSs) deployed

in urban settings. In this work, we start tackling this issue by

proposing a modeling approach for a first-order evaluation of

potential infrastructure savings enabled by the MBSs paradigm.

Starting from a set of stochastic geometry results, and a traffic

demand profile over time, we formulate an optimization problem

for the derivation of the optimal combination of moving and static

BSs which minimizes the overall amount of BSs deployed, while

guaranteeing a target mean QoS for users. Initial results on a two-

district scenario with measurement-based network traffic profiles

suggest that substantial infrastructure savings are achievable. We

show that these results are robust against different values of user

density.

I. INTRODUCTION

Cellular networks will face significant technical and eco-

nomic challenges soon, primarily driven by the escalating

number of users and the growing demand for data traffic,

especially in urban settings. According to the forecasting

analysis in [1], the per-area data volume in future systems will

increase by 1000 times, while the number of connected devices

and the user data rate will increase by 10 to 100 times. To ad-

dress this challenge, network densification, which was already

exploited in 5G [2], was proposed. However, this approach

leads to an increase in both capital expenditure (CAPEX) and

operational expenditure (OPEX) of the network. Furthermore,

densification is strictly related to over-provisioning, i.e. worst-

case dimensioning and deployment of network resources, to

cope with traffic peaks and with the increasing variability of

traffic over time. To reduce network costs and installations,

other solutions have been explored as the deployment of small

cells or Distributed Antenna Systems (DAS). Among all of

them, a promising alternative lies in the dynamic mobile

network paradigm [3]. The moving small cell base stations

(BSs) provide additional capacity, when and where needed, to

the end users of an otherwise traditional RAN. Studies about

the optimal positioning and other challenges related to the

mobility of MBSs have already been investigated and solved

as in [4]. Existing studies confirm the adaptability of MBSs,

which have, in contrast with UAVs, the potential to align with

both spatial and temporal variations in the number of mobile

users and the level of traffic they generate in urban scenarios

[5]. However, so far it is unclear to which point the introduction

of MBSs may help decrease the total amount of BS deployed

in an urban scenario.

In this paper, we provide a novel framework for a first-

order quantitative evaluation of these potential infrastructure

savings. Specifically, we propose an analytical approach for

determining the optimal number of BSs required to implement

a hybrid network, i.e., that encompasses both fixed and mobile

BS, which minimizes the total number of installed BSs while

guaranteeing the desired Quality of Service (QoS) for all users.

Our main contributions are:

• We formulate a linear optimization problem to determine

the optimal number of moving and static BS required in a

given scenario to serve a given traffic demand with a target

QoS;

• We propose an approach to compute CAPEX savings, which

is based on the adopted patterns of traffic demand in each

district of an urban scenario for a given time interval. By

solving the optimization problem, it computes the overall

amount of static infrastructure required in each district (with

and without MBSs), as well as the overall minimum amount

of MBSs which allows for satisfying the traffic demand in

the whole city for the given time interval;

• We apply our approach on a two-district scenario, for a first-

order evaluation of the savings achievable with the MBSs

paradigm. Results suggest that MBSs enable substantial

savings (reaching a maximum of 21% in the considered

settings) in the total amount of deployed BSs. We show

that these results are robust with respect to different values

of mean user density in each district.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider a finite area of the plane, on which BS and

users are distributed according to homogeneous planar Poisson

Point Processes (PPP). User devices consist of broadband

(BB) terminals, though our approach can be extended with

heterogeneous devices, such as UAVs or IoT equipment.

We study our system over a finite time interval, which we

denote as observation window. This choice accounts for the

fact that in realistic scenarios patterns of traffic demand and

user mobility are typically periodic over different timescales

(day, week, month...). Thus our system can be dimensioned

and characterized over an observation window equal to a

multiple of one of such periods. We assume the observation

window to be partitioned in a set of equal-sized intervals,

and let j ∈ 1, ..., J be the label of the j−th interval. The

choice of the duration of each slot is based on a tradeoff
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between the accuracy of the analysis, and its computational

