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We study the propagation of both low- and high-amplitude ring-shaped sound waves in a 2D
square lattice of acoustic waveguides with Helmholtz resonators. We show that the inclusion of the
Helmholtz resonators suppresses the inherent anisotropy of the system in the low frequency regime
allowing for radially symmetric solutions. By employing the electroacoustic analogue approach and
asymptotic methods we derive an effective cylindrical Korteweg de Vries (cKdV) equation. Low-
amplitude waveforms are self-similar structures of the Airy function profile, while high-amplitude
ones are of the form of cylindrical solitons. Our analytical predictions are corroborated by results
of direct numerical simulations, with a very good agreement between the two.

I. INTRODUCTION

Over the past years, structured materials have been
widely developed to manipulate wave motion. In that
respect, acoustic metamaterials, namely structured ma-
terials made of resonant building blocks, play an im-
portant role in the design of various classical wave sys-
tems. Earlier studies on acoustic metamaterials based
on acoustic waveguides incorporating resonant elements
(e.g., Helmholtz resonators [1, 2] or quarter-wavelength
resonators [3–5]) paved the way for a variety of impor-
tant applications. These include acoustic diodes [6], per-
fect absorbers [7–9], acoustic lenses for sub-diffraction
imaging [10], acoustic sound focusing based on gra-
dient index lenses [11, 12], acoustic topological sys-
tems [13, 14] acoustic cloaking [15–18], bifurcation-based
acoustic switching and rectification [19], and so on.

The above studies refer to one-dimensional (1D) set-
tings and deal with linear wave phenomena. Neverthe-
less, there exist a number of works where nonlinear wave
phenomena in 1D acoustic metamaterials were investi-
gated. Relevant studies were motivated by the seminal
works of Sugimoto and coworkers on acoustic solitons in
air-filled waveguides with Helmholtz resonators [20, 21]
(see also the relevant works [22, 23]). As shown in these
works, acoustic solitons obey an effective Korteweg-de
Vries (KdV) equation [24] in the long-wavelength and
small-amplitude limits. Other settings, involving waveg-
uides loaded with arrays of elastic membranes or side
holes, were also predicted to support acoustic envelope
solitons, governed by an effective nonlinear Schrödinger
(NLS) equation [25, 26].

In addition to the aforementioned studies in 1D set-
tings, there exist also many works on two-dimensional
(2D) and 3D-dimensional (3D) acoustic metamaterials.
These works have shed light on wave phenomena relevant
to topological insulators [27, 28], acoustic analogues of
optical fibers [29], acoustic hyperbolic materials [30], and
others. Nevertheless, it should be pointed out that the
above mentioned studies refer to linear acoustic waves,
while works on nonlinear wave phenomena in airborne
2D or 3D acoustic metamaterials are rather limited. In

fact, such works are basically devoted to elastic and me-
chanical metamaterials [31, 32], with one of the main
goals being the investigation of the formation, propaga-
tion and collision of solitary pulses [33, 34].

In this work, our scope is to investigate nonlinear wave
phenomena in a 2D acoustic network, composed of a
square lattice of waveguides, loaded with Helmholtz res-
onators at the junctions’ locations (see also Refs. [35, 36]
for studies in similar setups). We find that, in the long-
wavelength limit, wave dynamics in the acoustic waveg-
uide network (which may be viewed as a 2D generaliza-
tion of the setting studied in Refs. [20–23]) can be de-
scribed by an effective cylindrical KdV (cKdV) equation
(which is the 2D, radially-symmetric counterpart of the
usual 1D KdV equation). The cKdV description that we
establish here, allows us to predict both low-amplitude
(linear) ring-shaped waves, as well as high-amplitude
(nonlinear) waveforms. Much like the 1D KdV, the cKdV
equation is a universal model describing the evolution
of ring-shaped nonlinear waves and solitons in various
physical contexts, including water waves [37–39], plas-
mas [40, 41], square electrical lattices [42].

