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Strongly coupled light-matter systems can exhibit nonequilibrium collective phenomena due to
loss and gain processes on the one hand and effective photon-photon interactions on the other
hand. Here we study a photonic lattice system composed of a linear array of driven-dissipative
coupled cavities (or cavity modes) with linearly increasing resonance frequencies across the lattice.
The model amounts to a driven-dissipative Bose-Hubbard model in a tilted potential without the
particle-conservation constraint. We predict a diverse range of stationary and non-stationary states
resulted from the interplay of the tilt, tunneling, on-site interactions, and the loss and gain processes.
Our key finding is that, under weak on-site interactions, photons mostly Bose condense into a
selected, single-particle Wannier-Stark state, instead of exhibiting expected Bloch oscillations. As
the strength of the photon-photon interactions increase, a non-stationary regime emerges which is
marked surprisingly by periodic Bloch-type oscillations. These intriguing, nontrivial effects are a
direct consequence of the driven-dissipative nature of the system.

Introduction.—In classical physics, matter and light
appear as distinct entities. Matter is composed of el-
ementary particles, while light is described as an elec-
tromagnetic wave. In quantum mechanics this sharp di-
vision between matter and light becomes less stringent
owing to the particle-wave duality [1]. On the one hand,
matter particles are assigned a de Broglie wavelength and
can exhibit wave-like phenomena such as diffraction and
interference. On the other hand, light is considered to be
composed of discrete quanta—photons—which can ex-
hibit particle-like behavior on detection. While direct
photon-photon interaction is typically negligible, when
sufficiently enhanced it can lead to intriguing collective
phenomena in an analogy to correlated matter.

Nevertheless there is a major difference between mas-
sive many-particle and many-photon systems at low en-
ergy scales: while the matter-particle number is strictly
conserved, photons can appear and disappear due to ab-
sorption, spontaneous or stimulated emission, and exter-
nal photon sources. This causes open photonic systems
to be inherently out of equilibrium [2] and even station-
ary sates are typically not determined simply by temper-
ature and entropy but rather by the dynamical balance
of gain and loss. Intriguing nonequilibrium phenomena
thus appear in composite light-matter systems [3–6] and
in particular in quantum fluids of light [7]. The most no-
table example is the observation of the quasi-equilibrium
Bose-Einstein condensate (BEC) of exciton polaritons—
bosonic quasiparticles composed of a mixture of an ex-
citon (an electron-hole pair) and a cavity photon—in a
semiconductor microcavity [8–11] and the BEC of pho-
tons interacting via molecules in a multimode optical mi-
crocavity [12]. Despite the driven-dissipative nature of
these systems, they still exhibit an effective thermaliza-
tion process to which one can attribute an effective tem-
perature. This stands in a sharp contrast to a typical
laser operation, where the thermalization is completely
ineffective and the photon gas is far out-of-equilibrium.

Substantial interest has been focused on the investiga-

tion of strongly correlated many-body effects with pho-
tons [13, 14]. In earlier investigations, the focus was
on establishing connections between driven-dissipative
steady states and equilibrium many-body phases. These
included the prediction of a phase transition from a su-
perfluid to a Mott-insulator state for photons via the
photon-blockade effect in coupled cavities [15–21]. More
recently the focus was shifted towards the intriguing
realm of the driven-dissipative regime, where nonequi-
librium steady-state phases exhibit distinct properties in
comparison to thermally equilibrium cases [22–24]. For
example, the boundary between monostable and bistable
phases in a driven-dissipative model resembles character-
istic Mott insulator lobes but the mean photon density is
not constant within these regions [22]. In a wider context
various ideas and schemes have also been put forward to
simulate geometric phases and gauge potentials for pho-
tons, opening the possibility for realizing nonequilibrium
topological photonic states [25, 26].