complexity, among others. As a performance metric, we use

the per-bit delay, defined as the inverse of the short-term

user throughput [6]. We assume users require a mean per

bit delay τ0 and that all base stations transmit at the same

power, which does not vary over time. We assume all BSs use

the same wireless communication technology (e.g. mmwave)

for the backhaul link which connects them to a static access

point. Indeed, wireless backhauling is widely adopted in urban

environments, particularly in small cell deployments, to avoid

the costs and practical hurdles of cabled connections. Thus, for

the sake of simplicity of analysis, in this preliminary work,

we do not model the impact of backhaul link performance

on user-perceived performance. We assume part of the BSs

to be mobile, and we denote them as MBSs. In particular,

we consider the ideal case in which MBS can move freely

throughout the entire scenario to follow traffic demand, and

we defer to a later work the inclusion of constraints to MBS

movement relative to actual traffic flows among regions over

the considered observation window. We assume that the area

being modeled represents an urban scenario partitioned into

Z regions. Each region models a distinct land use, with its

pattern of traffic demand during the observation window. With

λz
b we denote the intensity of the PPP of BSs in the region

z ∈ 1, ..., Z. Similarly, in every interval j and region z, with

λz
u,j and λz

m,j we denote the intensity of the PPP of UEs

and MBSs respectively. We impose that our system satisfies

the closed system assumption. That is, the mean total number

of moving BSs over time in the whole area is constant and

equal to M . That is, ∀j,
∑Z

z=1 λ
z
m,jAz = M , where Az

is the area of region z. Our channel model only takes into

account distance-dependent path loss. We assume that random

frequency reuse is in place, with reuse factor k. We assume

that UEs are associated with the BS that provides the largest

SINR at the user location. We consider urban scenarios where

the assumption of high attenuation typically holds. In these

settings, as no fading is considered and all BSs use the same

transmit power, assuming that users associate to the closest BS

is a reasonable approximation [7]. We focus on the downlink

of the wireless channel, though similar considerations can be

made for the uplink channel. We assume each base station

shares its time equally among all users associated with it,

e.g. in a round-robin fashion. At each round, we assume the

base station is idle for a fraction of time, whose duration is

tuned to have the mean per bit delay perceived by each user

coincide with the target value. Then the BS utilization is the

fraction of time the BS is actively serving users. To compute

the performance of the system in terms of average per bit delay

τ̄zj perceived by a user in the region z at time j, we adopt

results from [8], [9] that correlate the user’s average ideal per

bit delay (i.e. the per bit delay perceived by users when the

serving BS utilization is equal to 1) with the density of active

BSs λz
b and of other connected users λz

u,j in the area:

τ̄zj =

∫

∞

0

(
∫

∞

0

∫ 2π

0

e−λz
bA(r,x,θ)λz

u,jxdθdx

)

e−λz
bπr

2

λz
b2πr

C(r, P,G, Ī)
dr

(1)

with A(r, x, θ) given by πx2 −

[

r2 cos−1
(

r+x sin(θ)
d(r,x,θ)

)

+

x2 cos−1
(

x+r sin(θ)
d(r,x,θ)

)

− 1
2 (−(d(r, x, θ) − x)2 +

r2)
1

2 ((d(r, x, θ) + x)2 − r2)
1

2

]

and d(r, x, θ) =
√

x2 + r2 + 2xr sin(θ). The capacity C is modeled

using Shannon’s capacity law, i.e. C(r, P,G, I) =

(B/k) log2

(

1 + Pr−α

N0+I(r,k)

)

, where α is the attenuation

coefficient and N0 is the power spectral density of the

additive white Gaussian noise and, the average interference is

given by Ī(r, k) =
P2πr2−αλz

b

k(α−2)
τ̄
τ0 where τ̄

τ0 is the mean BS

utilization [8].

III. ESTIMATION OF CAPEX SAVINGS

The first step of our approach for the estimation of the

mean savings related to the integration of MBSs in the cellular

network, consists of solving an optimization problem that

determines, for each time slot and region, the minimum total

density of base stations required to serve the given population

of users with the target mean per bit delay.

