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Abstract
A minimal perfect hash function (or MPHF) maps a set of n keys to [n] := {1, . . . , n} without
collisions. Such functions find widespread application e.g. in bioinformatics and databases. In this
paper we revisit PTHash – a construction technique particularly designed for fast queries. PTHash
distributes the input keys into small buckets and, for each bucket, it searches for a hash function
seed that places its keys in the output domain without collisions. The collection of all seeds is then
stored in a compressed manner. Since the first buckets are easier to place, buckets are considered in
non-increasing order of size. Additionally, PTHash heuristically produces an imbalanced distribution
of bucket sizes by distributing 60% of the keys into 30% of the buckets.

Our main contribution is to characterize, up to lower order terms, an optimal distribution of
expected bucket sizes. We arrive at a simple, closed form solution which improves construction
throughput for space efficient configurations in practice. Our second contribution is a novel encoding
scheme for the seeds. We split the keys into partitions. Within each partition, we run the bucket
distribution and search step. We then store the seeds in an interleaved manner by consecutively
placing the seeds for the i-th buckets from all partitions. The seeds for the i-th bucket of each
partition follow the same statistical distribution. This allows us to tune a compressor for each
bucket. Hence, we call our technique PHOBIC – Perfect Hashing with Optimized Bucket sizes and
Interleaved Coding.

Compared to PTHash, PHOBIC is 0.17 bits/key more space efficient for same query time and
construction throughput. We also contribute a GPU implementation to further accelerate MPHF
construction. For a configuration with fast queries, PHOBIC-GPU can construct a perfect hash
function at 2.17 bits/key in 28 ns per key, which can be queried in 37 ns per query on the CPU.
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1 Introduction

A hash function maps a set S of n keys to a range of integers [m] := {1, . . . , m}, regardless
of whether multiple keys collide on the same output. A perfect hash function (PHF) on S is
a mapping without collisions. This requires m ≥ n. The function does not necessarily have
to store the keys explicitly. It only has to store enough information to prevent collisions,
which are more likely when m is close to n. In the extreme case of m = n, the mapping is
called a minimal perfect hash function (MPHF). In this paper, we consider the minimal case
only. PHFs find widespread practical application e.g. in compressed full-text indexes [4],
computer networks [23], databases [9], prefix-search data structures [2], language models [30],
bioinformatics [12,27], and Bloom filters [8]. The three main performance attributes of an
MPHF are low space consumption, fast construction, and fast queries. Concerning space,
the lower bound is log2(e) ≈ 1.44 bits/key [25]. Practically viable approaches can get within
a few percent of the lower bound, but do so with some sacrifices in running time [19, 21].
This paper is concerned with techniques that are focused on achieving fast query times. For
example, this is very important when using perfect hashing to implement a static hash table
that is both space-efficient and allows fast search.

Perfect Hashing Through Bucket Placement. Perfect hashing through bucket placement
takes the n keys and maps them to small buckets. For each bucket, it uses brute-force search
to find a seed of a hash function such that all keys of the bucket do not collide with each
other or previously placed keys. The first buckets are easier to place because the output
domain is less full. Therefore, the methods insert the buckets in order of non-increasing size.
While CHD [3] uses buckets of constant expected size, FCH [14] and PTHash [28,29] set aside
30% of “heavy” buckets that receive 60% of the keys in expectation, while 70% of “light”
buckets receive only 40% of the keys in expectation. This imbalance in expected bucket
sizes improves construction speed by further decreasing the size of the last, hardest to place,
buckets. The resulting list of seed values are stored with various compression techniques,
resulting in a variety of trade-offs between space consumption and query speed.

Partitioning. Any PHF construction algorithm can be trivially parallelized by splitting the
input keys into disjoint subsets. We refer to those subsets as partitions. The various PHFs
are then logically “concatenated” into a single PHF taking the prefix-sum of the partition
sizes. The respective offsets have to be looked up when querying a key, imposing some query
time overhead. Each partition can be constructed independently in parallel. Partitioning is
the usual approach for parallelization, and is applied to PTHash by PTHash-HEM [29].

Contribution. This paper aims at improving the space efficiency and construction speed
of PTHash, while maintaining its fast query speed. There are three ingredients. Our main
contribution (in Section 3) is to characterize, up to lower order terms, an optimal distribution
of expected bucket sizes, effectively taking the imbalance-trick used in FCH and PTHash to its
logical conclusion. The distribution is easy-to-implement and greatly improves construction
time and space efficiency in practice. Our second contribution (in Section 4.1) is to improve
the compression of seed values when using partitioning. Seeds are searched independently
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for each partition, but compressed together. We exploit that the seeds of the i-th bucket of
each partition follow the same statistical distribution. This allows for tuning a compressor
for each such index i. We store the seeds in an interleaved manner by consecutively placing
the seeds for the i-th buckets from all partitions. Finally, we contribute (in Section 4.2) an
implementation for Graphics Processing Units (GPUs) to speed up construction.

2 Related Work

Perfect hashing is an active area of research. We provide an overview of state-of-the-art
approaches. For more details, refer to Section 2 of [29].

Fingerprinting. Perfect hashing through fingerprinting [10,26] is a technique aimed at fast
construction and queries at the cost of reduced space efficiency. The idea is to map the n

keys to γn positions using a hash function, where γ is a tuning parameter. A bit vector of
length γn indicates positions that received exactly one key. Keys that take place in collisions
are handled recursively on another layer of the same data structure. A query operation
descends through the recursive layers until it finds a 1-bit, meaning that it was the only key
mapping to that position. A rank operation on the bit vector for that position then gives the
final MPHF value. FMPH [5] and BBHash [22] are publicly available implementations of the
approach. FMPHGO [5] extends on this idea using a small number of brute-force re-tries to
reduce the number of colliding keys. Fingerprinting based approaches are fast to construct
but are outperformed in terms of space consumption and query time by PTHash.

Brute Force. RecSplit [13] first partitions the input into sets of equal expected size. It then
recursively splits the key set of each partition until sets of small constant size (usually ≤ 16)
are left. Within these sets, it finds a perfect hash function by brute force. RecSplit achieves
space usage of about 1.56 bits/key. The resulting splitting tree has to be traversed during
querying which implies considerably higher query costs compared to PTHash. The brute
force search was later improved in SIMDRecSplit [6], which also parallelizes the construction
on the GPU. To the best of our knowledge, RecSplit is the only other PHF construction
technique that has a GPU implementation.

Perfect Hashing Through Retrieval. In perfect hashing through retrieval, every key has
a number of candidate positions, determined by different hash functions. A retrieval data
structure then stores which of the choices should be used for each key. Note that this
implies some query overhead compared to PTHash. Early implementations include BPZ [7]
and GOV [15]. SicHash [20] reduces space consumption using a mix of different retrieval
data structures and some retries. ShockHash-RS [19,21] combines 1-bit retrieval with the
brute-force approach of RecSplit and currently is the most space-efficient approach to MPHFs
with as little as 1.49 bits/key [19].

3 Optimizing Bucket Sizes

Consider perfect hashing through bucket placement with n keys, for m = n and B buckets,
i.e. an average bucket size of λ = n/B. Previous literature overlooked the simple insight that
large λ already guarantees a space consumption close to the lower bound of log2 e bits per
key, without any assumptions on the bucket sizes or their distribution.

▶ Proposition 1. Any specialization of perfect hashing through bucket placement requires
between log2 e bits per key and log2 e +O( log λ

λ ) bits per key in expectation.
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Our goal in this section need therefore only be to minimize construction time. Here we are
faced with a lower bound for our family of approaches.

▶ Proposition 2. Any specialization of perfect hashing through bucket placement has an
expected construction time of Ω(eλ/λ) per bucket.

Propositions 1 and 2 are restated more formally as Proposition 18 and proved in Appendix A.4.
It is intuitively clear (and proved in Proposition 16 in Appendix A.3) that buckets should be
processed in order from largest to smallest. The only remaining degree of freedom is to choose
the expected sizes of the buckets. We characterize asymptotically optimal ways of doing so,
formalized by what we call bucket assignment functions and achieving a construction time of
eλ(1+ε) per bucket. Proofs are found in the appendix.

3.1 Bucket Assignment Functions
Let w1, . . . , wB be the probability that a key hashes to bucket i for i ∈ [B]. We may assume
without loss of generality that these probabilities are given in decreasing order. An equivalent
view considers the prefix sums σi := w1 + · · · + wi. A key with (normalized) hash value
x ∈ (0, 1] is then assigned to bucket i if x ∈ (σi−1, σi].

We can conveniently represent this information using a bucket assignment function
γ : [0, 1] → [0, 1] that: interpolates the points {(σi, i/B) | 0 ≤ i ≤ B}, is increasing and
smooth on (0, 1), and has non-decreasing derivative. The bucket assigned to hash value
x ∈ (0, 1] is then ⌈γ(x) · B⌉. It is a non-trivial insight of this section that a single bucket
assignment function (not depending on B and n) can result in good construction times for
many values of B and n simultaneously.

From now on, let λ := n/B. We summarize some useful intuitions about bucket assignment
functions. These intuitions are valid for large n and B (when γ, γ−1, and γ′ are approximately
constant on intervals of length 1

n and 1
B ). For now, we neglect edge cases related to γ or γ−1

not being smooth at 0 or not being smooth at 1 (but just smooth on (0, 1)).

▶ Intuition 3. Let x ∈ (0, 1] be a normalized hash and b = γ(x) the normalized bucket index
of the bucket assigned to x. Then

(i) The expected size of the bucket assigned to x is λ/γ′(x).
(Reason: In the vicinity of x and for infinitesimal δ, a δ-fraction of the hash range
(used by δn keys in expectation) is shared by a (γ′(x) · δ)-fraction of the B buckets. The
quotient is δn/(γ′(x)δB) = λ/γ′(x).)