In this Letter, we investigate a driven-dissipative array
of coupled Kerr cavities (or cavity modes) with linearly
increasing resonant frequencies mimicking a 1D bosonic
optical lattice subjected to an external force. In our
generic model photons (bosons) are continuously injected
into the system via a coherent pump to a selected cav-
ity. Photons are then redistributed via nearest neighbor
mode couplings until they eventually leak out through
imperfect cavity mirrors. The dynamics of the system
can be effectively captured by a driven-dissipative Bose-
Hubbard model in a tilted potential without particle con-
servation. Despite the conceptual simplicity, the model,
as we demonstrate, exhibits a variety of intriguing sta-
tionary and non-stationary, nonequilibrium phenomena
controllable by the system parameters.

A central result of our study is that for sufficiently
weak on-site interactions, photons dynamically condense
due to the explicit U(1) symmetry breaking into a se-
lected, spatially-localized state (Fig. 1), instead of ex-
hibiting expected Bloch oscillations [27, 28]. Specifically,
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we show that the condensate wavefunction is often close
to a single Wannier-Stark (WS) state with only small
contributions from a few neighboring WS states; see
Fig. 2. Intriguingly, by increasing the strength of local
on-site interactions the system enters a non-stationary
regime (Fig. 3) where the photon density undergoes
periodic Bloch-type oscillations over time as shown in
Fig. 4 [29–31]. This finding strongly contrasts with the ir-
reversible decay of Bloch oscillations of interacting atoms
in a 1D tilted lattice [32–36]. Let us emphasize here that
both of these regimes appear independent of initial con-
ditions and the choice of the pumped cavity, and are a
direct consequence of the driven-dissipative nature of the
system. As our model is quite generic, a corresponding
experimental realization should be implementable in vari-
ous platforms including superconducting circuits [37–39],
photonic crystal structures [40], waveguide-coupled opti-
cal cavities [41], and atom-filled transverse multi-mode
cavities [42].

Model and its Hamiltonian.–Consider a linear array of
standing-wave coupled cavities (labeled by j ∈ Z) with
linearly increasing resonant frequencies ωj ∝ j, each con-
taining a Kerr-like non-linear medium. Coherent pumps
with the frequency ωp continuously inject photons into
the cavity modes. Each cavity is coupled to two adjacent
cavities due to the photon leakage through the cavity
mirrors, which leads to a coherent hopping of photons in
the cavity lattice. The Hamiltonian of the system in the
rotating frame of the coherent pumps is given by [43],

Ĥ =
∑
j

[
ℏ∆j â

†
j âj − J

(
â†j âj+1 +H.c.

)
+ χâ†2j â

2
j

]
+ ℏ

∑
j

ηj

(
âj + â†j

)
, (1)

with âj , â
†
j being bosonic operators annihilating and cre-

ating a photon in the j-th cavity, respectively. Here we
have defined

∆j = ωj − ωp ≡ ∆ω (j − j0) , (2)

as the cavity-pump detuning. Moreover, J is the nearest-
neighbor photon tunneling-amplitude rate, χ the on-site
photon-photon interaction strength due to the effective
Kerr non-linearity, and ηj the pumping rate of the j-th
cavity. Photon losses, assumed to be the same for all
the cavities, κ are taken into account via the quantum
Heisenberg equations of motion,

dâj
dt

=
i

ℏ
[Ĥ, âj ]− κâj . (3)

The first line of the Hamiltonian (1) describes the fa-
miliar equilibrium Bose-Hubbard model in a tilted lat-
tice. While in the non-interacting limit the equilibrium
model features well-known Bloch oscillations [27, 28], it
has been recently shown that strong interactions can lead
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FIG. 1. Nonequilibrium dynamics of the system for a weak
photon-photon interaction strength χ = 10−2 and the lat-
tice tilt ∆ω = 0.5. The system reaches a spatially localized
steady state in long time. The expectation values of the cav-
ity particle number operators ⟨n̂j(t)⟩ in the course of time
evolution in the first-order cumulant expansion (i.e., mean
field) for (a) j0 = 0 and (b) j0 = 5. (c) The time evolution
of the expectation value of the total photon number operator
⟨N̂⟩ for j0 = 0 in both first- and second-order cumulant ex-
pansion. (d) The distribution of ⟨n̂j(tf )⟩ over lattice sites in
the stationary state for j0 = 0 (cf. panel a). To a very good
approximation, the distribution is proportional to the proba-
bility density of a single WS state (see also Fig. 2), signalling
a nonequilibrium photon Bose-condensation into a WS state.
Mean field is quite accurate in this weakly interacting regime.

