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Abstract. Inspired by examples of Katok and Milnor [2], we construct
a simple example of skew-product volume preserving diffeomorphism
where the center foliation is pathological in the sense that, there is a full
measure set whose intersection with any center leaf contains at most one
point.

1. Introduction

An interesting and intriguing phenomenon in dynamical systems is the
pathological foliations. Roughly speaking, a foliation is pathological if there
is a full volume set that meets every leaf of the foliation on a set of leaf-
volume zero. In fact, there are examples with a full measure set that inter-
sects each leaf only in a finite number of points. In [2], J. Milnor constructed
an example, inspired by A. Katok, of such a non-absolutely continuous foli-
ation on the unit square. In [6], M. Shub and A. Wilkinson found the same
phenomenon on T3 with a different approach. They termed this phenome-
non aptly “Fubini’s nightmare”. Surprisingly, this phenomenon is persistant
and robust under perturbations. We refer readers to a survey [4] written by
F. R. Hertz, M. R. Hertz and R. Ures for more details. Saghin and Xia [5],
using a different mechanism, showed more examples of systems with per-
sistent non-absolute continuous center and weak unstable foliations, where
these foliations are not necessarily compact. Pesin [3] also showed some
examples of a non-absolutely continuous foliation in his book.

In this paper, we constructs a simple example of skew-product diffeomor-
phism where the center foliation is pathological. And our main theorem is
as follows:

Theorem 1.1. There exists a full measure set E on [0, 1] × T2, together
with a family of disjoint curves Γβ which fill out [0, 1] × T2, so that each
curve Γβ intersects the set E at most a single point.

The idea of the proof of this theorem is inspired by Milnor’s proof of
Katok’s paradoxical example, see [2]. We construct a path of Anosov area-
preserving diffeomorphism fp, p ∈ [0, 1] on T2 beginning with Arnold’s cat
map. And we construct Markov partitions for each fp such that each Markov
partition has two rectangles and the Lebesgue measure of one rectangle is
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strictly increasing with respect to p. Then using a (semi)conjugacy from a
shift space, we can construct a full measure set E and a family of disjoint
curves Γβ satisfying the conditions in the theorem.

Different from all other examples in [6], [5], [3], our construction is ele-
mentary, involving no Lyapunov exponents.

In section 2, we discuss about some definitions and properties of Anosov
diffeomorphisms and Markov partitions and especially introduce Arnold’s
cat map. In section 3, we prove our main theorem. The main idea is
to perturb the Arnold’s cat map in such a way that the areas of Markov
petitions of the perturbed map are different.

2. Preliminaries

Our proof of the main theorem uses some basic properties of a hyperbolic
toral automorphism which is an Anosov diffeomorphism. We will introduce
some basic definitions in this section. The content of this section is based
on Brin and Stuck’s book [1].

Definition 2.1. LetM be a smooth Riemannian manifold and f :M →M
be a diffeomorphism. A compact, f -invariant subset Λ ⊂M is call hyperbolic
if there are λ ∈ (0, 1), C > 0, and families of subspaces Es(x) ⊂ TxM and
Eu(x) ⊂ TxM , x ∈ Λ, such that for every x ∈ Λ,

(1) TxM = Es(x)⊕ Eu(x),
(2) ∥dfnx vs∥ ≤ Cλn∥vs∥ for every vs ∈ Es(x) and n ≥ 0,
(3) ∥df−n

x vu∥ ≤ Cλn∥vu∥ for every vu ∈ Eu(x) and n ≥ 0,
(4) dfxE

s(x) = Es(f(x)) and dfxE
u(x) = Eu(f(x)).

In particular, if Λ =M , then f is called an Anosov diffeomorphism

Hyperbolic toral automorphisms are examples of Anosov diffeomorphisms.
Explicitly,

Definition 2.2. LetM = Tn. Consider an n×n matrix A with determinant
one and with integer entries. The matrix A induces a toral automorphism:
fA : Tn = Rn/Zn → Tn defined by fAx = Ax mod Zn.

Moreover, if all eigenvalues of A are away from the unit circle, then fA is
a hyperbolic toral automorphism.

The best know example of a hyperbolic automorphism is Arnold’s cat
map that is fA : T2 → T2 where

A =

(
2 1
1 1

)
And the eigenvalues of A is λ = 3+

√
5

2 > 1 and λ−1 = 3−
√
5

2 . The corre-

sponding eigenvectors are νλ = (1,
√
5−1
2 ) and νλ−1 = (1, −

√
5−1
2 ).