(ii) The expected size of the bucket with normalized index b is λ/γ′(γ−1(b)) = λ(γ−1)′(b).
(Follows from (i) and the inverse function rule.)

(iii) The expected size of a bucket is decreasing in its normalized index.
(Follows from (ii) and monotonicity of γ′ and γ−1.)

(iv) The expected fraction of keys with normalized hash in (0, x] is x.
(v) If µ > 0 and xµ ∈ (0, 1) is such that λ/γ′(xµ) = µ then the expected fraction of keys in

buckets of size at least µ is xµ. (Follows from (i), (iii) and (iv).)

3.2 An Optimal Bucket Assignment Function
Intuitively, we identify the following bucket assignment function to be optimal, although our
precise result stated below is more subtle.

β∗(x) = x + (1− x) · ln(1− x) with derivative β′
∗(x) = − ln(1− x).
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Figure 1 Comparison of bucket assignment functions γ(x) of related work and PHOBIC (γ = β∗).

For comparison, Figure 1a shows β∗ as well as the bucket assignment functions used by CHD
and PTHash. In Figure 1b we see the distribution of expected bucket sizes, which is uniform
for CHD, imbalanced for PTHash, and even more imbalanced for β∗.

Recall that λ = n/B is the average bucket size. By Proposition 2 a lower bound for
the expected work is Ω(n · eλ/λ). We prove, firstly, that any bucket assignment function γ

that differs from β∗ leads to expected work exceeding n · e(1+ε)λ for some ε = ε(γ), provided
that λ is large enough. Conversely, we show that a slight perturbation βε of β∗ leads to
an expected work of essentially at most n · e(1+ε)λ for any ε > 0, provided that λ ≥ λ0(ε)
is large enough. Essentially, we can get arbitrarily close to a cost of eλ per key and only
functions close to β∗ can achieve this.

Our results bound the work wn,λ(γ) associated with γ and involve a “coupon collector
term” wcoupon, which is the work required to place buckets of size 1. We will define these
more precisely below. Proofs are found in Appendices A.1 and A.2. We have reason to believe
that our results generalize for the non-minimal case of m > n, as explained in Appendix B.

▶ Theorem 4. Let γ : [0, 1] → [0, 1] be a continuous bucket assignment function that is
smooth on (0, 1) with non-decreasing derivative. If β∗ ̸= γ then

∃ε > 0 : ∀λ ≥ λ0(ε) : ∀n ≥ n0(λ, ε) : wn,λ(γ) ≥ n · eλ(1+ε) + wcoupon whp.

While this leaves the relationship between γ and ε(γ) open, our proof suggests that any
ε < supx∈(0,1)

β′
∗(x)

γ′(x) − 1 is a possible choice.

▶ Theorem 5. Let βε(x) := εx + (1− ε)β∗(x) for some ε > 0. Then

∀ε > 0 : ∀λ ≥ λ0(ε) : ∀n ≥ n0(λ, ε) : wn,λ(βε) ≤ n · eλ(1+O(ε)) + wcoupon whp.

By with high probability (whp) we mean probability 1−O(n−c) for some c > 0. Note that
both theorems are phrased such that we may assume that n is much larger than λ and
λ is much larger than 1/ε. We give implementation details concerning the use of βε in
Appendix C.1.
What we do not prove. Note that our analysis leaves undecided whether β∗ is itself a “good”
bucket assignment function, i.e. whether wn,λ(β∗) approaches eλ in any meaningful sense.
We suspect that it does. However, the perturbation simplifies the analysis and improves
running times in practice. Our analysis also does not imply that the particular perturbation
we choose is the best choice: there may be an alternative to βε such that the overall work
approaches eλ more quickly.
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The work associated with a bucket assignment function. To place a bucket of size s ∈ N
into a hash table of size n that already has load factor α ∈ [0, 1 − s

n ] we repeatedly try
seeds for a hash function mapping keys to [n], until all keys hash to free positions. The
expected cost cn(s, α) associated with this task under the simple uniform hashing assumption
is described precisely in Appendix A.3. We have to take into account self-collisions, i.e. while
checking the keys one after the other, the load factor gradually increases and is α′ = α + s−1

n

for the last key. For our purposes, the following bounds on cn(s, α) suffice

(1− α)−s ≤ cn(s, α) ≤ s · (1− α′)−s. (1)

This uses that (1 − α)−s and (1 − α′)−s are lower and upper bounds on the number of
seeds that have to be tried and that, to test a seed, at least 1 and at most s keys have
to be considered. Now assume we are given a bucket assignment function γ as well as
n ∈ N, λ ∈ R+ and B = n/λ. By assigning keys to buckets according to γ and hash
values in (0, 1] we obtain buckets. Let s1 ≥ . . . ≥ sB be their sizes in decreasing order.
By Proposition 16 in Appendix A.3 it is advantageous to process the buckets in this order.
Defining αi := 1

n

∑i−1
j=1 si, the total cost is then wn,λ(γ) =

∑B
i=1 cn(si, αi).

Note that while this describes the expected cost when given (si)i∈[B], overall wn,λ(γ) is
still a random variable because the numbers (si)i∈[B] are random. Assume now that there
are exactly k buckets of size 1 that are placed last (we may ignore buckets of size 0). For
these buckets, the upper and lower bounds in Equation (1) coincide so they incur a cost of

wcoupon :=
k∑

i=1
c(1, n−i

n ) =
k∑

i=1

n

i
= n ·Hk.

Here Hk is the kth harmonic number, which satisfies Hk = Θ(log k). If n is sufficiently
large compared to λ then we have k ≥ nd whp for some constant d > 0, giving a cost of
Θ(n ·Hnd) = Θ(n log n). This dominates overall construction time if n is sufficiently large
compared to λ. Our theorems list this work for buckets of size 1 as a separate term because
there are techniques to mitigate the problem: The hash function may permit to directly
compute for a given key x and table position i a seed for which x is mapped to i. This is the
case if the seed includes an additive displacement term, as is the case in our implementation
and in FCH [14].
Intuition: What makes β∗ uniquely promising. For µ > 0 let xµ ∈ (0, 1) be such that
λ/β′

∗(xµ) = µ. By Intuition 3 (v), roughly an expected xµ-fraction of the keys (those with
hashes in [0, xµ]) land in buckets of expected size at least µ. Assume for now that a bucket of
expected size µ has actual size µ (ignoring the issue that µ may not be integer). Then, since
we process buckets in order of increasing size, we would process a bucket of size µ when the
load factor is xµ. The expected cost for this is, by Equation (1), around (1−xµ)−µ. Using that
β′

∗(x) = − log(1−x) gives µ = −λ/ log(1−x) and hence (1−xµ)−µ = (1−xµ)λ/ log(1−xµ) = eλ,
i.e. a cost independent of µ. The idea behind Theorem 4 is that any bucket assignment
function γ ̸= β∗ fails to balance bucket sizes in this way, leading to significantly higher costs.

The simplification we made seems innocent for large µ since a bucket of large expected
size typically has actual size close to its expectation. But consider µ = 1.5 and cease to
ignore rounding issues. If at load factor xµ we would process buckets of size 1 half the time
and buckets of size 2 half the time, the resulting costs are around e

2
3 A and e

4
3 A, respectively,

which does not average out to eλ. Luckily, things are more complicated. It turns out that for
small s ∈ N and assuming large λ, the expected number of buckets of size s is meaningfully
greater than the number of buckets of expected size in the range [s− 1, s + 1]. This means
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that we get more small buckets than we seem to have called for, decreasing costs at high
load factors. It seems clear that the flipside of this beneficial effect must be a detrimental
effect for larger bucket sizes that a proof of Theorem 5 must quantify. When it comes to very
large bucket sizes, we bail ourselves out by using βε instead of β∗: since β′

ε is lower bounded
by ε, the expected bucket sizes are capped at λ/ε. It is buckets of intermediate sizes that
have to pay the price.

4 Fine-Grained Partitioning

Any PHF construction can trivially be parallelized by hashing the keys into subsets of
expected equal size and building a PHF for each subset in parallel. We refer to those subsets
as partitions. The various PHFs are then logically “concatenated” into a single PHF taking
the prefix sum of the partition sizes. The respective offsets have to be looked up when
querying a key, imposing some query time overhead. Partitioning is widely used for a variety
of construction techniques. It was also used by PTHash in the PTHash-HEM variant [29].
In this paper, we use partitions that are several magnitudes smaller than the ones used in
PTHash-HEM. In itself, reducing the partition size results in only marginal construction
time improvements. However, small partitions enable a new, more efficient encoding scheme
which we introduce in Section 4.1. Additionally, they enable a fast GPU parallelization which
we describe in Section 4.2.

Encoding the offsets of the partitions. The offsets and sizes of the many partitions require
a non-negligible amount of space. We mitigate this without incurring too much query
overhead by storing sizes only implicitly as the difference of two subsequent offsets. Offsets
are stored as the difference to their expectation.

Hash Function. The original PTHash hash function works by XOR-ing the hash value of
the key with the hash value of the seed. This reduces hash function evaluation to a simple
XOR operation, which improves performance in practice. Although the technique works
well on large-enough partition sizes, it might fail for small sizes because of correlations in
the hash values. Given the small partition sizes we use here, we have to rely on a different
technique. We use the seed value p to store two numbers, namely p = s ·m + d, where m

is the actual partition size and d ∈ [m] is an additive displacement. The position of a key
x is (h(x, s) + d) mod m. While searching for a seed, we calculate h(x, s) for all keys of
the bucket and then only have to increment the values to obtain the positions for the next
seeds. If no position is found within d ∈ [m] we continue by incrementing s, re-calculating
h(x, s) and setting d = 0. At query time, we have to calculate the position of a key x using
seed p. Note that we have d = p mod m, so we can compute the position of the key x as
(h(x, ⌊p/m⌋) + p) mod m.