Problem 1 (Minimum total density of BS with target QoS).

minimize
Λb

Z
∑

z=1

J
∑

j=1

λz
b,j

s.t., ∀j ∈ {1, ..., J}, z ∈ {1, ..., Z}, τ̄zj ≤ τ0, Uz
j ≤ 1

where Λb(j, z) = λz
b,j , τ̄zj is given by equation 1 and Uz

j =
τ̄z
j

τ0
is the average BS utilization in slot j and region z. In

a scenario with only static BSs, Problem 1 allows deriving

the minimum density of static BSs in each region z which

allows satisfying the constraint on user-perceived QoS across

the whole observation window. Problem 1 is nonlinear and

non-convex, and it can be solved by a heuristic such as Genetic

Algorithm. Problem 1 solutions are then inputs to a second

optimization problem, for the derivation of the number of static

and moving BS, in each time slot j and region z, which allows

serving a given user density λz
u,j with the target mean per bit

delay τ0, while minimizing the total amount of deployed BSs.

Problem 2 (Optimal density of moving and static BS).

minimize
Λm,λb

M +
Z
∑

z=1

λz
bAz (2)

Subject to, ∀j ∈ {1, ..., J}, z ∈ {1, ..., Z},

Z
∑

z=1

λz
m,jAz = M (3)

0 ≤ λz
m,j ≤ max

j
(λz

b,j), 0 ≤ λz
b ≤ max

j
(λz

b,j) (4)

λz
b,j ≤ λz

b + λz
m,j (5)

where λb = (λ1
b , ..., λ

Z
b ) and the entries of matrix Λm are

given by Λm(j, z) = λz
m,j . Constraints 4 ensure that there will

not be negative values for MBS density and no more MBS than

the maximum required to satisfy users over all the time slots.



Inequality 5 guarantees to have, at least, for each time slot and

region, a total density of BS larger than the minimum required

to serve all users with the desired QoS, as derived in Problem

1. As Problem 2 is linear, it can be solved efficiently using

the interior-point method. The CAPEX saving estimation is

computed as the difference between the total amount of base

stations deployed in the static-only case, given by the sum

over every region z of maxj(λ
z
b,j), and the value of the cost

function of Problem 2 at the optimum.

IV. NUMERICAL RESULTS

To validate our approach, we considered an ideal urban

scenario, composed of two regions with different patterns of

network traffic demand, one modeling a residential area, and

the other a business and office district. The daily network

traffic profiles of the two areas are derived from operator

data [10] (Fig. 1a). Note that the peak in traffic of a region

happens roughly at the same time at which there is a low

in traffic in the other region. This suggests that a substantial

amount of MBSs could be reused by moving them from one

region to the other, to cater for peaks in traffic demand. We

partition the 24h observation window into 60 equal-sized

intervals. We consider a target per-bit delay of 10−5 s
bit

(i.e.

100 kbps, such as the data rate of a Skype call). Base stations

work at a frequency of 1 GHz with a bandwidth of 10 MHz.

To estimate the mean number of active network users in every

region, the network traffic profiles have been normalized and

rescaled in such a way as to have the peak of active user

density coincide with values that are considered reasonable

in future dense urban scenarios [11]. Specifically, we set it to

10000 and 1000 users/km2 for the business and residential

districts respectively. Unless otherwise stated, we assumed a

ratio between the areas of the office and residential regions

(denoted as area ratio) of 10. We have considered scenarios

in which the residential area is always larger than the office

area of 1km2, as is common in many urban settings.

We have derived the optimal number of MBSs in every time

slot and the optimal total number of BSs in both regions,

as derived from the solution of Problem 2, as well as the

minimum number of BSs required to serve users in each

region with the given target QoS, over 24 hours, as derived

from the solution of Problem 1 (denoted as the ”baseline”).