To figure out the features of the Arnold’s cat map, we need to introduce
more concepts.
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Definition 2.3. Let f : M → M be an Anosov diffeomorphism. For every
x ∈M , the (global) stable and unstable manifolds of x are defined by

W s(x) := {y ∈M : dist(fn(x), fn(y)) → 0 as n→ ∞},
W u(x) := {y ∈M : dist(f−n(x), f−n(y)) → 0 as n→ ∞}.

And for any ρ > 0, we define

W s(x, ρ) := {y ∈M : dist(fn(x), fn(y)) < ρ,∀n ∈ N0},
W u(x, ρ) := {y ∈M : dist(f−n(x), f−n(y)) < ρ,∀n ∈ N0}.

With these definitions, we can check that if x0 is a fixed point of f , we
have

W s(x0) =
⋃
n∈N

(f)−n (W s(x0, ρ))

W u(x0) =
⋃
n∈N

(f)n (W u(x0, ρ)) .

Another concept that we would like to introduce is called a Markov par-
tition. It allows us to study the dynamics of f using symbolic dynamics.

Definition 2.4. Let f :M →M be an Anosov diffeomorphism. A collection
of subset of M , R = {R1, . . . , Rn} is called a Markov partition for (M,f) if

(1) cl(intRi) = Ri for each Ri;
(2) intRi ∩ intRj = ∅ for i ̸= j;
(3) M =

⋃
iRi;

(4) If x ∈ intRi, f(x) ∈ Rj , then

f(W s(x,Ri)) ⊆W s(f(x), Rj), f−1(W u(f(x), Rj)) ⊆W u(x,Ri),

where W s(x,R) := W s(x, ρ) ∩ R and W u(x,R) := W u(x, ρ) ∩ R,
and ρ > 0 satisfies W s(x, ρ) ∩W u(y, ρ) is a single point in R for all
points x, y in R.

As an example, we can construct a Markov partition for Arnold’s cat
map fA by draw segments of stable and unstable manifolds of the fixed
point (0, 0) until they cross sufficiently many times and separate T2 into
two disjoint rectangles R0 and R1: R0 consists of two parts B1 and B2; R1

consists of three parts A1, A2 and A3. See figure 1.
If we consider the fundamental domain in Figure 1 as [0, 1] × [0, 1], we

would like to mention that the preimage of the segment p0p3 is the segment
{(x, y) ∈ p0p3

∣∣x ∈ [1 − 2
5+

√
5
, 1]}. The preimage of the segment p0p2 is

contained in the segment {(x, y) ∈ p0p2
∣∣x ∈ [0, 1 − 2

5+
√
5
]}. And the image

of the segment p0p1 is contained in p0p1 where the x-coordinate of p1 is less
than 1− 2

5+
√
5
.

Thus, if we perturb Arnold’s cat map into fp in the region {(x, y)
∣∣x ∈

(a, b)}, where 1 − 2
5+

√
5
< a < b < 1. Then (0, 0) is still a fixed point of fp

and if we draw stable manifold and unstable manifold of (0, 0), we can get
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Figure 1. Markov partition of Arnold’s cat map

p0p2 and p0p1 will not change. And p0p3 will be perturbed for the perturbed
map fp. This inspires us the proof of our main theorem.

3. Proof of Main theorem

Step 1: Our first step is to construct a continuous path of area-preserving
Anosov diffeomorphism fp, p ∈ [0, 1] on T2 beginning with the Arnold’s cat
map.

Let fA be the Arnold’s cat map on T2 that is

fA(x, y) = (2x+ y, x+ y) mod 1.

Take real number 1 − 2
5+

√
5
< a < 1 and δ > 0 small enough such that

1− 2
5+

√
5
< a− δ < a+ δ < 1. Then define a bump function C(x) on [0, 1]

such that

(1) C(x) ≡ 0 on [0, a− δ] ∪ [a+ δ, 1];
(2) 0 < C(x) ≤ 1 on (a− δ, a+ δ);

Now, for any p ∈ [0, 1], we define a function ϕp(x) on [0, 1] such that
ϕp(x) = pϵ0C(x). Then we define a diffeomorphism fp on T2 = R2/Z2 such
that

fp(x, y) = (2x+ y − ϕp(x), x+ y − ϕp(x)) mod 1.

Note that f0 = fA. And for a fixed sufficiently small ϵ0 > 0, we can see that
for any p ∈ [0, 1], fp is an Anosov diffeomorphism since a small perturbations
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of an Anosov diffeomorphism is also Anosov. Also, for any p ∈ [0, 1], it
follows from the Jacobian of fp equal to 1 that fp is an area-preserving
diffeomorphism. Moreover, fp(x, y) = fA(x.y) for x( mod 1) ∈ [0, a − δ] ∪
[a + δ, 1]. In conclusion, fp, p ∈ [0, 1] is a path of area-preserving Anosov
diffeomorphism.

