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Intermittency refers to the broken self-similarity of turbulent flows caused by anomalous spatio-
temporal fluctuations. In this Letter, we ask how intermittency is affected by a non-dissipative
viscosity, known as odd viscosity, which appears in parity-breaking fluids such as magnetized poly-
atomic gases, electron fluids under magnetic field and spinning colloids or grains. Using a combi-
nation of Navier-Stokes simulations and theory, we show that intermittency is suppressed by odd
viscosity at small scales. This effect is caused by parity-breaking waves, induced by odd viscosity,
that break the multiple scale invariances of the Navier-Stokes equations. Building on this insight, we
construct a two-channel helical shell model that reproduces the basic phenomenology of turbulent
odd-viscous fluids including the suppression of anomalous scaling. Our findings illustrate how a
fully developed direct cascade that is entirely self-similar can emerge below a tunable length scale,
paving the way for designing turbulent flows with adjustable levels of intermittency.

In turbulent fluids, energy is transferred from large to
small length scales through a process known as a turbu-
lent cascade: large eddies tend to split into smaller and
smaller eddies until they are small enough to be dissi-
pated by viscosity [1–6]. The hierarchical structure of
the cascade suggests that it may exhibit a self-similarity
relating larger and smaller eddies [7, 8]. It turns out
that this self-similarity is only approximate [5]: smaller
eddies exhibit an increasing propensity for extreme ve-
locities, characterized by non-gaussian, fat-tailed distri-
butions [9–28] (see Fig. 1a). This phenomenon is known
as intermittency [5, 11].

The precise conditions that lead a turbulent cascade to
produce intermittency are still unknown [1, 29]. In the di-
rect cascade of the 3D Navier-Stokes equation, intermit-
tency (i.e. non-gaussianity) increases along the forward
cascade, a property known as “anomalous scaling”. Re-
ductions of this tendency have been reported in magneto-
hydrodynamics [30], nonlinear viscosity fluids [31], fluids
on fractal Fourier sets [32–35] or subject to rotation [36–
41]. It has been conjectured that self-similarity may be
restored in a direct cascade by a mathematical “surgery”
of Navier-Stokes equations that reduces the backward en-
ergy transfer through certain triadic interactions classi-
fied by the helicity of the modes involved [42]. However,
we are not aware of any example of a fully developed di-
rect cascade with no intermittency described by the 3D
Navier-Stokes equations.

In this Letter, we show that the increase of intermit-
tency, that typically occurs along a forward turbulent
cascade, can be suppressed by parity-breaking waves oc-
curring in fluids that display a non-dissipative viscosity,
known as odd viscosity, such as magnetized polyatomic
gases, graphene under magnetic field and spinning col-
loids or grains [43–58]. By controlling odd viscosity, we

can tune the length scale below which the growth of in-
termittency terminates, ultimately creating a fully devel-
oped forward turbulent cascade that is completely self-
similar, i.e. anomalous scaling is suppressed.

Turbulence with odd viscosity.—We consider the in-
compressible Navier-Stokes equation

Dtu = −∇P + ν∆u+ νoddêz ×∆u+ f (1)

where u(x, t) is the velocity, Dt = ∂t + u · ∇ the con-
vective derivative, f the external forcing, ν the normal
viscosity, êz the unit vector along z, and νodd the odd
viscosity. The odd viscosity term, that can be seen as a
scale-dependent Coriolis force, does not directly dissipate
or transfer energy, but affects energy transfer by inducing
“odd waves” with frequency ω±(k) = ±νoddkz|k| in the
fluid. Odd waves are parity-breaking, i.e. the frequency
changes sign when the definite helicity ± is flipped [56].
As shown in Ref. [59], odd waves progressively arrest the
forward energy flux starting from the characteristic scale
kodd = ϵ1/4ν

−3/4
odd (ϵ is the energy injection rate) where

ω±(k) is comparable with the eddy turnover rate. While
a qualitative picture of the energy spectrum of odd tur-
bulence has emerged [59], the effect of odd viscosity on
intermittency is yet to be elucidated.

Intermittency in odd turbulence.—We first analyze the
vorticity distribution obtained from direct numerical sim-
ulations (DNS), which captures the intermittency around
the dissipation scale. Remarkably, odd viscosity leads
to more Gaussian-like distributions (compare the differ-
ent curves in Fig. 1a). Intermittency can be captured
by the kurtosis K = S4/S

2
2 of the structure functions

Sp(r) = ⟨(δru)p⟩ in which δru = [u(x + r) − u(x)] · r̂
are known as the longitudinal velocity increment. Due
to the anisotropy induced by odd viscosity, the structure
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Fig. 1. Intermittency in odd turbulence. (a) Probability distribution of x-direction vorticity in DNS (renormalized by
the standard deviation), for νodd = 0, 3 × 10−4, 6 × 10−4, 1.2 × 10−3, 2.4 × 10−3. Gaussian distribution is shown in dashed
line for comparison. Inset: illustration of a chiral active fluid. Odd viscosity can be caused by self-spinning of particles in z
direction. (b) The growth of kurtosis K in DNS is suppressed by odd viscosity at small scales, for same νodd as in (a). Errorbar
is shown as shaded area. (inset) Rescaled kurtosis K/K0 (K0 being the kurtosis for νodd = 0) vs rescaled lengthscale koddr/π,
with kodd = ϵ1/4ν

−3/4
odd . (c) Kurtosis predicted from the modified Parisi-Frisch theory, for νodd = 0, 10−6, 10−5, 10−4, 10−3, 10−2.

(inset) Rescaled kurtosis K/K0 vs rescaled lengthscale koddr/π. Note that the scale separation in (c) is considerably larger
than what is achievable in DNS in (b).

function is evaluated for r̂ perpendicular to êz. At the in-
jection scale, the flow has a Gaussian kurtosis K = 3 im-
posed by the forcing. In ordinary turbulence (νodd = 0),
the kurtosis increases as energy cascades towards smaller
scales (Fig. 1b). For finite νodd, the growth of the kurtosis
is suppressed at small scales where odd viscosity is domi-
nant. The rescaled data (inset) shows that the transition
between the intermittent and non-intermittent regimes is
located around r = π/kodd, where odd viscosity becomes
relevant [59].