As Fig. 1 shows, the optimal density of active BSs (baseline

curve in Fig. 1b and 1c) is roughly directly proportional to the

density of active users. The maximum of this quantity in each

region (straight black line in Fig. 1b and 1c) is the number of

BSs installed in the purely static scenario. Being dimensioned

for peak traffic, the static scenario is over-provisioned during

the majority of the day, with important implications in terms

of consumed power. The plots show also how the adaptive

densification brought in by MBSs substantially reduces the

amount of redundant infrastructure during the 24h, potentially

reducing also energy consumption. The plots show also that

the maximum aggregate traffic demand in the two regions

over the day ultimately determines the overall amount of

static and moving BS deployed in the whole scenario. As

the overall number of MBSs is driven by peak aggregate

traffic demand, some amount of overprovisioning is present

also in the population of MBSs, as visible in Fig. 1. In

realistic settings, this extra service capacity is however useful

to account e.g., for a weak correlation between patterns of

vehicle densification and patterns of network traffic demand.

On the other hand, our evaluation of the number of base

stations in excess allows estimating the potential for energy

savings achievable by adapting, in each time slot, the number

of active (i.e. not in standby mode, and ready to serve

users) base stations in each area, to have it coincide with the

minimum required to serve users with the target QoS.

Fig. 2a shows how the population of MBS is shared between

the two regions at the optimum, as a function of the time

of the day. The figure suggests that MBS are shared in an

approximately equal manner between the two regions for

most of the day. However, in the period during which network

traffic demand peaks in the residential area, almost all of the

MBSs converge there to supply the service capacity required.

This strongly correlates with typical traffic patterns in an

urban scenario, and further supports the feasibility of the

moving base station paradigm in these settings.

One of the key system parameters that determine the optimal

deployment strategies resulting from our approach is the

density of connected users over the observation window. To

make our results more robust, in a new set of experiments,

we evaluated how the savings in the total amount of BS

deployed enabled by the moving base station paradigm are

impacted by this parameter. Specifically, we conduct our

analysis by varying the ratio between the maximum density

of connected users in the office district and the same quantity

for the residential district (henceforth denoted as user density

ratio). Adopting the traffic profiles in Fig. 1a, we set the peak

at 10000 users per km2. Then we tuned the user density

ratio letting the maximum density of connected users in the

residential district vary. Fig. 2b shows the results for a user

density ratio between 1 and 10. The figure indicates that in all

configurations and areas, there is an average decrease of 17%

in the total number of base stations deployed, compared to

the fully static configuration. This decrease can go up to 21%

for low values of user density ratio. Thus, the MBS paradigm,

coupled with optimal MBS deployment strategies, can achieve

the target user-perceived QoS while substantially decreasing

the amount of static BS deployed, over a large spectrum of

configurations in terms of user density ratio. In addition, the

reduction in terms of SBS deployed with respect to the static

configuration varies between 95% for low user density ratios,

to 70% for higher values. As expected, such a decrease is

inferior with a larger user density ratio. Indeed, larger values

of this parameter imply that residential active users are spread

over the area, with a larger mean distance from the serving

base station and a consequent decrease in the efficiency of the

information transfer. Thus the base stations required to serve

users increase, even in periods of low network traffic demand.

As a consequence, we witnessed a reduction in the margins

for MBS reuse in the two regions, and thus in the gains of the

moving base stations paradigm. Anyway, the overall results
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Fig. 1: (a) Normalized daily mobile traffic profiles in the resident (red) and office (blue) district; (b), (c): Optimal number of MBS (green),

total number of BS (orange) with respect to the baseline (red), and installed BS in the static scenario (black) for the two regions over 24 hours.

The total number of active base stations over the all area is given by the superposition of the orange dashed lines in the 2 plots.
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Fig. 2: (a) Fraction of the total amount of MBS in the scenario allocated to the residential area, over the 24 hours; (b) Saving with respect

to the fully static scenario, in terms of installed SBS in the residential and office districts and in terms of both moving and static BS in the

whole area, as a function of the ratio between the values of maximum density of connected users in the two regions.

show that MBS can remarkably decrease the dependence of

the network on static deployments, which typically imply

higher costs and must account for way tighter administrative

and legal constraints than for MBS.

V. CONCLUSIONS

We presented a novel approach to evaluate the feasibility

of the MBS paradigm and the potential resource savings it

enables. The analysis suggests that MBSs effectively help

reduce base station densification in high-density urban sce-

narios. Our results, though initial, are robust when varying the

user density. Future works will include improved modeling

of MBSs together with backhauling, and energy efficiency

considerations.
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