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ON APPROXIMATING THE POTTS MODEL WITH CONTRACTING

GLAUBER DYNAMICS

ROXANNE HE AND JACKIE LOK

Abstract. We show that the Potts model on a graph can be approximated by a sequence
of independent and identically distributed spins in terms of Wasserstein distance at high
temperatures. We prove a similar result for the Curie-Weiss-Potts model on the complete
graph, conditioned on being close enough to any of its equilibrium macrostates, in the low-
temperature regime. Our proof technique is based on Stein’s method for comparing the
stationary distributions of two Glauber dynamics with similar updates, one of which is rapid
mixing and contracting on a subset of the state space. Along the way, we obtain new upper
bounds on the mixing times of the Glauber dynamics for the Potts model on a general
bounded-degree graph, and for the conditional measure of the Curie-Weiss-Potts model near
an equilibrium macrostate.

1. Introduction

The Potts model is a spin system that generalises the classical Ising model of magnetism,
and has been extensively studied in many fields, including statistical physics [Wu82] and
probability theory [FK72; SW87; ES88; Gri06]. The Potts model and its extensions have
also found applications in areas such as simulating biological cells [GG92], predicting pro-
tein structure [Ser+21], image reconstruction [GG84], and community detection in complex
networks [RB04].

For a graph G = (V,E) on N vertices, a configuration or colouring σ ∈ [q]V is a function which
assigns to each vertex v ∈ V a spin or colour σ(v) ∈ [q] := {1, . . . , q}. Under the ferromagnetic
Potts model, the probability of each configuration is given by the Gibbs measure µ with

µ(σ) =
e−βH(σ)

Z(β)
,

where β ≥ 0 is an inverse temperature parameter,

H(σ) = − 1

N

∑

u,v∈V

1σ(u)=σ(v)

is the Hamiltonian with interaction strength N−1, and Z(β) =
∑

σ e
−βH(σ) is the partition

function (i.e. normalisation factor), which is difficult to compute. Thus, configurations with
more monochromatic edges (i.e. whose endpoints have the same colour) are more likely. We
will assume that q ≥ 3 (note that q = 2 corresponds to the Ising model).

A high-level heuristic for the Potts model is that the spins should be approximately indepen-
dent if the temperature is high (i.e. β is small). In this paper, we prove that the Potts model
on a general bounded-degree graph is close to a random configuration with independent and
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uniformly distributed spins in terms of Wasserstein distance when β is small enough (Theo-
rem 1.3). We also prove similar approximation results for the Curie-Weiss-Potts model on the
complete graph (Theorems 1.5 and 1.7); in particular, we show that in the low-temperature
regime, the Curie-Weiss-Potts model, conditioned on being close to any of its equilibrium
macrostates, can be approximated by a sequence of i.i.d. spins. Along the way, we prove new
upper bounds on the mixing times of Glauber dynamics for the Potts model (Theorem 1.4) and
for the conditional measure of the Curie-Weiss-Potts model near an equilibrium macrostate
(Theorem 1.8).

Our main tool is the use of Stein’s method to reduce the problem of comparing two distributions
to the problem of comparing the dynamics of two Markov chains that these distributions are
stationary for. This idea was introduced by the concurrent works [RR19] and [BN19], where it
was used to approximate exponential random graphs (with Erdős-Rényi random graphs), and
the Ising model on d-regular expander graphs (with the Curie-Weiss model) respectively. This
technique was further applied in [Bla+22] to establish spectral independence of spin systems.

To give a more concrete statement, the following approximation result was obtained in [Bla+22],
generalising the ideas introduced in [RR19; BN19]. We say that a Markov chain on a metric
space (Σ, d) is contracting if for all σ, τ ∈ Σ, there exists a coupling (Xσ

1 ,X
τ
1 ) of the one-step

distributions of the chain, starting from σ and τ , such that for some 0 ≤ κ < 1,

E [d(Xσ
1 ,X

τ
1 )] ≤ κ · d(σ, τ). (1.1)

Theorem 1.1 ([Bla+22, Lemma 4.3]). Let P and Q be Markov chains on a finite metric space

(Σ, d) with stationary distributions µ and ν respectively. Denote the one-step distributions of P
and Q, starting from σ ∈ Σ, by P (σ, ·) and Q(σ, ·). Let X ∼ µ and Y ∼ ν be random vectors.

If P is contracting according to (1.1) for some 0 ≤ κ < 1, then for any function h : Σ → R,

|Eh(X) − Eh(Y )| ≤ Ld(h)

1− κ
E [dW (P (Y, ·), Q(Y, ·))] ,

where dW is the Wasserstein distance between measures on Σ with respect to d, and Ld(h) is

the optimal Lipschitz constant of h such that |h(σ) − h(τ)| ≤ Ld(h) · d(σ, τ) for all σ, τ ∈ Σ.

Remark 1.2. It is well known that the Wasserstein distance between two measures µ and ν on
a finite metric space (Σ, d) is given by the following two equivalent dual representations [Vil03]:

dW (µ, ν) = sup
h
{Eh(X) − Eh(Y ) : X ∼ µ, Y ∼ ν} = inf

(X,Y )
E [d(X,Y )] . (1.2)

Here, the supremum is over all 1-Lipschitz functions h : Σ → R with respect to d, and the
infimum is over all couplings (X,Y ) of µ and ν (i.e. joint distributions on Σ × Σ such that
X ∼ µ and Y ∼ ν), which is attained by an optimal coupling. Therefore, by considering
the class of 1-Lipschitz functions h, the approximation result in Theorem 1.1 also implies the
following bound on the Wasserstein distance:

dW (µ, ν) ≤ 1

1− κ
E [dW (P (Y, ·), Q(Y, ·))] . (1.3)

Assuming that P is contracting, this provides a precise statement of the heuristic that if the
two chains P and Q have similar updates (i.e. E [dW (P (Y, ·), Q(Y, ·))] is small), then their
stationary distributions µ and ν are also close (in terms of Wasserstein distance).

In our setting, we will compare the distributions of two spin systems µ and ν on the state space
Σ = [q]V equipped with the Hamming distance dH(σ, τ) =

∑
v∈V 1σ(v)6=τ(v) , which counts the

number of vertices with different colours. We will choose P to be the Glauber dynamics for
µ, which is a discrete-time Markov chain (σt)t≥0 with µ as its stationary distribution, and the
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following transitions: given the current configuration σt, a vertex v ∈ V is chosen uniformly at
random, and a new configuration σt+1 is generated by recolouring v with a new colour k ∈ [q]
drawn according to µ, conditional on the colours of all the other vertices being fixed. That is,
σt+1(u) = σt(u) for all u 6= v, and σt+1(v) = k with probability

µv(k | σt) := µ(σ(v) = k | σ(w) = σt(w) ∀w 6= v), k ∈ [q]. (1.4)

We say that µv(· | σ) is the conditional spin distribution of µ at v, given σ. Similarly, we will
choose Q to be the Glauber dynamics for ν. We will take µ to be the more complicated model
of interest (i.e. the Potts model) and ν to be a simpler model (i.e. with i.i.d. spins), chosen in a
specific way such that the transition probabilities of P and Q are “matched” using a mean-field
approximation (we refer to (3.4) later for further details).

However, a technical challenge often encountered in practice is that the Glauber dynamics
P is only contracting on a subset of the state space; see, e.g., the exponential random graph
model analysed in [RR19], and our upcoming discussion of the Curie-Weiss-Potts model. We
demonstrate that this problem can be overcome to deduce similar approximation results as
Theorem 1.1, provided that the following high-level conditions can be shown to hold:

(1) The chain P is rapid mixing : that is, its mixing time

tmix(ε) := inf

{
t ≥ 0 : max

σ∈[q]V
‖P t(σ, ·)− µ‖TV ≤ ε

}
, (1.5)

which measures the time required for the total variation distance between the t-step
distribution of the chain (in the worst case over all initial states σ), denoted by P t(σ, ·),
and its stationary distribution µ to fall below a given threshold ε < 1/2, can be upper
bounded by a polynomial in N , the number of vertices.

(2) The chain P is contracting in some subset Σ̃ ⊆ Σ of the state space. Furthermore,

starting in Σ̃0 ⊆ Σ̃, the chain P remains in Σ̃ for a sufficiently long period relative
to its mixing time with high probability (i.e. the event does not occur with probability
exponentially small in N).

(3) The random vector Y ∈ Σ̃0 with high probability.

These ideas are essentially embedded in the proof of [RR19, Theorem 1.13]. Our main contri-
bution is in making this strategy explicit, and using it to prove our approximation results for
the Curie-Weiss-Potts model in Section 4, for which the Glauber dynamics is not contracting
when β is large. In particular, Theorems 1.7 and 1.8 are the most technically demanding results
proved in the low-temperature regime where the Glauber dynamics is not rapidly mixing and
there are multiple equilibrium macrostates. As a byproduct, we obtain a new bound on the
mixing time of the Glauber dynamics for the Curie-Weiss-Potts model, conditioned on being
close to any of its equilibrium macrostates – this is related to the notions of essential mixing
in [Cuf+12] or metastable mixing in [BNN24], but the rapid mixing of Glauber dynamics for
conditional distributions is less well-understood.

Before stating our results, we define some notation that will be used. For any function h :
[q]V → R, let

Lv(h) := sup
σ(u)=τ(u) ∀u 6=v

|h(σ) − h(τ)| (1.6)

be the Lipschitz constant of h in the component corresponding to v ∈ V with respect to dH ,
where the supremum is taken over all pairs σ, τ ∈ [q]V that only possibly differ at v, and denote
the associated vector by L(h) := (Lv(h))v∈V ∈ R

V . Thus, the usual vector ℓ∞ norm ‖L(h)‖∞



4 ROXANNE HE AND JACKIE LOK

denotes the maximum value of Lv(h) for any v ∈ V . Observe that ‖L(h)‖∞ is equal to the
optimal Lipschitz constant of h with respect to the Hamming distance dH .

We also use standard asymptotic notation as N → ∞ (treating q ≥ 3 and β > 0 as constants):
we write f(N) = O(g(N)) if there exists an absolute constant C > 0 such that |f(N)| ≤
C|g(N)| for sufficiently large N , and f(N) = o(1) if |f(N)| → 0.

1.1. Potts model on bounded-degree graphs. As a more straightforward example of the
kinds of results that we are aiming for, we first state an approximation result for the Potts
model on a general graph that can be obtained from applying Theorem 1.1. We show that if β
is small enough such that the Glauber dynamics is contracting, then the Potts model is close
to a random configuration with independent and uniformly distributed spins.

Theorem 1.3. Let G = (V,E) be a graph on N vertices with maximum degree ∆ and |E| edges.
Let X ∈ [q]V be distributed according to the Potts model on G with inverse temperature β, and

Y ∈ [q]V be a random configuration where the colour of each vertex is sampled independently

and uniformly at random. If ∆tanh(β/N) < 1, then for any function h : [q]V → R,

|Eh(X) − Eh(Y )| ≤ ‖L(h)‖∞
β
√
q − 1

1−∆tanh(β/N)

√
2|E|
N

.

In particular, Theorem 1.3 holds if β < N/∆, since tanhx ≤ x for x ≥ 0. To interpret
Theorem 1.3, observe that the bound tends to zero as β → 0 (i.e. at infinite temperatures).
Furthermore, the bound improves for sparser graphs with fewer edges – intuitively, because
there are fewer interactions between the vertices – and may be simplified by bounding the
average degree 2|E|/N (from the handshaking lemma) by the maximum degree ∆. In the
case when |E| = O(N2) and β < 1, the bound implies that the Wasserstein distance between

the laws of X and Y is of order O(
√
N) (see Remark 1.2). Therefore, the Potts model on a

dense graph can be coupled with a sequence of i.i.d. spins such that, on average, O(
√
N) of

the vertices disagree, which is a vanishingly small proportion of the total number of vertices.
Finally, we note that Theorem 1.3 generalises a similar result for the Ising model given in [RR19,
Equation (1.7)].

The proof of Theorem 1.3 appears in Section 3, and is relatively straightforward once we
establish that the Glauber dynamics for the Potts model is contracting with respect to the
Hamming distance according to (1.1) whenever ∆tanh(β/N) < 1. Consequently, we also
establish the following bound on the mixing time:

Theorem 1.4. Consider the Glauber dynamics for the Potts model with inverse temperature

β on a graph G = (V,E) with N vertices and maximum degree ∆. If ∆tanh(β/N) < 1, then

tmix(ε) ≤
N log(Nε−1)

1−∆tanh(β/N)
.

Compared to the bound on the mixing time previously obtained in [BGP14, Proposition 2.2],
Theorem 1.4 does not make any restriction on the minimum number of colours q, and also
improves the bound to imply optimal O(N log(N)) mixing times, even when ∆ = O(N), for
small enough β (e.g. β < 1). However, the results in [BGP14] apply for a wider range of β when
q is large. For another bound which is applicable for all q (but does not imply O(N log(N))
mixing times), obtained using spectral techniques, see [Ull14, Corollaries 2.8, 2.14]. We note
that Theorem 1.4 generalises known results for the Ising model (see [LP17, Theorem 15.1]).
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1.2. Curie-Weiss-Potts model. We now turn our focus to the Curie-Weiss-Potts (or mean-
field Potts) model, which is the Potts model defined on the complete graph. The approximation
results in this section describe the Curie-Weiss-Potts model at all inverse temperatures β, and
do not follow from Theorem 1.1 since the Glauber dynamics is not globally contracting for
large β. Here, we identify the vertices with [N ] = {1, . . . , N}, and denote the state space by
Ω := [q]N . Let S : Ω → S be the map which sends any configuration σ ∈ Ω to the vector of

proportions

S(σ) := (S1(σ), . . . , Sq(σ)) (1.7)

in the probability simplex S := {x ∈ R
q
+ : ‖x‖1 = 1}, where

Sk(σ) :=
1

N

N∑

j=1

1σ(j)=k, k ∈ [q].