Modified Parisi-Frisch formalism.—To rationalize this
suppression of intermittency, we revisit the Parisi-Frisch
framework [60] relating intermittency to the existence of
multiple scale invariances in Navier-Stokes equations.

In the absence of odd viscosity, the unforced
dissipation-free Navier-Stokes equation is invariant un-
der the scale transformation x → λx, u → λhu,
t → λ1−ht for all h. Kolmogorov’s K41 theory [7, 8] ef-
fectively assumes that the exponent h = 1/3 is selected,
leading to a self-similar solution. In reality, turbulent
flows exhibit a statistical distribution Pr(h) ∼ rF (h) of
scaling exponents h, as allowed by the scaling symme-
try. This intertwining of different exponents h, referred
to as multifractality, breaks the self-similarity of the flow
statistics at different scales heralding the emergence of
intermittency [5, 61].

The multiple scaling symmetry of Navier-Stokes equa-
tions is violated by odd viscosity (SI). We expect that
intermittent solutions δru ∼ rh with arbitrary h can
still appear at large scales where νodd has a small effect,
and that they reduce to the same wave-affected solution
δru ∼ ν

1/4
odd at small scales, governed by a single exponent

h = 0 (SI).
We model this crossover by adapting the approach of

Ref. [63] and obtain

δru = rh [1 + rodd(h)/r]
h
,

Pr(h) = rF (h) [1 + rodd(h)/r]
F (h)

.
(2)

in which rodd(h) = ν
1/(1+h)
odd is the characteristic length-
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Fig. 2. Effect of odd waves on triadic interactions
and helical shell model. (a) Asymmetric effects of odd vis-
cosity on homochiral and heterochiral triads. Odd viscosity
strongly affects heterochiral triads by reducing the fraction
of resonant triads, gk. Odd viscosity has no effect on local
homochiral triads for which gk = 1. (b) Two-channel helical
shell model. Each shell contains two velocity variables repre-
senting modes with + and − chiralities, respectively. Energy
transfers forward in heterochiral channel and backward in ho-
mochiral channel, through triads formed by nearest neighbors.
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Fig. 3. Odd turbulence in DNS and the helical shell model. (a). Energy spectrum in DNS, for νodd = 0, 3 ×
10−4, 6 × 10−4, 1.2 × 10−3, 2.4 × 10−3. The spectrum in the inertial range changes from a K41 regime (E(k) ∼ k−5/3) to a
wave-affected regime (E(k) ∼ k−1). (inset) Rescaled spectrum E(k)/E0 (E0 being the spectrum for νodd = 0) vs rescaled
wave number k/kodd, with kodd = ϵ1/4ν

−3/4
odd . (b) Energy flux and flux loop formed by homochiral and heterochiral components

in DNS. νodd = 2.4 × 10−3. (c) Kurtosis in DNS, same as Fig. 1(d) with x-axis changed from r to π/r. (inset) Rescaled
kurtosis K/K0 (K0 being the kurtosis for νodd = 0) vs rescaled lengthscale koddr/(2π). (d) Energy spectrum in the shell model,
for νodd = 0, 2.6 × 10−7, 1.0 × 10−6, 4.1 × 10−6, 1.6 × 10−5, 6.6 × 10−5. (inset) Rescaled spectrum E(k)/E0 vs rescaled wave
number k/kodd. (e) Flux loop in the shell model, for νodd = 6.6× 10−5. (f) Kurtosis K(kn) = S4(kn)/S

2
2(kn) truncated at the

dissipation scale, with Sp(kn) = ⟨(|u+
n−1||u+

n ||u+
n+1|)p/3⟩ [28, 62], for νodd values same as that in (d). (inset) Rescaled kurtosis

K/K0 vs rescaled wavenumber k/kodd. In the shell model simulations, we have used N = 30 shells, k0 = 1/8, an injection
rate ϵ = 10−5, β = 0.3, γ = 0.2 and ν = 10−9. A constant injection forcing f±

n = 0.5δn,3ϵ/u
±∗
n is used. Note that the scale

separation in the shell model (bottom row) is considerably larger than what is achievable in DNS (top row).

scale, which is determined by equating the eddy turnover
time τeddy = r/δru and the odd wave period τodd =
ν−1
oddr

2 [59]. Eq. (2) qualitatively reproduces the arrest
of intermittency observed in DNS, see Fig. 1c (F (h) is
adopted from Ref. [61]). For small odd viscosity, K(r)
is non-monotonic, in agreement with DNS with extended
inertial range (SI). This is due to the variation of rodd(h),
such that the crossover between two regimes takes place
at different lengthscale for different h. Similar non-
monotonicity was observed in Ref. [63].

Nonlinear energy transfer.—In the Navier-Stokes equa-
tion, nonlinear energy transfer occurs through triads of
modes with wavenumbers satisfying k + p + q = 0. As
helicity is conserved, it is convenient to consider modes
with definite helicity sk = ±1. When odd waves are
present, these modes get out of phase. As a conse-
quence, the contribution to the non-linear energy trans-
fer of a given triad is multiplied with eiω̄t in which
ω̄ = ωsk(k) + ωsp(p) + ωsq (q). When ω̄τeddy ≫ 1, the
fast oscillation effectively cancels the time-averaged en-
ergy transfer during τeddy. Therefore, in odd turbulence

energy can only transfer through quasi-resonant triads
(for which ω̄τeddy ≤ 1) [64]. We estimate the average en-
ergy transfer from the fraction gk of quasi-resonant triads
and the energy transfer rate ϵ ∼ ku3

k in ordinary turbu-
lence, leading to ϵ ∼ gkku

3
k.

The homochiral triads which carry energy in-
versely [42, 65] are weakly affected by odd viscosity. For
local triads (k = |k| ≈ |p| ≈ |q|) [66] we always have
ω̄ = 0 [67], thus all local homochiral triads are resonant.
ω̄ can be non-zero but is still small for slightly non-local
triads, suggesting a large fraction of (quasi-)resonant tri-
ads (Fig. 2a). This results in a weak effect of odd viscosity
on homochiral triads and the inverse energy transfer.