4.1 Interleaved Coding of Seeds
Once the search has finished, the seeds found for each bucket have to be stored in some
compressed manner. Ideally, the seeds should be encoded such that they require little space
and are quickly accessible during querying. We mainly use Compact and Golomb-Rice
encoding as building blocks for our new technique. Compact encoding is also used in the
original PTHash implementation. In Compact encoding, all values are stored consecutively
by concatenating their binary representation. All values use the same bit length, allowing
for quick access. The bit length is chosen such that the highest seed can be accommodated.
Golomb-Rice [16, 31] encoding stores the b least significant bits of each seed using compact
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Encoder 1 Encoder 2

...

Encoder P/λ

Partition 1

Partition N/P

...
... ...

...

Figure 2 Interleaved coding. Encoder i stores the seed of bucket i from all partitions.

encoding. The most significant bits are stored in unary representation. A selection structure
enables access to the unary part of the seeds in constant time. We apply the formula by
Kiely [18] to select b. A straightforward approach would be to encode all seeds using a single
encoder. However, the seeds do not follow the same statistical distributions across different
buckets, hence using the same encoder for all buckets is suboptimal. It is instead beneficial
to group seeds which follow the same distribution and encode them using the same encoder.
PTHash does this only partially by using two encoders – one for each expected bucket size
(the so-called “front-back” compression [28]).

We now introduce our new technique. For each partition we hash to the same number of
buckets B = P/λ, based on the average partition size P and average bucket size λ. The i-th
bucket of a partition has the same expected size and the corresponding seed follows the same
statistical distribution as the i-th bucket of any other partition. Although the idea of our
optimized bucket assignment function is to give all buckets the same seed distribution, this
is not achievable in practice. At least one reason for this are the discrete bucket sizes. This
results in discrete jumps in the probability that a seed is found when processing one bucket
after another. In interleaved coding we therefore employ B encoders and the i-th encoder
stores the seeds of the i-th buckets of all partitions. Each encoder can thus use tuning
parameters for its specific distribution (e.g., different Golomb-Rice parameters). Figure 2
gives an illustration of interleaved coding.

It is also possible to mix different encoding techniques, similar to what PTHash does.
Larger buckets are accessed more often than smaller buckets because they contain more keys.
Hence, it is beneficial to use an encoding technique which is optimized for fast lookup time
(e.g., Compact) for the larger buckets. Conversely, the encoding for the seeds belonging to
smaller buckets should be tuned for space efficiency (e.g., Golomb-Rice). To conclude this
section, we point out that each of the B encoders introduces some metadata overhead (e.g.,
for storing its parameters). Using rather small partition sizes P decreases the number B of
encoders and therefore the constant overhead.

4.2 GPU Parallelization

We provide a GPU implementation for even faster construction. On a GPU, each workgroup
executes independently, typically with its own subset of data. Within each workgroup,
individual threads execute concurrently. Threads within the same workgroup can share
data and synchronize with each other through mechanisms like barriers and shared memory.
Thread level parallelism allows for fine-grained parallel execution of instructions within a
workgroup. However, only threads which follow the same control path and thus execute the
same instruction at the same time can be executed in parallel. It is therefore crucial to avoid
divergent control paths. As a first step, our parallel implementation transfers the keys to the
GPU, before partitioning them. Afterwards, we sort the buckets and start the search.
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Algorithm 1 Seed search for one bucket.

shared sFound ←∞
shared sNext ← threadCount
seed ← threadId, keyIndex ← 0
while sFound =∞ do

isCollision ← coll(seed, keyIndex)
keyIndex ← keyIndex + 1
if isCollision then

keyIndex ← 0
seed ← atomAdd(sNext, 1)

else if keyIndex = bucketSize then
sFound ← atomMin(sFound, seed)
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Figure 3 Each box represents one seed tested
by one thread. Left: Synchronized nested loop.
Right: Algorithm 1 where we continue with the
first key and the next seed after a collision.

Search. Our fine-grained partitioning naturally maps to the architecture of a GPU. Each
partition is processed by one workgroup. The small partition sizes enable performing the
search entirely using fast but small shared memory. Bucket by bucket, all threads of the
workgroup cooperate to quickly find the smallest working seed. A CPU implementation
would usually do so using a nested loop. The outer loop would iterate over seed values and
the inner loop over keys. If a collision occurs, it would immediately leave the inner loop
and continue with the first key and the next seed. However, on a GPU, leaving the inner
loop would result in divergence because threads might encounter a collision after a different
number of keys. This is illustrated in the left of Figure 3.

Instead, we use the technique described in [32] to emulate the behavior of the nested loop
using a single loop to reduce divergence. Hence, our GPU implementation parallelizes over
partitions, seeds and keys. The inner loop is emulated by incrementing the key index in each
iteration. If a collision occurs, we reset the key index and emulate the behavior of the outer
loop by atomically incrementing a seed counter which is shared among all threads. If the last
key did not collide, we found a working seed. Multiple threads can find a seed in the same
iteration. To reduce entropy, we use an atomic minimum to identify the smallest of those
seeds. Note that this finds the smallest working seed overall because all threads finding a
working seed must have processed each key. Therefore, if there was a smaller working seed,
it would have been found in an earlier loop iteration. We give pseudocode in Algorithm 1
and illustrate the behavior on the right in Figure 3. During search, we only access shared
memory and perform fast arithmetic operations. We remark that specific optimizations for
our additive displacement hash function are not shown here, i.e. after calculating the initial
positions we can apply new displacements using only additions.

5 Experiments

In Section 5.1, we gradually integrate our improvements to show the individual effects. Then
we compare our GPU and CPU implementation with the state of the art in Section 5.2.
We use a machine with an Intel Core i7-11700 CPU with 64 GiB of DDR4 RAM running
Ubuntu 22.04.1. Each core has 48 KiB L1 and 512 KiB L2 data cache. As a GPU, we use
an Nvidia RTX 3090 and use Vulkan 1.3.236 to interface with it. We compile using GCC
11.4.0 and compiler options -march=native and -O3. All benchmarks use random strings
of random length between 10 and 50 characters as input which is adopted from previous
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mixtures (see Section 4) of Compact and Rice
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work [6, 19, 20, 21]. Note that almost all competitors first generate master hash codes of
the input. This makes the construction largely independent of the input distribution. We
measure the query time by querying each key once in random order. All experiments use
100 million keys, λ = 8 and an average partition size of 2 500 if not stated otherwise. Our
source code is public under the General Public License. You can find it through the links on
the title page of this paper.

5.1 From PTHash to PHOBIC

We now gradually introduce our improvements to PTHash. As basic improvements, we
replace the initial hash function with xxHash [1] and implement faster parallel partitioning.
In all experiments, PTHash contains these changes as well to focus on our algorithmic
improvements. Figure 4 gives measurements for the different improvement steps and shows
them in different combinations.

Interleaved Coding. Partitioning of PTHash is already used in PTHash-HEM for paral-
lelization [29]. PTHash-HEM uses partitions of size ≈106. Smaller partitions only lead to
minor improvements, as we show in Appendix D. However, smaller partition sizes shine when
used with our newly introduced interleaved coding (Section 4.1). Interleaved coding uses
P/λ encoders, where P is the expected partition size. Reducing the partition size can signifi-
cantly reduce constant space overheads, as we also show in Appendix D. Figure 4 compares
the technique of placing all seeds into a single Rice encoder (orange curve) to placing the
keys using interleaved Rice coding (black). Interleaved coding consistently improves space
efficiency by 0.06 bits/key. Figure 5 compares different combinations of encoders, which
were partially used in the original implementation. Interleaved coding allows for mixing of
different encoding techniques. If we use this to encode the keys using different numbers of
Compact and Rice encoders, we can cover the entire query time to space trade-off in our
configuration. Note that the construction performance is similar for all approaches because
the encoding is fast compared to the remaining construction.
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Figure 6 GPU performance for different input sizes (left) and λ (right).

Optimized Bucket Assignment. In Figure 4 we also show how using the optimized bucket
function affects construction speed and space. Our optimization of the bucket assignment
function is particularly helpful to construct very space efficient configurations. When
compared for same construction time, the optimized function is up to 0.14 bits/key more
space efficient relative to the original PTHash bucket assignment.

Further Remarks. With interleaved coding, another improvement originates from the sec-
ondary bucket ordering. Primarily the buckets are sorted in non-increasing size. Secondarily
sorting in increasing expected size reduces the space consumption by 0.044 bits/key compared
to decreasing expected size. The reason for this behavior remains an open problem.

Original PTHash observed significant performance improvements by first calculating a
non-minimal PHF and repairing the “gaps” afterwards. Refer to [28] for details. This trick
does not result in an improvement when using PHOBIC.

GPU Parallelization. Our final contribution is a GPU implementation to speed up con-
struction. Our implementation parallelizes over partitions, seeds and keys. The GPU
implementation is mainly useful for large average bucket sizes λ. This is well illustrated
in Figure 6b: For smaller values of λ, the construction time is dominated by the time to
transfer the input data to the GPU. We also compare CPU and GPU construction speed
for different input sizes in Figure 6a. The GPU requires a large number of input keys and
thus a large number of partitions before its computing resources are fully utilized. Overall,
the GPU outperforms the CPU for a sufficiently large λ and n. We use the GPU only to
accelerate construction, while measuring all queries on the CPU.