In the absence of geometry, the state of the system is effectively characterised by the vector of
proportions. It is well known [EW90; CET05] that there exists a uniqueness threshold

βc ≡ βc(q) :=
(q − 1) log(q − 1)

q − 2
(1.8)

separating the disordered and ordered phases of the Curie-Weiss-Potts model. The (canonical)
equilibrium macrostates, which describe equilibrium configurations in the thermodynamic limit,
are the global minimisers of the function

Gβ(s) := β‖s‖22 − log

(
q∑

i=1

e−2βsi

)
, s ∈ R

q, (1.9)

which appear in the Gibbs free energy ϕ(β), defined by 2βϕ(β) = mins∈Rq Gβ(s) + log q. Let

Sβ,q := argmin
s∈Rq

Gβ(s) (1.10)

be the set of global minimisers of Gβ . When β < βc, there is a unique equilibrium macrostate

ê := (1/q, . . . , 1/q),

corresponding to the disordered phase in which the most likely configurations have roughly
equal proportions of each colour. When β > βc, there are q equilibrium macrostates, corre-
sponding to the q ordered phases in which the Gibbs measure is supported almost entirely on
configurations with a particular dominant colour. At criticality, β = βc, there are q+1 minima
in Sβc,q, reflecting the coexistence of the ordered and disordered phases. Due to the symmetry
of Gβ , its minimisers are in the probability simplex, and therefore define probability distribu-
tions. We defer the precise expressions for the points in Sβ,q when β ≥ βc to Theorem 4.1
later.

Furthermore, a complete analysis of the mixing time of the Glauber dynamics for the Curie-
Weiss-Potts model is provided in [Cuf+12]. It is shown that the spinodal inverse temperature

βs ≡ βs(q) := sup

{
β ≥ 0 :

(
1 + (q − 1)e

2β 1−qx
q−1

)−1
− x 6= 0 for all x ∈ (1/q, 1)

}
(1.11)

is a dynamical threshold: the mixing time is of order O(N log(N)) with cutoff when β <

βs; of order O(N4/3) when β = βs; and is exponentially large in N when β > βs. The
critical slowdown at βs marks the onset of metastability, corresponding to the emergence
of local minimisers of the free energy (i.e. of Gβ). The coexistence of phases (possibly as
metastable states) implies slow mixing since the dynamics must pass through states which are
exponentially unlikely. The critical inverse temperatures satisfy 1 < βs < βc < q/2 for q ≥ 3.
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Theorem 1.3 can be applied to the complete graph to deduce that for β < 1 and any h : Ω → R,
|Eh(X)−Eh(Y )| = O(

√
N), where X is distributed according to the Curie-Weiss-Potts model

and Y is a random configuration with i.i.d. uniform spins. Since the Glauber dynamics for the
Curie-Weiss-Potts model mixes rapidly for all β < βs (with βs > 1), one might expect that a
similar bound should hold in the entire high-temperature regime, based on the heuristic that
stationary distributions of rapid mixing Markov chains should be approximately independent
(see [RR19] for further discussion of this notion). Indeed, we prove the following:

Theorem 1.5. Suppose that β < βs. Let X ∈ Ω be distributed according to the Curie-Weiss-

Potts model with inverse temperature β, and Y ∈ Ω be a random configuration where the colour

of each vertex is sampled independently and uniformly at random. Then there exists a constant

θ∗ > 0, depending on β and q, such that for any function h : Ω → R,

|Eh(X)− Eh(Y )| ≤ ‖L(h)‖∞θ∗
√
N.

Remark 1.6. By considering the class of 1-Lipschitz functions h, Theorem 1.5 implies that the
Wasserstein distance between X ∼ µ and Y ∼ ν satisfies dW (µ, ν) = O(

√
N) (see Remark 1.2).

This bound is optimal (in terms of dependence on N) based on the matching lower bound

furnished by the following argument. Let WX :=
√
N(S(X) − ê) and WY :=

√
N(S(Y ) − ê)

be the centred and rescaled vectors of proportions of X and Y respectively. By the usual
central limit theorem for the multinomial distribution, WY converges weakly as N → ∞
to a multivariate normal vector N(0,ΣY ), whose covariance matrix ΣY has diagonal entries
(q − 1)/q2 and off-diagonal entries −1/q2. From [EW90, Theorem 2.4], it is known that WX

also converges weakly as N → ∞ to a multivariate normal vector N(0,ΣX), and it can be
shown that ΣX has diagonal entries (q − 1)/(q2 − 2qβ) and off-diagonal entries −1/(q2 − 2β)
(see the proof of [EW90, Proposition 2.2]). Thus, for all β > 0, the limiting distributions of
WX and WY are different (and they coincide when β → 0). Observe that for any 1-Lipschitz
function g : Rq → R with respect to the ℓ1 norm, and any optimal coupling (X∗, Y ∗) of µ and
ν such that EdH(X∗, Y ∗) = dW (µ, ν),

|Eg(WX)− Eg(WY )| ≤
√
NE‖S(X∗)− S(Y ∗)‖1 ≤ 2N−1/2

EdH(X∗, Y ∗), (1.12)

since each location where X∗ and Y ∗ differ contributes at most 2N−1 to ‖S(X∗) − S(Y ∗)‖1.
Thus, we must have lim supN→∞ dW (µ, ν)/

√
N ≥ c for some constant c > 0, otherwise (1.12)

would imply that WX and WY converge to the same distribution.

When β ≥ βs, the Glauber dynamics is not rapid mixing. Moreover, when there exist multiple
equilibrium macrostates, it does not make sense to compare the Curie-Weiss-Potts model to a
single sequence of i.i.d. spins. However, in this low-temperature regime, we will show that the
Curie-Weiss-Potts model, conditioned on being close enough to any equilibrium macrostate
x ∈ Sβ,q, can be approximated by a sequence of i.i.d. spins with probabilities given by x. To
define the restriction region, let

Ω̃(x, r) := {σ ∈ Ω : ‖S(σ)− x‖2 ≤ r} , (1.13)

where r > 0 is a constant (only depending on β and q) that will be chosen to be sufficiently
small later. Given x ∈ Sβ,q, we define ν to be the product measure on Ω where the colour of
each vertex is sampled independently from the distribution given by x. We denote the Gibbs

measure µ of the Curie-Weiss-Potts model and the product measure ν, conditioned on Ω̃(x, r)
by, respectively,

µ̃(·) := µ( · | Ω̃(x, r)) and ν̃(·) := ν( · | Ω̃(x, r)). (1.14)
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Theorem 1.7. Suppose that β ≥ βs, and r is a sufficiently small constant. For any x ∈
Sβ,q, let X̃ ∈ Ω̃(x, r) and Ỹ ∈ Ω̃(x, r) be random configurations distributed according to the

conditional measures µ̃ and ν̃ respectively. Then there exists a constant θ∗ > 0, depending on

β, q and r, such that for any function h : Ω̃(x, r) → R,

|Eh(X̃)− Eh(Ỹ )| ≤ ‖L(h)‖∞θ∗
√
N.

Note that a similar observation on the optimality of Theorem 1.7 as described in Remark 1.6
can also be formulated by centring the vector of proportions around the chosen x ∈ Sβ,q and
using known central limit-type results for the conditional measure µ̃ [EW90, Theorem 2.5].

The proofs for Theorems 1.5 and 1.7 are given in Section 4. As discussed before, the key tech-
nical difficulty is that the Glauber dynamics for the Curie-Weiss-Potts model is not contracting
on the entire state space, but only locally around each of the points in Sβ,q. To address this,
we will analyse the restricted Glauber dynamics – this is a Markov chain, denoted by (σ̃t)t≥0,
which has µ̃ as its stationary distribution, and evolves like the usual Glauber dynamics except

that any moves out of Ω̃(x, r) are rejected. More precisely, its transitions are as follows: given

the current configuration σ̃t ∈ Ω̃(x, r),

(1) Generate a new configuration σ′ ∈ Ω according to the usual Glauber dynamics.

(2) If σ′ ∈ Ω̃(x, r), then set σ̃t+1 = σ′. Otherwise, set σ̃t+1 = σ̃t (i.e. the move is rejected).

We say that the restricted Glauber dynamics σ̃t is on the boundary if there is a possible
transition that can lead to rejection. As a key ingredient for proving Theorems 1.5 and 1.7,
we also prove the following bound on the mixing time of the restricted Glauber dynamics in
Section 4.

Theorem 1.8. Suppose that β ≥ βs, and r is a sufficiently small constant. For any x ∈
Sβ,q, let txmix(ε) be the mixing time of the Glauber dynamics for the Curie-Weiss-Potts model

restricted to Ω̃(x, r). Then

txmix := txmix (1/4) = O (N log(N)) .

An analogous result for the mean-field Ising model with spins on the complete graph (where
βs = βc = 1) was established earlier in [LLP10], where a variant of the restricted Glauber
dynamics was shown to have mixing time O(N log(N)). The proof of this result exploits the
symmetry of the distribution of the normalised magnetisation under the corresponding Gibbs
measure, which is unique to the mean-field Ising model and does not apply in our setting.

1.3. Related works. For the Curie-Weiss-Potts model X ∼ µ, the rate of convergence of the
proportions vector S(X) is studied in [EM15], quantifying the central limit theorems obtained

in [EW90]. In particular, it is proved in [EM15, Theorem 1.3] that if WX =
√
N (S(X) − x)

is the scaled and centred proportions vector for any x ∈ Sβ,q, and Σ
1/2Z is a multivariate

normal vector with covariance matrix Σ = E
[
WXW⊤

X

]
, then in the high-temperature regime

β < βc,

|Eg(WX)− Eg(Σ1/2Z)| ≤ CN−1/2

for every three times differentiable function g : Rq → R with bounded derivatives. In the
low-temperature regime β ≥ βc, a similar result with the same O(N−1/2) rate is proved for the

corresponding measures conditional on S(X) ∈ Ω̃(x, r) in [EM15, Theorem 1.5]. These results
can be compared to Theorems 1.5 and 1.7 respectively (also see Remark 1.6).
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The rapid mixing of the Glauber dynamics for the (generalised) Curie-Weiss-Potts model in
the subcritical regime β < βs is also established in [KO15] using the aggregate path coupling
method, for which it suffices to show that the chain is contracting for configurations that are
close enough to the unique equilibrium macrostate x = ê. Some of the ideas used in the
analysis appear in the proofs of Theorems 1.5, 1.7, and 1.8 to show that the Glauber dynamics

restricted to Ω̃(x, r) is contracting as long as it is sufficiently close to x.

The mixing time of the Glauber dynamics for the Curie-Weiss-Potts model, conditional on
being close to any equilibrium macrostate, in Theorem 1.8 is related to different notions of
mixing for when there exist metastable states that take the chain exponentially long to escape.
In [Cuf+12, Theorem 4], it is shown that in the subcritical regime βs ≤ β < βc, the Glauber
dynamics for the Curie-Weiss-Potts model mixes rapidly (with cutoff) after excluding a set
of initial configurations with probability exponentially small in N , which is called essential

mixing. The rapid mixing of Glauber dynamics starting from a specific distribution has also
been explored for the Ising model in [LS21; GS22], and for the exponential random graph
model in [BNN24], where this is called metastable mixing. For the Curie-Weiss-Potts model,
the set of product measure initialisations from which the Glauber dynamics mixes rapidly
is precisely characterised in [BGZ24]. An important property of the usual worst-case mixing
time (1.5), which Theorem 1.8 bounds, is that the total variation distance to stationarity decays
exponentially fast beyond this time (see [LP17, Equation (4.33)]); this plays an essential role
for our purpose of distributional approximation using Stein’s method. This property is not
exhibited by the mixing time from a specific initial distribution (e.g. see the discussion following
the Definition 1.4 in [BNN24]).

The key idea underlying the rapid mixing results for the Glauber dynamics for the Curie-
Weiss-Potts model proved in [Cuf+12], [BGZ24], and in our work is to control the drift of the
proportions chain S(σt) induced by the dynamics. A precise description of rapid mixing in the
subcritical regime (β < βs) where there is a unique equilibrium macrostate ê was established
in [Cuf+12]. The dynamics in the low-temperature regime, which requires a more delicate
treatment of asymmetric equilibrium macrostates in the presence of phase coexistence, is stud-
ied independently in our paper and the concurrent work [BGZ24]. The main result of [BGZ24]
shows that with a well-chosen initialisation that is not too close to a saddle point of the free
energy, the Glauber dynamics mixes rapidly. Their proof technique relies on approximating
projections of the high-dimensional proportions chain by tractable one-dimensional processes.
Our focus, on the other hand, is on bounding the worst-case mixing time of the Glauber
dynamics restricted near a particular equilibrium macrostate. We also adopt a matrix repre-
sentation for the drift of the proportions chain that is well-suited for analysing the restricted
dynamics near the boundary.

Deep connections have been found between rapid mixing and the spatial properties of spin
systems on a lattice [Hol85; AH87; SZ92; MO94a; MO94b; Dye+04], and it is widely believed
that a correspondence between temporal and spatial mixing holds for many models in statistical
mechanics. By now, it is well understood that a contracting Markov chain mixes rapidly. The
path coupling method [BD97] is a fundamental tool for establishing that a chain is contracting
by showing that (1.1) holds for all pairs of neighbouring configurations. This condition has
an intimate relation with Dobrushin’s condition for the uniqueness of the Gibbs measure (see,
e.g., [Oll10; Pau16; DS23]), which is known to imply exponential decay of correlations [DS85;
Gro79; Kün82]; i.e. each spin is asymptotically independent of the vertices far away.