to disorder-free many-body localization [44, 45] (for re-
lated experiments see Ref. [46]). The second line of the
Hamiltonian (1) introduces a coherent photon pumping,
which along with the photon decay into the environment
κ [see Eq. (3)] explicitly breaks the U(1) symmetry of
the system associated with the particle number conser-
vation [43]. In the following we will show that this lack
of the particle conservation and explicitly broken U(1)
symmetry due to the loss and gain processes has funda-
mental consequences in both static and dynamics of the
system.

Consequences of explicit U(1) symmetry breaking:
State selection.—In order to gain some physical intuition,
let us start with the the non-interacting limit, χ = 0.
In the WS basis, the Heisenberg equations of motions
read [43],

i
db̂n
dt

= (∆n − iκ) b̂n + η̃n, (4)
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where b̂n =
∑

j βn,j ân, η̃n =
∑

j βn,jηj , and βn,j =
Jj−n (2J/∆ω), with Jk being the Bessel function of the
first kind of order k. The equations of motion (4) readily
yield

b̂n(t) = e−it(∆n−iκ) b̂n(0) +
e−it(∆n−iκ) − 1

∆n − iκ
η̃n. (5)

If ∀nη̃n = 0, the solutions correspond to damped Bloch
oscillations [43]. If additionally κ = 0, one then recovers
the common Bloch oscillations and the choice of j0 in
Eq. (2) becomes arbitrary as it only adds an irrelevant
phase factor.

In the long-time limit t ≫ κ−1 ≫ J−1, regardless of
the choice of initial conditions b̂n(0), the Bloch oscilla-
tions are completely damped out and the system reaches
a steady state with the WS mode occupations,

⟨n̂n⟩ =
η̃2n

(∆ω)2(n− j0)2 + κ2
. (6)

As can be seen from Eq. (6), now j0 plays an essential
role. In particular, by properly choosing j0 ∈ Z one
can select dynamically a single WS mode (n = j0) to
be microscopically occupied. However, we note this ap-
proach does not work when η̃j0 = 0, which happens for
some specific ratios of J/∆ω. In these cases, one en-
counters a sequence of pumping anti-resonances, which
lead to the occupation a few adjacent WS states in-
stead. Furthermore, these anti-resonances are respon-
sible for non-trivial phase boundaries between stationary
and non-stationary states as shown in Fig. 3, which we
will delve into it in the last section.

The above simple analysis is valid qualitatively also
for sufficiently small photon-photon interactions, which
we confirm numerically in the following. In numerical
simulations we set J = ℏ = 1 (as the unit of energy),
κ = 10−2, ∀j âj(0) = 0 , and calculate the expectation
values of the relevant operators using the cumulant ex-
pansion in both first (i.e., mean-field) and second or-
der [43, 47]. Moreover, for the sake of simplicity and
without loss of generality, we consider only a single cavity
pumping ηj = ηδj,0, but different choices do not change
our main conclusions [43]. Finally, with the exception of
Fig. 1, we also fix j0 = 0.
Nonequilibrium photon condensation in the weakly in-

teracting regime.—Now, we turn our attention to the
weakly interacting regime, χ ≪ 1. As in the non-
interacting case, in the weakly interacting regime the
many-photon system still occupies macroscopically a sin-
gle or a few one-particle WS states with a high degree of
coherence. In Fig. 1, we show the expectation value of
cavity photon-number operators n̂j = â†j âj as well as the

total photon-number operator N̂ =
∑

j n̂j . As can be
seen, in each case the system reaches a spatially-localised
stationary steady state which, for the chosen parameters,
is proportional to a single WS state with n = j0.
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FIG. 2. (a) Steady-sate fidelity Pn(tf ) between the mean-
field wavefunction |ψ(tf )⟩ and the WS basis states |Ψn⟩. To
a very good approximation, the condensate wavefunction is
either proportional to only one WS state or is a superposi-
tion of a few WS states as in an anti-resonant case (see the
discussion in the main text). (b) The dominant eigenvalue
N0 of the single-particle density matrix as a function of ∆ω
remains close to the total number of photons N , indicating a
high condensate fraction.

