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CATEGORICAL KRULL-REMAK-SCHMIDT FOR

TRIANGULATED CATEGORIES

TONY J. PUTHENPURAKAL

Abstract. Let R be a commutative ring If C1 and C2 are R-linear triangulated
categories then we can give an obvious triangulated structure on C = C1 ⊕ C2
where HomC(U, V ) = 0 if U ∈ Ci and V ∈ Cj with i 6= j. We say a R-linear
triangulated category C is disconnected if C = C1 ⊕ C2 where Ci are non-zero
triangulated subcategories of C. Let Ci and Dj be connected triangulated R

categories with i ∈ Γ and j ∈ Λ. Suppose there is an equivalence of triangu-

lated R-categories

Φ:
⊕

i∈Γ

Ci
∼=
−→

⊕

j∈Λ

Dj

Then we show that there is a bijective function π : Γ → Λ such that we have
an equivalence Ci ∼= Dπ(i) for all i ∈ Γ. We give several examples of connected
triangulated categories and also of triangulated subcategories which decompose
into utmost finitely many components.

1. Introduction

We use [6] for notation on triangulated categories. However we will assume that
if C is a triangulated category then HomC(X,Y ) is a set for any objects X,Y of
C. Throughout R is some commutative ring. All our additive categories will be
R-categories ( for this notion see [2, p. 28]).

1.1. Direct Sum of triangulated categories:

Let C,D be additive R-categories. By T = C ⊕ D we mean a category with

(1) Objects of T are direct sums U ⊕ V where U is an object of C and V is an
object in D.

(2) Morphism are defined by HomT (U1 ⊕ V1, U2 ⊕ V2) = HomC(U1, U2) ⊕
HomD(V1, V2).

It is clear that T is an additive R-category.
If C,D are triangulated R-categories then we can define a triangulated structure

on T as follows: First define the shift operator on T as ΣT = ΣC ⊕ ΣD. We say a
sequence

U1 ⊕ V1
(f1,g1)
−−−−→ U2 ⊕ V2

(f2,g2)
−−−−→ U3 ⊕ V3

(f3,g3)
−−−−→ ΣCU1 ⊕ ΣD(V1),

to be a distinguished triangle in T if

U1
f1
−→ U2

f2
−→ U3

f3
−→ ΣCU1,

is a distinguished triangle in C and

V1
g1
−→ V2

g2
−→ V3

g3
−→ ΣDV1,

Date: April 30, 2024.
2020 Mathematics Subject Classification. Primary 18G80 ; Secondary 13D09, 13E35 .
Key words and phrases. triangulated categories, thick subcategories, connected triangulated

categories.

1

http://arxiv.org/abs/2404.18483v1


2 TONY J. PUTHENPURAKAL

is a distinguished triangle in D. It is a routine exercise that these distinguished
triangles give a triangulated structure on T . Note C,D are thick subcategories of
T .

Analogously one can define a triangulated structure on
⊕

i∈Γ Ci where Ci are
triangulated categories for all i ∈ Γ.

Definition 1.1. Let C be a triangulated category. We say C is connected if

(1) C 6= 0.
(2) If C = C1 ⊕ C2 where C1, C2 are triangulated categories then either C1 = 0

or C2 = 0.

Our categorical Krull-Remak-Schmidt theorem is as follows:

Theorem 1.2. Let Ci and Dj be connected triangulated R categories with i ∈ Γ
and j ∈ Λ. Suppose there is an equivalence of triangulated R-categories

Φ:
⊕

i∈Γ

Ci
∼=
−→

⊕

j∈Λ

Dj

Then there is a bijective function π : Γ → Λ such that we have an equivalence

Ci ∼= Dπ(i) for all i ∈ Γ.

Theorem 1.2 is interesting only if we can give a good stock of examples of trian-
gulated categories which are a finite sum of connected triangulated categories. We
show that many triangulated categories which arise in theory of Artin Algebras,
commutative algebra and algebraic geometry can be decomposed into a finite direct
sum of connected triangulated categories.

A natural question is whether a triangulated category decomposes into a direct
sum of connected triangulated categories. In this regard we prove the following
result

Theorem 1.3. Let C be a Krull-Remak-Schmidt triangulated category. Assume the

class of thick subcategories of C is a set. Then C decomposes as a direct sum of

connected triangulated categories.

Remark 1.4. If C is a skeletally small triangulated category then note that the
class of thick subcategories of C is a set.