Step 2: Our second step is to construct Markov partitions Rp with two
rectangles for fp for each p ∈ [0, 1].

For any p ∈ [0, 1], since (0, 0) is a fixed point of fp, one way to construct
a Markov partition for fp is to draw segments of W u

p ((0, 0)) and W
s
p ((0, 0))

until they cross sufficiently many times and separate T2 into two disjoint
(curvilinear) rectangles. Explicitly, we view T2 = [0, 1] × [0, 1]/ ∼, where
we identify (0, y) ∼ (1, y) and (x, 0) ∼ (x, 1). Then we construct Markov
partitions as follows (see Figure 2):

(1) From (0, 0) draw the line lp(0, 0) =W u
p ((0, 0)) in the unit square and

stops when it hits the boundary of the unit square.
(2) Form (0, 1) draw the line lp(0, 1) =W s

p ((0, 0)) in the unit square and
stops when it hits lp(0, 0).

(3) From (1, 1) draw the line lp(1, 1) =W u
p ((0, 0)) in the unit square and

stops when it hits lp(0, 1).
(4) Finally using symmetry, draw the extension lp of the line lp(0, 0)

in the unit square and stops when it hits lp(0, 1) to complete the
rectangles.

Figure 2. Markov partition of fp
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We denote the rectangle consisting of B1,p and B2,p by R0
p, and denote

the rectangle consisting of A1,p, A2,p and A3,p by R1
p. Then Rp = {R0

p, R
1
p}

is a Markov partition for fp.
Note that when p = 0, the Markov partition R0 is exactly the Markov

partition for the Arnold’s cat map we introduced in last section. And since
for any p ∈ [0, 1],

W s
p ((0, 0)) =

⋃
n∈N

(fp)
−n (W s

p ((0, 0), ρ)
)

W u
p ((0, 0)) =

⋃
n∈N

(fp)
n (W u

p ((0, 0), ρ)
)
.

and for a sufficient small ρ > 0,W i
p((0, 0), ρ) =W i

0((0, 0), ρ), i = u, s, we can
find how the stable manifold and unstable manifold of (0, 0) change when p
changes from 0 to 1.

Recall that ∀p ∈ [0, 1], fp(x, y) = f0(x.y) for x( mod 1) ∈ [0, a− δ] ∪ [a+
δ, 1]. By our construction of fp, since a− δ > 1− 2

5+
√
5
, we can check that

lp(0, 0) = l0(0, 0), lp(0, 1) = l0(0, 1) and lp = l0. And next let’s figure out
how lp(1, 1) changes when p changes.

To simplify the calculation, let’s consider the fundamental domain as
[−1, 0] × [−1, 0]. Then lp(1, 1) in this fundamental domain is a line from

(0, 0) and stops when it hits the stable manifold of (0, 0). Let λ = 3+
√
5

2 ,
then we can see that l0(1, 1) in this fundamental domain is the segment

{(x, y)
∣∣y = −1+

√
5

2 x, x ∈ [−λ 2
5+

√
5
, 0]}. Thus, by our construction of fp, for

any p ∈ [0, 1], the segment

lp(1, 1) =fp({(x, y)
∣∣y =

−1 +
√
5

2
x, x ∈ [− 2

5 +
√
5
, 0]})

=

{
l0(1, 1) for x ∈ [−λ 2

5+
√
5
, λ(a− δ − 1)] ∪ [λ(a+ δ − 1), 0]

fp({(x, y)
∣∣y = −1+

√
5

2 x, x ∈ [a− δ − 1, a+ δ − 1]}), otherwise

Moreover, if we write lp(1, 1) = {(X,Y (X))
∣∣X ∈ [−λ 2

5+
√
5
, 0]}, we can

calculate the area of the domain bounded by lp(1, 1) and l0(1, 1) for each
p ∈ [0, 1]:

Areap =

∫ a+δ−1

a−δ−1

√
5 + 1

2

√
5 + 3

2
xdx−

∫ λ(a+δ−1)

λ(a−δ−1)
Yp(X)dX

=

∫ a+δ−1

a−δ−1

√
5 + 1

2

√
5 + 3

2
xdx−

∫ a+δ−1

a−δ−1
(

√
5 + 1

2
x− ϕp(x))(

√
5 + 3

2
− dϕp

dx
(x))dx

=

∫ a+δ−1

a−δ−1
ϕp(x)dx+

∫ a+δ−1

a−δ−1

√
5 + 1

2
(xϕp(x))

′dx−
∫ a+δ−1

a−δ−1

1

2
(ϕ2p(x))

′dx

=

∫ a+δ−1

a−δ−1
ϕp(x)dx.
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Thus, if we denote the Lebesgue measure on T2 bym, then for each p ∈ [0, 1],
the Markov partition Rp defined above consists of two rectangles R0

p with

m(R0
p) =

5−
√
5

10 −Areap and R1
p with m(R1

p) =
5+

√
5

10 +Areap. Since Areap is

strictly increasing when p increases from 0 to 1, m(R1
p) is strictly increasing

when p increases from 0 to 1.
In conclusion, for any p ∈ [0, 1], we construct a Markov partition Rp =

{R0
p, R

1
p} for fp, and m(R1

p) is strictly increasing when p increases from 0 to
1.