1.4. Organisation. The rest of the paper is organised as follows. Section 2 contains prelimi-
naries on the Glauber dynamics and Stein’s method. In Section 3, the proofs of Theorems 1.3
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and 1.4 for the Potts model on general bounded-degree graphs are given. In Section 4, a de-
tailed analysis of the Curie-Weiss-Potts model and its restricted Glauber dynamics is provided,
and the proofs of Theorems 1.5, 1.7, and 1.8 are described. Finally, the proofs of some deferred
technical lemmas appear in Appendices A and B.

2. Preliminaries

2.1. Glauber dynamics for the Potts model. Consider the Potts model with inverse tem-
perature β > 0 on a graph G = (V,E) on N vertices with q ≥ 3 colours. For any vertex v ∈ V ,
let Nv := {u ∈ V : (u, v) ∈ E} denote the neighbours of v. For any configuration σ ∈ [q]V , let

Sv(σ) := (S1
v (σ), . . . , S

q
v(σ)) ∈ R

q (2.1)

be the vector whose coordinates

Sk
v (σ) :=

1

N

∑

u∈Nv

1σ(u)=k (2.2)

indicate the (scaled) proportion of neighbours of v with each of the q colours.1 Moreover, for
s ∈ R

q, define the vector

gβ(s) :=
(
g1β(s), . . . , g

q
β(s)

)
∈ R

q
+, (2.3)

where for each colour k ∈ [q],

gkβ(s) :=
e2βs

k

∑q
j=1 e

2βsj
. (2.4)

In other words, we can identify gβ with the softmax function which maps vectors in R
q to the

q-dimensional probability simplex S := {x ∈ R
q
+ : ‖x‖1 = 1}. Furthermore, we denote σ(v,k)

to be the configuration obtained from σ by recolouring the vertex v with colour k: that is,

σ(v,k)(u) =

{
k if u = v,

σ(u) if u 6= v.
(2.5)

Using this notation, we can specify the Glauber dynamics for the Gibbs measure µ of the
Potts model more precisely: given the current configuration σ, the next step selects a vertex v
uniformly at random and recolours it with a new colour k ∈ [q], selected with probability

µv(k | σt) = gkβ(Sv(σt)), (2.6)

to obtain the next configuration σ(v,k). That is, the conditional spin distribution for the Potts
model is given by µv(· | σ) = gβ(Sv(σ)) at each vertex v. If ν is another measure on [q]V , we
will also denote the total variation distance between its conditional spin distribution νv(· | σ)
and µv(· | σ) by

Tv(σ) := ‖µv(· | σ)− νv(· | σ)‖TV, (2.7)

and collect these values in the vector T (σ) := (Tv(σ))v∈V ∈ R
V
+.

1In the Curie-Weiss-Potts model, this definition essentially coincides with the vector of proportions defined
in (1.7). Due to symmetry, it is convenient to include the colour of the vertex v in the count for the latter.
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2.2. Stein’s method for approximating the stationary distributions of Glauber dy-

namics. In this section, we provide an overview of the proof of Theorem 1.1, which uses the
generator approach of Stein’s method, in order to establish some intermediary results that we
will use when the chain is not globally contracting.

The idea behind the generator approach to compare two random vectors X ∼ µ and Y ∼ ν
on a finite metric space (Σ, d) is to find generators Aµ and Aν for Markov processes with
stationary distributions µ and ν respectively, and for any test function h : Σ → R, solve the
Stein equation

Aµfh(σ) = h(σ) − Eh(X) (2.8)

for fh : Σ → R. Since EAνf(Y ) = 0 if and only if Y ∼ ν, the two measures µ and ν can be
compared in terms of the solution to the Stein equation by

|Eh(X) − Eh(Y )| = |EAµfh(Y )− EAνfh(Y )|. (2.9)

In particular, if P and Q are Markov chains on Σ with stationary distributions µ and ν (or
more precisely, their transition kernels), then the Markov processes can be chosen to be the
continuous-time Markov chains with Exponential rate one holding times and jump probabilities
induced by P and Q, which have generators Aµ = P − I and Aν = Q − I respectively. If
(X̄t)t≥0 denotes the continuous-time Markov chain with stationary distribution µ, then it is
known that the Stein equation has the following well-defined solution if P is irreducible (e.g.
see [Rei05]):

fh(σ) := −
∫ ∞

0
E
[
h(X̄t)− Eh(X) | X̄0 = σ

]
dt, σ ∈ Σ. (2.10)

If P is contracting according to (1.1), then it was shown by [Bla+22] that the irreducibility
assumption can be removed (i.e. fh is convergent and remains well-defined).

Note that (P −Q)fh(σ) = E [fh(X
σ
1 )− fh(Y

σ
1 )], where (Xσ

1 , Y
σ
1 ) is a coupling of P (σ, ·) and

Q(σ, ·). Thus, by definition of the Wasserstein distance (1.2), |(P − Q)fh(σ)| ≤ Ld(fh) ·
dW (P (σ, ·), Q(σ, ·)). Hence, by substituting Aµ = P − I and Aν = Q− I into (2.9), we have

|Eh(X) − Eh(Y )| = E|(P −Q)fh(Y )| ≤ Ld(fh) · E [dW (P (Y, ·), Q(Y, ·))] . (2.11)

The following argument furnishes the key estimate required to bound Ld(fh), the Lipschitz
constant of fh. Denote the independent jump times of the continuous-time chain (X̄t)t≥0 by
0 = T0 < T1 < T2 < . . . , and the embedded jump chain by (Xℓ)ℓ∈N (i.e. X̄t = Xm for
t ∈ [Tℓ, Tℓ+1)). By reducing to the discrete skeleton of the continuous-time chain, fh satisfies

|fh(σ)− fh(τ)| ≤
∫ ∞

0

∣∣E
[
h(X̄t) | X̄0 = σ

]
− E

[
h(X̄t) | X̄0 = τ

]∣∣ dt

≤
∞∑

ℓ=0

E

∫ Tℓ+1

Tℓ

|h(Xσ
ℓ )− h(Xτ

ℓ )| dt.
(2.12)

Since the jump times are independent of the discrete skeleton and have mean one,

|fh(σ)− fh(τ)| =
∞∑

ℓ=0

E |h(Xσ
ℓ )− h(Xτ

ℓ )| ≤ Ld(h)
∞∑

ℓ=0

dW (P ℓ(σ, ·), P ℓ(τ, ·)), (2.13)

where the inequality follows from the definition of the Wasserstein distance (1.2). Hence,
Theorem 1.1 follows from combining (2.11) and the following estimate for Ld(fh), obtained
from a straightforward application of the contracting assumption (1.1). Indeed, since P is
contracting,

dW (P ℓ(σ, ·), P ℓ(τ, ·)) ≤ κℓ · d(σ, τ)
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for all ℓ ≥ 0. Therefore, from (2.13), we have

|fh(σ)− fh(τ)| ≤ Ld(h)
∞∑

ℓ=0

κℓ · d(σ, τ) = Ld(h)

1− κ
d(σ, τ),

which shows that Ld(fh) ≤ Ld(h)/(1 − κ).

To conclude this section, we extract some more specific estimates from the general argument
above when Σ = [q]V is the set of configurations on an underlying graph G = (V,E), d = dH
is the Hamming distance, and P and Q are the Glauber dynamics for µ and ν. In this setting,
the generator Aµ for the continuous-time Glauber dynamics induced by P takes the form

Aµf(σ) =
1

N

∑

v∈V


∑

k∈[q]

µv(k | σ)(f(σ(v,k))− f(σ))


 , σ ∈ [q]V , (2.14)

recalling that σ(v,k) denotes the configuration obtained from σ by recolouring the vertex v
with colour k, and µv(· | σ) is the conditional spin distribution. The generator Aν for the
continuous-time chain induced by Q takes the same form as (2.14) with νv(· | σ) in place of
µv(· | σ).
The following lemmas will be used in the proof of the approximation results for the Curie-
Weiss-Potts model in Section 4. By putting in the specific form of the generators Aµ and Aν

from above into the Stein’s method bound (2.9), we immediately deduce the following analogue
of (2.11), specialised to the Glauber dynamics:

Lemma 2.1. Let P and Q be the Glauber dynamics on [q]V with stationary distributions µ
and ν respectively. For any h : [q]V → R, we have

|Eh(X)− Eh(Y )| ≤ 1

N

∑

v∈V

∑

k∈[q]

E

[
|µv(k | Y )− νv(k | Y )| ·

∣∣∣fh(Y (v,k))− fh(Y )
∣∣∣
]
. (2.15)

Furthermore, the following lemma will be used to bound the differences of the solution to the
Stein equation fh, which appears in Lemma 2.1, when the chain P is not contracting:

Lemma 2.2. Let P be the Glauber dynamics on [q]V with stationary distribution µ. For

any σ, τ ∈ [q]V , let (Xσ
ℓ ,X

τ
ℓ )ℓ∈N be any sequence of couplings of the ℓ-step distributions of P

starting from σ and τ respectively. Then for any h : [q]V → R, we have

|fh(σ)− fh(τ)| ≤ ‖L(h)‖∞
∑

ℓ≥0
v∈V

P (Xσ
ℓ (v) 6= Xτ

ℓ (v)) .

Proof. By definition of the Wasserstein distance (1.2), dW (P ℓ(σ, ·), P ℓ(τ, ·)) can be upper
bounded by EdH(Xσ

ℓ ,X
τ
ℓ ) =

∑
v∈V P (Xσ

ℓ (v) 6= Xτ
ℓ (v)), where (Xσ

ℓ ,X
τ
ℓ ) is any coupling of

the ℓ-step distributions of P starting from σ and τ . Therefore, since h : [q]V → R is ‖L(h)‖∞-
Lipschitz with respect to dH , we obtain the claimed bound by continuing from (2.13). �

3. Potts model on general bounded-degree graphs

In this section, we consider the Glauber dynamics for the Potts model on a graph G = (V,E)
with N vertices and maximum degree ∆, and our goal is to prove Theorems 1.3 and 1.4. The
main part of the proof is to establish the following condition for when the Glauber dynamics
for the Potts model is contracting:
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Lemma 3.1. Let P be the Glauber dynamics for the Potts model with inverse temperature β
on a graph G = (V,E) with N vertices and maximum degree ∆. If ∆tanh(β/N) < 1, then

for all σ, τ ∈ [q]V , there exists a coupling (Xσ
1 ,X

τ
1 ) of the one-step distributions of P starting

from σ, τ such that

E [dH(Xσ
1 ,X

τ
1 )] ≤

(
1− 1−∆tanh(β/N)

N

)
dH(σ, τ). (3.1)

That is, P is contracting with respect to the Hamming distance dH according to (1.1) with rate

κ = 1−N−1(1−∆tanh(β/N)).

We will prove Lemma 3.1 following the coupling calculation in the proof of [BGP14, Proposition
2.2]. Our improvement is in the optimisation step, which uses the following technical lemma.

Lemma 3.2. Let λ = e2β/N . For a = (a1, a2, . . . , aq) ∈ R
q, let

f(a, λ) =
λa1

λa1 + λa2 +
∑q

i=3 λ
ai

− λa1−1

λa1−1 + λa2+1 +
∑q

i=3 λ
ai
.

Then

g(λ) := max
a∈[∆]q

a1+···+aq≤∆

f(a, λ) ≤ tanh

(
β

N

)
.

The proof of Lemma 3.2, which follows from an elementary algebraic argument, is deferred to
Appendix A. Using this new result, we can now prove Lemma 3.1.

Proof of Lemma 3.1. By using the path coupling method, it suffices to show that (3.1) holds for
all σ, τ ∈ [q]V with dH(σ, τ) = 1. (For the details of this standard argument, see, e.g. [DG98,
Theorem 2.2].) Hence, let σ, τ ∈ [q]V be a pair that only differs at a single vertex, say u,
and assume without loss of generality that σ(u) = 1 and τ(u) = 2. The following coupling
calculation is given in the proof of [BGP14, Proposition 2.2]2, which we briefly describe for
completeness.

Let (Xσ
1 ,X

τ
1 ) be an optimal coupling of the one-step distributions of P starting from σ and τ ,

which samples the same vertex v uniformly at random, and minimises the probability that the
selected colour differs. Observe that the Hamming distance between the two chains decreases
by one if v = u (with probability 1/N). Furthermore, it increases by one if the sampled colour
differs, which can happen only if v is a neighbour of u, and if so, occurs with probability
equal to the total variation distance between the conditional spin distributions (2.6) of the two
Glauber dynamics at v. If we denote a = (a1, . . . , aq) as the vector where ak ∈ [∆] counts the
number of neighbours of v with colour k ∈ [q], then this probability is equal to f(a, λ), which

is upper bounded by g(λ), where λ = e2β/N , and f(a, λ) and g(λ) are as defined in Lemma 3.2.
Hence, we have

E [dH(Xσ
1 ,X

τ
1 )] ≤ 1− 1

N
+

∆

N
g(λ).

Using the bound g(λ) ≤ tanh(β/N) from Lemma 3.2 completes the proof. �

The mixing time bound in Theorem 1.4 immediately follows from applying Lemma 3.1.

2Note that the inverse temperature β in [BGP14] corresponds to 2β/N under our scaling for the Gibbs
measure.
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Proof of Theorem 1.4. Standard coupling results (e.g. [DG98, Theorem 2.1]) imply that if the
Glauber dynamics for the Potts model is contracting with respect to the Hamming distance
according to (1.1) for some 0 ≤ κ < 1, then

tmix(ε) ≤
log(Nε−1)

1− κ
. (3.2)

Combining this with Lemma 3.1, which shows that the Glauber dynamics is contracting with
rate κ = 1−N−1(1−∆tanh(β/N)) whenever ∆tanh(β/N) < 1, completes the proof. �

We now set out to prove Theorem 1.3. Recalling that T (σ) = (Tv(σ))v∈V , defined in (2.7),
denotes the total variation distances between the conditional spin distributions of µ and ν,
given σ, the following result specialises the general approximation result in Theorem 1.1 to the
Glauber dynamics on [q]V .