A brief presentation of our methodology and findings,
along with the description of the organization of the pa-
per, are as follows. In Sec. II, we present our setting,
namely the square acoustic network, with and without
the Helmholtz resonators. We show that, in the long-
wavelength regime, the resonators suppress the inher-
ent anisotropic dispersion of the network. In addition
(also in Sec. II), we introduce the electroacoustic analogy
(EA) through the fluid conservation laws. This approach
leads to an effective 2D Boussinesq equation which, in the
limit of large-radii and small-amplitude (weakly nonlin-
ear) waveforms, is then reduced to the cKdV equation.
Next, in Sec. III, we present linear and nonlinear ring-
shaped solutions of the effective cKdV. The former are
self-similar solutions of the linearized cKdV exhibiting
an Airy-function profile, while the latter are cylindrical
solitons. In the same Section (Sec. III) we present re-
sults of direct numerical simulations, for both linear and
nonlinear ring-shaped waves in the acoustic network. Fi-
nally, in Sec. IV, we summarize our findings and propose
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FIG. 1: Square acoustic network with Helmholtz resonators.
(a) Physical setup. (b) A 3D view of the unit cell. (c) A
contour of the unit cell. (d) Unit cell of the electroacoustic
analogue transmission line.

feature research directions.

II. THE MODEL AND ITS ANALYTICAL

CONSIDERATION

A. Acoustic network and dispersion relation

We consider an acoustic network, composed of simply
connected waveguides, of cross-section Sw, arranged in
a square lattice with lattice distance d —see Fig. 1. We
assume that the waveguides are filled with air, which will
be treated as an ideal fluid; thus, viscosity and other
dissipative terms will not be taken into account.
In the long-wavelength approximation, i.e., for wave-

lengths much larger than the waveguide’s cross sec-
tion, we assume that only the plane mode is propagat-
ing in each waveguide; this will be referred to as the
“monomodal approximation” hereafter. Hence, in the
linear regime, one can model wave propagation between
the junctions of the network with the one-dimensional
(1D) Helmholtz equation. As shown in Refs. [35, 36, 43],
the transfer matrix method (TMM) may be used to de-
rive a set of equations for the pressure in the square net-
work. These equations lead to the dispersion relation
(see Appendix A for details):

cos (qxd) + cos (qyd) = 2 cos(kd), (1)

-

0

0
0

(b)

(c)

(a)

- 0

0

FIG. 2: Band structure of the system. (a) Dispersion relation
of the acoustic network with [solid (red) lines] and without
[dashed (blue) lines] Helmholtz resonators, along the axis of
high symmetry. The dotted (black) line corresponds to the
Bragg frequency ωB, while the (light grey) rectangle depicts
the longwavelength regime, ω < ω0 (for the network with
resonators). (b) Contour of the first branch (ω < ω0) of
the dispersion relation; solid (white) lines depict isofrequency
contours, while the triangle ΓXM denotes the first irreducible
Brillouin zone. (c) Zoom of the dispersion contour, where
the isofrequency lines of the TMM Eq. (2) are compared with
the Boussinesq model [dashed (black) lines] and the cKdV
longwavelength limit [(red) circles].

where k = ω/c0 (where ω is the frequency and c0 is
the linear speed of sound), while qx and qy are the
Bloch wavenumber components along x and y respec-
tively. This dispersion relation is depicted in Fig. 2(a)
—see (blue) dotted line. Importantly, the dispersion re-
lation exhibits different dispersive behavior depending on
the direction of propagation. In particular, as shown in
Fig. 2(a), along the diagonal ΓM of the first irreducible
Brillouin zone the network exhibits dispersionless propa-
gation, while along the horizontal ΓX direction the sys-
tem features a strong dispersion.
In this work, we are interested in radially symmetric

waveforms, namely cylindrical pulses that may propa-
gate within the network, which do not feature an an-
gle dependent amplitude and width. Thus, we need to
adjust the long-wavelength dispersive characteristics of
the square lattice, namely suppress the anisotropy, to
achieve isotropic propagation. This can be done by side-
loading Helmholtz resonators (HRs) to each node of the
square network, which introduce local resonances to the
network.
To model the dispersion of the network with the HRs,

we will again employ the TMM, and derive a set of dis-
crete equations for the pressure field. This way, we arrive
at the following dispersion relation (see Appendix A),

cos (qxd) + cos (qyd) = 2 cos (kd) + i
Zw

2ZHR
sin (kd) , (2)

which is identical to Eq. (1), but also incorporates the last
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term in the right-hand side; here, Zw and ZHR denote
the characteristic impedance of the waveguide segments
and the entrance impedance of the HRs, respectively (see
Appendix A).