5.2 Comparison to Other Methods

We compare our new approach to several other methods from the literature. First and
foremost, we compare against the original PTHash [28,29] implementation. The comparison
also includes the fingerprinting approaches BBHash [22], FMPH [5], and FMPHGO [5]. We
also compare against RecSplit [13] and approaches based on it, such as SIMDRecSplit [6],
ShockHash-RS [21], and bipartite ShockHash-RS [19]. Finally, we also compare against
CHD [3] and SicHash [20].
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Figure 7 Construction throughput (left) and query throughput (right) for various methods on
100 million keys and using a single processing thread.

Each method has a wide range of configurations that provide a trade-off between space,
construction time, and query time. To give an initial overview, we show a Pareto front for
each method in Figure 7. A configuration is on the Pareto front if no other configuration of
the same method is simultaneously faster and more space efficient. For this plot we use a
single thread (a multithreaded measurement would mainly show what method implemented
the partitioning step most efficiently instead of focusing on the algorithmic aspects). The
figure shows that PTHash and PHOBIC are clear winners in terms of query performance.
Even though BBHash [22] and FMPH [5] are also focused on fast queries, they are significantly
slower than PTHash and PHOBIC. Figure 4 shows that PHOBIC consistently saves about
0.17 bits/key for a large range of different construction times while maintaining the good
query speed. We remark that this is a significant reduction in space considering the proximity
to the space lower bound. The competitors achieving even lower space consumption (i.e.
RecSplit [13], SIMDRecSplit [6], ShockHash-RS [21], and bipartite ShockHash-RS [19]) all
have a rather slow query performance. However, somewhat surprisingly, SIMDRecSplit
has the fastest construction even for less space efficient configurations. SicHash [20] takes
a middle ground with faster construction than PHOBIC and query performance between
PHOBIC and the RecSplit variants.

Table 1 gives a selection of configuration parameters for direct comparison, mostly taken
from the corresponding papers. Appendix D.2 gives the same table measured on a large
machine with 64 threads. Comparing configurations with the same space consumption,
PHOBIC is significantly faster to construct than the original PTHash implementation.
Comparing configurations that both need 1.86 bits/key and have a similar query time,
PHOBIC can be constructed 83 times faster than PTHash.

On the GPU, we compare against the only available GPU construction, RecSplit-GPU [6].
Figure 9 in Appendix D.2 illustrates the comparison. Basically, we achieve the same peak
construction throughput as RecSplit-GPU for the less space efficient configurations. The
queries of both approaches are done on the CPU, so the fact that PHOBIC offers much faster
queries applies here as well (see Figure 7). Comparing the multithreaded CPU implementation
and the GPU implementation of PHOBIC, we get a construction speedup of 62 for λ = 9 with
interleaved Rice coding. Note that with λ = 9, the GPU still spends a lot of its construction
time on transferring the input data (see Figure 6b), but much larger values of λ are not
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Table 1 Performance of various methods on 100 million keys.

Method Space Query Construction (ns/key)

(bits/key) (ns/query) 1 Thread 8 Threads Speedup

Bip. SH-RS, n=64, b=2000 1.52 160 5 756 1 218 4.7

CHD, λ=3 2.27 222 352 - -
CHD, λ=5 2.07 207 2 206 - -

FMPH, γ=2.0 3.40 100 69 17 4.0
FMPH, γ=1.0 2.80 134 99 24 4.0

SIMDRecSplit, n=8, b=100 1.81 124 109 20 5.2
SIMDRecSplit, n=14, b=2000 1.58 143 11 062 2 360 4.7

SicHash, α=0.9, p1=21, p2=78 2.41 72 129 25 5.0
SicHash, α=0.97, p1=45, p2=31 2.08 64 179 32 5.6

PTHash, λ=4.0, α=0.99, C-C 3.19 35 314 143 2.2
PTHash, λ=5.0, α=0.99, EF 2.11 54 525 252 2.1
PTHash, λ=10.5, α=0.99, EF 1.86 49 82 721 35 048 2.4

PTHash-HEM, λ=4.0, α=0.99, C-C 3.19 39 299 45 6.6
PTHash-HEM, λ=5.0, α=0.99, EF 2.11 58 582 86 6.7

PHOBIC, λ=3.9, α=1.0, IC-C 3.18 40 197 32 6.2
PHOBIC, λ=4.5, α=1.0, IC-R 2.11 57 254 40 6.2
PHOBIC, λ=6.5, α=1.0, IC-R 1.85 52 992 176 5.6
PHOBIC, λ=9.0, α=1.0, IC-R 1.74 50 9 171 1 781 5.1

GPU + 8 CPU Threads

PHOBIC-GPU, λ=9.0, IC-C 2.17 37 28
PHOBIC-GPU, λ=9.0, IC-R 1.76 52 27
PHOBIC-GPU, λ=13.0, IC-R 1.68 50 560
PHOBIC-GPU, λ=14.0, IC-R 1.67 49 1 470

RecSplit-GPU, ℓ=8, b=100 1.81 126 24
RecSplit-GPU, ℓ=14, b=2000 1.58 147 80
RecSplit-GPU, ℓ=18, b=2000 1.55 135 1 732

feasible on the CPU.
Directly comparing the performance of CPU and GPU is always difficult because of the

different hardware architectures. Given that the power consumption is a major cost factor in
production environments, we measure it using a Voltcraft Energy Check 3000 wattmeter. For
CPU-only measurements, we dismount the GPU. The machine requires about 405 W during
the search step of the GPU version and 195 W for the multithreaded CPU implementation.
Thus, the above speedup of 62 translates to roughly 30 times lower energy consumption for
constructing an MPHF on the GPU. Single-threaded CPU construction requires 74 W which
is less energy efficient compared to multithreading.

6 Conclusion and Future Work

PHOBIC introduces optimized bucket sizes and interleaved encoding to PTHash. Our
improvements result in 0.17 bits/key better space efficiency when compared to PTHash for
similar construction and query speed. When compared for the same space consumption,
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PHOBIC can be constructed up to 83 times faster than PTHash, while still having the same
query time. Finally, our GPU implementation improves the construction by a factor of up to
62 compared to the multithreaded CPU implementation.

Future work may explore combinations of the most time efficient approaches to perfect
hashing and the most space efficient approaches. Concretely, we are hopeful that a hybrid
between PHOBIC and ShockHash [21] puts further trade-offs between space and time into
reach.

References
1 xxhash github. URL: https://github.com/Cyan4973/xxHash.
2 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Fast prefix search in

little space, with applications. In ESA (1), volume 6346 of Lecture Notes in Computer Science,
pages 427–438. Springer, 2010. doi:10.1007/978-3-642-15775-2_37.

3 Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. Hash, displace, and
compress. In ESA, volume 5757 of Lecture Notes in Computer Science, pages 682–693. Springer,
2009. doi:10.1007/978-3-642-04128-0_61.

4 Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing.
ACM Trans. Algorithms, 10(4):23:1–23:19, 2014. doi:10.1145/2635816.

5 Piotr Beling. Fingerprinting-based minimal perfect hashing revisited. ACM J. Exp. Algorith-
mics, 28:1.4:1–1.4:16, 2023. doi:10.1145/3596453.

6 Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. High performance
construction of recsplit based minimal perfect hash functions. In ESA, volume 274 of LIPIcs,
pages 19:1–19:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/
LIPICS.ESA.2023.19.

7 Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-efficient minimal
perfect hash functions. In WADS, volume 4619 of Lecture Notes in Computer Science, pages
139–150. Springer, 2007. doi:10.1007/978-3-540-73951-7_13.

8 Andrei Z. Broder and Michael Mitzenmacher. Survey: Network applications of Bloom filters:
A survey. Internet Math., 1(4):485–509, 2003. doi:10.1080/15427951.2004.10129096.

9 Chin-Chen Chang and Chih-Yang Lin. Perfect hashing schemes for mining association rules.
Comput. J., 48(2):168–179, 2005. doi:10.1093/COMJNL/BXH074.

10 Jarrod A. Chapman, Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, and Daniel S.
Rokhsar. Meraculous: De novo genome assembly with short paired-end reads. PLOS ONE,
6(8):1–13, 08 2011. doi:10.1371/journal.pone.0023501.

11 K. P. Choi. On the medians of gamma distributions and an equation of Ramanujan. Proceedings
of the American Mathematical Society, 121:245–251, 1994.

12 Victoria G. Crawford, Alan Kuhnle, Christina Boucher, Rayan Chikhi, and Travis Gagie.
Practical dynamic de bruijn graphs. Bioinform., 34(24):4189–4195, 2018. doi:10.1093/
BIOINFORMATICS/BTY500.

13 Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. RecSplit: Minimal
perfect hashing via recursive splitting. In ALENEX, pages 175–185. SIAM, 2020. doi:
10.1137/1.9781611976007.14.

14 Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath. A faster algorithm for constructing
minimal perfect hash functions. In SIGIR, pages 266–273. ACM, 1992. doi:10.1145/133160.
133209.

15 Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction of
(minimal perfect hash) functions. In SEA, volume 9685 of Lecture Notes in Computer Science,
pages 339–352. Springer, 2016. doi:10.1007/978-3-319-38851-9_23.

16 Solomon W. Golomb. Run-length encodings (corresp.). IEEE Trans. Inf. Theory, 12(3):399–401,
1966. doi:10.1109/TIT.1966.1053907.

https://github.com/Cyan4973/xxHash
https://doi.org/10.1007/978-3-642-15775-2_37
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1145/2635816
https://doi.org/10.1145/3596453
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.1007/978-3-540-73951-7_13
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1093/COMJNL/BXH074
https://doi.org/10.1371/journal.pone.0023501
https://doi.org/10.1093/BIOINFORMATICS/BTY500
https://doi.org/10.1093/BIOINFORMATICS/BTY500
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1145/133160.133209
https://doi.org/10.1145/133160.133209
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1109/TIT.1966.1053907


S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, S. Walzer 15

17 Stefan Hermann. Accelerating minimal perfect hash function construction using gpu
parallelization. Master’s thesis, Karlsruhe Institute for Technology (KIT), 2023. doi:
10.5445/IR/1000164413.