In contrast, heterochiral triads, that are responsible
for the forward energy transfer, are strongly affected.
We find ω̄ ∈ [−2νoddk

2,+2νoddk
2] and τeddy = k−1u−1

k

for local triads. Thus, gk = 1 for νodd ≤ uk/(2k) and
gk = uk/(2kνodd) for νodd > uk/(2k) (Fig. 2a). For large
νodd, this leads to ϵ ∼ u4

k/νodd, indicating a strong arrest
of energy transfer (Fig. 3a). The transition from a K41
regime (E(k) ∼ k−5/3) to the wave-affected regime oc-
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Fig. 4. Scaling exponents in the helical shell model.
(a)-(c) Differential scaling exponent of S4 in the shell model
with generalized odd viscosity for codd/c0 = 0, 4m, with c0 =

(ϵ/2)1/2−α/4ν3α/4−1/2. (a) α = 1.2 and m = 2 − 6. (b)
α = 1.5 and m = 3−7. (c) α = 2 and m = 4−9. Stars indicate
kodd = ϵ1/(3α−2)c

3/(2−3α)
odd . (d) Exponents in the wave-affected

regime ζp fitted by the shaded area in (a)-(c). Solid lines are
monofractal fit ζp = hαp. Error bars are estimated from
shifting the fitting range by ±1 shells. Exponents for codd =
0 are shown for comparison, which is consistent with She-
Lï£¡vï£¡que (dashed line) [61]. (inset) ζp/ζ3 for codd = 0 and
for α = 1.5. Shell model parameters are same as that in Fig 3.
Inertial range in the simulation is extended (SI).

curs at k = kodd. In the wave-affected regime, the energy
transfer in the homochiral and heterochiral channels are
governed by different nonlinearities. This asymmetry en-
hances the flux loop formed by the two channels (Fig. 3b)
and triggers the aforementioned breakdown of the multi-
ple scale invariances of Navier-Stokes equations (SI).

Helical shell model.—We now construct a two-channel
helical shell model that captures most odd-turbulence
phenomenology (Fig. 2b) [68]. Shells are equispaced on
a logarithmic scale kn = k02

n and each shell has two
complex dynamical variables, u+

n and u−
n . We impose

conservation of energy E =
∑

n |u+
n |2 +

∑
n |u−

n |2 and
helicity H =

∑
n kn|u+

n |2 −
∑

n kn|u−
n |2 [70], resulting in

∂tu
±
n = B±, )

n +B±,(
n + f±

n − νk2nu
±
n , (3)

where fn is the forcing, and

B±, )
n = a±, )

n u±
n+2u

∓∗
n+1 + b±, )

n u∓
n+1u

∓∗
n−1 − c±, )

n u∓
n−1u

±
n−2

B±,(
n = a±,(

n u±
n+2u

±∗
n+1 + b±,(

n u±
n+1u

±∗
n−1 − c±,(

n u±
n−1u

±
n−2

are the nonlinear transfer of heterochiral and homochiral
channels, illustrated in purple and green in Fig. 2. When
a±, )
n = a±,(

n = kn, the channels reduce to the Sabra
shell models in the forward and inverse cascade regimes,

respectively [62, 71–74] (bn and cn are determined from
conservation laws, SI). To reproduce the effect of odd
viscosity, we let

a±, )
n = kng

±, )
n = kn

(
1 +

νoddkn

|u±
n+2|+ |u∓

n+1|+ |u±
n |

)−1

a±,(
n = βkng

±,(
n = βkn

(
1 +

γνoddkn

|u±
n+2|+ |u±

n+1|+ |u±
n |

)−1

where 0 < β < 1 ensures that the model is dominated by
the forward cascade when νodd = 0. This functional form
is chosen to introduce a transition around νodd ≈ |un|/kn.
Here, gn mimics the fraction of resonant triads: gn ≈ 1
for small νodd and gn ∼ |un|/(knνodd) for large νodd. Fi-
nally, we choose 0 < γ < 1 so that the suppression effect
is weaker for the homochiral channel. In the SI, we gen-
eralize the model to include “generalized odd viscosity”,
for which ω±(k) = ±coddkz|k|α−1.

As shown in Fig. 3e, results from the numerical sim-
ulation of this shell model reproduce the energy flux
observed in Navier-Stokes simulation for k > kodd as
well as other qualitative features and scaling relations
(Fig. 3a,d). In the SI, we show that a flux loop state [29]
consistent with DNS results [59] is observed in the in-
verse cascade regime where forcing is injected at small
lengthscale kin > kodd.

Suppression of anomalous scaling.— Our shell model
results (Figs. 3f) mimic the DNS kurtosis (Figs. 3c) and
its non-monotonic dependence predicted by the modified
Parisi-Frisch argument. We also verify that intermittency
is suppressed in higher-order structure functions up to
p = 8, in both DNS and shell model (SI). The larger range
of scales available to the shell model allows us to extract
the anomalous exponents ζp in the wave-affected regime,
which requires a scaling range where Sp(r) ∼ rζp holds.
This corresponds to a plateau of the differential scal-
ing exponent zp(k) = d log(Sp)/ d log k, whose plateau
value gives ζp. In standard turbulence, this plateau corre-
sponds to the inertial range. In Fig. 4a-c, z4(k) plateaus
for approximately a decade (thick orange lines; see SI for
other zp), both for odd viscosity (panel c) and general-
ized odd viscosities (panels a-b). The case νodd = 0 is
plotted in black. Fig. 4 shows that the ζp extracted in the
wave-affected regime are consistent with the self-similar
exponents ζp = hαp (solid lines), in contrast with the
anomalous exponents usually observed in forward cas-
cades (black dashed line). The hα we measure are close
to the theoretical approximation hα ≈ 1/2− α/4 (SI).

To sum up, we have demonstrated the existence of a
fully developed forward turbulent energy cascade that is
entirely self-similar below a tunable length scale, paving
the way for designing turbulent flows with adjustable lev-
els of intermittency.
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Supplementary Information:
Odd viscosity suppresses intermittency in direct turbulent cascades

I. SIMULATION DETAILS

A. Navier-Stokes

We perform direct numerical simulations (DNS) of the Navier-Stokes equation incorporating odd viscosity (Eq. (1)
in the main text) within a cubic domain of size L = 2π, employing periodic boundary conditions. Our approach
utilizes a pseudo-spectral method coupled with Adams-Bashforth time-stepping and a 2/3-dealiasing rule [1]. The

dissipative and odd viscous terms are integrated exactly using integrating factors. The forcing f⃗(t, k⃗) acts within a
wavenumber band k ∈ [kin, kin + 1], with random phases delta-correlated in space and time, ensuring a consistent

average energy injection rate ϵ = ⟨u⃗ · f⃗⟩. This forcing possesses a zero mean component ⟨f⃗(t, k⃗)⟩ = 0⃗ and covariance

⟨f⃗(t, k⃗) · f⃗(t′, k⃗′)⟩ = ϵδ(t − t′)δ(k⃗ − k⃗′). The time-step is selected to resolve the fastest odd wave with frequency
τ−1
odd,max = νoddk

2
max, where kmax denotes the highest resolved wavenumber in the domain. We observe that stable

integration requires a time step ∆t ≲ 0.1τodd,max.