The corresponding band structure of the acoustic net-
work is illustrated in Fig. 2. In particular, Fig. 2(a) de-
picts the dispersion relation Eq. (2) of the acoustic net-
work without [dashed (blue) line] and with [solid (red)
line] the HRs, along the axis of high symmetry of the irre-
ducible Brillouin zone. The Bragg frequency ωB = πc0/d
of the network is illustrated by the dotted (black) line,
while the transparent rectangle depicts the low frequency
regime, i.e., ω < ω0, where ω0 is the resonance frequency
of the HR. Figure 2(b) shows the contour plot —with
solid (white) lines illustrating isofrequency contours—
of the first branch (ω < ω0) [(light grey) rectangle] of
the dispersion relation Eq. (2); furthermore, the trian-
gle ΓXM denotes the first irreducible Brillouin zone. A
zoom of the isofrequency contour in the longwavelength
regime, is shown in Fig. 2(c). Here, the isofrequency
lines of the TMM Eq. (2) are also compared with the
ones corresponding to the effective models that we will
introduce below, namely the Boussinesq model [dashed
(black) line] and its cKdV low frequency limit [(red) cir-
cles]. It can readily be seen that the inclusion of the res-
onators induces dispersion in the low frequency regime,
in the region where the square network is dispersionless,
through a hybridization gap originated by the HR reso-
nance ω0. Ultimately, the resonators not only introduce
dispersion to the system, but in the first branch of the
dispersion relation, ω < ω0, they also effectively suppress
the inherent anisotropic dispersive behavior of the square
network.

Note that throughout this study, we use the geomet-
rical parameters based on experimental realizations of a
1D waveguide sideloaded with a periodic array of HRs in
[22, 23]. In particular, for the waveguide segments, we
use d = 10 cm as the lattice distance and rw = 2.5 cm
for the radius. As for geometrical characteristics of the
HR, namely, the radius of the neck and the cavity, the
length of the neck and the height of the cavity we use
rn = 1 cm, rc = 2.15 cm, l = 2 cm and h = 16.5 cm re-
spectively. These values fix the resonance frequency of
the HR at ω0 = 2π × 441 rad/s in physical units.

B. Electroacoustic analogue

The monomodal approximation that was adopted in
the previous section to characterize the dispersive prop-
erties of the network allows us to employ a quasi-1D
description of our setting. In particular, we consider
that each waveguide segment (in between successive junc-
tions) is 1D, so that the governing fluid equations as-
sume a quasi-1D form. This way, in each waveguide seg-
ment, along the x- or y-direction, the mass conservation
(continuity equation) and momentum conservation (Eu-

ler equation) take the form, respectively,

∂ρ

∂t
+

∂

∂ν
(ρvν) = 0, (3)

ρ

(

∂vν
∂t

+ vν
∂vν
∂ν

)

= −∂p

∂ν
, (4)

where, ν = x, y. Here, ρ = ρ(x, y, t) is the density, and
p = p(x, y, t) is the pressure (both referring to the whole
network), which are connected via the equation of state
p = p(ρ, s); here s is the entropy, which hereafter is as-
sumed to be constant. Furthermore, vx = vx(x, t) and
vy = vy(y, t) are the velocity components for a waveg-
uide segment along the x- or y-direction [see Fig. 1(a)].
We now consider the unit cell of the system (see

Fig. 1(c)], which includes a junction connecting four
waveguide segments. Under the aforementioned assump-
tions, each junction may be considered as a single point,
for which the conservation of mass takes into account the
coupling between the four waveguide segments and the
presence of the HR (see, e.g., Ref. [1, 44]), namely:

2
∂ρ

∂t
+

∂

∂x
(ρvx) +

∂

∂y
(ρvy) =

1

Sn

∮

ρv(H)dl, (5)

where v(H) is the velocity component in the neck of the
HR, and Sn is the surface area of the neck. The term
on the right hand side of Eq. (5) corresponds to the mass
flux through the orifice of the neck of the resonator.
Considering solutions on top of the equilibrium state

defined by the density of air ρ0 and atmospheric pressure
patm, we will make use of the substitutions ρ → ρ0 + ρ
and p → patm+p. In addition, assuming that Sn/Sw ≪ 1
and Sn/Sc ≪ 1 (where Sw and Sc are the cross-sections
of the waveguide segments and the HR’s cavity, respec-
tively), the right-hand side of Eq. (5) can be approxi-
mated as [1, 44, 45] (1/2Sn)