18 Aaron Kiely. Selecting the Golomb parameter in Rice coding. IPN progress report, 42:159,
2004.

19 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. Bipartite ShockHash: Pruning
ShockHash search for efficient perfect hashing. CoRR, abs/2310.14959, 2023. doi:10.48550/
ARXIV.2310.14959.

20 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. SicHash – small irregular cuckoo tables
for perfect hashing. In ALENEX, pages 176–189. SIAM, 2023. doi:10.1137/1.9781611977561.
CH15.

21 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. Shockhash: Towards optimal-space
minimal perfect hashing beyond brute-force. In ALENEX. SIAM, 2024. doi:10.1137/1.
9781611977929.15.

22 Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and scalable
minimal perfect hashing for massive key sets. In SEA, volume 75 of LIPIcs, pages 25:1–25:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.SEA.2017.25.

23 Yi Lu, Balaji Prabhakar, and Flavio Bonomi. Perfect hashing for network applications. In
ISIT, pages 2774–2778. IEEE, 2006. doi:10.1109/ISIT.2006.261567.

24 Colin McDiarmid. On the method of bounded differences, page 148–188. London Math-
ematical Society Lecture Note Series. Cambridge University Press, 1989. doi:10.1017/
CBO9781107359949.008.

25 Kurt Mehlhorn. On the program size of perfect and universal hash functions. In FOCS, pages
170–175. IEEE Computer Society, 1982. doi:10.1109/SFCS.1982.80.

26 Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and perfect hashing using
fingerprinting. In SEA, volume 8504 of Lecture Notes in Computer Science, pages 138–149.
Springer, 2014. doi:10.1007/978-3-319-07959-2_12.

27 Giulio Ermanno Pibiri. Sparse and skew hashing of k-mers. Bioinformatics,
38(Supplement_1):i185–i194, 2022.

28 Giulio Ermanno Pibiri and Roberto Trani. Pthash: Revisiting FCH minimal perfect hashing.
In SIGIR, pages 1339–1348. ACM, 2021. doi:10.1145/3404835.3462849.

29 Giulio Ermanno Pibiri and Roberto Trani. Parallel and external-memory construction of
minimal perfect hash functions with pthash. IEEE Trans. Knowl. Data Eng., 36(3):1249–1259,
2024. doi:10.1109/TKDE.2023.3303341.

30 Giulio Ermanno Pibiri and Rossano Venturini. Efficient data structures for massive N -gram
datasets. In SIGIR, pages 615–624. ACM, 2017. doi:10.1145/3077136.3080798.

31 Robert F Rice. Some practical universal noiseless coding techniques. Technical report, 1979.
32 Peter Sanders. Emulating MIMD behaviour on SIMD-machines. In EUROSIM, pages 313–320.

Elsevier, 1994.

https://doi.org/10.5445/IR/1000164413
https://doi.org/10.5445/IR/1000164413
https://doi.org/10.48550/ARXIV.2310.14959
https://doi.org/10.48550/ARXIV.2310.14959
https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.1137/1.9781611977929.15
https://doi.org/10.1137/1.9781611977929.15
https://doi.org/10.4230/LIPICS.SEA.2017.25
https://doi.org/10.1109/ISIT.2006.261567
https://doi.org/10.1017/CBO9781107359949.008
https://doi.org/10.1017/CBO9781107359949.008
https://doi.org/10.1109/SFCS.1982.80
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1109/TKDE.2023.3303341
https://doi.org/10.1145/3077136.3080798


16 PHOBIC: Perfect Hashing with Optimized Bucket Sizes and Interleaved Coding

A Full proofs

We begin with a more formal statement of what we need from Intuition 3. Let µi := n · wi

be the expected size of bucket i (i.e. the expected number of keys assigned to bucket i) and
again λ := n/B.

▶ Observation 6. Let γ : [0, 1]→ [0, 1] be a continuous bucket assignment function that is
smooth on (0, 1) with non-decreasing derivative, x0 ∈ (0, 1) a hash and i = ⌈B · γ(x0)⌉ the
bucket assigned to x. Let µ = λ/γ′(x0). Then the expected bucket sizes satisfy

µj ≥ µ for all j < i,
µj ≤ µ for all j > i,

Proof. Consider j < i and the range (σj−1, σj ] assigned to bucket j. Since x0 is assigned
to bucket i we have σj < x0. By monotonicity γ′(x) < γ′(x0) for all x ∈ [σj−1, σj ]. Since
γ(σj)− γ(σj−1) = 1/B by construction we have

1
B

=
∫ σj

σj−1

γ′(x)dx ≤
∫ σj

σj−1

γ′(x0)dx = (σj − σj−1) · γ′(x0) = wj ·
λ

µ
= µj

n

λ

µ
= µj

µ

1
B

.

Rearranging gives µj ≥ µ. The second claim is obtained analogously. ◀

A.1 Proof of Theorem 4
We assume the context of Theorem 4. In particular, γ is a monotonic function, smooth on
(0, 1) and satisfies w.l.o.g. γ(0) = β∗(0) = 0 and γ(1) = β∗(1) = 1. We have also assumed
that γ(x) > 0 for x > 0, but never defended this assumption. Let us deal with this rather
silly case now, i.e. assume γ(x) = 0 for some x > 0. Then by monotonicity γ(x′) = 0 for all
x′ ∈ [0, x]. The first bucket then receives at least nx keys in expectation and Ω(nx) keys
with high probability. A simple argument shows that if n ≥ 1/x3 then the expected number
of seeds that need to be tried for the first bucket is exp(Ω(n1/3)). This vastly exceeds the
lower bound we wish to prove even for ε = 1.

It was therefore w.l.o.g. that we assumed γ(x) > 0 for all x ∈ (0, 1]. Since γ′ is non-
decreasing this implies γ′(x) > 0 for all x ∈ (0, 1).

We now use the assumption that γ ̸= β∗. Let x ∈ (0, 1) with γ(x) ̸= β∗(x). If γ(x) > β∗(x)
then there is some y ∈ [x, 1) with γ′(y) < β′

∗(y) and if γ(x) < β∗(x) then there is some
y ∈ (0, x] with γ′(y) < β′

∗(y). In both cases we have 1/γ′(y) > 1/β′
∗(y). Because γ′ and β′

∗
are continuous on (0, 1) we can find ε > 0 and z ∈ (0, 1− 3ε) such that

1/γ′(z + 3ε) > (1 + 3ε)/β′
∗(z).

Let i be the bucket that γ assigns to hash z + 3ε. Then all hashes in [0, z + 3ε] are
assigned to buckets with index at most i. Using a concentration bound and assuming large
n, the number of keys assigned to buckets with index less than i is at least n · (z + 2ε). By
Observation 6 all these buckets have expected size at least λ/γ′(z + 3ε), hence expected size
at least λ(1 + 3ε)/β′

∗(z). For large λ, most will have actual size at least s := λ(1 + 2ε)/β′
∗(z).

Again by a concentration bound, the number of keys in buckets of actual size at least s is
at least n · (z + ε). In particular, at least εn keys are in buckets of size at least s that are
processed when the load factor is already at least z. To get a lower bound on the work this
causes, we may assume that these εn keys are in buckets of size exactly s and processed at
load factor exactly z. By Equation (1) the expected cost of each such bucket is then lower
bounded by

(1− z)−s = (1− z)−λ(1+2ε)/β′
∗(z) = (1− z)λ(1+2ε)/ ln(1−z) = eλ(1+2ε).
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The last step uses that c1/ ln(c) = e for all c > 0. Multiplying this by the number εn/s =
O(εn/λ) of such buckets yields a contribution of n ·O(ε/λ) ·eλ(1+2ε). This is at least n ·eλ(1+ε)

if λ ≥ λ0(ε) is large enough. Since the buckets of size 1 contribute a cost of wcoupon and
are distinct from the buckets that contributed to n · eλ(1+ε), we obtain the lower bound of
n · eλ(1+ε) + wcoupon as claimed.

A.2 Proof of Theorem 5
In this section we prove Theorem 5 and assume the corresponding context. In particular,
we are given ε > 0, which defines a bucket assignment function βε, we assume λ ≥ λ0(ε) is
large enough and n ≥ n0(λ, ε) is large enough, which defines B = n/λ. We begin with a few
definitions and give corresponding intuition.

▶ Definition 7. Let i ∈ [B] and s ∈ N. We define the following.
λi := n · (β−1

ε (i/B)− β−1
ε ((i− 1)/B)) is the expected size of the ith bucket. The stated

formula involves the length of the range of hashes that βε maps to bucket i.
si is the number of keys assigned to bucket i. This random variable has distribution
si ∼ Bin(n, λi).
αs := 1

n

∑B
i=1 si · 1si≥s is the random fraction of keys within buckets of size at least s

and therefore the load factor after all buckets of size at most s have been processed.
ds := 1 − e−λ/s is the deadline for bucket size s. It is the load factor up to which
Equation (1) guarantees that processing a bucket of size s incurs an expected cost of at
most s · eλ.

The key lemma of this section proves a suitably weakened variant of the claim “∀s : αs ≤ ds”,
i.e. that buckets of size s or larger are handled before their deadline ds.

▶ Lemma 8 (Deadline Lemma).
(i) For 2 ≤ s ≤

√
λ: ( 1−αs

1−ds
)s = e−O(εA) whp.

(ii) For
√

λ < s ≤ 2e2A/ε: ( 1−αs

1−ds
)s = e−O(εA) whp.

(iii) For 2e2A/ε < s < 2 log n
log log n : αs ≤ ds whp.