To further quantify this observation, we calculate the
fidelity Pn(t) = |⟨Ψn|ψ(t)⟩|2 between the mean-field
wavefunction |ψ(t)⟩ and the WS basis states |Ψn⟩. The
distribution of Pn is illustrated in Fig. 2(a) in steady
states, showing it is centered around n = j0 = 0 [cf.
Eq. (6)]. In general two distinct scenarios are possible:
(i) The mean-field wavefunction consists predominantly
of a single WS state, or (ii) it has contributions from a
few different WS states. As Fig. 2(a) shows, for ∆ω = 0.5
[as in Fig. 1(a) and (d)] the wavefunction is close to
the central WS state, while for ∆ω = 0.35 two addi-
tional modes n = ±1 are also significantly occupied at
the macroscopic level. This is because of the aforemen-
tioned pumping anti-resonances, where the population
of n = ±1 (n = 0) mode is completely suppressed at
∆ω ≈ 0.522 (∆ω ≈ 0.362) due to the hitting a zero of
the J1 (J0) Bessel function.

In order to confirm that photons are Bose condensed,
we consider the single-particle reduced density matrix
ρ̂1(x, x

′) = ⟨ψ̂†(x)ψ̂(x′)⟩, whose eigenvalues determine
the occupation probabilities of the natural orbitals [48].
The highest occupation number quantifies the level of co-
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FIG. 3. Mean-field nonequilibrium many-body phase diagram
of the system in the parameter plane of the force ∆ω vs. the
photon-photon interaction strength χ. (a) Relative change
of the total photon number over a long-time evolution ∆n
[Eq. (7)] reveals three regimes: stationary steady-state phase
(deep blue), dynamically unstable chaotic regime (light blue),
and non-stationary regular oscillatory states (warm colors).
(b) Time-averaged maximal fidelity between the mean-field
wavefunction |ψ⟩ and the WS basis states |Ψn⟩ is comple-
mentary to panel (a) and reveals particularly a series of nar-
row bands that can be explained on a single-particle level as
pumping anti-resonances; see the discussion in the main text.
The dashed (dotted) lines correspond to zeros of the Bessel
function J0 (J1). Note that interactions slightly shift the po-
sitions of the anti-resonances.

herence in the system. Although we can expand the field
operators in any orthogonal basis, we choose the Wannier
basis ψ̂(x) =

∑
j wj(x)âj and calculate the eigenvalues

of ⟨â†j âl⟩ in a steady state of the system in the second-
order cumulant expansion [43]. Indeed, as can be seen
from Fig. 2(b) the highest eigenvalue N0 is very close
to the total number of photons N = ⟨N̂⟩, supporting the
interpretation of a photon BEC. In contrast to the distri-
bution of Pn as shown in Fig. 2(a), the highest eigenvalue
of the the reduced density matrix is only weakly affected
by the lattice tilt ∆ω. Hence, we infer that the conden-
sate wavefunction is either close to a single WS states or
is a superposition of a few WS states.
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FIG. 4. Mean-field dynamics of the expectation values of the
cavity photon number operators ⟨n̂j(t)⟩ for different interac-
tion strengths: (a) χ = 0.13 in the oscillatory regime, and
(b) χ = 0.135 in the chaotic regime. Stationary and different
non-stationary solutions are distinguished by monitoring (c)
the relative change of the total photon number over a long-
time evolution and (d) the time-averaged maximal fidelity.
The lattice tilt is set to ∆ω = 0.5 for all panels.