The parameters used for the simulations in the main text are as in Ref. [2]. In Section IC we show additional simu-
lations with increased resolution and hyperdissipation to further extend the inertial range. All simulation parameters
are provided in Tab. I.

TABLE I. Parameters that are used for the simulations in the main text (I) and in Section IC (II). Listed are the average
energy injection rate ⟨ϵ⟩, normal shear viscosity ν, odd viscosity νodd, injection wavenumber kin, odd viscosity wavenumber

kodd = ϵ1/4ν
−3/4
odd , grid resolution N3, Kolmogorov length ℓν = ϵ−1/4ν3/4, total simulation time T , time-step ∆t, Kolmogorov

time τν = ϵ−1/2ν1/2 and the a posteriori integral scale Reynolds number without odd viscosity Re.

⟨ϵ⟩ ν νodd kin kodd N3 ℓν/(L/N) T ∆t τν/∆t Re

I 1.4× 10−5 9.4× 10−6 [0.3− 2.4]× 10−3 3 [27− 6] 7683 0.34 2× 103 [1.0− 0.2]× 10−2 [82− 410] 1.3× 103

II 1.0 [2− 20]× 10−10 (*) 2.0× 10−2 2 18 15363 0.35 0.6 5× 10−5 200 2.5× 103

(*) hyperdissipation (quadratic Laplacian)

B. Shell Model

In the two-channel helical shell model, the dynamic equation reads (Eq. (3) of the main text)

∂tu
±
n = B±, )

n +B±,(
n + f±

n − νk2nu
±
n , (S1)

where fn is the forcing.

B±, )
n = a±, )

n u±
n+2u

∓∗
n+1 + b±, )

n u∓
n+1u

∓∗
n−1 − c±, )

n u∓
n−1u

±
n−2 ,

B±,(
n = a±,(

n u±
n+2u

±∗
n+1 + b±,(

n u±
n+1u

±∗
n−1 − c±,(

n u±
n−1u

±
n−2

(S2)

are the nonlinear transfer of heterochiral and homochiral channels.

a±, )
n = kng

±, )
n = kn

(
1 +

νoddkn

|u±
n+2|+ |u∓

n+1|+ |u±
n |

)−1

,

a±,(
n = βkng

±,(
n = βkn

(
1 +

γνoddkn

|u±
n+2|+ |u±

n+1|+ |u±
n |

)−1
(S3)
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FIG. S1. K8 = S8/S
2
4 in DNS (a) and for the shell model (b).

are the wave-affected transfer coefficients. bn and cn are determined from the conservation laws of the energy E =∑
n |u+

n |2 +
∑

n |u−
n |2 and the helicity H =

∑
n kn|u+

n |2 −
∑

n kn|u−
n |2 [3], which leads to

b±, )
n = −0.5a∓, )

n−1 ,

c±, )
n = −0.5a±, )

n−2 ,

b±,(
n = −1.5a±,(

n−1 ,

c±,(
n = 0.5a±,(

n−2 .

(S4)

The total energy flux is [4]

Πn = Π )
n +Π(

n , (S5)

where

Π )
n = Im

(
a+, )
n u+∗

n+2u
−
n+1u

+
n + a−, )

n u−∗
n+2u

+
n+1u

−
n − c−, )

n+1u
+∗
n+1u

−
n u

+
n−1 − c+, )

n+1u
−∗
n+1u

+
nu

−
n−1

)
,

Π(
n = Im
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a+,(
n u+∗

n+2u
+
n+1u

+
n + a−,(

n u−∗
n+2u

−
n+1u

−
n − c−,(

n+1u
−∗
n+1u

−
n u

−
n−1 − c+,(

n+1u
+∗
n+1u

+
nu

+
n−1

) (S6)

are the heterochiral and homochiral components of the flux, respectively. In the main text we use a velocity-based
structure function Sp(kn) = ⟨(|u+

n−1||u+
n ||u+

n+1|)p/3⟩. The definition reduces the 3-shell oscillation that is observed in

shell models [5]. A flux-based structure function SΠ
p (kn) = ⟨|Πn/kn|p/3⟩ is also used in Sec. IV [5, 6]. In the main

text we mainly focus on the kurtosis K = S4/S
2
2 . We also explore higher order ‘kurtosis’ K8 = S8/S

2
4 , which shows

that intermittency is suppressed for structure functions up to p = 8 in both DNS and the shell model (Fig. S1).
We conduct numerical simulations of the two-channel helical shell models with total shell number N = 30. In

the simulation forcing is exerted on shell n = 3 with constant energy injection rate ϵ: f±
n = 0.5δn,3ϵ/u

±∗
n . We use

101 102 103 104

100

102

104

102 104

500

1000

100 102 104

10-3

10-2

10-1

10-5

104

105

100 101 102

100

101

10-3

20

30

ShellNavier-Stokes Bootstrap

(b) (c)(a)

FIG. S2. Wavelength selection in odd turbulence. (a) Rescaled energy spectrum E/E0 (E0 is the spectrum for νodd = 0) vs
wavenumber in DNS for νodd = 3× 10−4, 6× 10−4, 1.2× 10−3, 2.4× 10−3. (b) Rescaled energy spectrum vs wavenumber in the
shell model for νodd = 2.6× 10−7, 1.0× 10−6, 4.1× 10−6, 1.6× 10−5, 6.6× 10−5. (c) Rescaled energy spectrum estimated from

the bootstrap method for νodd = 16, 256, 4096, 65536, ν = 1 and ϵ = 1. In (a-c), stars indicate condensation scale kc ∼ ν
−1/4
odd .
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FIG. S3. Simulation results with extended inertial range. The value of ν is reduced when odd viscosity is present, such
that the dissipation scale is unchanged. (a) Energy flux in DNS for νodd = 0, 2.0 × 10−2. (b) Probability distribution of
x-direction vorticity in DNS (renormalized by the standard deviation), for same νodd values as in (a). Gaussian distribution is
shown in dashed line for comparison. (c) Kurtosis K in DNS, for same νodd as in (a). (d) Energy flux in the shell model for
νodd = 0, 2.6 × 10−7, 1.0 × 10−6, 4.1 × 10−6, 1.6 × 10−5, 6.6 × 10−5. (b) Probability distribution of Re(u+

15) in the shell model
(renormalized by the standard deviation), for same νodd values as in (d). Gaussian distribution is shown in dashed line for
comparison. (c) Kurtosis K in the shell model, for same νodd as in (d).