∮

ρv(H)dl ≈ (rn/Sn)ρ0v
(H),

where nonlinear effects inside the HR cavity are ne-
glected. The latter approximations are justifiable, upon
substituting the geometrical parameters defined at the
end of the previous section.
Next, we employ the quadratic approximation of the

equation of state [46–48], according to which the den-
sity is expressed as the leading-order terms of the Taylor
expansion of the pressure, namely:

ρ ≈ p

c20
− γ − 1

2ρ0c40
p2, (6)

where γ is the specific heat ratio. We then substitute
Eq. (6) into Eqs. (3)-(4) and keeping only quadratic non-
linear terms in pressure [46, 47], we obtain:

1

c20

∂p

∂t
− β0

ρ0c40

∂
(

p2
)

∂t
+ ρ0

∂vν
∂ν

= 0, (7)

ρ0
∂vν
∂t

=
∂p

∂ν
, (8)

where β0 = γ + 1 = 1.2 for air, and we have considered
plane progressive waves, with p = ρ0c0vν (see details
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in chapter 3 of [46]). In addition, approximating again
the density in Eqs. (5) as per Eq. (6), and keeping only
quadratic nonlinear terms, we obtain the following mass
conservation for the junction:

2

c20

∂p

∂t
− 2β0

ρ0c40

∂
(

p2
)

∂t
+ ρ0

(

∂vx
∂x

+
∂vy
∂y

)

=
2rn
Sn

ρ0v
(H).

(9)

To bypass the difficulties in analyzing the system of
Eqs. (7)-(9), we now employ the electroacoustic analogue
(EA) proposed for acoustic settings [23, 49–52]. In par-
ticular, we consider a 2D electrical transmission line, as
a long wavelength approximation of the 2D network; the
unit cell of the transmission line is depicted in Fig. 1(d).
The dynamics of this effective transmission line can be
described by Kirchhoff current law (KCL) and Kirchhoff
voltage law (KVL), that mimic the quasi-1D conservation
equations (7)-(9). In particular, according to the EA ap-
proach, acoustic flux (pressure) corresponds to current
(voltage), with KCL and KVL leading to a discretized
version of Eqs. (7)-(9); the latter will be particularly rel-
evant for our analytical and numerical investigations, as
we will see below.
First, KCL (corresponding to mass conservation) for

each junction (n,m) yields

un,m−1/2 + un−1/2,m + un+1/2,m + un,m+1/2

− u(H)
n,m =

d

dt
[Cw,j(pn,m)pn,m] , (10)

where un±1/2,m±1/2 is the acoustic flux per the lattice

distance d, u
(H)
n,m is the flux per the diameter of the HR’s

neck 2rn, and pn,m is the pressure at each junction. No-
tice that the discrete pressure field is defined only at the
junctions (n,m), while due to the central finite differ-
ences, the acoustic flux is defined in the middle of each
waveguide in between two consecutive junctions; the lat-
ter locations are denoted as (n± 1/2,m± 1/2). Finally,
Cw,j is a pressure-dependent capacitance, which is non-
linear due to the presence of the quadratic term in the
equation of state Eq. (6). In particular, Cw,j can be ap-
proximated as,

Cw,j ≈ Cw,j0(1 − bpn,m),

where Cw,j0 = 2dSw/ρ0c
2
0 is the linear part of the capac-

itance and b = 2β0/ρ0c
2
0 is the nonlinearity coefficient.

Second, KVL (corresponding to the momentum conser-
vation) for each junction reads:

Lw
d

dt
un,m±1/2 = pn,m±1 − pn,m, (11)

Lw
d

dt
un±1/2,m = pn±1,m − pn,m, (12)

with Lw = ρ0d/Sw being the inductance. Furthermore,
KVL for the branch corresponding to the resonator lo-
cated at the (n,m) connection, leads to:

LH
d

dt
u(H)
n,m = pn,m − p(H)

n,m, (13)

where LH = ρ0l/Sn is the resonator’s effective induc-

tance, and p
(H)
n,m is the pressure inside the resonator cav-

ity at the (n,m) junction. Additionally, the KCL for the
resonator branch yields,

CH
d

dt
p(H)
n,m = u(H)

n,m. (14)

As per the assumptions of the previous section (see also
Ref. [23]), the capacitance of the resonator is assumed
to be linear, CH = VHρ0/c