Perhaps the assumption on C to be KRS is bit strong. We also prove

Theorem 1.5. Let (A,m) be a Noetherian local ring. Let C be an A-linear tri-

angulated category such that HomC(X,Y ) is a finitely generated A-module for any

X,Y ∈ C. Assume the class of thick subcategories of C is a set. Then C decomposes

as a direct sum of connected triangulated categories.

As a consequence of Theorem 1.5 and remark 1.4 we obtain

Corollary 1.6. Let k be a field. Let C be a Hom-finite k-linear triangulated cate-

gory. Assume C is skeletally small. Then C decomposes as a direct sum of connected

triangulated categories.

Here is an overview of the contents of this paper. In section two we give a
proof of Theorem 1.2. In the next section we give some examples of triangulated
categories which decompose into finitely many subcategories. In section four we
give some examples of connected categories. In section five we prove Theorems 1.3
and 1.5. Finally in the last section we give an example of a triangulated category
which decomposes into infinitely many components.
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2. Proof of Theorem 1.2

In this section we give

Proof of Theorem 1.2. Let U ⊆
⊕

j∈Λ Dj be a connected thick subcategory.
Claim-1: U ⊆ Dj for some j.
Let Ui be the full subcategory consisting of objects in Di which are contained in
U . Then Ui is triangulated. We assert that

U =
⊕

j∈Λ

Uj.

Indeed it is clear that U ⊇
⊕

j∈Λ Uj. To see the reverse inclusion let X be an object
in U . Then X = X1 ⊕X2⊕ · · ·⊕Xm where Xi is an object in Dji . As U is thick it
contains all direct summands of its objects. So Xi ∈ Uji . Thus our assertion holds.
As U is connected it follows that U = Uj for some j and Ui = 0 for i 6= j. This
proves Claim=1.

Fix i. Let imΦi be the essential image of Ci in
⊕

j∈Λ Dj . Then by our claim
imΦ ⊆ Dj for some j. As Φ is an equivalence we get Φ restricts to an equivalence
Ci → imΦi.
Claim-2: imΦi = Dj .
Indeed consider the inverse Φ−1. Notice Φ−1(Dj)∩Ci 6= 0. It follows from Claim-1
that Φ−1(Dj) ⊆ Ci. Claim-2 follows.

Set π(i) = j. It follows that π is bijective and Ci ∼= Dπ(i) as triangulated
categories. �

Our proof of Theorem 1.2 also shows the following

Lemma 2.1. Let U be a connected triangulated category. Suppose U ⊆ D is thick

in D. Suppose D =
⊕

j∈Λ Dj. Then U ⊆ Di for some i.

Remark 2.2. In Lemma 2.1 we do not insist that Di are also connected.

3. Examples

We give a large class of examples of triangulated categories C where we can show
that C is a direct sum of utmost finitely many connected categories. It takes some
effort to prove whether a triangulated category is connected.

I. If a triangulated category C has no proper thick subcategories then clearly C
is connected.
Examples:

(1) Let (A,m) be a Noetherian local ring and let Kb
f (projA) be the bounded

homotopy category of finitely generated projective A-modules with finite
length cohomology. Then Kb

f (projA) has no proper thick subcategories,

see [5, 1.2]

(2) Let (A,m) be a hypersurface singularity (i.e., the completion Â = Q/(f)
where (Q, n) is regular local and f ∈ n

2). Let CM(A) be the stable cate-
gory of maximal Cohen-Macaulay A-modules and let CM0(A) be the thick
subcategory of MCM A-modules which are free on the punctured spectrum
of A. Then CM0(A) has no proper thick subcategories, [10, 6.6]

II Let C be a Krull-Remak-Schmidt triangulated category. Let X ∈ C be non-
zero. Then clearly D = thick(X) is utmost a direct sum of r subcategories where r
is the number of indecomposable summands of X . Examples :

(1) Let A be a R-Artin algebra where R is a commutative Artin ring. Let
Db(mod(A)) be the bounded derived category of mod(A); the category of
all finitely generated A-modules. Then it is well-known that Db(mod(A)) is
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a Krull-Remak-Schmidt triangulated category. Furthemore Db(mod(A)) =
thick(A/ rad(A)) where rad(A) is the radical ofA, see [8, 7.37]. In particular
if A is local then Db(mod(A)) is connected.

(2) Let (A,m) be a Henselian Gorenstein local ring of dimension d. Let CM(A)
be the stable category of maximal Cohen-Macaulay A-modules and let
CM0(A) be the thick subcategory of MCM A-modules which are free on
the punctured spectrum of A. Then CM0(A) = thick(Ωd

A(k)) where Ωd
A(k)

is the dth-syzygy of k, see [10, 2.6, 2.9]. Thus CM0(A) is a finite direct
sum of connected subcategories. If Ωd(k) is indecomposable then CM0(A)
is connected. Note when d = 0 clearly Ω0

A(k) = k is indecomposable. If the
multiplicity of A is at least three and d = 1, 2 then Ωd

A(k) is indecompos-
able, see [9, Theorems A, B].