Non-stationary phases in the strongly interacting
regime.—Above we showed that in the non-interacting
and weakly interacting regimes photons can condensate
into a one or a few selected WS states and reach a steady
state. However, with increasing the interaction strength
χ, the stationary states lose their stability and intriguing
non-stationary solutions appear. Figure 3(a) depicts the
nonequilibrium many-body phase diagram of the system
in the parameter plane of {χ,∆ω} and contains three
main regimes: stationary steady states (deep blue), dy-
namically unstable chaotic regime (light blue), and non-
stationary regular oscillatory states (warm colors). The
three phases are distinguished by the relative change of
the total photon number over a long-time evolution, de-
fined as

∆n =
maxt⟨N̂(t)⟩ −mint⟨N̂(t)⟩

avgt⟨N̂(t)⟩
, (7)

with maxt, mint, and avgt denoting, respectively, the
maximal, minimal, and average value of a quantum-
averaged observable during a long-time evolution (where
the initial transient dynamics of the system has been ne-
glected). Although the phase diagram is dominated by
the stationary and dynamically unstable chaotic regimes,
regions of regular oscillatory dynamics appear mostly on
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boundaries between the two regimes; see also Fig. 3(b)
showing the time-averaged maximal fidelity and Supple-
mental Material [43].

Interestingly, photons in the regular oscillatory regime
tunnel between a few neighboring cavities performing
spatially-confined oscillations reminiscent of standard
Bloch oscillations; see Fig. 4. Unlike standard Bloch os-
cillations that tend to decay in interacting systems [32–
36], in our driven-dissipative model oscillatory solutions
are in fact induced by the on-site photon-photon inter-
actions and persist over long time dynamics. These so-
lutions can be conceptualized as multimode limit cycles
(as shown in Supplemental Material [43]) within driven-
dissipative systems, where the steady-state solutions of
equations of motion exhibit dynamic instability [49–57].

Summary, conclusions, and perspectives.—In sum-
mary, we have studied an array of coupled Kerr cavi-
ties with linearly increasing resonant cavity frequencies,
which is equivalent to a U(1)-symmetry broken driven-
dissipative Bose-Hubbard model with a tilted potential.
The model reveals a range of both stationary and non-
stationary nonequilibrium phenomena. Notably, photons
condense into selected, stationary WS states under suf-
ficiently weak on-site interactions. As the strength of
photon-photon interactions increases, we observe a tran-
sition to a non-stationary dynamical regime marked by
periodic Bloch-like oscillations over time. Unlike the
equilibrium counterpart, these regular oscillations are in-
duced by the photon-photon interactions and do not de-
cay over time.

Our research sheds light on the intricate behavior of
driven-dissipative coupled cavity systems, emphasizing
the role of explicit U(1) symmetry breaking and in-
teractions in shaping their dynamics. These findings
hold promise for applications such as coherent light stor-
age [58–60], light confinement [61–63], generation of non-
classical many-photon states [64–66], and distributed
quantum sensing [67–69]. While our focus in this Letter
has been on weakly interacting systems, we underscore
the importance of delving deeper into dynamics beyond
perturbation regimes. Specifically, it is interesting to ex-
plore the non-stationary states in many-body regimes,
particularly in the context of ergodicity breaking [70, 71]
and Stark many-body localization [72]. Another intrigu-
ing scenario is to extend our driven-dissipative model to
topological setting, where exotic nonequilibrium topolog-
ical effects are expected to appear [73–76].
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[71] K. Gietka, J. Chwedeńczuk, T. Wasak, and F. Pi-
azza, Multipartite entanglement dynamics in a regular-
to-ergodic transition: Quantum fisher information ap-
proach, Phys. Rev. B 99, 064303 (2019).

[72] M. Schulz, C. A. Hooley, R. Moessner, and F. Poll-
mann, Stark many-body localization, Phys. Rev. Lett.
122, 040606 (2019).

[73] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor,
Imaging topological edge states in silicon photonics, Nat.
Photon 7, 1001–1005 (2013).

[74] S. Mittal, J. Fan, S. Faez, A. Migdall, J. M. Taylor, and
M. Hafezi, Topologically robust transport of photons in
a synthetic gauge field, Phys. Rev. Lett. 113, 087403
(2014).