(iv) For s = 2 log n
log log n : αs = 0 whp.

Each case is handled in a separate paragraph in Appendix A.2.1. We now check that the
Deadline Lemma implies Theorem 5.

Proof of Theorem 5. We apply Lemma 8 for each 2 ≤ s ≤ 2 log n
log log n . Since each correspond-

ing event holds whp (i.e. with probability 1−O(n−c) for some c > 0) and since there are
O( log n

log log n ) events, they jointly hold whp. We may assume that this is the case.
We have to bound the expected cost for handling the buckets by n · eλ(1+O(ε) + wcoupon.

Consider therefore any bucket b with actual size s. By Lemma 8, we know s ≤ 2 log n
log log n .

If s = 1 then the work for b is accounted for by wcoupon. So assume s ∈ {2, . . . , 2 log n
log log n}.

After all buckets of size at least s are handled, the load factor is αs. In particular, after b is
handled, the load factor is at most αs. From Equation (1) we get that the expected cost for
handling b is at most s · (1− αs)−s. If s falls into case (iii) of Lemma 8 then we can bound
this as follows:

s(1− αs)−s ≤ s(1− ds)−s = s(e−λ/s)−s = seλ.

If s falls into case (i) or (ii) then we get

s(1− αs)−s = s(1− ds)−s
(1− αs

1− ds

)−s

= seλ · eO(εA) = se(1+O(ε))λ.
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Summing this over all buckets of size at least 2, the sizes of which sum to at most n, we get
an overall expected cost of at most n · e(1+O(ε))λ, which is the main term of our bound. ◀

A.2.1 Proof of the Deadline Lemma
We begin with observations that relate to several of the cases (i),(ii), (iii) and (iv). To
sharpen up presentation we will occasionally use ≈, ≳ and ≲ when a relation only holds
whp and/or we suppress an error term that is clearly negligible in a given context when n is
chosen large enough. This notation is not meant to indicate a gap in the proof.

We have previously encountered the random variable αs, the fraction of keys in buckets
of size at least s. This is not to be confused with the following non-random quantities.

▶ Definition 9. Let µ > 0 and s ∈ N. We define
xλ := 1

n

∑B
i=1 λi · 1λi≥µ ∈ [0, 1], the range of hashes assigned to buckets of expected size

at least µ. Equivalently, the probability that a key is placed in a bucket of expected size
least µ.
x̂λ = 1−exp(−λ/µ−ε

1−ε ), the unique number satisfying λ/β′
ε(x̂λ) = µ if µ ≤ λ/ε and x̂λ = 0

otherwise. Equivalently this is the length of the range [0, x̂λ] where λ/β′
ε(x) attains values

of at least µ.
α̂s := E[αs], the expected fraction of keys in buckets of size at least s.

▶ Observation 10. maxi∈[B] λi ≤ λ/ε.

Proof. This follows because β′
ε(0) ≥ ε. See also Observation 6. ◀

▶ Observation 11. For any µ > 0 we have |x̂λ − xλ| ≤ λ
εn , hence in most contexts x̂λ ≈ xλ.

Proof. Let iλ be the bucket assigned to hash x̂λ. By Observation 6 the buckets of expected
size at least µ are precisely the buckets preceding bucket iλ and, possibly, bucket iλ itself.
Let µ′ be the expected size of iλ. If µ′ ≥ µ then the entire range [0, x̂λ] of hashes is assigned
to buckets of size at least µ, hence xλ ≥ x̂λ. If µ′ ≤ µ then only a subset of the range [0, x̂λ]
of hashes is assigned to buckets of size at least µ, hence xλ ≤ x̂λ. The difference between
the two cases is the µ′/n, the length of the range assigned to bucket iλ. Since µ′ ≤ λ/ε by
Observation 10, the claim follows. ◀

The quantities αs and α̂s are probabilistically related as follows.

▶ Lemma 12. For any s ∈ N: Pr[n · αs − n · α̂s ≥ δ] ≤ exp( −2δ2

ns2 ).

Proof. We can directly apply the method of bounded differences [24]. The n hash values of
keys are independent variables that determine n · αs, the number of keys in buckets of size
at least s. The expectation of n · αs is n · α̂s by definition. Changing a single hash can affect
n · αs by at most ±s with “+s” corresponding to moving a key from a bucket of size less
than s to a bucket of size s− 1 and “−s” to the reverse change. ◀

By choosing δ = n2/3 we get

▶ Corollary 13. For n ≥ n0(s) large enough we have |α̂s − αs| ≤ n−1/3 whp, hence in most
contexts α̂s ≈ αs.

Proof. Apply Lemma 12 with δ = n2/3 and assume that n ≥ s12. ◀

Two further claims do not relate to our setting in particular.
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▷ Claim 14. There exists a constant c0 > 0 such that for any µ ≥ 3 and X ∼ Po(µ) we have
Pr[X ≤ µ− 3] ≥ c0.

Proof. The median med(µ) of Po(µ) satisfies med(µ) ∈ (µ− 1, µ + 1) [11]. For large µ, no
single outcome has high probability. This implies for X ∼ Po(µ):

Pr[X ≤ µ− 3] ≥ Pr[X ≤ med(µ) ∧ |med(µ)−X| ≥ 4]
≥ Pr[X ≤ med(µ)]− Pr[|med(µ)−X| ≤ 4] = 1/2− oµ→∞(1).

In other words, Pr[X ≤ µ− 3] is bounded away from 0 for large µ. For small µ ≥ 3 clearly
Pr[X ≤ µ− 3] > 0. Hence, the desired c0 > 0 exists. ◀

▷ Claim 15. Let ε ∈ (0, 1), µ ≥ 1
2πε2 , X ∼ Po(µ) and s = µ/(1− ε). Then

Pr[X ≥ s] ≤ (eε(1− ε))s.

Note that eε(1− ε) < 1, which follows from 1− x < e−x for x ∈ R \ {0}.

Proof. Consider the sum Pr[X ≥ s] = e−µ
∑

i≥s
µi

i! . The ratio between subsequent terms is
µ/i ≤ µ/s = 1− ε. Hence, we can upper bound the sum by its first term and a geometric
sum as follows:

Pr[X ≥ s] ≤ e−µ µs

s! ·
∑
i≥0

(1− ε)i = e−µ µs

s! ·
1
ε

.

Using Stirling’s approximation for s! and using s ≥ µ ≥ 1
2πε2 gives:

Pr[X ≥ s] ≤ e−µ µses

ss
√

2πs
· 1

ε
≤ e−µ µses

ss
= e−(1−ε)s ((1− ε)s)ses

ss
= (eε(1− ε))s. ◀

We will now consider the cases of Appendix A.2.1 one after the other.
(i) Buckets of size 2 ≤ s ≤ λ1/3. We have

1− xs ≈ 1− x̂s = exp(−λ/s−ε
1−ε ) and 1− xs+1 ≈ 1− x̂s+1 = exp(−λ/(s+1)−ε

1−ε )

Using s ≤ λ1/3 we find λ/s−λ/(s+1) = λ
s(s+1) = Ω(λ1/3). This implies λ/s−ε

1−ε −
λ/(s+1)−ε

1−ε =
Ω(λ1/3) and for λ large enough we have exp(−λ/(s+1)−ε

1−ε ) ≥ (1 + 1
c0

) exp(−λ/s−ε
1−ε ) where c0

is the constant from Claim 14. Hence

xs − xs+1 ≈ x̂s − x̂s+1 = exp(−λ/(s+1)−ε
1−ε )− exp(−λ/s−ε

1−ε )

≥ 1
c0

exp(−λ/s−ε
1−ε ) ≥ 1

c0
exp(− λ/s

1−ε ).

We now bound the probability 1 − α̂s that a key k ends up in a bucket of size at most
s− 1. Let x ∼ U([0, 1]) be its hash, µ ∈ (0, λ/ε) the random variable denoting the expected
size of the bucket that k ends up in, and s′ the number of other keys sharing the bucket
with k. Conditioned on µ, we have s′ ∼ Bin(n− 1, µ/n), a distribution that is well known
to be approximately Po(µ). In the following computation we use that Pr[s′ ≤ s− 2 | µ] is
decreasing in µ, and we use that Pr[µ ∈ [s, s + 1)] = Pr[x ∈ (xs+1, xs]] = xs − xs+1.

1− α̂s = Pr[s′ ≤ s− 2] ≥ Pr[s′ ≤ s− 2 ∧ µ ∈ [s, s + 1)]
= Pr[s′ ≤ s− 2 | µ ∈ [s, s + 1)] · Pr[µ ∈ [s, s + 1)]
≥ Prs′′∼Bin(n−1, s+1

n )[s
′′ ≤ s− 2] · (xs − xs+1)

≈ Prs′′∼Po(s+1)[s′′ ≤ s− 2] · (xs − xs+1)
Obs. 14
≥ c0(xs − xs+1) ≳ exp(− λ/s

1−ε ).
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This gives use the bound we desired, closing this case:

(1− αs

1− ds

)s

≈
(1− α̂s

1− ds

)s

≥
exp(− λ/s

1−ε )s

exp(−λ/s)s
=

exp(− λ
1−ε )

exp(−λ) = e−λ/(1−ε)+λ = e−O(εA).

(ii) Buckets of size λ1/3 ≤ s ≤ 2e2A/ε. We proceed in a similar way as in case (i) to
bound the probability α̂s that a key k ends up in a bucket b of size at least s. Let again
µ ∈ (0, λ/ε) be a random variable denoting the expected size of b and s′ the number of other
keys in b. We consider two overlapping events that cover all cases where b has size at least s.
On the one hand, b might have large expected size. On the other hand, b might have small
expected size and still have actual size at least s.