Theorem 3.3. Let P and Q be the Glauber dynamics on [q]V with stationary distributions µ
and ν respectively, and let X ∼ µ and Y ∼ ν be random configurations. If P is contracting

with respect to the Hamming distance dH according to (1.1) for some 0 ≤ κ < 1, then for any

function h : [q]V → R,

|Eh(X) − Eh(Y )| ≤ ‖L(h)‖∞
N(1− κ)

E‖T (Y )‖1. (3.3)

Proof. Recall that h is ‖L(h)‖∞-Lipschitz with respect to dH . By definition of the Wasser-
stein distance (1.2), dW (P (σ, ·), Q(σ, ·)) can be bounded from above by E [dH(Xσ

1 , Y
σ
1 )], where

(Xσ
1 , Y

σ
1 ) is the following coupling of the one-step distributions of P and Q starting from

σ ∈ [q]V :

(1) Pick the same vertex v ∈ V uniformly at random.

(2) Update the spin at v to obtain new configurations Xσ
1 and Y σ

1 according to an optimal
coupling of the conditional spin distributions µv(· | σ) and νv(· | σ) respectively (i.e.
which minimises the probability that the selected colour differs).

Given that v is selected, the probability that Xσ
1 (v) 6= Y σ

1 (v), or equivalently dH(Xσ
1 , Y

σ
1 ) = 1,

is equal to Tv(σ) = ‖µv(· | σ)− νv(· | σ)‖TV. Thus, from Theorem 1.1, we have

|Eh(X)− Eh(Y )| ≤ ‖L(h)‖∞
1− κ

E

[
1

N

∑

v∈V

Tv(Y )

]
=

‖L(h)‖∞
N(1− κ)

E‖T (Y )‖1. �

Now suppose that µ is the Potts model and that ν is a product measure where each spin is
independently distributed according to the probabilities pv := (pkv)k∈[q] at each vertex v ∈ V .
Note that νv(· | σ) = pv, and µv(· | σ) = gβ(Sv(σ)) from (2.6), where gβ is the softmax
function from (2.4) and Sv(σ) indicates the (scaled) proportions of neighbours of v with each
colour from (2.1). From Theorem 3.3, Y ∼ ν offers a good approximation of the Potts model
if E‖T (Y )‖1 is small. Hence, we seek probabilities that satisfy pkv ≈ µv(k | Y ) to match the
transition probabilities of the corresponding Glauber dynamics – a natural choice is to solve
the system of equations

pkv = gβ(E
[
Sk
v (Y )

]
) for all k ∈ [q], v ∈ V. (3.4)

The condition (3.4) is a mean-field approximation and generalises a similar condition for the
Ising model in [RR19, Equation (1.2)]. An important observation that we will use is that
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setting pkv = 1/q for all k ∈ [q], v ∈ V (i.e. ν consists of i.i.d. uniform spins) is always a
solution to (3.4).

By applying Theorem 3.3, we establish the following approximation result for comparing the
Potts model with a product measure ν that satisfies the mean-field condition (3.4).

Lemma 3.4. Let X ∼ µ be distributed according to the Potts model with inverse temperature

β on a graph G = (V,E) with N vertices, and Y ∼ ν be distributed according to a product

measure (pv)v∈V on [q]V that satisfies (3.4). If the Glauber dynamics for X is contracting

with respect to the Hamming distance according to (1.1) for some 0 ≤ κ < 1, then for any

h : [q]V → R,

|Eh(X) − Eh(Y )| ≤ ‖L(h)‖∞
β
√
q

N(1− κ)

∑

v∈V

E‖Sv(Y )− E [Sv(Y )]‖2.

Proof. The bound follows from Theorem 3.3 once we show that

E‖T (Y )‖1 ≤ β
√
q
∑

v∈V

E‖Sv(Y )− ESv(Y )‖2, (3.5)

where T (Y ) = (Tv(Y ))v∈V with Tv(Y ) = ‖µv(· | Y ) − νv(· | Y )‖TV. Fix v ∈ V . Since
the conditional spin distribution of P is given by µv(· | σ) = gβ(Sv(σ)) from (2.6), and

νv(k | σ) = pkv for the random configuration Y with independent spins that satisfy (3.4), we
have

µv(k | Y )− νv(k | Y ) = gβ(Sv(Y ))− gβ(E [Sv(Y )]), k ∈ [q].

By using the equivalence of the ℓ1 and ℓ2 norms in R
q, and the fact that the softmax function

gβ is 2β-Lipschitz with respect to the ℓ2 norm [GP18, Proposition 4], we deduce that

‖gβ(Sv(Y ))− gβ(E [Sv(Y )])‖1 ≤
√
q‖gβ(Sv(Y ))− gβ(E [Sv(Y )])‖2

≤ 2β
√
q‖Sv(Y )− E [Sv(Y )]‖2.

Combining the previous displayed equations implies that

Tv(Y ) =
1

2
‖gβ(Sv(Y ))− gβ(E [Sv(Y )])‖1 ≤ β

√
q‖Sv(Y )− E [Sv(Y )]‖2.

Hence, by summing over all the vertices, we deduce that (3.5) holds, as desired. �

By combining Lemmas 3.1 and 3.4, we can now prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 3.1, the Glauber dynamics for the Potts model is contracting
with κ = 1 − N−1(1 − ∆tanh(β/N)) whenever ∆tanh(β/N) < 1. Hence, we may apply
Lemma 3.4, where each spin of the random configuration Y is independently sampled from
the uniform distribution p = (pk)k∈[q] with pk = 1/q for all k, which satisfies (3.4). Thus, it
suffices to bound

∑
v∈V E‖Sv(Y ) − E [Sv(Y )]‖2. Fix v ∈ V , and denote its degree by deg(v).

Recall from (2.1) that

Sv(Y ) =

(
1

N

∑

u∈Nv

1Y (u)=k

)

k∈[q]

∈ R
q.

Since the colours of the neighbours of v are independently distributed according to p, we have
NSv(Y ) ∼ Multinomial(deg(v), p). Thus, Var(NSk

v (Y )) = deg(v)pk(1− pk), and

E

(
Sk
v (Y )− E

[
Sk
v (Y )

])2
=

1

N2
Var(NSk

v (Y )) =
deg(v)

N2
pk(1− pk)
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for all k ∈ [q]. Consequently, by Jensen’s inequality,

E‖Sv(Y )− E [Sv(Y )]‖2 ≤
√∑

k∈[q]

E (Sk
v (Y )− E [Sk

v (Y )])
2
=

√
deg(v)

N

√∑

k∈[q]

pk(1− pk). (3.6)

Since pk = 1/q for all k,
∑

k∈[q] p
k(1− pk) = (q − 1)/q. Therefore, applying Lemma 3.4 shows

that

|Eh(X)− Eh(Y )| ≤ ‖L(h)‖∞
β
√
q − 1

1−∆tanh(β/N)

1

N

∑

v∈V

√
deg(v). (3.7)

In particular, by using Jensen’s inequality and the handshaking lemma, we have

1

N

∑

v∈V

√
deg(v) ≤

√
1

N

∑

v∈V

deg(v) =

√
2|E|
N

. (3.8)

Combining (3.7) and (3.8) completes the proof of the theorem. �

4. The Curie-Weiss-Potts model

In this section, we focus on the Curie-Weiss-Potts model on the complete graph with N vertices.
The analysis of the vector of proportions S(σ), which lives in the probability simplex S = {x ∈
R
q
+ : ‖x‖1 = 1}, will play a crucial part for understanding the dynamics of the system. By

convention, we will consider vectors s ∈ R
q as row vectors. In a continuation of the discussion

in Section 1.2, we begin by summarising known results about the equilibrium macrostates.

Theorem 4.1 ([EW90, Theorem 2.1]3). For β > 0, let sβ,q ∈ R be the largest solution of the

equation

s =
1− e−2βs

1 + (q − 1)e−2βs
. (4.1)

Define

šβ,q :=

(
1 + (q − 1)sβ,q

q
,
1− sβ,q

q
, . . . ,

1− sβ,q
q

)
∈ S.

Let Tk : Rq → R
q denote the operator which interchanges the 1st and kth coordinates of a vec-

tor. Then, the quantity sβ,q is well-defined. It is positive, strictly increasing and differentiable

on [βc,∞), where

βc ≡ βc(q) :=
q − 1

q − 2
log(q − 1)

satisfies 1 < βc(q) < q/2 for all q ≥ 3, and βc(2) = 1. Moreover, one has sβc,q = (q−2)/(q−1)
and limβ↑∞ sβ,q = 1 for any q ≥ 2. In particular, for β = βc, we have

šβc,q =

(
1− 1

q
,

1

q(q − 1)
, . . . ,

1

q(q − 1)

)
.

Furthermore, the set of minimisers of the function Gβ defined in (1.9) is given by

Sβ,q :=





{ê}, if β < βc,

{ê,T1šβc,q,T
2šβc,q, . . . ,T

q šβc,q}, if β = βc,

{T1šβ,q, . . . ,T
q šβ,q}, if β > βc,

where ê := (1/q, . . . , 1/q) ∈ S is the equiproportionality vector. For β ≥ βc, the points in Sβ,q

are all distinct.

3Note that the inverse temperature β in [EW90] corresponds to 2β under our scaling for the Gibbs measure.



16 ROXANNE HE AND JACKIE LOK

The expression for the critical value βc for the Curie-Weiss-Potts model was first obtained
in [Wu82]. For simplicity of notation, we define

s∗β,q := š1β,q =
1 + (q − 1)sβ,q

q
, (4.2)

where sβ,q is the largest solution of the equation (4.1) in Theorem 4.1, and so

T
1šβ,q = šβ,q =

(
s∗β,q,

1− s∗β,q
q − 1

, . . . ,
1− s∗β,q
q − 1

)
. (4.3)

Next, we describe some key properties of the softmax function gβ , defined in (2.3), which will
be important for our analysis. Observe that the gradient of the function Gβ(s) defined in (1.9)
is equal to 2β(s−gβ(s)). Therefore, the points in Sβ,q solve the following fixed point equation:

Lemma 4.2 (Mean-field equation). For all x ∈ Sβ,q, we have gβ(x) = x.

Lemma 4.2 essentially corresponds to the mean-field condition (3.4) that previously appeared
when approximating the Potts model on a general graph with a sequence of independent spins.
This explains why x ∈ Sβ,q is a natural choice for the distribution of each spin of the underlying
i.i.d. model Y in Theorems 1.5 and 1.7.

A crucial step for showing that the Glauber dynamics for the Curie-Weiss-Potts model is con-
tracting around any equilibrium macrostate is to bound the Lipschitz constant of the function
gβ around any point x ∈ Sβ,q. The following technical lemma describes a special property of
the Jacobian matrix of gβ at x, which is essential for establishing such a bound.

Lemma 4.3 (Jacobian). Let J(x) be the q × q Jacobian matrix of gβ at x, such that the kth

row of the matrix is given by the row vector ∇gkβ(x). Define the constants a, a′, b > 0 by

a := 2βqs∗β,q
1− s∗β,q
q − 1

, a′ := 2β
1− s∗β,q
q − 1

, b := 2β
1 − s∗β,q
q − 1

(
s∗β,q −

1− s∗β,q
q − 1

)
.

Then for any x ∈ Sβ,q and any s1, s2 ∈ S, we have that

J(x)(s1 − s2)
⊤ = A(x)(s1 − s2)

⊤,

where A ≡ A(x) is the matrix defined as follows. When x = ê, we simply have A(ê) := (2β/q)I,
where I is the q × q identity matrix – that is,

∇gkβ(ê)(s1 − s2)
⊤ =

2β

q
(sk1 − sk2) for all k ∈ [q].

When x = T
j šβ,q, the entries of A(x) are given by

Aj,j := a,
Ak,k := a′, k 6= j,
Ak,j := −b, k 6= j,

and all the other entries are zero – that is,

∇gkβ(T
j šβ,q)(s1 − s2)

⊤ =

{
a(sj1 − sj2), if k = j,

a′(sk1 − sk2)− b(sj1 − sj2), if k 6= j.

We will defer the proof of Lemma 4.3, which relies on Lemma 4.2 and algebraic manipulations,
to Appendix B.1. The next lemma bounds the Lipschitz constant of gβ with respect to the ℓ1
norm for points that are sufficiently close to any equilibrium macrostate x ∈ Sβ,q.
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Lemma 4.4. Let x ∈ Sβ,q, and a be as defined in Lemma 4.3. Define the positive constant

θ(x, β, q) by

θ(ê, β, q) := 2β/q and θ(Tj šβ,q, β, q) := a, j ∈ [q].

Then for all s1, s2 ∈ S satisfying ‖s1 − x‖2 ≤ r and ‖s2 − x‖2 ≤ r, we have

‖gβ(s1)− gβ(s2)‖1
‖s1 − s2‖1

≤ θ(x, β, q) +O(r).

We will also defer the proof of Lemma 4.4 to Appendix B.2. Now, we state a crucial technical
condition that will be used to ensure that the Lipschitz constant of gβ around any x ∈ Sβ,q

is strictly less than 1 for sufficiently small r, and to control the drift of the proportions chain
S(σ̃t) induced by the restricted Glauber dynamics.

Condition 4.5. θ(x, β, q) < 1 and λ(x, β, q) < 1, where θ(x, β, q) is as defined in Lemma 4.4

and λ(x, β, q) is the maximum absolute eigenvalue of the symmetric part (A + A
⊤)/2 of the

matrix A ≡ A(x) defined in Lemma 4.3.

Recalling that βs < βc < q/2 for q ≥ 3, the following lemma shows that Condition 4.5 is
satisfied under the assumptions on the inverse temperature parameter in Theorem 1.5 (i.e.
β < βs) and Theorems 1.7 and 1.8 (i.e. β ≥ βs). Note that, however, Condition 4.5 is satisfied
under more general assumptions (e.g. λ(ê, β, q) = 2β/q < 1 holds for any β < q/2).