ϵ = 10−5, ν = 10−9, β = 0.3 and γ = 0.2. Changing β and γ does not qualitative affect the results. The simulation
is performed using the 4th order exponential-Runge-Kutta scheme with a time step ∆t = 5× 10−4.

C. Dissipation Scale and Extended Inertial Range

As discussed in Ref. [2] and the main text, odd viscosity affects the dissipation scale kc with kc ∼ ϵ1/4ν−1/2ν
−1/4
odd .

This change of the dissipation scale is due to the change of the energy spectrum caused by odd viscosity: odd viscosity
arrest direct cascade and changes the spectrum from E(k) ∼ k−5/3 to E(k) ∼ k−1, which enhances the dissipation rate
at given k simultaneously. Therefore, when odd viscosity is present the dissipation dominates at larger lengthscales kc.
In Fig. S2(a,b) we plot the rescaled energy spectrum E(k)/E0 in both DNS and the shell model (E0 is the spectrum
for νodd = 0). We find that E(k)/E0 increases with k for kodd < k < kc because of the arrested cascade. For k > kc,
E(k)/E0 decreases with k due to the dissipation. This effectively leads to a wavelength selection phenomenon, which
is also known as pattern formation [2].

Here we provide a simple bootstrap method which reproduces the pattern formation in odd turbulence. Similar
to the shell model, we divide the system into logarithmically distributed shells kn = k02

n. The velocity fluctuations
in each shell is un with shell energy En = u2

n. Assuming kn > kodd, the wave-affected energy transfer rate from
shell n to n + 1 is ϵn ∼ ν−1

oddu
4
n = ν−1

oddE
2
n (see Sec. II). In the steady state, the energy conservation at shell n + 1

requires ϵn = ϵn+1 + νk2n+1En+1, i.e., the energy injected in the shell equals to the energy ejected from the shell
plus dissipation. Because this equation holds for all shells in the steady state, an estimated energy spectrum can
be calculated from an iteration of the energy conservation of all shells, assuming ϵ0 = ϵ. The results are shown in
Fig. S2c. We indeed find pattern formation at kc, and the dependence of kc on νodd is consistent with our expectation.

Because kc decreases for increasing νodd, the inertial range also shrinks, and the statistics of the kurtosis is affected
more by the dissipation when odd viscosity is present. To avoid this effect, we conduct simulations with extended

inertial range for both DNS and the shell model. This is achieved by reducing the viscosity to ν̃ ∼ ν3/2ν
−1/2
odd for

large νodd. This approach ensures that the inertial range remains approximately same for different νodd values, see
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Fig. S3(a,d). The suppression of intermittency is again observed in both DNS and the shell model (Fig. S3(b,c,e,f)).
Interestingly, in DNS we observe a weak non-monoticity of the kurtosis, in alignment with the shell model result and
the prediction of the modified Parisi-Frisch theory.

II. BREAKDOWN OF MULTIPLE SCALE INVARIANCES

In this section we detail how the multiple scale invariances of the Navier-Stokes equation are broken by odd viscosity.
We start with the inertial-range Navier-Stokes equation

∂tu+ u · ∇u = −∇P + νoddêz ×∆u , (S7)

In the absence of νodd, the inertial Navier-Stokes equation is invariant under global scale transformation [7]

x → λx,u → λhu, t → λ1−ht , (S8)

for arbitrary exponent h. We define this property as the multiple global scale invariances, which implies that singular-
ities (flow with local self-similar structure) δru ∼ rh with arbitrary h can develop in turbulent flow. In Parisi-Frisch
multifractal formalism, the turbulent flow contains singularities with a range of exponents h that are distributed in
different locations in the 3D space, which further leads to intermittency [7, 8].

For non-zero νodd, because of the odd term, the global scale invariance only holds for h = −1. All other global scale
invariances are broken by the linear odd term. This conclusion can be generalized to any wave-turbulence system
described in Ref. [9], where a wave-generating linear term breaks multiple global scale invariances. However, the
breaking of multiple global scale invariances does not necessarily suppress intermittency. As an example, we consider
a flow described by Eq. (S7) and artificially block the energy transfer between all modes with kz ̸= 0. This enforces a
2D flow with kz = 0 on which odd viscosity has no effect at all, and 2D singularities with arbitrary h are still allowed
by scale symmetry (although in reality 2D turbulence is non-intermittent for a different reason [10, 11]). In other
words, while the global scale invariance of Eq. (S7) only holds for h = −1, its 2D part has partial scale invariances for
all h.

This example shows that what matters is not the global scale invariance of the complete Navier-Stokes equation,
but is the partial scale invariance of the energy-transferring part of the equation. The non-energy-transferring part of
the Navier-Stokes equation does not contribute to the turbulent cascade, hence it does not affect the intermittency.

To identify the energy-transferring part of Eq. (S7), we perform helical decomposition,

u(t,x) =
∑

k

∑

s=±
us(t,k)j

s(k)eiωs(k)t+ik·x , (S9)

where j±(k) = ê(k)× (k/|k|)± iê(k) with ê(k) = êz × k/|êz × k| and frequency

ω±(k) = ±νoddkz|k| . (S10)

± refers to the definite helicity of each helical mode. The explicit dependence of the frequency on the helicity is a
result of the broken parity symmetry in odd-viscous fluids. We rewrite Eq. (S7) (in the inertial range) as

∂tusk =
∑

k+p+q=0
sp,sq=±

Ck|p,qe
iω̄(k,p,q)tu∗

spu
∗
sq . (S11)

Here, a triad with wave vectors (k,p, q) and definite helicities (sk, sp, sq) is a basic unit for energy transfer.