III: Let A be an Abelian category. Let B be a Krull-Remak-Schmidt Serre-
subcategory of A. Let Db

B(A) be the bounded derived category of A with cohomol-
ogy in B. Let X ∈ Db

B(A) and let r = number of irreducible summands of H∗(X).
Then it is clear that X cannot be a direct sum of r+1 non-zero elements in Db

B(A).
It follows that thick(X) is a finite direct sum of up to r connected summands.
Examples:

(1) Let V be a projective variety over an algebraically closed field k. Let
A = coh(V ) be the category of coherent sheaves on V . Then A is a Krull-
Schmidt category, see [1]. By [8, 7.38], Db(A) = thick(E) for some E. Thus
Db(A) is a finite direct sum of connected triangulated categories.

(2) Let A be a Noetherian ring. Let A = mod(A) and let B be its Serre-
subcategory consisting of modules of finite length.

IV: Let A be a Noetherian ring of finite global dimension. Then Db(mod(A)) =
thick(A). If A is indecomposable then Db(mod(A)) is connected.

(1) If A is a commutative domain then A is indecomposable. So Db(mod(A))
is connected.

(2) If A = An(K) the nth-Weyl Algebra over a field K of characteristic zero.
By [7] A has finite global dimension. We claim that A is indecomposable.
Suppose if possible A is decomposable. Say A = U ⊕ V where U, V are
left modules. Let F be the Bernstein filtration on A. Then GF (A) =

K[X1, . . . , Xn, ∂1, · · · , ∂n] is a polynomial ring in 2n-variables, see [3, I.2.2].
By considering the induced filtration on U we get that its associated is
a submodule of GF (A) which is a domain. So dimU = 2n. Similarly
dimV = 2n. So the multiplicity e(A) = e(U) + e(V ) ≥ 2, a contradiction
since multiplicity of A is one. Thus A is indecomposable. So Db(modA) is
connected.

4. Some examples of connected categories

In this section we prove that some natural triangulated categories are connected.

4.1. Let X be a Noetherian scheme. Let Db(X) be the bounded derived category
ofcoherent sheaves on X . Then Db(X) is connected if and only if X is connected,
see [4, 3.2].

4.2. The technique to show some triangulated categories are connected is based
on the following:

Lemma 4.1. Let C be a triangulated category. Let D be a triangulated subcategory

of C such that

(1) D is thick.

(2) D is connected.
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(3) If T is a non-zero thick subcategory of C then D ∩ T 6= 0.

Then C is also connected.

Proof. Suppose if possible C is not connected. So C = C1⊕C2 where Ci 6= 0. By 2.1
we get that D ⊆ Ci for some i. But by (3) of our hypotheses D ∩ Cj 6= 0 for both
j = 1, 2, a contradiction. �

We first prove

Proposition 4.2. Let (A,m) be a Noetherian local ring. Let Db(mod(A)) be the

bounded derived category of mod(A); the abelian category of all finitely generated

A-modules. Then Db(mod(A)) is connected.

Remark 4.3. This also follows from 4.1 as Spec(A) is connected. However we give
a purely algebraic proof for the convenience of algebraists reading this paper.

We now give:

Proof of 4.2. We identify Db(mod(A)) with C = Kb,∗(projA) the category of
bounded above complexes of finitely generated projective A-modules with bounded
cohomology. Let Cf be complexes in C with finite length cohomology. It is clear
that Cf is a thick subcategory of C.

We first show that Cf is connected. Suppose if possible Cf is not connected. Say
Cf = D1⊕D2 where Di 6= 0. Let X be a minimal free resolution of k = A/m. Then
X is indecomposable. Say X ∈ D1. Let Y ∈ D2 be non-zero. We may assume Y
is a minimal complex. After shifting we may assume Y i = 0 for i > 0 and Y 0 6= 0.
As Y is a minimal complex we get Z = H0(Y ) 6= 0. Note Z is a non-zero finite
length module. Let ǫ : Z → k be any surjective map. Then ǫ has a lift ǫ̃ : Y → X .
Note ǫ̃ 6= 0 as the map on zeroth cohomology is non-zero. This contradicts the fact
that Hom(D1, D2) = 0 for Di ∈ Di. Thus Cf is connected.