[75] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Hi-
gashikawa, and M. Ueda, Topological phases of non-

hermitian systems, Phys. Rev. X 8, 031079 (2018).
[76] E. Colella, F. Mivehvar, F. Piazza, and H. Ritsch, Hof-

stadter butterfly in a cavity-induced dynamic synthetic
magnetic field, Phys. Rev. B 100, 224306 (2019).

[77] A. Kosior, K. Gietka, F. Mivehvar, and H. Ritsch, Dy-
namical photon condensation into wannier-stark states.

[78] F. Claro, J. F. Weisz, and S. Curilef, Interaction-induced
oscillations in correlated electron transport, Phys. Rev.
B 67, 193101 (2003).

[79] W. S. Dias, E. M. Nascimento, M. L. Lyra, and F. A.
B. F. de Moura, Frequency doubling of Bloch oscillations
for interacting electrons in a static electric field, Phys.
Rev. B 76, 155124 (2007).

[80] R. Khomeriki, D. O. Krimer, M. Haque, and S. Flach,
Interaction-induced fractional Bloch and tunneling oscil-
lations, Phys. Rev. A 81, 065601 (2010).
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SUPPLEMENTAL MATERIAL

Derivation of the rotation frame Hamiltonian

Consider an array of optical Kerr cavities labeled by j = −L/2, . . . , L/2. Each cavity in the array is assumed to
have a distinct primary mode with a unique frequency denoted as ωj . The neighboring cavities are coupled through
photon exchange, described as a nearest-neighbor tunneling process, where a photon leaks out of one cavity and enters
the adjacent one. The full Hamiltonian in the lab frame is given by

ĤLab = −J
∑
j

(
â†j âj+1 +H.c.

)
+
∑
j

ωj â
†
j âj + χ

∑
j

â†2j â
2
j +

∑
j

ηj

(
âje

iωpt + â†je
−iωpt

)
, (S1)

where âj , â
†
j are bosonic operators for annihilating and creating photons in the j-th cavity with frequency ωj =

ω0+j∆ω. Here, J is the tunneling amplitude, χ is the Kerr non-linearity leading to on-site photon-photon interaction,
and ηj is the pumping rate of the jth cavity with a pumping laser of frequency ωp.

To switch to a rotating frame with slowly varying variables, a unitary transformation with a time-dependent operator
is applied

U(t) =
∏
j

exp
(
iωptâ

†
j âj

)
, (S2)

transforming the bosonic operators to â′j = UâjU
† = exp(−iωpt)âj and the Hamiltonian to Ĥ = UĤLabU

†+i (∂tU)U†,
i.e.,

Ĥ = −J
∑
j

(
â†j âj+1 +H.c.

)
+

∑
j

∆j â
†
j âj + χ

∑
j

â†2j â
2
j +

∑
j

ηj

(
âj + â†j

)
, (S3)

where ∆j = ∆ω (j − j0) with j0 = (ωp − ω0)/∆ω.

Bloch oscillations and consequences of U(1) symmetry

Here, for pedagogical reasons, we first consider a non-interacting bosonic Hamiltonian in a tilted potential and

show the system exhibits Bloch oscillations. Then, we introduce a pumping term
∑

j ηj

(
âj + â†j

)
and discuss the

consequences of U(1) symmetry breaking in weakly interacting systems.

Bloch oscillations

The non-interacting Hamiltonian of our interest reads

Ĥ0 = −J
∑
j

(
â†j âj+1 +H.c.