Step 3: Our next step is to relate (T2, fp,m) to a shift space.

For any p ∈ [0, 1], by our construction of Markov partitionRp = {R0
p, R

1
p},

we can see that

fp(int(R
i
p)) ∩ int(Rj

p) ̸= ∅, ∀i, j = 0, 1.

Thus, the transition matrix defined by Rp and fp is

B =

(
1 1
1 1

)
.

And this matrix B generates a shift of finite type:

ΣB = {(bi)i∈Z : bi ∈ {0, 1}, Bbibi+1
= 1 ∀i ∈ Z},

equipped with a left-side shift σ. And it can be shown that (T2, fp,m)
is (semi)conjugate to the shift space (ΣB, σ, µp), where the measure of a
cylinder [bkbk+1 . . . bn]) is defined by

µp([bkbk+1 . . . bn]) = m(Rbk
p )

m(fp(R
bk
p ) ∩Rbk+1

p )

m(Rbk
p )

· · ·
m(fp(R

bn−1
p ) ∩Rbn

p )

m(R
bn−1
p )

.

And this (semi)conjugacy is defined as follows: for any sequence

b = (. . . , b−1, b0, b1, . . .) ∈ ΣB,

the (semi)conjugate ψp : ΣB → T2 maps this sequence to a point ψp(b) =⋂∞
k=−∞ fkp (R

b−k
p ) in T2. Conversely, for any point z ∈ T2, one can also

define a symbol sequence (. . . , b−1, b0, b1, . . .) associated with z and fp such

that bk = i if fkp (z) ∈ Ri
p, though it may not be unique. In terms of this

coding, fp corresponds to the left shift map σ.

To prove our main theorem, we define a measurable set E such that

E =

 (p, z) ∈ [0, 1]× T2

lim
n→∞

b0+···+bn
n = m(R1

p),

where (. . . , b−1, b0, b1, . . .) is a symbol
sequence associated with z and fp.

 .

Now we say E is a well-defined and full measure set in [0, 1]×T2. Because
for each fixed p, fp is a smooth area-preserving Anosov diffeomorphism, and
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hence it is ergodic. By Birkhoff Ergodic theorem, for m-a.e.z ∈ T2,

lim
n→∞

1

n

n−1∑
k=0

χR1
p
(fkp (z)) = m(R1

p),

where χR1
p
is the characteristic function of R1

p. And if we denote the union of

the boundaries of R0
p and R1

p by ∂Rp, for z ∈ T2\
⋃

i∈Z f
i
p(∂Rp), the symbol

sequence associated with z and fp is unique, and in terms of coding by fp,
the above limit is exactly

lim
n→∞

b0 + · · ·+ bn
n

.

Therefore, let Cp denote the torus {p} × T2 ⊂ [0, 1] × T2. Then the inter-
section of E with each Cp has two-dimensional Lebesgue measure 1. So, it
follows from Fubini’s Theorem that E has full three-dimensional Lebesgue
measure.

Next, we define a family of curves {Γβ}β∈T2 as follows. When we take ϵ0
small enough in step 1, then for any p ∈ [0, 1], we can get a unique homeo-
morphism hp on T2 such that fp = hp◦f0◦h−1

p since Anosov diffeomorphisms

are C1-structurally stable and fp is a continuous path beginning with f0.
Then for any β ∈ T2, we define

Γβ := {(p, hp(β)) ∈ [0, 1]× T2
∣∣∣p ∈ [0, 1]}.

Then {Γβ}β∈T2 is a family of disjoint curves which fill out [0, 1]× T2. And
note that a symbol sequence of β under f0 is (. . . , β−1, β0, β1, . . .) and the
symbol sequence of hp(β) under fp is the same sequence (. . . , β−1, β0, β1, . . .).
Then each Γβ can intersect the measurable set E in at most a single point
(p, hp(β)). Because m(R1

p) is strictly increasing when p increases from 0 to
1, and a given symbol sequence can have at most one limit

lim
n→∞

b0 + · · ·+ bn
n

= m(R1
p)

which determines p.
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