For Z ∈ C let Supp(Z) =
⋃

i∈Z
SuppA Hi(Z). Set dimZ = dimSupp(Z).

Let T be a non-zero thick subcategory of C. We show Cf ∩ T 6= 0. Let Y ∈ T
be such that

dimY = min{dimZ | Z ∈ T and Z 6= 0}.

We assert dimY = 0. If not choose x ∈ m such that

ker{H∗(Y )
x
−→ H∗(Y )} has finite length.

Let Y
x
−→ Y → Z → Y [1] be a triangle. Then Z ∈ T as T is thick. Note by

construction dimZ ≤ dimY − 1. Note if Z = 0 then the map H∗(Y )
x
−→ H∗(Y ) is

surjective and so by Nakayama Lemma H∗(Y ) = 0 and so Y = 0, a contradiction.
Thus we have Z ∈ T , Z 6= 0 with dimZ < dimY , which is a contradiction. So
dimY = 0. Thus Y ∈ Cf ∩ T and Y 6= 0.

By Lemma 4.1 we get that C is connected. �

The following result can be shown in a similar manner to 4.2. So we only sketch
a proof.

Proposition 4.4. Let (A,m) be a Noetherian local ring. Let Kb(projA) be the

homotopy category of bounded complexes of finitely generated free A-modules. Then

Kb(projA) is connected.

Proof. Sketch Let Kb
f (projA) be the bounded homotopy category of finitely gener-

ated projective A-modules with finite length cohomology. Then Kb
f (projA) has no

proper thick subcategories, see [5, 1.2]. So Kb
f (projA) is connected. Also clearly

Kb
f(projA) is thick in Kb(projA).
An argument similar to one in 4.2 shows that if T is a non-zero thick subcategory

of Kb(projA) then Kb
f(projA) ∩ T 6= 0.
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Thus by Lemma 4.1 we get that Kb(projA) is connected.
�

Let (A,m) be a local Gorenstein ring. Let CM(A) be the stable category of
maximal Cohen-Macaulay A-modules. Let CM0(A) be the subcategory of MCM
A-modules which are free on the punctured spectrum of A. Then it is easy to check
that CM0(A) is a thick subcategory of CM(A). We show

Proposition 4.5. If CM0(A) is connected then CM(A) is connected.

We first give an application of Proposition 4.5.

Corollary 4.6. Let (A,m) be a local Gorenstein ring. Let CM(A) be the stable

category of maximal Cohen-Macaulay A-modules. Then CM(A) is connected in the

following cases:

(1) A is a hypersurface singularity.

(2) dimA = 1, 2 and multiplicity of A is ≥ 3.

Proof. In all the cases we have CM0(A) is connected, see I.(2) and II.(2) in the
previous section. So the result follows from 4.5. �

We now give

Proof of Proposition 4.5. By 4.1 it suffices to show that if T is a non-zero thick
subcategory of CM(A) then T ∩ CM0(A) 6= 0.

For M ∈ CM(A) let

Supp(M) = {P | P is prime and MP 6= 0 ∈ CM(AP )}.

It is easily shown that Supp(M) = Supp(Hom(M,M)).
Let Y ∈ T be non-zero such that

dimSupp(Y ) = min{dimSupp(Z) | Z ∈ T and Z 6= 0}.

We assert that dimSupp(Y ) = 0. If not let

x ∈ m \


 ⋃

P∈Ass(A)

P ∪
⋃

Qminimal in Supp(Y )

Q


 .

Note x is a non-zero divisor of A ( and hence of Y ). We have a triangle

Y
x
−→ Y → Z → Y [1].

It is evident that dimSupp(Z) ≤ dimSupp(Y ) − 1. Furthermore note Z 6= 0 in
CM(A) (i.e., Z is not free as an A-module, for otherwise we have an exact sequence
0 → Q → Z → Y/xY → 0 with Q-free (this follows from the triangle structure in
CM(A)). So Y/xY has finite projective dimension. As x is Y -regular it follows that
Y has finite projective dimension. So Y is free as an A-module and thus Y = 0
in CM(A), a contradiction. As T is thick we get Z ∈ T . This is a contradiction
by our choice of Y . Thus dim Supp(Y ) = 0, in other words Y ∈ CM0(A). So
T ∩CM0(A) 6= 0. �

5. Proof of Theorems 1.3 and 1.5

In this section we give proofs of Theorems 1.3 and 1.5. We first give

Proof of Theorem 1.3. Let

Λ = {D | D is a connected thick subcategory of C}.