)
+

∑
j

∆j â
†
j âj (S4)

with ∆j = ∆ω (j − j0), where the choice of j0 is irrelevant due to the conservation of the particle number. The

Hamiltonian is quadratic in â†j , âj and can be readily diagonalised by a unitary transformation

b̂n =

∞∑
j=−∞

βn,j âj , βn,j = Jj−n

(
γ =

2J

∆ω

)
(S5)

with Jm being the Bessel function of the first kind of order m. Since the transformation is unitary, then βn,j must
fulfill ∑

j

βn,jβm,j = δn,m. (S6)
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FIG. S1. (a)-(c) The expectation values of particle number operators ⟨n̂j(t)⟩ in early times of evolution in a very weakly
interacting case with a different pumping ηj = δj,j′ : (a) j′ = 0, (b) j′ = 7, (c) j′ = 20. (d)-(e) The respective site occupation
distributions after long time evolution in stationary states. In all panels j0 = 0, ∆ω = 0.3 and χ = 10−2.

Indeed, using the Bessel function addition theorem∑
m

Jm(x)Jn−m(y) = Jn(x+ y) (S7)

as well as the property Jn(x) = J−n(−x), we obtain∑
j

Jj−n(γ)Jj−m(γ) = Jm−n(0) = δn,m. (S8)

The inverse transformation then reads

âj =
∑
n

βn,j b̂n. (S9)

The eigenstates |Ψn⟩ = b̂†n|0⟩ are called the Wannier-Stark (WS) states. In practise, the infinite summation can be
truncated, as the Bessel function Jj−n(γ) is mainly localised in the interval |j−n| < |γ|. Although the formula holds
for an infinite lattice, the WS states have finite spatial size, and therefore it can be used with a very good accuracy
to describe bulk states of a finite-size lattice. Using the WS basis, the Hamiltonian (S4) can be recast into a diagonal
form,

Ĥ0 = ∆ω
∑
n

n b̂†nb̂n. (S10)

The time evolution of the Wannier state, |j⟩ = â†j |0⟩, reads

|j(t)⟩ = exp(iĤ0 t)|j⟩ =
∑
n

βn,je
in∆ωt|Ψn⟩ =

∑
n,k

βn,jβn,ke
in∆ωt|k⟩, (S11)

which is a T -periodic function with period T = 2π/∆ω. Consequently, a state which is initially maximally localised
on a tilted lattice performs Bloch oscillations around the initial position.
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U(1) symmetry

Because the total number of particles in the Hamiltonian Ĥ0 of Eq. (S4) is conserved, we were able to neglect the

term K̂ = −j0
∑

j â
†
j âj , that commutes with the Hamiltonian. Equivalently, K̂ can be gauged out by applying the

time-dependent transformation

V (t) = Πj exp
(
iχ(t)â†j âj

)
, χ(t) =

∫ t

j0(τ)dτ, (S12)

where we assumed that j0 can be explicitly time dependent. The transformation only modifies the global phase of the
bosonic operators â′j = V âj Ṽ

† = exp[−iχ(t)]âj and does not contribute to the dynamics. It is a mere manifestation
of the U(1) symmetry of the model.
The full Hamiltonian of our system (S3), which we study in the main text, consist of two additional terms,

Ĥ = Ĥ0 + χ
∑
j

â†2j â
2
j +

∑
j

ηj

(
âj + â†j

)
, (S13)

where the first term describes contact boson-boson interactions, and the second accounts for coherent injection of
bosons into the lattice. Although the interacting term is invariant under the U(1) symmetry of Eq. (S12), in general it
is responsible for the decay of Bloch oscillations [32–35]. The second term explicitly breaks the U(1) symmetry of the

model, and therefore K̂ = −j0
∑

j â
†
j âj does not commute with Ĥ and cannot be neglected anymore. As described in

the main text, the presence of U(1) symmetry breaking terms in the Hamiltonian has enormous consequences to the
system’s dynamics and is responsible for the dynamical photon condensation.

Additionally, in Fig. S1(a)-(c) we show the early-time evolution of expectation values of particle number operators

⟨n̂j⟩ = ⟨â†j âj⟩ in each lattice site with different pumping schemes in the non-interacting case, while in Fig. S1(d)-(e) we
show the corresponding long-time occupation numbers of photons over lattice sites. The final state is proportional to
a central WS state irrespective of j′, as long as j′ lies within the WS localization range, i.e., approximately, |j′| < |γ|.