Lemma 4.6. Let a, a′, b be as defined in Lemma 4.3, θ(x, β, q) be as defined in Lemma 4.4,

and λ(x, β, q) be as defined in Condition 4.5. Then, one has λ(ê, β, q) = 2β/q, and

λ(Tj šβ,q, β, q) =
1

2

(
a+ a′ +

√
(a− a′)2 + (q − 1)b2

)
, j ∈ [q].

Moreover, for all q ≥ 3, the following statements hold:

(1) If x = ê and β ≤ βc, then θ(ê, β, q) = λ(x, β, q) = 2β/q < 1.

(2) If x = T
j šβ,q, j ∈ [q], and β ≥ βc, then 0 < b < a′ < a = θ(x, β, q) < λ(x, β, q) < 1.

The proof of Lemma 4.6, which involves fairly lengthy computations, will also be deferred to
Appendix B.3. Parts of the proof are essentially embedded in the proofs of [EW90, Theo-
rem 2.1, Proposition 2.2]; however, we will provide a complete, self-contained proof.

The rest of this section focuses on proving Theorems 1.7 and 1.8 in the low-temperature regime
β ≥ βs, and is organised as follows. In Section 4.1, we show that with high probability, the

Glauber dynamics restricted to Ω̃(x, r) will stay in Ω̃(x, 4r5 ) and thus avoid the boundary

for O(N log(N)2) time. Next, in Section 4.2, we specify a coupling of two copies of the

restricted dynamics that is contracting according to (1.1) as long as they stay within Ω̃(x, 4r5 ).
With these two results, the proof of Theorem 1.8 is rather straightforward and is given in
Section 4.3. Finally, we assemble the proof of Theorem 1.7 in Section 4.4, and briefly describe
the modifications needed to prove Theorem 1.5 in the high-temperature regime β < βs in
Section 4.5.

4.1. Concentration of the restricted Glauber dynamics. Consider the Glauber dynam-

ics for the Curie-Weiss-Potts model restricted to Ω̃(x, r) = {σ ∈ Ω : ‖S(σ) − x‖2 ≤ r}, denoted

by (σ̃t)t≥0, with initial state σ ∈ Ω̃(x, r). We shall denote the underlying probability measure
by P

x
σ, the expectation by E

x
σ, and the corresponding natural filtration by Ft.

The main goal of this section is to show that if the restricted Glauber dynamics starts in

Ω̃(x, r5), then, with high probability, it will stay within Ω̃(x, 4r5 ) and avoid the boundary for



18 ROXANNE HE AND JACKIE LOK

O(N log(N)2) time – this is chosen to be a sufficiently long period relative to the mixing time

given in Theorem 1.8. Moreover, if the chain starts outside Ω̃(x, r5), then it will enter the

region in O(N) time.4 To be precise, we will prove the following:

Lemma 4.7. For any x ∈ Sβ,q, define the stopping times

τout := inf

{
t ≥ 0 : σ̃t /∈ Ω̃

(
x,

4r

5

)}
and τin := inf

{
t ≥ 0 : σ̃t ∈ Ω̃

(
x,

r

5

)}
.

Suppose that Condition 4.5 is satisfied and r is sufficiently small. Then the following hold:

(1) There exists a constant c > 0 such that for all γ > 0 and N large enough,

P
x
σ

(
τout ≤ γN log(N)2

)
≤ 2 exp

{
− cN

γ log(N)2

}
,

for all σ ∈ Ω̃(x, r5 ).

(2) There exists a constant γ∗ > 0 and c > 0 such that for all N large enough,

P
x
σ (τin > γ∗N) ≤ e−cN ,

for all σ ∈ Ω̃(x, r).

For any x ∈ Sβ,q, let (St)t≥0 with St := S(σ̃t), considered as a row vector, denote the propor-

tions chain induced by the Glauber dynamics restricted to Ω̃(x, r), which is a Markov chain
on {s ∈ S : ‖s − x‖2 ≤ r}. We will also define the corresponding centred proportions chain

(Ŝt)t≥0 by

Ŝt ≡ Ŝt(x) := St − x. (4.4)

The following lemma describes the dynamics of the centred proportions chain (Ŝt)t≥0 up to
leading order by using Taylor series expansions for computing the drift.

Lemma 4.8. Let (σ̃t)t≥0 be the Glauber dynamics restricted to Ω̃(x, r) for any x ∈ Sβ,q, and

Ŝt be defined as above. Assuming that σ̃t is not at the boundary, then

E
x
σ

[
Ŝt+1 − Ŝt | Ft

]
=

1

N

(
−Ŝt(I−A

⊤) +O
(
‖Ŝt‖22

))
+O(N−2),

where A ≡ A(x) is the matrix related to the Jacobian of gβ at x from Lemma 4.3, I is the

q × q identity matrix, and the O(·) terms are understood to hold elementwise.

Proof. Let ek denote the standard basis vectors in R
q. Recall that the coordinates of St ∈ S

denote the proportions of vertices with each of the q colours. According to the Glauber
dynamics, the randomly selected vertex has colour k ∈ [q] with probability Sk

t , and recoloured
with a new colour ℓ ∈ [q] with probability gℓβ

(
St −N−1ek

)
. Thus, Sℓ

t increases by N−1 with
probability

P
x
σ

(
Sℓ
t+1 = Sℓ

t +N−1
)
=
∑

k∈[q]
k 6=ℓ

gℓβ
(
St −N−1ek

)
Sk
t

=

q∑

k=1

gℓβ
(
St −N−1ek

)
Sk
t − gℓβ

(
St −N−1eℓ

)
Sℓ
t

=
(
1− Sℓ

t

)(
gℓβ (St) +O(N−1)

)
,

4Note that the factors 4/5 and 1/5 in the nested ℓ2 balls with radii of order O(r) were chosen arbitrarily.
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where we used a Taylor series expansion of gℓβ around St and the fact that
∑q

k=1 S
k
t = 1 for

the last equality. Similarly, Sℓ
t decreases by N−1 with probability

P
x
σ

(
Sℓ
t+1 = Sℓ

t −N−1
)
=
∑

k∈[q]
k 6=ℓ

gkβ
(
St −N−1eℓ

)
Sℓ
t

=

q∑

k=1

gkβ
(
St −N−1eℓ

)
Sℓ
t − gℓβ

(
St −N−1eℓ

)
Sℓ
t

= Sℓ
t

(
1− gℓβ (St) +O(N−1)

)
.

Therefore, for all ℓ = 1, . . . , q, one has

Ŝℓ
t+1 − Ŝℓ

t =




+ 1

N , w.p. (1− Sℓ
t )
(
gℓβ (St) +O(N−1)

)
,

− 1
N , w.p. Sℓ

t

(
1− gℓβ (St) +O(N−1)

)
,

and hence

E
x
σ

[
Sℓ
t+1 − Sℓ

t | Ft

]
= N−1

(
−Sℓ

t + gℓβ(St)
)
+O(N−2). (4.5)

First, we consider the case x = ê. Using a Taylor series expansion of gℓβ around ê, together
with Lemmas 4.2 and 4.3, we obtain

gℓβ (St) =
1

q
+∇gℓβ(ê)Ŝ

⊤
t +O(‖Ŝt‖22) =

1

q
+

2β

q
Ŝℓ
t +O(‖Ŝt‖22).

Thus, from (4.5), it follows that for all ℓ = 1, . . . , q,

E
ê
σ

[
Sℓ
t+1 − Sℓ

t | Ft

]
= N−1

(
−
(
1− 2β

q

)
Ŝℓ
t +O

(
‖Ŝt‖22

))
+O(N−2).

Next, we consider the case x = T
j šβ,q, j ∈ [q]. By symmetry, it suffices to consider x =

T
1šβ,q = šβ,q. Using a Taylor series expansion of gℓβ around šβ,q, together with Lemma 4.2,

we obtain
gℓβ (St) = šℓβ,q +∇gℓβ(šβ,q)Ŝ

⊤
t +O(‖Ŝt‖22).

Furthermore, since Ŝt = St − šβ,q, Lemma 4.3 implies that

∇g1β(šβ,q)Ŝ
⊤
t = aŜ1

t ,

∇gℓβ(šβ,q)Ŝ
⊤
t = −bŜ1

t + a′Ŝℓ
t , ℓ = 2, . . . , q.

Thus, from (4.5), it follows that

E
šβ,q
σ

[
Ŝ1
t+1 − Ŝ1

t | Ft

]
= N−1

(
−(1− a)Ŝ1

t +O
(
‖Ŝt‖22

))
+O(N−2).

For ℓ = 2, . . . , q, it follows that

E
šβ,q
σ

[
Ŝℓ
t+1 − Ŝℓ

t | Ft

]
= N−1

(
−(1− a′)Ŝℓ

t − bŜ1
t +O

(
‖Ŝt‖22

))
+O(N−2). �

We will now prove Lemma 4.7 using the formula for the drift of the centred proportions
vector given in Lemma 4.8. The proof relies on some standard hitting time estimates for
supermartingale-like processes provided in [Cuf+12, Lemma 2.1]. For the reader’s convenience,
we restate the parts that we use in the following lemma.

Lemma 4.9 ([Cuf+12, Parts (1) and (2) of Lemma 2.1]). Let (Dt)t≥0 be a discrete-time process,

adapted to (Ft)t>0, with D0 = d0 ∈ R and underlying probability measure Pd0 . Suppose that
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• There exists δ ≥ 0 such that Ed0 [Dt+1 −Dt | Ft] ≤ −δ on {Dt ≥ 0} for all t ≥ 0.

• There exists R ≥ 0 such that |Dt+1 −Dt| ≤ R for all t ≥ 0.

Let τ−d := inf{t : Dt ≤ d} and τ+d := inf{t : Dt > d}. Then the following statements hold:

(1) If d0 ≤ 0 then for any d1 ≥ R and t2 ≥ 0,

Pd0(τ
+
d1

≤ t2) ≤ 2 exp

{
−(d1 −R)2

8t2R2

}
.

(2) If δ > 0 and d0 ≥ 0, then for any t1 ≥ d0/δ,

Pd0(τ
−
0 > t1) ≤ exp

{
−(δt1 − d0)

2

8t1R2

}
.

Proof of Lemma 4.7. Consider the case where the restricted Glauber dynamics σ̃t is not on

the boundary, and thus all possible moves are allowed. If we write Ŝt+1 = Ŝt + ξt+1, then

E
x
σ

[
‖Ŝt+1‖22 | Ft

]
= E

x
σ

[
‖Ŝt‖22 + ‖ξt+1‖22 + 2〈ξt+1, Ŝt〉 | Ft

]

= ‖Ŝt‖22 + E
x
σ

[
‖ξt+1‖22 | Ft

]
+ 2〈Ex

σ [ξt+1 | Ft] , Ŝt〉. (4.6)

First, we have the estimate

‖ξt+1‖22 = ‖Ŝt+1 − Ŝt‖22 = ‖St+1 − St‖22 ≤ 2N−2. (4.7)

Next, if A ≡ A(x) denotes the matrix related to the Jacobian of gβ at x from Lemma 4.3,
then Lemma 4.8 implies that

E
x
σ [ξt+1 | Ft] = E

x
σ

[
Ŝt+1 − Ŝt | Ft

]
=

1

N

(
−Ŝt(I−A

⊤) +O
(
‖Ŝt‖22

))
+O(N−2),

We claim that

〈Ex
σ [ξt+1 | Ft] , Ŝt〉 ≤ −(1− λ(x, β, q) +O(‖Ŝt‖2))

N
‖Ŝt‖22 +O(N−2), (4.8)

where λ(x, β, q) is the maximum absolute eigenvalue of the symmetric matrix (A + A
⊤)/2,

which satisfies λ(x, β, q) ∈ (0, 1) assuming Condition 4.5 holds. The claim (4.8) follows from
the following inequality involving the quadratic form of A: for any s ∈ R

q,

〈sA⊤, s〉 = sAs⊤ = s

(
A+A

⊤

2

)
s⊤ ≤ λ(x, β, q)‖s‖22.

The second equality follows from the decomposition A = (A+A
⊤)/2+(A−A

⊤)/2 of A into its
symmetric and skew-symmetric parts, and using the fact that the quadratic form corresponding
to the skew-symmetric part is identically zero. The inequality follows from diagonalising the
real symmetric matrix (A +A

⊤)/2 to perform an orthogonal change of basis, and bounding
the corresponding eigenvalues by λ(x, β, q).

Hence, by plugging the bound (4.8) back into (4.6) and using the fact that ‖Ŝt‖2 ≤ r, it follows
that if the restricted dynamics is not on the boundary, then

E
x
σ

[
‖Ŝt+1‖22 − ‖Ŝt‖22 | Ft

]
≤ −2(1− λ(x, β, q) +O(r))

N
‖Ŝt‖22 +O(N−2). (4.9)

The right-hand side of (4.9) is negative for large enough N and small enough r.

Now consider the case where the restricted dynamics is on the boundary. Since there is a

possible move that leads to rejection, we must have ‖Ŝ(σt)‖2 > r −
√
2N−1. Moreover, since
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each move that increases ‖Ŝt‖22 is rejected, we may upper bound the change in ‖Ŝt‖22 by using
the bound (4.9) from above, where all possible moves are accepted. Therefore, we have

E
x
σ

[
‖Ŝt+1‖22 − ‖Ŝt‖22 | Ft

]
≤ −2(1− λ(x, β, q) +O(r))

N

(
r −

√
2

N

)2

+O(N−2) (4.10)

Now, by the triangle inequality and (4.7), one has

‖Ŝt+1‖22 − ‖Ŝt‖22 =
(
‖Ŝt+1‖2 + ‖Ŝt‖2

)(
‖Ŝt+1‖2 − ‖Ŝt‖2

)
≤ 2r‖ξt+1‖2 < 4rN−1.