First note that Λ is a set. Let X ∈ C be indecomposable. Then we have thick(X)
is connected. So Λ is non-empty. We define a partial order on Λ with D ≤ D′ if
D ⊆ D′.
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We first assert that Λ has maximal elements. For that we use Zorn’s Lemma.
Let {Dα}α∈∆ be a chain in Λ. Set

D =
⋃

α∈∆

Dα.

Then it is easy to see that D is a thick triangulated subcategory of C. We show D is
connected. Suppose if possible D is disconnected. Say D = D1⊕D2. where D1 6= 0
and D2 6= 0. Let Dγ ∩ D1 6= 0. Then by 1.1 it follows that Dγ ⊆ D1. Similarly as
D2 6= 0 it follows that Dβ ⊆ D2. As {Dα}α∈∆ is a chain it follows that Dγ ⊆ Dβ or
Dβ ⊆ Dγ . Either case yields that D1 ∩D2 6= φ, a contradiction. So D is connected.
Thus Λ has maximal elements.

Let X be indecomposable. Set

ΛX = {D | D is a connected thick subcategory of C and D ⊇ thick(X)}.

Then thick(X) ∈ ΛX . We give the obvious partial order of ΛX and similarly prove
that ΛX has maximal elements. Also note a maximal element in ΛX is also maximal
in Λ.

Let D,D′ be maximal elements in Λ. As thick(D,D′) is disconnected it follows
that thick(D ⊕ D′) = D ⊕ D′. An easy induction yields that if D1, . . . ,Dn are
maximal elements in Λ then

thick(D1 ⊕ · · · ⊕ Dn) = D1 ⊕ · · · ⊕ Dn.

Consider

D =
⊕

Dα

Dαmaximal in Λ

Dα.

Then D is clearly a thick subcategory of C. Let X ∈ C be indecomposable. Then
thick(X) ⊆ D′ for some maximal element in ΛX . As noted before D′ is maximal in
Λ. So X ∈ D. Therefore D = C. The result follows. �

Next we give

Proof of Theorem 1.5. We first prove:
Claim: Let X ∈ C. Then X is a finite direct sum of indecomposables in C.
Proof of Claim: If X is indecomposable then we have nothing to show. Otherwise
X = U1 ⊕ U2. If U1, U2 are indecomposable then we are done. Iterating we may
assume X = U1 ⊕ · · · ⊕ Un. Note that

⊕
n≥1 HomC(Ui, Ui) is a direct summand

of HomC(X,X). If E is a finitely generated A-module set µ(E) = dimA E/mE.
Notice µ(HomC(X,X)) ≥ n. Thus if µ(HomC(X,X)) = r then X decomposes as a
direct sum of utmost r indecomposables.

We remark that if X is indecomposable then thick(X) is connected. Rest of the
proof is similar to proof of Theorem 1.3. �

6. A triangulated category with infinitely many components

We give an example of a triangulated category which decomposes into infinitely
many components.

6.1. Let k be a field and let A = k[X1, . . . , Xd]. Let D = Db(modA) = Kb(projA)
be the bounded derived category of A. We note that A has infinitely many maximal
ideals. Set

C = Df = {X ∈ Kb(projA) | H∗(X) has finite length}.

If m is a maximal ideal in A then set

Cm = {X ∈ C | Supp(H∗(X)) ⊆ m}.
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We claim that if X ∈ Cm and Y ∈ Cn where m and n are distinct maximal ideals
then HomC(X,Y ) = 0. To see this simply localize at a maximal ideal P of A. Then
XP = 0 or YP = 0. Thus

D = thick(Cm : m a maximal ideal of A) =
⊕

m∈MaxSpec(A)

Cm.

To prove our result it suffices to show D = C. We do this by induction on
ℓ(H∗(X)). We may assume that H0(X) 6= 0 and X i = 0 for i > 0. If ℓ(H∗(X)) = 1
then note H0(X) = A/m for some maximal ideal m of A. It follows that X ∈ Cm ⊆
D. Next we assume that the result is known for all complexes with ℓ(H∗(X)) < n
and we prove the result when ℓ(H∗(X)) = n. We may assume that X i = 0 for
i > 0 and H0(X) 6= 0. Let m ∈ Supp(H0(X)). Then H0(X)/mH0(X) 6= 0 and so
we have a surjection H0(X) → A/m. So we have a chain map f : X → Y where
Y is a projective resolution of A/m. We note that ℓ(H∗(Cone(f))) = n− 1 and so
by induction hypothesis Cone(f) ∈ D. Also Y ∈ D. As D is thick we have X ∈ D.
The result follows.

Acknowledgment: We thank Martin Kalck for many discussions on this paper.
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