Cumulant expansion

In this section, we briefly introduce the cumulant expansion method. For an open system, the time evolution of an
average of an observable Ô can be calculated according to

d⟨Ô⟩
dt

=
i

ℏ
⟨[Ĥ, Ô]⟩+

∑
j

κj⟨2ĉjÔĉ†j − ĉ†j ĉjÔ − Ôĉ†j ĉj⟩, (S14)

where κj characterizes the jth decay channel and cj the corresponding jump operator. Writing down the equations
explicitly, we typically find out an infinite hierarchy of equations for products of operators, which can be attributed
to the non-commutativity of various operators. A well-established approach to deal with the infinite set of equations
is to neglected quantum correlations. In such a case, an average value of operator product can be rewritten as
product of average values of operators, ⟨Ô1Ô2⟩ = ⟨Ô1⟩⟨Ô2⟩, which is typically referred to as the mean field approach.
More generally, it is possible to neglect quantum correlations of an arbitrary order. A systematic approach to such
a truncation is realized by a so-called cumulant expansion, which relies on decomposing average values of arbitrary
operator products into products of average values of operators of a given lower order, leading to a closed set of
equations.

Interaction-induced Bloch oscillations

In this section we focus on interaction-induced Bloch-like oscillations, which arise in our system whenever stationary
solutions are not dynamically stable, in a similarity to the limit cycle solutions in driven dissipative systems [add
citations]. Indeed, these oscillations can be interpreted as multi-mode limit cycles as shown in Fig. S2(a). [On the
other hand, stronger on-site interactions result in chaotic behavior, see Fig. S2(b).]

In the main text of this manuscript, we argue that the nonequilibrium phases of the system can be identified by
two observables:
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FIG. S2. Evolution of the photonic field amplitudes ⟨âj⟩ on the complex plane for ∆ω = 0.5 and (a) χ = 0.13, (b) χ = 0.135
[as in Fig. 4 in the main text]. (a) In the regime corresponding to the regular oscillatory behavior, the photonic fields evolve
along closed trajectories. (b) In the unstable regime, photonic fields evolve chaotically. For the clarity of the presentation only
selected modes are shown.

• ∆n—relative change of the total photon number over a long-time evolution, defined as

∆n =
maxt⟨N̂(t)⟩ −mint⟨N̂(t)⟩

avgt⟨N̂(t)⟩
, (S15)

with maxt, mint and avgt denoting maximal, minimal and the average value of an observable during a long-time
evolution (where the initial transient dynamics of the system has been neglected), and

• ⟨max[Pn(t)]⟩av—time-averaged maximal fidelity (i.e. square modulus of the overlap) between the mean-field

wavefunction |ψ⟩ and the WS basis |Ψn⟩ = b̂†n|0⟩ =
∑

j βn,j â
†
j |0⟩.

In order to find the stable islands of interaction-induced Bloch oscillation it is convenient to define a third observable,
as a simple product of the previous two observables,

Θ = ∆n · avgt⟨max[Pn(t)]⟩ (S16)

see Fig. S3, where we show that Θ is close to zero both in the stationary and chaotic phases, and therefore it is a
good observable to identify non-stationary regular dynamics in the system.

Finally, in Fig. S4 we illustrate the expectation values of particle number operators ⟨n̂j(t)⟩ in the course of time
evolution for different parameters of the system, showing more examples of interaction-induced oscillations.
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FIG. S3. The density plot of Θ which identifies stability islands of interaction-induced regular oscillations (bright colors).
Panels (b) and (c) depict cuts through the density plot at the positions of red dashed lines. (b) ∆ω = 0.525, (c) ∆ω = 0.49.
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FIG. S4. Panels present the expectation values of particle number operators ⟨n̂j(t)⟩ in the course of time evolution showing
more examples of interaction-induced oscillations for different parameters of the system. (a) χ = 0.11, ∆ω = 0.525 (b) χ = 0.05,
∆ω = 0.2, (c) χ = 0.03, ∆ω = 0.45, (d) χ = 0.09, ∆ω = 0.525. Other parameters as in the main text of this Letter.
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