2
0. Combining the Kirchhoff

laws for the HR, Eqs. (13- 14), one obtains the following
expression for the flux in the resonator’s neck:

u(H)
n,m =

1

LH
P̂−1 d

dt
pn,m, (15)

where P̂ =
(

d2/dt2 + 1/(LHCH)
)

, with 1/(LHCH) = ω2
0

(recall that ω0 is the HR’s resonance frequency). By
substituting the flux of the resonator, Eq. (15), into the
Kirchhoff laws for the junctions, Eqs. (10-12), we obtain
the following differential-difference equation (DDE) for
the pressure pn,m,

LwCH
d2pn,m
dt2

−
(

1 +
1

ω2
0

d2

dt2

)

δ̂2n,mpn,m

+ LwCw,j0
d2

dt2

(

1 +
1

ω2
0

d2

dt2

)

(

pn,m − bp2n,m
)

= 0, (16)

where

δ2n,mpn,m :=pn+1,m − 2pn,m + pn−1,m

+ pn,m+1 − 2pn,m + pn,m−1,

is the discrete Laplacian. Measuring fluxes, pressures and
time in units of 1/

√
Lw0, 1/

√
Cw0 and

√
Lw0Cw0 respec-

tively, where Lw0 = ρ0d/2Sw and Cw0 = dSw/2ρ0c
2
0 are

the transmission line elements for a waveguide segment of
length d/2 (see also discussion in Appendix B), Eq. (16)
is rewritten in the following dimensionless form:

d2

dt2
pn,m − c2

d2

(

1− 1

ω2
0

d2

dt2

)

δ2n,mpn,m

+
1

(κ+ 1)ω2
0

d4

dt4
pn,m − b

κ+ 1

(

d2

dt2
(

p2n,m
)

+
1

ω2
0

d4

dt4
(

p2n,m
)

)

= 0, (17)

where

c2 =
d2Lw0Cw0

Lw(Cwj,0 + CH)
, κ =

CH

Cwj,0
, (18)

while we have used the substitutions
(LHCH)/(LwCw0) → 1/ω2

0 and b → b/
√
Cw0.

Notice that the pressure pn,m, the distance across the
lattice and time in the above equation are respectively
measured in units of 1.2 × 10−5 Pa, d = 10 cm, and
2.9× 10−5 seconds.
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C. Continuum approximation – cKdV equation

To study analytically the DDE (17), we resort to the
continuum approximation. This will allow us to derive
an effective partial differential equation (PDE) for the
pressure in the network, which will turn to be the cKdV
equation. As we will see, the latter admits radially sym-
metric solutions that can be supported by the acoustic
waveguide network.
In the long wavelength regime, with ω < ω0 (where

the field is varying slowly from junction to junction),
the pressure pn,m(t) can be approximated by a contin-
uum variable, i.e., pn,m(t) ≈ p(x, y, t), where x = nd,
y = md. Consequently, the discrete Laplacian can be
approximated by a Taylor expansion of pn,m(t) at the
junction (n,m) as

δ2n,mpn,m ≈ d2∆p, with ∆ ≡ ∂2
x + ∂2

y . (19)

This way, the DDE Eq. (17) is reduced to the following
PDE:

ptt − c2∆p− c2

ω2
0

∆ptt +
1

ω2
0 (κ+ 1)

ptttt

− b

1 + κ

(

(

p2
)

tt
+

1

ω2
0

(

p2
)

tttt

)

= 0, (20)

where subscripts denote partial derivatives. The above
effective PDE, Eq. (20), has the form of a 2D Boussinesq
equation, i.e. a weakly dispersive and weakly nonlinear
PDE in two dimensions, which has been used to model
surface waves in hydrodynamics [24, 53].
It is useful to compare the linear dispersion relation of

Eq. (20) with the one derived via the TMM approach —
see Eq. (2). The former, can be derived upon considering
small amplitude plane wave solutions of Eq. (20), namely:

p(r, t) = p0e
i(k·r−ωt) + c.c., p0 ≪ 1, (21)

where k = (kx, ky), and r = (x, y). This leads to the
dispersion relation:

k(ω) = ± ω

c(κ+ 1)1/2

√

(κ+ 1)ω2
0 − ω2

ω2
0 − ω2

, (22)

where k = (k2x + k2y)
1/2 and ± signs correspond to

outgoing- and ingoing waves. The above dispersion re-
lation can further be simplified in the long-wavelength
approximation, i.e., for ω ≪ ωB; indeed, upon Taylor
expanding Eq. (22) we obtain (for outgoing waves):

k =
1

c
ω +

κ

2cω2
0(κ+ 1)