Thus, from the discussion above, we know that the increments of ‖Ŝt‖22 are negative and satisfy
the conditions of Lemma 4.9 with δ ≥ 0 and R = 4rN−1.

For Part (1), given any initial state σ ∈ Ω̃(x, r5) with ‖Ŝ0‖2 ≤ r/5, note that the restricted

dynamics is separated from the boundary before τout. Furthermore, observe that if ‖Ŝt‖2 −
‖Ŝ0‖2 > 3r/5, then ‖Ŝt‖22 − ‖Ŝ0‖22 > (3r/5)2. Therefore, applying Part (1) of Lemma 4.9 to

the process Dt = ‖Ŝt‖22 − ‖Ŝ0‖22, with t2 = γN log(N)2 and d1 = (r/5)2, shows that

P
x
σ

(
τout ≤ γN log(N)2

)
≤ Pd0

(
τ+d1 ≤ γN log(N)2

)
≤ 2 exp

{
− cN

γ log(N)2

}
,

for some constant c > 0 depending on r, which completes the proof of Part (1).

For Part (2), given any initial state σ ∈ Ω̃(x, r), note that before τin, one has ‖Ŝt‖22 > r/5.

Thus, from (4.9) and (4.10), we deduce that during this period, the increments of ‖Ŝt‖22 satisfy
the conditions of Lemma 4.9 with δ = C ′N−1 > 0 for some positive constant C ′ depending
on r, β, q. Therefore, choosing γ∗ = 4/C ′ and applying Part (2) of Lemma 4.9 to the process

Dt = ‖Ŝt‖22 − (r/5)2 with t1 = γ∗N yields

P
x
σ (τin > γ∗N) = Pd0

(
τ−0 > γ∗N

)
≤ e−cN ,

for some constant c > 0 depending on γ∗ and r, which completes the proof of Part (2). �

4.2. A contracting coupling of the restricted Glauber dynamics. Let (Wt, Zt)t≥0 be
a coupling for two copies of the Glauber dynamics for the Curie-Weiss-Potts model restricted

to Ω̃(x, r), with transitions to be specified later. We write P
x
σ,τ for the underlying probability

measure of the coupling with initial states σ, τ ∈ Ω̃(x, r), Ex
σ,τ for the expectation, and denote

the natural filtration of the process by Ft.

The main result of this section is the following, which states that there exists a coupling such
that the Hamming distance between the two chains is decreasing on average, as long as they

stay within the good region Ω̃(x, 4r5 ) and thus avoid the boundary.

Lemma 4.10. For any γ > 0, define the event

B :=
{
For all t ≤ γN log(N)2, Wt ∈ Ω̃(x, 4r5 ) and Zt ∈ Ω̃(x, 4r5 )

}
. (4.11)

Suppose that Condition 4.5 is satisfied and r is sufficiently small. Then for all σ, τ ∈ Ω̃(x, r5),

there exists a coupling (Wt, Zt)t≥0 of the Glauber dynamics restricted to Ω̃(x, r), starting from

σ and τ , such that if r is sufficiently small and N is large enough, then for all t ≤ γN log(N)2,

E
x
σ,τ [dH(Wt+1, Zt+1)1B ] ≤

(
1− 1− θ(x, β, q)

2N

)t

dH(σ, τ)Px
σ,τ (B), (4.12)

where θ(x, β, q) < 1 is as defined in Lemma 4.4.
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Proof. We first specify the coupling (Wt, Zt)t≥0 by defining its transitions. Let (W0, Z0) =
(σ, τ). At time t+1, choose a vertex v ∈ [N ] uniformly at random and draw new colours i, j ∈
[q] according to an optimal coupling of gβ

(
S(Wt)−N−1eWt(v)

)
and gβ

(
S(Zt)−N−1eZt(v)

)
,

which are the conditional spin distributions at v of Wt and Zt. Next, propose two new con-
figurations σ′, τ ′ ∈ Ω by recolouring the vertex v of Wt and Zt with i and j respectively,
i.e.

σ′(u) =

{
Wt(u), if u 6= v,

i, if u = v,
and τ ′(u) =

{
Zt(u), if u 6= v,

j, if u = v.

If σ′ ∈ Ω̃(x, r), then set Wt+1 = σ′. Otherwise, reject the move and set Wt+1 = Wt. Similarly,

set Zt+1 = τ ′ if τ ′ ∈ Ω̃(x, r), and otherwise set Zt+1 = Zt. Note that once the two chains
have coalesced (i.e. they are equal at some time), then they will continue to move together
afterwards.

Given that both proposed moves are accepted, the probability that the colour at v differs
between the two chains is equal to

ρ := dTV

(
gβ
(
S(Wt)−N−1eWt(v)

)
, gβ

(
S(Zt)−N−1eZt(v)

))

=
1

2

∥∥gβ
(
S(Wt)−N−1eWt(v)

)
− gβ

(
S(Zt)−N−1eZt(v)

)∥∥
1
.

If the two chains have the same colour at v at time t, say Wt(v) = Zt(v) = ℓ ∈ [q], then by
Taylor series expansion of the function gkβ around S(Wt), we have

gkβ
(
S(Wt)−N−1eℓ

)
− gkβ

(
S(Zt)−N−1eℓ

)

= gkβ (S(Wt))− gkβ (S(Zt)) +N−1
(
∇gkβ(S(Wt))−∇gkβ(S(Zt))

)
e⊤ℓ +O(N−2).

By further Taylor series expansion of ∇gkβ around x, and using the fact that both ‖S(Wt)−x‖1
and ‖S(Zt)− x‖1 are less than r, we have

gkβ
(
S(Wt)−N−1eℓ

)
− gkβ

(
S(Zt)−N−1eℓ

)
= gkβ (S(Wt))− gkβ(S(Zt)) +O(r)N−1 +O(N−2).

Here, the notation O(·) hides constants related to the derivatives of gkβ and ∇gkβ . Hence, by
summing over the q colours and using the triangle inequality, we obtain the following bound
for the probability that the two chains disagree after an update at v:

ρ ≤ ‖gβ (S(Wt))− gβ (S(Zt))‖1 +O(r)N−1 +O(N−2).

On the other hand, if Wt(v) 6= Zt(v), we have a cruder bound:

ρ ≤ ‖gβ (S(Wt))− gβ (S(Zt))‖1 +O(N−1).

Observe that on the event B, both chains avoid the boundary, and thus none of the proposed
moves are rejected before γN log(N)2 time. Hence, during this period, the distance between
the two copies will increase by one if v is selected to be one of the vertices where Wt and Zt

agree, and i 6= j. On the other hand, the distance will decrease by one if v is selected to be one
of the vertices where Wt and Zt disagree, and i = j. Otherwise, the distance does not change.
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Therefore, we have

E
x
σ,τ [dH(Wt+1, Zt+1)1B − dH(Wt, Zt)1B | Ft]

≤ 1B

(
1− dH(Wt, Zt)

N

)(
1

2
‖gβ (S(Wt))− gβ (S(Zt))‖1 +O(r)N−1 +O(N−2)

)

− 1B
dH(Wt, Zt)

N

(
1− 1

2
‖gβ (S(Wt))− gβ (S(Zt))‖1 +O(N−1)

)

≤ −1B
(
dH(Wt, Zt)

N

(
1− ‖gβ (S(Wt))− gβ(S(Zt))‖1

2dH(Wt, Zt)N−1

)
+O(r)N−1 +O(N−2)

)
.

Note that ‖S(σ′)−S(τ ′)‖1 ≤ 2dH(σ′, τ ′)N−1 for any pair σ′, τ ′ ∈ Ω, since each location where
they differ contributes at most 2N−1 to ‖S(σ′) − S(τ ′)‖1. Since Lemma 4.4 implies that gβ
is (θ(x, β, q) +O(r))-Lipschitz around x with θ(x, β, q) < 1 assuming Condition 4.5 holds, we
have

E
x
σ,τ [dH(Wt+1, Zt+1)1B − dH(Wt, Zt)1B | Ft]

≤ −1B
(
dH(Wt, Zt)

N

(
1− ‖gβ (S(Wt))− gβ (S(Zt))‖1

‖S(Wt)− S(Zt)‖1

)
+O(r)N−1 +O(N−2)

)

≤ −(1− θ(x, β, q) +O(r))dH(Wt, Zt) +O(r) +O(N−1)

N
1B

≤ −1− θ(x, β, q)

2N
dH(Wt, Zt)1B ,

for sufficiently small r and large N . By taking expectations on both sides, we obtain

E
x
σ,τ [dH(Wt+1, Zt+1)1B ] ≤

(
1− 1− θ(x, β, q)

2N

)
E
x
σ,τ [dH(Wt, Zt)1B ] .

The proof is then completed by iterating this bound. �

4.3. Mixing time results for the restricted Glauber dynamics. This section is devoted
to the proof of Theorem 1.8. By standard results for the coupling method (see [LP17, Corollary
5.5]), the mixing time of a Markov chain is bounded by the tail probabilities of the coalescence

time of couplings (Wt, Zt)t≥0 of two copies of the chain, defined by

τcouple := inf{t : Wt = Zt for all s ≥ t},
starting from all pairs of initial configurations. Therefore, in order to prove Theorem 1.8, it
suffices to prove the following lemma:

Lemma 4.11. Suppose that Condition 4.5 is satisfied and r is sufficiently small. Then for all

σ, τ ∈ Ω̃(x, r), there exists a coupling (Wt, Zt)t≥0 of the Glauber dynamics restricted to Ω̃(x, r),
starting from σ and τ , such that

lim sup
N→∞

max
σ,τ∈Ω̃(x,r)

P
x
σ,τ

(
τcouple >

2

1− θ(x, β, q)
N log(N) + γ∗N + αN

)
→ 0 as α → ∞,

where θ(x, β, q) < 1 is as defined in Lemma 4.4 and γ∗ > 0 is the constant from Part (2) of

Lemma 4.7.

For the proof of Lemma 4.11, we shall use the following coupling of the restricted Glauber

dynamics, starting from σ, τ ∈ Ω̃(x, r). In the first phase, we run the two copies independently

until they are both inside Ω̃(x, r5 ). In the second phase, the two chains are then coupled using
the coupling previously described in Section 4.2. If at any time the two copies coalesce, the
two chains will move together afterwards.
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The proof then proceeds in two steps. First, we show that if both copies of the restricted

dynamics start in Ω̃(x, r5), then the coalescence time is of order O(N log(N)) with high prob-
ability.

Lemma 4.12. Consider the coupling of the restricted Glauber dynamics described above, start-

ing from any σ, τ ∈ Ω̃(x, r5). If Condition 4.5 is satisfied and r is sufficiently small, then for

all α > 0,

P
x
σ,τ

(
τcouple >

2

1− θ(x, β, q)
N log(N) + αN

)
≤ exp

{
−1− θ(x, β, q)

2
α

}
+4N exp

{
− cN

γ log(N)2

}
,

where γ = 2/(1 − θ(x, β, q)) + α, θ(x, β, q) < 1 is as defined in Lemma 4.4, and c > 0 is the

constant from Part (1) of Lemma 4.7.

Proof. Let B be the event defined in Lemma 4.10 with γ = 2/(1 − θ(x, β, q)) + α. Since the
Hamming distance between any two configurations is bounded by N , we have

E
x
σ,τ [dH(Wt, Zt)] = E

x
σ,τ [dH(Wt, Zt)1B] + E

x
σ,τ [dH(Wt, Zt)1Bc ]

≤ E
x
σ,τ [dH(Wt, Zt)1B] +NP

x
σ,τ (B

c). (4.13)

By applying Part (1) of Lemma 4.7 to each copy of the restricted Glauber dynamics and using
a union bound, we have

P
x
σ,τ (B) > 1− 4 exp

{
− cN

γ log(N)2

}

for all initial states σ, τ ∈ Ω̃(x, r5). It then follows from Lemma 4.10 that for all t ≤ γN log(N)2,

E
x
σ,τ [dH(Wt, Zt)] ≤

(
1− 1− θ(x, β, q)

2N

)t

dH(σ, τ)Px
σ,τ (B) +NP

x
σ,τ (B

c)

≤ exp

{
1− θ(x, β, q)

2N
t

}
dH(σ, τ) + 4N exp

{
− cN

γ log(N)2

}
. (4.14)

Since P
x
σ,τ (τcouple > t) = P

x
σ,τ (dH (Wt, Zt) ≥ 1), an application of Markov inequality yields

P
x
σ,τ (τcouple > t) ≤ E

x
σ,τ [dH (Wt, Zt)] ≤ N exp

{
−1− θ(x, β, q)

2N
t

}
+ 4N exp

{
− cN

γ log(N)2

}
.

By substituting t = (2/(1− θ(x, β, q))N log(N)+αN above, we obtain the desired bound. �

Since both chains will enter Ω̃(x, r5) in O(N) time, starting from any pair of configurations in

Ω̃(x, r), we can now prove Lemma 4.11 using Lemma 4.12.

Proof of Lemma 4.11. For all σ, τ ∈ Ω̃(x, r), it follows from applying Part (2) of Lemma 4.7 to
each copy of the restricted dynamics, running independently in the first phase of the coupling,
and using a union bound, that

P
x
σ,τ

(
τcouple >

2
1−θ(x,β,q)N log(N) + γ∗N + αN

)

≤ P
x
σ,τ

(
τcouple >

2
1−θ(x,β,q)N log(N) + γ∗N + αN, Wγ∗N ∈ Ω̃(x, r5), Zγ∗N ∈ Ω̃(x, r5 )

)

+ P
x
σ,τ

(
{Wγ∗N /∈ Ω̃(x, r5)} ∪ {Zγ∗N /∈ Ω̃(x, r5)}

)

≤ P
x
σ,τ

(
τcouple >

2
1−θ(x,β,q)N log(N) + γ∗N + αN, Wγ∗N ∈ Ω̃(x, r5), Zγ∗N ∈ Ω̃(x, r5 )

)
+ o(1).
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By using Lemma 4.12, noting that the upper bound is independent of the starting states, and

the strong Markov property, it follows that for generic σ′, τ ′ ∈ Ω̃(x, r5),

P
x
σ,τ

(
τcouple >

2
1−θ(x,β,q)N log(N) + γ∗N + αN, Wγ∗N ∈ Ω̃(x, r5 ), Zγ∗N ∈ Ω̃(x, r5 )

)

≤ P
x
σ′,τ ′

(
τcouple >

2
1−θ(x,β,q)N log(N) + αN

)

≤ exp

{
−1− θ(x, β, q)

2
α

}
+ 4N exp

{
− cN

γ log(N)2

}
.