Ck|p,q = −1

4
(spp− sqq) [(j

sp(p)× jsq (q)) · jsk(k)]∗ (S12)

is a coefficient that has the dimension of wave number. ω̄(k,p, q) = ωsk(k)+ωsp(p)+ωsq (q) is an important frequency
of the triad (k,p, q). As we discussed in the main text, energy transfer is effectively blocked when ω̄τeddy ≫ 1, because
the fast oscillation of eiω̄t cancels the average energy transfer. Therefore, we may divide all triads into quasi-resonant
triads (ω̄τeddy ≤ 1) and quasi-non-resonant triads (ω̄τeddy > 1). The energy transfer is approximately unaffected by
odd viscosity in quasi-resonant triads, and is blocked in quasi-non-resonant triads.
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The energy-transferring part of Eq. (S7) is then a decimated Navier-Stokes equation in which only quasi-resonant
triads are preserved:

∂tusk =
∑

k+p+q=0
sp,sq=±
ω̄τeddy≤1

Ck|p,qu
∗
spu

∗
sq .

(S13)

While Eq. (S13) has a similar form as that of the original Navier-Stokes equation, a different nonlinear dependence
on u emerges from the number of resonant triads, because τeddy ∼ 1/(ku).

As discussed in the main text, we consider quasi-local triads (k = |k| ≈ |p| ≈ |q|) which dominate the energy
cascade. Letting uk be the average velocity fluctuations at wave number k, Eq. (S13) is (statistically) simplified to

∂tuk ∼ gkku
2
k , (S14)

where gk is the fraction of quasi-resonant triads. For homochiral triads which tansfer energy inversely (sp = sk = sq),
ω̄/νodd = skkz|k|+sppz|p|+sqqz|q| ≈ sk|k|(kz+pz+qz) = 0 (because k+q+p = 0), leading to gk ≈ 1. Substituting
gk in Eq. (S14), we have the following scale invariances of the homochiral channel:

k → λ−1k, uk → λhuk, t → λ1−ht , (S15)

for arbitrary h. This is identical to Eq. (S8).
For heterochiral triads which carries energy forward (sp = −sk = sq), ω̄/νodd = skkz|k| + sppz|p| + sqqz|q| ≈

2sk|k|kz. For given k, ω̄ is uniformly distributed in [−2k2νodd, 2k
2νodd]. Thus, gk = 1 for νodd ≤ uk/(2k) and

gk = uk/(2kνodd) for νodd > uk/(2k). In the wave-affected regime, substituting gk ∼ uk/k in Eq. (S14), we have the
following scale invariances of the heterochiral channel:

k → λ−1k, uk → λhuk, t → λ−2ht , (S16)

for arbitrary h. Note that the scale transformations applied on t are different in Eqs. (S15,S16). Because en-
ergy is transferred through homochiral and heterochiral channels simultaneously, a singularity must satisfies both
Eqs. (S15,S16). In that case, the only scaling exponent consistent with both channels is h = −1, and the multiple
partial scale invariances are broken. In this case, the flow is statistical self-similar, i.e., δru ∼ rh only holds for a single
h. Because the energy transfer is dominated by the forward flux of heterochiral triads, we have ϵ ∼ gkku

3
k ∼ ν−1

oddu
4
k. In

this case, uk ∼ ν
1/4
oddk

0 and for consistency we have δru ∼ ν
1/4
oddr

0. This conclusion is used in the modified Parisi-Frisch
theory in the main text (Eq. (2)).

The inconsistent scale invariances of homochiral and heterochiral triads are due to the asymmetric effects of odd
viscosity on them, i.e., ω̄homo ̸= ω̄hetero, which originates from the broken-parity symmetry of odd fluids. Indeed,
the mechanism discussed above is only valid when the wave frequency explicitly depends on the definite helicity,
which requires broken parity. This mechanism can be generalized to any generalized odd waves with frequency
ω±(k) = ±coddkz|k|α−1, as we discuss in Sec. III, or any parity-breaking waves. Their parity-preserving counterparts,
e.g., waves with frequency ω±(k) = crkz|k|α−1 that does not depend on helicity, do not break the multiple partial scale
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invariances of the Navier-Stokes equation. This is supported by our shell model results, see Sec. IV. Intermittency has
also been experimentally reported in parity-preserving wave turbulence, e.g., gravity capilary wave turbulence [12, 13].

Another consequence of the asymmetric effect of odd viscosity on homochiral and heterochiral channels is the
enhanced flux loop, as shown in the main text. Because the homochiral and heterochiral channels transfer energy
in different directions, a weak inverse flux in the homochiral channel exists in the direct cascade of ordinary turbu-
lence [14]. The inverse flux of the homochiral channel, together with the forward flux of the heterochiral channel,
forms a flux loop, which is amplified by odd viscosity for k > kodd. More strikingly, when forcing at small scale
kin > kodd, a flux loop develops at large scale in the absence of a net energy flux [2]. This is also observed in the shell
model (Fig. S4).

Importantly, the breakdown of multiple scale invariances requires zero or small net helicity injection, which ensures
that energy is equally distributed on waves with both definite helicities. When large helicity is injected, the flow can
be dominated by waves with the same definite helicity as the injected one. In this case, the nonlinear transfer is
dominated by the homochiral channel only, and the asymmetry between the two channels has small effect. Indeed,
intermittency has been reported in rotating turbulence (parity is broken by the rotation direction) when large helicity
is injected [15].

III. GENERALIZED ODD VISCOSITY

In the main text we discuss the effect of odd viscosity on turbulent fluids, which produces linear waves with
frequencies

ω±(k) = ±νoddkz|k| . (S17)

In this section we generalize the discussion to generalized odd viscosity with wave frequencies

ω±(k) = ±coddkz|k|α−1 (S18)

where codd is a generalized odd viscosity. α can be any real number. The case for odd viscosity discussed in the
main text corresponds to α = 2. When α = 0, one can show that Eq. (S18) is equivalent to the Navier-Stokes
equation for rotating turbulence with rotating frequency Ω = codd/2 [16]. Importantly, all generalized odd waves are
parity-breaking waves, since the frequency explicitly depends on the chirality.