α̂s = Pr[s′ ≥ s− 1] ≤ Pr[µ ≥ (1− ε)s ∨ (µ < (1− ε)s ∧ s′ ≥ s− 1)]
≤ Pr[µ ≥ (1− ε)s] + Pr[µ < (1− ε)s] · Pr[s′ ≥ s− 1 | µ < (1− ε)s]
≤ x(1−ε)s + (1− x(1−ε)s) · Pr

s′′∼Bin(n−1,
(1−ε)s

n )[s
′′ ≥ s− 1]

≳ x(1−ε)s + (1− x(1−ε)s) · Prs′′∼Po((1−ε)s)[s′′ ≥ s− 1]
≤ x(1−ε)s + (1− x(1−ε)s) · 2((1− ε)eε)s

The last step uses Claim 15, very conservatively accounting for a “−1” discrepancy with a
factor of 2.

We now make another minor case distinction, first assuming that (1 − ε)s ≤ λ/ε. In
that case 1− x(1−ε)s = exp(−λ/(s·(1−ε))−ε

1−ε ) ≥ exp(− λ/s
(1−ε)2 ). We can now turn to 1− α̂s and

quotient with 1− ds. We assume ε is small enough such that 1/(1− ε)2 ≤ 1 + 3ε and that
λ ≥ λ0(ε) is large enough such that 2s((1− ε)eε)s ≤ ε for all s ≥ λ1/3.

1− α̂s ≥ 1− x(1−ε)s − (1− x(1−ε)s) · 2((1− ε)eε)s

= (1− x(1−ε)s)(1− 2((1− ε)eε)s)

⇒ 1− α̂s

1− ds
≥

(1− x(1−ε)s)
1− ds

(1− 2((1− ε)eε)s) ≥
exp(− λ/s

(1−ε)2 )
exp(−λ/s) (1− 2((1− ε)eε)s)

≥ exp(−3εA/s)(1− 2((1− ε)eε)s)

⇒
(1− α̂s

1− ds

)s

≥ exp(−3εA)(1− 2((1− ε)eε)s)s

≥ exp(−3εA)(1− 2s((1− ε)eε)s) ≥ exp(−3εA) · (1− ε) ≥ exp(−4εA).

The last step again assumes that λ is large enough.
We still have to consider the case where (1 − ε)s > λ/ε. By Observation 10 there are

no buckets of expected size (1 − ε)s or larger, hence x(1−ε)s = 0. This gives 1 − α̂s ≥
1− 2((1− ε)eε)s, meaning the above derivation only involves the less critical term that comes
out as 1− ε ≥ exp(−εA).

(iii) Buckets of size 2e2A/ε < s ≤ 2 log n
log log n . Our use of βε rather than β∗ renders this case

quite easy. However, now that the bound on s grows with n, shortcuts involving “for n large
enough” and the associated notation ≈ would now be suspect and have to be replaced with
careful arguments.

We wish to bound α̂s, the probability that at least s− 1 further keys join a given key
in its bucket. Any bucket has expected size at most λ/ε by Observation 10. We can hence
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argue

α̂s ≤
(

n− 1
s− 1

)(λ/ε

n

)s−1
≤

( ne

s− 1

)s−1(λ/ε

n

)s−1
=

(eA/ε

s− 1

)s−1
≤ e−s+1

where the last step used s ≥ e2A/ε + 1. Applying Lemma 12 with δ = n · e−s gives
Pr[n · αs − n · α̂s ≥ n · e−s] ≤ exp(−ne−2s/(2s2)). For s ≤ 2 log n/ log log n this probability
is negligible. In particular, we have whp

αs = (αs − α̂s) + α̂s

whp
≤ e−s + α̂s ≤ e−s + e−s+1 ≤ e−s+2.

In particular, αs is much smaller than the deadline ds, we can argue for instance by using
that 1− e−x ≥ x/2 for x ∈ [0, 1

2 ] to get:

ds = 1− e−λ/s ≥ λ/(2s) ≥ 1/s ≥ e−s+2 whp
≥ αs.

(iv) Buckets of size at least s = 2 log n
log log n . Again, the largest expected bucket size is at

most λ/ε by Observation 6 and the probability that a key hashes to a specific bucket hence
at most λ/ε

n . The probability p≥s that the bucket has size at least s is therefore bounded by

p≥s ≤
(

n

s

)(λ/ε

n

)s

≤
(ne

s

)s

·
(eA/ε

n

)s

=
(eA/ε

s

)s

= 2s·(log(eA/ε)−log s).

Plugging in s = 2 log n
log log n gives p≥s = n−2+o(1). By a union bound, the probability that at

least one bucket has size at least s is at most B · p≥s ≤ n−1+o(1). Hence, whp no such bucket
exists and we have αs = 0 as claimed.

A.3 Why buckets should be processed in order of decreasing size
In this section we prove Proposition 16, restated here for convenience.

▶ Proposition 16. To minimize expected construction time in a PTHash context, buckets
should be processed in order from largest to smallest.

Even though the claim is very intuitive and CHD [3] and PTHash [28] implicitly assume its
truth, the argument is surprisingly subtle and involves the following random process.

Let k ∈ N, p1, . . . , pk ∈ (0, 1) and let {0, . . . , k} be a set of states. When taking a step
in state 0 ≤ i < k, the successor state is state i + 1 with probability pi+1 and state 0 with
probability 1− pi+1. Let w(p1, . . . , pk) be the expected number steps needed to reach state
k from state 0.

▶ Lemma 17. Assume 1 > p1 > p2 > . . . > pk > 0 and 1 ≤ i < k
2 . Then

w(p1, . . . , pk−i) + w(pk−i+1, . . . , pk) < w(p1, . . . , pi) + w(pi+1, . . . , pk).

Before proving Lemma 17, let us check that it implies Proposition 16.

Proof of Proposition 16. Assume that the sequence of bucket sizes in processing order is
b1, . . . , bB and that bi < bi+1 for some 1 ≤ i < B. We will show that by switching the order
of these two buckets, the expected work (number of hash function evaluations) decreases.
For this, let ℓ =

∑i−1
j=1 bj be the number of keys that are handled before the ith bucket. The

work for buckets i and i + 1 is then

w( n−ℓ
n , n−ℓ−1

n , . . . , n−ℓ−bi+1
n ) + w( n−ℓ−bi

n , n−ℓ−bi−1
n , . . . , n−ℓ−bi−bi+1+1

n ).
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When processing the two buckets in swapped order the expected work becomes

w( n−ℓ
n , n−ℓ−1

n , . . . , n−ℓ−bi+1+1
n ) + w( n−ℓ−bi+1

n , n−ℓ−bi+1−1
n , . . . , n−ℓ−bi−bi+1+1

n ).

By Lemma 17 this is less. Note that the expected work needed for other buckets is unchanged
because their sizes and the table load when they are processed is unchanged. ◀

Intuition for Lemma 17. Assume a juggler knows, for some a, b ∈ N, a routine S of a

simple throws, a routine D of a difficult throws, and a routine M of b throws of intermediate
difficulty. Performing a routine means attempting all throws in sequence, starting over after
the first unsuccessful throw, and repeating until all throws succeed. Let t(R) denote the
expected number of throws when performing a routine R. It is intuitively plausible that

t(S ◦M) + t(D) < t(S) + t(D ◦M) < t(S) + t(M ◦D)

where “◦” denotes concatenation of routines. The first inequality means that appending M

to a difficult routine rather than the simple routine makes things more costly overall. The
second inequality means that delaying difficult throws until the end of a routine increases its
cost because failures tend to happen after the easier throws have already taken place.

Proof of Lemma 17 formalizes these insights.
Simple Observations. We make four observations about the function w(p1, . . . , pk), each
time justifying them briefly after stating them. The first serves as an alternative definition
of w(p1, . . . , pk).

w(p1, . . . , pk) =
k∑

i=1

1
pi · . . . · pk

. (2)

This holds because the number of visits to state i for 1 ≤ i < k has a geometric distribution
with parameter pi · . . . · pk and hence has expectation 1

pi·...·pk
.

w(p1, . . . , pk)is monotonically decreasing in all of its parameters. (3)

This follows from Equation (2) because each summand is non-increasing in all parameters
and the first summand is decreasing in all parameters.

if pj < pj+1 for 1 ≤ j < k then w(p1, . . . , pk) < w(p1, . . . , pj−1, pj+1, pj , pj+2, . . . , pk). (4)

In other words, when swapping two adjacent parameters (at indices j and j + 1), then
having the larger parameter further to the left yields a larger value of w. This follows from
Equation (2) because the summand with i = j + 1 is then larger, and all other summands
are the same.

w(p1, . . . , pk) is maximized if the parameters appear in non-increasing order, (5)
and any other ordering of the same set of parameters yields a smaller value.

This follows by iterating Equation (4) until the parameters are sorted in non-increasing order.

for any 1 ≤ j < k: w(p1, . . . , pk) = 1
pj+1·...·pk

w(p1, . . . , pj) + w(pj+1, . . . , pk). (6)

This follows from Equation (2) by separating the sum into the summands for i > j and those
for i ≤ j. We are now ready to proof Lemma 17.
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Lemma 17. Let 1 > p1 > p2 > . . . > pk > 0 and 1 ≤ i < k
2 . Then

w(p1, . . . ,pk−i) + w(pk−i+1, . . . , pk)
(6)= 1

pi+1·...·pk−i
w(p1, . . . , pi) + w(pi+1, . . . , pk−i) + w(pk−i+1, . . . , pk)

= w(p1, . . . , pi) +
( 1

pi+1·...·pk−i
− 1

)
w(p1, . . . , pi)

+ w(pi+1, . . . , pk−i) + w(pk−i+1, . . . , pk)
(3)
< w(p1, . . . , pi) +

( 1
pi+1·...·pk−i

− 1
)
w(pk−i+1, . . . , pk)

+ w(pi+1, . . . , pk−i) + w(pk−i+1, . . . , pk)
= w(p1, . . . , pi) + 1

pi+1·...·pk−i
w(pk−i+1, . . . , pk) + w(pi+1, . . . , pk−i)

(6)= w(p1, . . . , pi) + w(pk−i+1, . . . , pk, pi+1, . . . , pk−i)
(5)
< w(p1, . . . , pi) + w(pi+1, . . . , pk). ◀

A.4 General bounds for Perfect Hashing with Bucket Placement
In this section we consider perfect hashing through bucket placement in general and without
any partitioning (see introduction).