By combining the last two displays, we obtain the bound

P
x
σ,τ

(
τcouple >

2

1− θ(x, β, q)
N log(N) + γ∗N + αN

)
≤ exp

{
−1− θ(x, β, q)

2
α

}
+ o(1),

as N → ∞, which completes the proof. �

4.4. Approximation result in low-temperature regime. In this section, we assemble the
results from the previous sections to prove our main result when β ≥ βs.

Proof of Theorem 1.7. First, we note that Condition 4.5 holds under the assumption β ≥ βs by

Lemma 4.6. Let X̃t be the Glauber dynamics restricted to Ω̃(x, r) with stationary distribution
µ̃. The generator for the restricted Glauber dynamics takes the same form as given in (2.14),

except that some of the terms in the sum corresponding to moves outside Ω̃(x, r) are omitted

(i.e. when σ(v,k) /∈ Ω̃(x, r), and µ̃v(k | σ) = 0 = ν̃v(k | σ)). Thus, applying Lemma 2.1 with
the obvious modifications yields

|Eh(X̃)− Eh(Ỹ )| ≤ 1

N

N∑

j=1

q∑

k=1

E

[∣∣∣gkβ(S(Ỹ ))− xk
∣∣∣ ·
∣∣∣fh(Ỹ (j,k))− fh(Ỹ )

∣∣∣1Ỹ (j,k)∈Ω̃

]
, (4.15)

where we may define fh : Ω̃(x, r) → R outside its support arbitrarily, with a slight abuse of

notation. Next, we aim to bound
∣∣∣fh(Ỹ (j,k))− fh(Ỹ )

∣∣∣, uniformly over all the possible pairs of

states Ỹ , Ỹ (j,k). By Lemma 2.2, we have

|fh(σ)− fh(τ)| ≤ ‖L(h)‖∞
∞∑

t=1

N∑

i=1

P
x
σ,τ (Wt(i) 6= Zt(i)) (4.16)

for any σ, τ ∈ Ω̃(x, r), and any sequence of couplings (Wt, Zt) of the t-step distributions of X̃t,
starting from σ and τ . Let tN := γN log(N)2, where γ > 0 is a constant to be chosen large
enough later. Then we may decompose the sum in (4.16) as follows:

∞∑

t=0

N∑

i=1

P
x
σ,τ (Wt(i) 6= Zt(i)) =

tN−1∑

t=0

E
x
σ,τ [dH (Wt, Zt)] +

∞∑

t=tN

N∑

i=1

P
x
σ,τ (Wt(i) 6= Zt(i)) . (4.17)

First, we will control the tail sum in (4.17) by appealing to the mixing time of X̃t, which was
shown to satisfy txmix = O(N log(N)) in Theorem 1.8. Suppose that for each t ≥ tN , we choose

(Wt, Zt) to be an optimal coupling of the t-step distributions of X̃t, so that the probability that
Wt 6= Zt is equal to the total variation distance between the corresponding t-step distributions.
Since this decays geometrically for multiples of the mixing time by [LP17, Lemma 4.10 and
Equation (4.33)], there exists a constant c > 0 such that for all t ≥ tN and vertices i ∈ [N ],

P
x
σ,τ (Wt(i) 6= Zt(i)) ≤ 2−t/txmix ≤ exp

{
− ct

N log(N)

}
.
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Therefore, by using the inequality e−a ≤ 1 − a/2 for 0 ≤ a ≤ 3/2 to simplify the geometric
series, and choosing γ to be large enough (e.g. γ > 3/c), for large enough N , we have

∞∑

t=tN

N∑

i=1

P
x
σ,τ (Wt(i) 6= Zt(i)) ≤

∞∑

t=tN

N exp

{
− ct

N log(N)

}
≤ 2

c
N2−cγ log(N) ≤ N−1. (4.18)

Next, we will bound the finite sum in (4.17), which requires a more delicate analysis to show

that X̃t can be coupled such that it is contracting on a good set. For t < tN , let (Wt, Zt) be

the coupling of two copies of X̃t described in Lemma 4.10. In the proof of Lemma 4.12, we

showed in (4.14) that if σ, τ ∈ Ω̃(x, r5), then for all t ≤ tN , this coupling satisfies

E
x
σ,τ [dH (Wt, Zt)] ≤

(
1− 1− θ(x, β, q)

2N

)t

dH(σ, τ) + 4N exp

{
− cN

γ log(N)2

}
.

Therefore, for any arbitrary σ ∈ Ω̃(x, r) and τ = σ(v,k) (with dH(σ, τ) = 1), we have

tN−1∑

t=0

E
x
σ,τ [dH (Wt, Zt)] ≤

tN−1∑

t=0

(
1− 1− θ(x, β, q)

2N

)t

1

σ,τ∈Ω̃(x, r
5
)
+ 4Ne

− cN

γ log(N)2
1

σ,τ∈Ω̃(x, r
5
)

+NtN1{σ/∈Ω̃(x, r
5
)}∪{τ /∈Ω̃(x, r

5
)}. (4.19)

Note that we may further bound the geometric series by 2N
1−θ(x,β,q) . Furthermore, since σ and

τ differ in at most one site, σ ∈ Ω̃(x, r
10) implies that both σ, τ ∈ Ω̃(x, r5 ). By combining the

bounds (4.17)–(4.19) in (4.16), we obtain

∣∣∣fh(σ(j,k))− fh(σ)
∣∣∣ ≤ ‖L(h)‖∞N

(
2

1− θ(x, β, q)
+ 4 exp

{
− cN

γ log(N)2

}
+N−1 + tN1σ/∈Ω̃(x, r

10
)

)
.

Plugging this bound back into (4.15) yields

|Eh(X̃)− Eh(Ỹ )| ≤ ‖L(h)‖∞
(

2

1− θ(x, β, q)
+ o(1)

)
N E‖gβ(S(Ỹ ))− x‖1

+ ‖L(h)‖∞qγN2 log(N)2 P
(
Ỹ /∈ Ω̃(x, r

10 )
)
. (4.20)

It remains to show that the first term in (4.20) is of order O(
√
N) and the second term is of

order o(1) by analysing the concentration of the random vector Ỹ .

Let Y be the product measure on Ω(x, r) where the colour of each vertex is independently
distributed according to the probability vector x. Observe that NS(Y ) is a multinomial random
vector with N trials and probabilities E [S(Y )] = x, and the variance of each component is
given by Var

(
Sk(Y )

)
= N−1xk(1−xk). By using concentration inequalities for the multinomial

distribution (e.g. the Bretagnolle-Huber-Carol inequality [VW96, Proposition A.6.6]), we have

P

(
Y /∈ Ω̃(x, r

10 )
)
≤ O(e−c1N ) and P

(
Y ∈ Ω̃(x, r)

)
≥ 1−O(e−c2N ) ≥ 1

4
, (4.21)

for some constants c1, c2 > 0, and N large enough. Therefore, we may pass from the conditional

distribution Ỹ to the i.i.d. vector Y by using (4.21) to obtain

P

(
Ỹ /∈ Ω̃(x, r

10 )
)
= P

(
Y /∈ Ω̃(x, r

10 ) | Y ∈ Ω̃(x, r)
)
≤

P

(
Y /∈ Ω̃(x, r

10 )
)

P

(
Y ∈ Ω̃(x, r)

) ≤ 4e−c1N . (4.22)
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Furthermore, since the Lipschitz constant of gβ is bounded by θ(x, β, q)+O(r) from Lemma 4.4
with θ(x, β, q) < 1, we deduce that gβ is 1-Lipschitz for sufficiently small r, and hence

E‖gβ(S(Ỹ ))− gβ (x)‖1 ≤ E‖S(Ỹ )− x‖1. (4.23)

Since the ℓ1 norm in R
q is bounded by

√
q times the ℓ2 norm, applying Jensen’s inequality and

then using (4.21) to pass from the conditional distribution Ỹ to Y shows that

E‖S(Ỹ )− x‖1 ≤
√
q

√√√√
q∑

k=1

E

(
Sk(Ỹ )− xk

)2
≤ 2

√
q

√√√√
q∑

k=1

E (Sk(Y )− xk)
2 ≤ q√

N
. (4.24)

To conclude, by combining (4.20), (4.22), and (4.24), we have shown that

|Eh(X̃)− Eh(Ỹ )| ≤ ‖L(h)‖∞
(

2q

1− θ(x, β, q)
+ o(1)

)√
N,

which completes the proof. �

4.5. Approximation result in high-temperature regime. We conclude by discussing the
modifications of the proof in the previous section needed to prove our main result when β < βs
and there is a unique equilibrium macrostate x = ê in Sβ,q.

Proof of Theorem 1.5. When β < βs, Theorem 1.5 can be proved by considering the usual
Glauber dynamics for µ and ν directly, instead of the restricted dynamics. The proof follows
the same structure as the proof of Theorem 1.7 in Section 4.4, with the following changes
required:

(1) Obtaining a similar bound as Theorem 1.8 for the mixing time of the Glauber dynamics
for the Curie-Weiss-Potts model.

(2) Showing that the proportions chain of the Glauber dynamics concentrates around ê in a
ball of constant order for a sufficiently long period, analogous to Part (1) of Lemma 4.7.

(3) Proving that the Glauber dynamics is contracting as long as it is close enough to ê, as
described by (4.12) in Lemma 4.10.

The first two items have already been proved in [Cuf+12]: [Cuf+12, Theorem 1] shows that the
mixing time of the Glauber dynamics is of order O(N log(N)), and [Cuf+12, Proposition 3.3,
Part (1)] is a direct analogue of Part (1) of Lemma 4.7. Finally, since the two chains in the
proof of Lemma 4.10 are separated from the boundary in the analysis, it is apparent that (4.12)
also holds for the same coupling of the Glauber dynamics without the rejection step. �

In the temperature regime βs ≤ β < βc, where there is still a unique equilibrium macrostate
x = ê in Sβ,q, we may want to approximate the unconditional Curie-Weiss-Potts model by
a sequence of i.i.d. uniform spins. In this setting, the Glauber dynamics mixes rapidly after
excluding a subset of initial configurations (that are far from ê) with a probability mass ex-
ponentially small in N [Cuf+12, Theorem 4]. However, since the (worst-case) mixing time
is exponentially large in N [Cuf+12, Theorem 3], the proof of Theorem 1.5 described above
does not work (in particular, the approach to control the tail sum in (4.17) fails). Since the

Curie-Weiss-Potts model still concentrates in Ω̃(ê, r), we are able to prove the following weaker
result by using Theorem 1.7 and the definition of conditional expectation:
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Proposition 4.13. Suppose that βs ≤ β < βc. Let X ∈ Ω be distributed according to the

Curie-Weiss-Potts model and Y ∈ Ω be a random configuration with i.i.d. uniform spins. Then

there exist constants θ∗ > 0 and c, C ≥ 0 such that for any function h : Ω → R,

|Eh(X) − Eh(Y )| ≤ ‖L(h)‖∞θ∗
√
N + C‖h‖∞e−cN .

Proof. Let X̃ and Ỹ be the conditional random configurations in Ω̃(ê, r) as defined in The-

orem 1.7 with r chosen to be sufficiently small. Note that X̃
d
= X | X ∈ Ω̃(ê, r) and

Ỹ
d
= Y | Y ∈ Ω̃(ê, r). Observe that we can write Eh(X) as

E

[
h(X) | X ∈ Ω̃(ê, r)

]
+P

(
X /∈ Ω̃(ê, r)

)(
E

[
h(X) | X /∈ Ω̃(ê, r)

]
− E

[
h(X) | X ∈ Ω̃(ê, r)

])
,

and we have a similar expression for Eh(Y ). By taking the difference between these two
expressions and bounding h uniformly by ‖h‖∞, we obtain

|Eh(X)− Eh(Y )| ≤
∣∣∣Eh(X̃)− Eh(Ỹ )

∣∣∣+ 2‖h‖∞
(
P

(
X /∈ Ω̃(ê, r)

)
+ P

(
Y /∈ Ω̃(ê, r)

))
.

By using large deviations results for the Curie-Weiss-Potts model (see, e.g., [Cuf+12, Sec-

tion 2.2]) and the multinomial distribution (4.21), we deduce that X and Y are not in Ω̃(ê, r)
with exponentially small probability. Applying Theorem 1.7 to the first term completes the
proof. �

A. Proof of Lemma 3.2

In this section, we prove Lemma 3.2, which bounds the total variation distance between the
conditional spin distributions for the Potts model given two adjacent configurations.

Proof of Lemma 3.2. Recall that λ = e2β/N . We will prove that

tanh

(
β

N

)
− f(a, λ) ≥ 0

for all a = (a1, . . . , aq) ∈ R
q, independent of the value of a1 + · · ·+ aq. The key observation is

that we can write

tanh

(
β

N

)
=

eβ/N − e−β/N

eβ/N + e−β/N
=

λ− 1

λ+ 1
.

By elementary algebraic manipulations, f(a, λ) can be written as a single fraction as

(λ− 1)
(
(λ+ 1)λa1+a2−1 +

∑q
i=3 λ

a1+ai−1
)

λ2a1−1 + λ2a2+1 + (λ2 + 1)λa1+a2−1 + (λ+ 1)
∑q

i=3 λ
a1+ai−1 + (λ+ 1)

∑q
i=3 λ

a2+ai + (
∑q

i=3 λ
ai)

2 .