We can repeat the analysis of the resonance condition for homochiral and heterochiral triads, as we do in the
main text and Sec. II for the α = 2 case. For heterochiral triads with locality (k = |k| ≈ |p| ≈ |q|) we find
the fraction of resonant triads gk = 1 for codd ≤ uk/(2k

α−1) and gk = uk/(2k
α−1codd) for codd > uk/(2k

α−1).
This modified the energy transfer rate to ϵ ∼ c−1

oddk
2−αu4

k, which supports a steady-state, wave-affected solution

uk ∼ ϵ1/4c
1/4
oddk

α/4−1/2. The scaling of the wave-affected solution is consistent with that obtained from the weak-

turbulence theories [9, 16, 17]. The ’generalized odd’ scale kodd = ϵ1/(3α−2)c
3/(2−3α)
odd is found by equating the wave-

affected solution and the Kolmogorov solution. The dissipation scale kc can be estinated from ϵ ∼ νk2cu
2
kc
, which

leads to kc ∼ ϵ1/(α+2)c
−1/(α+2)
odd ν−2/(α+2).

For homochiral triads with locality we again find gk = 1, i.e., all local triads are resonant. Here, note that homochiral
triads with exact locality do not transfer energy, because Ck|p,k = 0 when k = p = q. Therefore, homochiral triads
can only transfer energy through weakly non-local triads, which are also weakly affected by the resonance condition
when α ̸= 1. For α = 1, on the other hand, we find that the resonance condition is satisfied by all homochiral triads
regardless of the locality. A similar situation also happens in MHD turbulence, in which the frequencies of the Alfv́en
waves coincide with that of generalized odd waves with α = 1 [17].

For arbitrary α value, the effects of generalized odd viscosity on homochiral and heterochiral channels are asym-
metric. Hence, the multiple partial scale invariances discussed in Sec. II are broken for any α in the wave-affected
regime.

A. Modified Parisi-Frisch

We now extend the modified Parisi-Frisch formalism to generalized odd viscosity. In this case, self-similar solutions

with δru ∼ rh at large scales reduce to the wave-affected solution δru ∼ c
1/4
oddr

1/2−α/4 (because uk ∼ ϵ1/4c
1/4
oddk

α/4−1/2).
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The crossover is phenomenologically written as

δru = rh [1 + rodd(h)/r]
h
,

Ph(r) = rF (h) [1 + rodd(h)/r]
F (h)

, (S19)

which is same as Eq. (2) of the main text. Here, the crossover lengthscale rodd(h) is determined by equating two
timescales: the eddy turnover time τ = r/δru and the timescale of generalized odd waves τodd = c−1

oddr
α, which gives

rodd(h) = c
1/(h+α−1)
odd . We adopt a commonly-used empirical choice of F (h): F (h) = 2−c1(h−1/9)+c2(h−1/9) ln(h−

1/9), with c1 = 3[[1 + ln(ln(3/2))]/ ln(3/2)− 1] and c2 = 3/ ln(3/2) [18].
The suppression of intermittency at small lengthscales holds for arbitrary α > 2/3, which exhibits the same

qualitative features as the results for α = 2 shown in the main text. For α < 2/3, the generalized odd viscosity
dominates at large lengthscales, e.g., in rotating turbulence, where Eq. (S19) becomes invalid.

B. Two-channel helical shell model

We generalize here the two-channel helical shell model to include generalized odd viscosity. This is achieved by
replacing Eq. (S3) with

a±, )
n = kng

±, )
n = kn

(
1 +

νoddk
α−1
n

|u±
n+2|+ |u∓

n+1|+ |u±
n |

)−1

,

a±,(
n = βkng

±,(
n = βkn

(
1 +

γνoddk
α−1
n

|u±
n+2|+ |u±

n+1|+ |u±
n |

)−1

.

(S20)
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FIG. S5. Shell model simulations for wave frequencies ω(k) ∼ coddkz|k|α−1 with α = 1.5. Inertial range is extended by reducing
the normal viscosity, see Sec. I C. (a) Energy flux for parity-breaking waves (γ < 1) and codd = 8.4× 10−3. (b) Velocity-based
kurtosis for parity-breaking waves (γ < 1) and codd = 0, 8.3 × 10−6, 3.3 × 10−5, 1.3 × 10−4, 5.2 × 10−4, 2.1 × 10−3, 8.4 × 10−3.
(c) Flux-based kurtosis for parity-breaking waves (γ < 1) and same codd values as in (b). (d) Energy flux for parity-preserving
waves (γ = 1) and codd = 8.4× 10−3. (e) Velocity-based kurtosis for parity-preserving waves (γ = 1) and codd values same as
in (b). (f) Flux-based kurtosis for parity-preserving waves (γ = 1) and same codd values as in (b).
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FIG. S6. Differential scaling exponent of S2 (a-c) and S6 (e-g) in the shell model with generalized odd viscosity (inducing
generalized odd waves with frequency ω±(k) = ±coddkz|k|). Exponents are plotted vs rescaled wavenumber k/kodd, with

kodd = ϵ1/(3α−2)c
3/(2−3α)
odd . Results are shown for codd/c0 = 0, 4m, with c0 = (ϵ/2)1/2−α/4ν3α/4−1/2. (a, e) α = 1.2 and

m = 2− 6. (b, f) α = 1.5 and m = 3− 7. (c, g) α = 2 and m = 4− 9. (d) Coefficient hα = ζp/p obtained from the shell model.
Theoretical approximation hα = 1/2− α/4 is shown for comparison.

The value of γ controls which channel is affected more by generalized odd viscosity. According to our analysis of
resonant triads in the main text, γ < 1 such that odd viscosity has a weaker effect on the homochiral channel. We
show here the results for α = 1.5, which exhibits the same qualitative features as the α = 2 case in the main text
(Fig. S5a,b). We define a differential scaling exponent zp(k) = − d log(Sp)/ d log(k). We plot z2 and z6 in the shell
model for different α and codd values, vs rescaled wavenumber k/kodd, see Fig. S6a-c, e-g. We find that zp changes
from the usual multifractal exponents of regular turbulence for k ≪ kodd to a plateau for k ≫ kodd. The plateau

corresponds to a fully wave-affected regime where Sp(kn) ∼ k
−ζp
n . We fit the values of ζp using the shaded area, and

the results are shown in Fig. 4d of the main text. We then fit ζp using the monofractal formula ζp = hαp. The
numerical values of hα are close to the theoretical approximation ζp = p(1/2−α/4) (Fig. S6d). The theoretical hα is
obtained using the resonant fraction, see below Eq. (S18).