▶ Proposition 18. Consider perfect hashing through bucket placement with n keys and
B := n/λ buckets for some 2 ≤ λ = o(n/ log n). Let T be the sum of resulting seeds values
and S the number of bits when encoding the seeds using Elias δ-encoding. Then

(i) E[T ] = Ω(neλ/λ)
(ii) E[S] = n(log2 e +O( 1

λ log λ)).
Note: (i) implies that the expected construction time per key of eλ(1+ε) achieved using
βε in Section 3 (when ignoring buckets of size 1) is almost optimal. (ii) means that the
space consumption of perfect hashing through bucket placement approaches the lower bound
n log2(e) for large λ, in the sense that it is n(log2 e + oλ→∞(1)), regardless of the bucket
assignment function that is used.

Proof. The first step of perfect hashing through bucket placement is to map the n keys
into B buckets. The sizes s1, . . . , sB of these buckets are random variables. However, this
arguments makes no use of their distributions and works for arbitrary bucket sizes. We
focus on the second step where the buckets are placed one after the other using brute force.
Assume the buckets are indexed in placement order. The ith bucket is then associated with
the probability pi that randomly hashing a set of si keys into a table does not cause any
collision assuming s1 + · · ·+ si−1 out of n positions are already occupied.

A useful observation is that the product of all pi is the probability that a random function
of n keys to n positions is a bijection, hence

B∏
i=1

pi = n!
nn

or equivalently
B∏

i=1
1/pi = nn

n! .

If the ith seed value is σi then its distribution is σi ∼ Geom(pi) implying E[σi] = 1/pi. Hence

E[T ] = E
[ B∑

i=1
σi

]
=

B∑
i=1

E[σi] =
B∑

i=1
1/pi ≥ B ·

(nn

n!

)1/B

.
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The last inequality uses that the sum of the side lengths of a B-dimensional cuboid with
volume V = nn

n! is minimized by the B-dimensional cube where all B side lengths are equal
to V 1/B . Continuing with Stirling’s approximation yields

E[T ] ≥ B ·
(nn

n!

)1/B

= B
( en

O(
√

n)

)1/B

= n
λ eλn−O(λ/n) = Ω(neλ/λ),

where the last step used λ = o(n/ log n). This proves (i).
To encode a number x ∈ N, Elias δ-coding requires ⌊log2(x)⌋+2⌊log(⌊log2(x)⌋+1)⌋+1 ≤

log2(x) + 2 log(2 + log x) + 1 bits. Using that E[log2 X] ≤ log2 E[X] for any non-negative
random variable X by Jensen’s inequality allows us to bound

E[S] = E
[ B∑

i=1

(
log2(σi) + 2 log2(2 + log2 σi) + 1

)]
≤

B∑
i=1

log2 E[σi] + 2
B∑

i=1
log2(2 + log2 E[σi]) + B

=
B∑

i=1
log2(1/pi) + 2

B∑
i=1

log2(2 + log2 1/pi) + B.

This first sum can be bounded by
∑B

i=1 log2(1/pi) = log2
nn

n! ≤ n log2 e using Stirling’s
approximation. The only thing left to prove is that the second sum is subsumed by the error
term O(n log2 λ

λ ) in our stated bound. We again using Jensen’s inequality and the fact that∑B
i=1 log2 1/pi = log2

nn

n! ≤ n log2 e.

B∑
i=1

log2(2 + log2 1/pi) ≤ B · log2

(
2 + 1

B log2
nn

n!

)
≤ B · log2

(
2 + n

B log2 e
)

= n
λ · log2

(
2 + λ log2 e

)
= O(n log2 λ

λ ).

The last step uses λ ≥ 2. ◀

B Bucket assignment for non-minimal PHF

Assume we wish to construct a non-minimal perfect hash function using the “perfect hashing
through bucket placement” framework. Hence, assume the range of the hash function is [m]
and n = αm for α ∈ (0, 1).

In Section 3 we only discussed the case α = 1. There is, however, a natural way to obtain
from a bucket assignment function γ for α = 1 a bucket assignment function γα for the
non-minimal case. Namely, we can define γα(x) = 1

γ(α) γ(αx), which rescales whatever γ does
on its subdomain [0, α]. The idea is that, in order to fill a table to load factor 1, you first
need to fill it to load factor α, and if γ is optimal overall then it should implicitly contain an
optimal strategy for this first phase. Since γ defines on [0, α] how an α-fraction of the keys is
assigned to buckets of largest expected size (presumably processed first), this is where we
should look. This argument remains heuristic because the buckets of largest expected size
may not turn out to be the buckets of largest actual size.
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(a) Time for different construction steps when vary-
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Figure 8 Varying partition count using the original implementation and λ = 4 and n = 100
million keys. We use the original PTHash bucket assignment function and their hash function.

C Implementation Details

C.1 Details on the Bucket Assignment in practice
Our implementation of bucket assignment functions differs from our theoretical results in
two minor ways.

Perturbation. Recall that β∗ : [0, 1]→ [0, 1] was, modulo certain qualifications, identified
as the optimized bucket assignment function in Section 3. One of the qualifications was that
we actually analyze a slightly perturbed function βε(x) := εx + (1 − ε)β∗(x). This limits
expected bucket sizes to λ/ε, which helped with bounding construction times of large buckets.
Limiting the bucket sizes is also useful in practice to reduce self-collisions inside the small
partitions. Concretely we choose ε = λ

5
√

P
, for an expected partition size of P . Without this

perturbation (ε = 0), running times are noticeably worse.

Tabulating values. The functions β∗ and γP involve expensive arithmetic operations such
as a logarithm. We achieve a significant speedup by tabulating γP for 2048 discrete values of
x and interpolating linearly.

D Additional Experimental Data

In this section, we give additional experiments that further illustrate the data in Section 5.

D.1 From PTHash to PHOBIC
In Figure 8, we give additional details on the effect of fine-grained partitioning. As stated in
the main body of the paper, using very small partitions in itself has only a marginal effect
on reducing construction time. The search step does not get much faster when using very
small partitions instead of medium sized ones, while there is a small additional overhead in
the partitioning step. Figure 8a shows this effect. However, using small partitions enables
the using of interleaved coding (see Section 4.1), whose effect is shown in Figure 8b. For
small partitions, we can achieve significant space improvements; for large partitions instead,
we need too many encoders and this leads to some constant overhead.
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Figure 9 Comparison between the GPU implementations of PTHash and RecSplit, for 100 million
keys. The time is measured for the entire construction, including data transfers to/from the GPU.

D.2 Comparison to Other Methods
In Section 5.2, we have compared PHOBIC to state-of-the-art MPHFs using multithreading
and the GPU. In particular, Table 1 illustrates the overall comparison. Table 2 illustrates
the result of the same experiment but using a machine with more cores. This machine is
equipped with an AMD EPYC Rome 7702P processor with 64 cores (with hyper-threading)
and a clock frequency of 2.0 GHz. While this machine does not have a GPU, it shows how
well PHOBIC scales with a large number of threads. We also note that the query times
are higher compared to those measured with the machine used for Table 1 because of the
different clock frequency.

Lastly, Figure 9 shows the construction throughput of PHOBIC and RecSplit on the
GPU, by varying the number of bits/key. As it is clear, PHOBIC construction is as fast as
RecSplit – the fastest construction method up to date. However, we remark that PHOBIC is
considerably faster to query than RecSplit.
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Table 2 Performance of various methods on 100 million keys on a machine with 64 cores.

Method Space Query Construction (ns/key)

(bits/key) (ns/query) 1 Thread 64 Threads Speedup

Bip. SH-RS, n=64, b=2000 1.52 425 9 365 356 26.3

CHD, λ=3 2.27 357 756 - -
CHD, λ=5 2.07 320 5 483 - -

FMPH, γ=2.0 3.40 216 126 9 12.9
FMPH, γ=1.0 2.80 269 190 15 12.1

SIMDRecSplit, n=8, b=100 1.81 315 303 13 22.1
SIMDRecSplit, n=14, b=2000 1.59 368 40 168 763 52.6

SicHash, α=0.9, p1=21, p2=78 2.41 159 191 7 24.1
SicHash, α=0.97, p1=45, p2=31 2.08 143 260 17 15.1

PTHash, λ=4.0, α=0.99, C-C 3.19 79 504 304 1.7
PTHash, λ=5.0, α=0.99, EF 2.11 160 1 016 307 3.3
PTHash, λ=10.5, α=0.99, EF 1.86 150 139 184 10 312 13.5

PTHash-HEM, λ=4.0, α=0.99, C-C 3.19 88 489 9 49.1
PTHash-HEM, λ=5.0, α=0.99, EF 2.11 166 930 13 66.9

PHOBIC, λ=3.9, α=1.0, IC-C 3.18 94 299 9 31.3
PHOBIC, λ=4.5, α=1.0, IC-R 2.11 240 369 11 33.5
PHOBIC, λ=6.5, α=1.0, IC-R 1.85 217 1 341 29 46.0
PHOBIC, λ=9.0, α=1.0, IC-R 1.74 205 12 138 251 48.3
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