Consider writing tanh(β/N) − f(a, λ) as a single fraction over a common denominator by
combining the two preceding displayed equations. Note that the denominator is positive since
it is a product of two positive terms. The numerator, after cancelling terms and simplifying,
equals

(λ− 1)


λ2a1−1 + λ2a2+1 − 2λa1+a2 + (λ+ 1)

q∑

i=3

λa2+ai +

(
3∑

i=1

λai

)2

 .

Since λ > 1 (for β > 0), the numerator is non-negative if

λ2a1−1 + λ2a2+1 − 2λa1+a2 ≥ 0 ⇐⇒ λa1+a2
(
λa1−a2−1 + λ−(a1−a2−1) − 2

)
≥ 0.

Indeed, since λy+λ−y ≥ 2 for any λ > 0 and y ∈ R (following from the observation (λy−1)2 ≥
0), we conclude that the numerator is non-negative, which completes the proof. �
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B. Properties of gβ

We collect the proofs of Lemmas 4.3, 4.4, and 4.6 in this section. Recall from (2.3) that the
vector gβ(s) ∈ S has entries

gkβ(s) =
e2βs

k

∑q
j=1 e

2βsj
for k ∈ [q], s ∈ R

q.

Furthermore, recall from (4.2) and (4.3) that

s∗β,q =
1 + (q − 1)sβ,q

q
and šβ,q =

(
s∗β,q,

1− s∗β,q
q − 1

, . . . ,
1− s∗β,q
q − 1

)
∈ S,

where sβ,q is the largest solution of the equation (4.1) in Theorem 4.1. Finally, recall the
definitions of a, a′, and b from Lemma 4.3:

a = 2βqs∗β,q
1− s∗β,q
q − 1

, a′ = 2β
1− s∗β,q
q − 1

, b = 2β
1− s∗β,q
q − 1

(
s∗β,q −

1− s∗β,q
q − 1

)
.

Observe that these constants are related by the identity

a− a′ = 2β(qs∗β,q − 1)
1 − s∗β,q
q − 1

= (q − 1)b. (B.1)

B.1. Proof of Lemma 4.3. Let s1, s2 ∈ S. Since s1, s2 are both in the probability simplex
S, we have

∑q
k=1(s

k
1 − sk2) = 0. It can also be verified that

∂

∂sj
gkβ(s) =

{
−2βgjβg

k
β , k 6= j,

−2β(gkβ)
2 + 2βgkβ , k = j,

First, we consider the case x = ê. Since gβ(ê) = ê from Lemma 4.2, for all k = 1, . . . , q, we
have

∇gkβ(ê)(s1 − s2)
⊤ =

(
−2β

q2
+

2β

q

)
(sk1 − sk2) +

∑

j 6=k

(
−2β

q2

)
(sj1 − sj2)

=
2β

q
(sk1 − sk2) +

(
−2β

q2

) q∑

j=1

(sj1 − sj2) =
2β

q
(sk1 − sk2).

Next, we will consider the case x = T
1šβ,q = šβ,q. By symmetry, the proof for the other

T
j šβ,q, j = 2, . . . , q, is identical. Again, by Lemma 4.2, we have gβ(šβ,q) = šβ,q. Since the first

coordinate of šβ,q differs from the rest, we will consider the first coordinate separately:

∇g1β(šβ,q)(s1 − s2)
⊤ =

(
−2β(s∗β,q)

2 + 2βs∗β,q
)
(s11 − s12) +

q∑

k=2

(
−2βs∗β,q

1− s∗β,q
q − 1

)
(sk1 − sk2)

= 2βs∗β,q

(
1− s∗β,q +

1− s∗β,q
q − 1

)
(s11 − s12)−

(
2βs∗β,q

1− s∗β,q
q − 1

) q∑

k=1

(sk1 − sk2)

= 2βs∗β,q

(
1− s∗β,q +

1− s∗β,q
q − 1

)
(s11 − s12).
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For the remaining coordinates k = 2, . . . , q, it suffices to consider k = 2 by symmetry. We have

∇g2β(šβ,q)(s1 − s2)
⊤ =

(
−2βs∗β,q

1− s∗β,q
q − 1

)
(s11 − s12) +

(
−2β

(
1− s∗β,q
q − 1

)2

+ 2β
1− s∗β,q
q − 1

)
(s21 − s22)

+

q∑

k=3

(
−2β

(
1− s∗β,q
q − 1

)2
)
(sk1 − sk2)

= 2β
1− s∗β,q
q − 1

(s21 − s22)− 2β
1 − s∗β,q
q − 1

(
s∗β,q(s

1
1 − s12) +

q∑

k=2

1− s∗β,q
q − 1

(sk1 − sk2)

)

= 2β
1− s∗β,q
q − 1

(
(s21 − s22) +

(
−s∗β,q +

1− s∗β,q
q − 1

)
(s11 − s12)

)
. �

B.2. Proof of Lemma 4.4. Let x ∈ Sβ,q. Observe that gβ is a smooth function (in particular,
it has continuous and bounded second partial derivatives on the compact probability simplex
S). We claim that for any s1, s2 ∈ S,

‖J(x)(s1 − s2)
⊤‖1 ≤ θ(x, β, q)‖s1 − s2‖1, (B.2)

where J(x) denotes the Jacobian matrix of gβ at x (see Lemma 4.3). Assuming that (B.2)

holds, then by using a Taylor series expansion of gkβ around s1 for any k ∈ [q], we obtain

gkβ(s1)− gkβ(s2) = ∇gkβ(s1)(s1 − s2)
⊤ +O(‖s1 − s2‖21).

By assumption, ‖s1 − s2‖1 ≤ ‖s1 − x‖2 + ‖s2 − x‖2 ≤ 2r. By summing up coordinates and
writing J(s1) to denote the Jacobian matrix of gβ at s1, this implies that

‖gβ(s1)− gβ(s2))‖1 ≤ ‖J(s1)(s1 − s2)
⊤‖1 +O(r)‖s1 − s2‖1.

Furthermore, by the triangle inequality, we have

‖J(s1)(s1 − s2)
⊤‖1 ≤ ‖J(x)(s1 − s2)

⊤‖1 + ‖(J(s1)− J(x))(s1 − s2)
⊤‖1.

By (B.2), the first term is bounded by θ(x, β, q)‖s1 − s2‖1. Due to the smoothness of gβ
(i.e. using its higher derivatives which are bounded), the second term can be bounded by
O(r)‖s1 − s2‖1. Thus, this implies that the desired claim holds:

‖gβ(s1)− gβ(s2)‖1 ≤ (θ(x, β, q) +O(r))‖s1 − s2‖1.

We will now prove that (B.2) holds. Let A(x) denote the matrix related to the Jacobian of gβ
at x from Lemma 4.3 such that J(x)(s1 − s2)

⊤ = A(x)(s1 − s2)
⊤ for any s1, s2 ∈ S. If x = ê,

then we simply have

‖J(ê)(s1 − s2)
⊤‖1 =

2β

q
‖s1 − s2‖1 = θ(ê, β, q)‖s1 − s2‖1.

Next, we consider x = šβ,q ≡ T
1šβ,q. By symmetry, the proof is identical for the other Tj šβ,q,

j = 2, . . . , q. Since s1, s2 ∈ S, (sk1 − sk2) = −∑q
k=2(s

k
1 − sk2), and so by the triangle inequality,

|s11 − s12| ≤
q∑

k=2

|sk1 − sk2 |. (B.3)
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By putting in the form of A(šβ,q), and then using the triangle inequality and (B.3), we obtain

‖J(šβ,q)(s1 − s2)
⊤‖1 = a|s11 − s12|+

q∑

k=2

|a′(sk1 − sk2)− b(s11 − s12)|

≤ a|s11 − s12|+
q∑

k=2

(a′ + (q − 1)b)|sk1 − sk2 |. (B.4)

Since we have the identity a′ + (q − 1)b = a from (B.1), this shows that (B.2) holds:

‖J(šβ,q)(s1 − s2)
⊤‖1 ≤ a‖s1 − s2‖1 = θ(šβ,q, β, q)‖s1 − s2‖1. �

B.3. Proof of Lemma 4.6. Let A(x) be the matrix related to the Jacobian of gβ at x defined

in Lemma 4.3. For Part (1), when x = ê and A(ê) = 2β
q I, we have λ(ê, β, q) = 2β/q < 1 for

β ≤ βc, since βc < q/2 from Theorem 4.1.

For Part (2), when x = T
j šβ,q, we can use Theorem 4.1 again to deduce that 0 < b < a′: since

sβ,q is strictly increasing on [βc,∞), we have 1 > s∗β,q > (1 − s∗β,q)/(q − 1) > 0 for β ≥ βc,

which implies that 0 < b < a′. Furthermore, a′ < a follows from the identity a = a′ + (q − 1)b
from (B.1). Thus, it remains to show that a < λ(x, β, q) < 1 for β ≥ βc. By symmetry, it
suffices to consider the case x = T

1šβ,q = šβ,q. Due to the special form of (A + A
⊤)/2, its

eigenvalues can be explicitly computed: it has a repeated eigenvalue λi := a′, i = 2, . . . , q − 1
with multiplicity q − 2, and its remaining two eigenvalues are given by

λ1 :=
1

2

(
a+ a′ +

√
(a− a′)2 + (q − 1)b2

)
,

λq :=
1

2

(
a+ a′ −

√
(a− a′)2 + (q − 1)b2

)
.

Recall the identity a− a′ = (q − 1)b from (B.1). Thus, we may write λ1 and λq as

λ1 =
1

2

(
a+ a′ + (a− a′)

√
1 +

(q − 1)b2

(a − a′)2

)
=

1

2

(
a+ a′ + (a− a′)

√
1 +

1

q − 1

)
,

and

λq =
1

2

(
a+ a′ + (a− a′)

√
1− (q − 1)b2

(a− a′)2

)
=

1

2

(
a+ a′ − (a− a′)

√
1 +

1

q − 1

)
.

By further simplifying, we may write

λ1 = a+
1

2

(√
q

q − 1
− 1

)
(a− a′), and λq = a′ − 1

2

(√
q

q − 1
− 1

)
(a− a′).

Since we know that a− a′ > 0, we deduce that λ1 > λ2 = · · · = λq−1 > λq and a < λ1. (Note
that a ≤ λ1 holds for all β > 0.) By further plugging in the expressions for a and a′, we obtain

λ1 = 2β
1− s∗β,q
q − 1

(
(qs∗β,q + 1) +

√
q

q − 1
(qs∗β,q − 1)

)
, (B.5)

λq = 2β
1− s∗β,q
q − 1

(
(qs∗β,q + 1)−

√
q

q − 1
(qs∗β,q − 1)

)
. (B.6)

Since 2β(1− s∗β,q)/(q − 1) > 0 and

(qs∗β,q + 1)−
√

q

q − 1
(qs∗β,q − 1) ≥ (q + 1)−

√
q

q − 1
(q − 1) > 0, for all q ≥ 3,
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it follows from (B.6) that λq > 0. Hence, all the eigenvalues of (A +A
⊤)/2 are positive, and

its maximum absolute eigenvalue is given by λ(x, β, q) = λ1. It remains to show that λ1 < 1.
First, by Lemma 4.2 (or a simple substitution), s∗β,q solves the equation

s = g1β

((
s,

1− s

q − 1
, . . . ,

1− s

q − 1

))
=

e2βs

e2βs + (q − 1)e
2β 1−s

q−1

.

Therefore, by rearranging this equation, we deduce that s∗β,q satisfies

exp

{
−2β

qs∗β,q − 1

q − 1

}
=

1− s∗β,q
(q − 1)s∗β,q

.

By using this identity in (B.5), the maximum absolute eigenvalue λ1 can be written as

λ1 =
1− s∗β,q

2(qs∗β,q − 1)

(
(qs∗β,q + 1) +

√
q

q − 1
(qs∗β,q − 1)

)
log

(
(q − 1)s∗β,q
1− s∗β,q

)
,

and therefore

λ1 − 1 =
1− s∗β,q

2(qs∗β,q − 1)

(
(qs∗β,q + 1) +

√
q

q − 1
(qs∗β,q − 1)

)
f(s∗β,q),

where f is the function defined by

f(s) = log

(
(q − 1)s

1− s

)
− 2(qs − 1)

(1− s)
(
(qs+ 1) +

√
q

q−1(qs− 1)
) .

Since s∗β,q ∈ [1 − 1/q, 1], to show that λ1 − 1 < 0, it suffices to show that for all q ≥ 3, the

function f is decreasing for s ∈ [1− 1/q, 1] and f(1− 1/q) < 0. This may be verified through
an exercise in calculus as follows. First, define

g(s) = log

(
(q − 1)s

1− s

)
− 2(qs − 1)

(1− s) ((qs+ 1) + (5/4)(qs − 1))
.

Note that for all q ≥ 3 and s ≥ 1− 1/q, we have f(s) ≤ g(s). Hence, it suffices to show that
g(1− 1/q) < 0 and g′(s) < 0 for s ∈ [1− 1/q, 1]. It may be shown that

g(1 − 1/q) = 2 log (q − 1)− 8(q − 2)q

9q − 10
< 0

for all q ≥ 3. Moreover,

g′(s) =
−153q2s3 + 81q(q + 2)s2 − (82q + 9)s+ 1

(1− s)2s(1− 9qs)2
.

Since the denominator is positive, this reduces to the task of showing that the numerator

h(s) = −153q2s3 + 81q(q + 2)s2 − (82q + 9)s+ 1

is negative for all q ≥ 3 and s ∈ [1− 1/q, 1]. Indeed, since this is a cubic polynomial in s, this
is much simpler to verify and we omit the remaining details. �
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