IV. PARITY-BREAKING WAVES VS PARITY-PRESERVING WAVES

As discussed in Sec. II, the multiple scale invariances of the Navier-Stokes equation are broken by the asymmetric
effects of (generalized) odd viscosity on homochiral and heterochiral channels. This mechanism only applies to parity-
breaking waves which break parity symmetry. For parity-preserving waves, the effects on homochiral and heterochiral
channels are symmetric and intermittency may still develop.

This argument can be tested by the two-channel helical shell model with generalized odd viscosity (Sec. III B).
The asymmetry between homochiral and heterochiral channels is controlled by the parameter γ in Eq. (S20): when
γ = 1 the two channels are affected in a symmetric way by generalized odd viscosity; when γ < 1 the homochiral
channel is less affected. Hence, while the shell model with γ < 1 corresponds to parity-breaking waves with ω±(k) =
±coddkz|k|α−1, the shell model with γ = 1 corresponds to parity-preserving waves with, e.g., ω±(k) = coddkz|k|α−1.
We explore the intermittency for both the parity-breaking and parity-preserving models with α = 1.5. As expected,
the flux-loop is enhanced by codd in the parity-breaking model (Fig. S5a) but is not enhanced in the parity-preserving
model (Fig. S5d). The kurtosis is suppressed by large codd in the parity-breaking model (Fig. S5b). In the parity-
preserving model, on the other hand, the kurtosis still increases with a relatively slow speed for large codd, suggesting
that the intermittency is not completely suppressed. This difference is more obvious for the flux-based kurtosis,
defined by KΠ = SΠ

4 /S
Π
2 , where SΠ

p (kn) = ⟨|Πn/kn|p/3⟩ is the flux-based structure function [5, 6]. We find that while
the parity-breaking model is still non-intermittent in the wave-affected regime, the parity-preserving model is strongly
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FIG. S7. Shell model simulations for wave frequencies ω(k) ∼ νoddkz|k|. Inertial range is extended by reducing the normal
viscosity, see Sec. I C. (a) Energy flux for parity-breaking waves (γ < 1) and νodd = 6.6 × 10−5. (b) Velocity-based kurtosis
for parity-breaking waves (γ < 1) and νodd = 0, 2.6 × 10−7, 1.0 × 10−6, 4.1 × 10−6, 1.6 × 10−5, 6.6 × 10−5.. (c) Flux-based
kurtosis for parity-breaking waves (γ < 1) and same νodd values as in (b). (d) Energy flux for parity-preserving waves (γ = 1)
and νodd = 6.6 × 10−5. (e) Velocity-based kurtosis for parity-preserving waves (γ = 1) and νodd values same as in (b). (f)
Flux-based kurtosis for parity-preserving waves (γ = 1) and same νodd values as in (b).

intermittent (Fig. S5c,f).
A similar comparison is done for odd waves (α = 2) (Fig. S7, comparing a,b,c with d,e,f). Surpringly, we find

that the velocity-based kurtosis is suppressed in both the parity-breaking and parity-preserving models (Fig. S7b,e).
When looking at the flux-based kurtosis we again observe different results: kurtosis does not develop in the parity-
breaking model but develops slowly in the parity-preserving model (Fig. S7c,f). This suggests that the parity-breaking
model is non-intermittent and the parity-preserving model is intermittent in the wave-affected regime. However,
the intermittency of the parity-preserving model is not reflected on the velocity-based kurtosis. This is possibly a

coincidence for α = 2: when α = 2, the wave-affected solution En ∼ ϵ−1/2ν
−1/2
odd k0n coincides with the equipartition

solution (all uns have similar velocity fluctuations). This leads to strong fluctuations in the wave-affected regime
which may mask the non-Gaussian fluctuations of un. For the 3D Navier-Stokes equation the equipartition solution
holds at E(k) ∼ k2, hence a similar coincidence may happen at α = 6 instead of α = 2.

V. SHELL MODEL WITH STOCHASTIC WAVES

In our two-channel helical shell model, the generalized odd waves in the Navier-Stokes equation are not explicitly
included. The effect of generalized odd waves are modelled by the fractions of resonant triads gn. A different approach
was adopted in prior shell models of rotating and MHD turbulence, which modifies the classic one-channel shell model
with explicit waves [19, 20]. This approach is summarized in the following form:

∂tun = Bn + fn − νk2nun + iΩn(t)un , (S21)

where

Bn = anun+2u
∗
n+1 + bnun+1u

∗
n−1 − cnun−1un−2 (S22)

is the nonlinear transfer of Sabra shell model with an = −2bn+1 = −2cn+2 = kn. It has been argued that to reproduce
the wave-affected energy spectrum, the wave frequencies Ωn(t) cannot be assumed constant, but has to be stochastic
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with ⟨Ω2
n⟩ ∼ c2oddk

2α
n [19]. The reason for this may be explained by the resonance condition: In the Navier-Stokes

equation, generalized odd waves oscillate with frequencies ω±(k) = ±coddkz|k|α−1 = ±codd|k|α cos(θ), where θ is the
angle between k and êz. The 3D distribution of θ effectively induces a wide distribution of the wave frequencies
for given |k|, which further guarantees that the resonant condition can be satisfied by some triads. In shell models,
however, this 3D structure is absent and the interaction among triads is limited to nearest neighbors. Hence, if
constant frequencies Ωn ∼ coddk

α
n is assumed, one can show that the resonant condition Ω̄nτeddy < 1 will never be

satisfied, with Ω̄n = Ωn−1 +Ωn +Ωn+1.
The stochasticity of Ωn in the shell model effectively reproduces the wide distribution of wave frequencies in the

Navier-Stokes equation. The difference is that in the shell model, different Ωn is distributed in different time period,
while in the Navier-Stokes equation, different frequencies are distributed in different triads. This type of shell models
is able to reproduce the average energy transfer of the Navier-Stokes equation, however, it would be inappropriate to
study intermittency with these models. The reason is that the stochasticity naturally breaks scale invariances at any
given time, hence intermittency must be suppressed. This suppression is just caused by an artifact of the stochastic
shell model that is absent in the Navier-Stokes equation.
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