ω3 +O(ω5). (23)

Comparing isofrequency lines of Eqs. (22) and (23) [see
dotted (black) and (red) circles in Fig. 2(c)] with ones
obtained via the TMM [solid (white) lines in the same
figure)], we can readily observe that the continuum ap-
proximation is in excellent agreement with the TMM. By

choosing ω0 ≪ ωB, we ensure the validity of the EA ana-
logue and of the Boussinesq equation (20). In addition,
the coupling parameter κ should be κ <∼ 1 to ensure that
the hybridization gap and the Bragg bandgap remain de-
coupled, as shown in Fig. 2(a) (for more details see also
Refs. [1, 21, 23]).
We now proceed by considering small-amplitude radi-

ally symmetric solutions of Eq. (20); in such a case, the
Laplacian can be expressed as ∆ = ∂2

r + (1/r)∂r, where
r is the radial coordinate. As we will see, such solutions
exist in the regimes of weak nonlinearity and weak dis-
persion, and are characterized by large radii, such that
the spreading due to cylindrical divergent terms is also
weak. In particular, we seek solutions of Eq. (20) in the
form of the following asymptotic expansion:

p = εp1 + ε2p2 + ε3p3 + · · · , (24)

where 0 < ε ≪ 1 is a formal small parameter (setting the
amplitude of the solutions), and pi are unknown functions
depending on the slow variables:

T = ε1/2
(

r − r0
c

− t

)

, and R = ε3/2(r − r0), (25)

where r0 is the initial radius of the wave. Substitut-
ing Eq. (24) into Eq. (20), and using the slow variables
Eq. (25), we obtain identities at orders O(ε) and O(ε2),
while at order O(ε3), we obtain the following equation:

p1R + αp1TTT + βp1p1T +
1

2R
p1 = 0, (26)

where

α =
κ

2cω2
0(κ+ 1)

, β =
b

c(κ+ 1)
(27)

are the dispersion and nonlinearity coefficients respec-
tively. Equation (26) is the cylindrical KdV (cKdV)
equation, which is a prototypical radially symmetric
model, that describes ring-shaped waves propagating suf-
ficiently far from the origin [40].

III. LINEAR AND NONLINEAR WAVES

Having derived the cKdV Eq. (26), we will now con-
sider the propagation of linear and nonlinear (i.e., in
the form of solitons) ring-shaped waves that can be sup-
ported in the acoustic network. We will first examine
linear waves of low amplitude, such that the quadrati-
cally nonlinear term in Eq. (26) can be neglected. Then,
we will study the fully nonlinear version and investigate
the dynamics of ring solitons.

A. Linear ring-shaped waves – self-similarity

First, we aim to ascertain the behavior of linear ring-
shaped waveforms in the acoustic network. For suffi-
ciently low amplitudes, namely for a normalized pressure
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amplitude p0 of the order of 1 Pa, one may omit the non-
linear term in Eq. (26), and study its linearized version,
namely:

p1R + αp1TTT +
1

2R
p1 = 0, (28)

supplemented with the boundary condition p(R =
R0, T ) = p0(T ). Motivated by the self-similar solution of
the linearized KdV in 1D [24, 53], as well as the approx-
imate solution of the linearized cKdV [54], we will seek
self-similar solutions for the linearized cKdV. In our case,
such solutions retain their temporal shape, and only fea-
ture spatially-dependent amplitudes and/or widths (see
Ch. 5 of Ref. [55]). A self-similar solution of Eq. (28)
may be sought in the form:

psim =
1

Rw
f(η), η =

BT

Rq
, (29)

where f(η) is an unknown function of the coordinate η,
assumed to satisfy homogeneous boundary conditions at
infinity, i.e., f(η) → 0 as η → ∞; furthermore, B, w and
q are parameters that will be found self-consistently, so
that to warrant self-similarity. Substituting the ansatz,
given in Eq. (29), in Eq. (28), and gathering equal powers
of R, we obtain,

1

Rw+1

[(

w − 1

2

)

f(η) + qf ′(η)η

]

− αB3

Rw+3q
f ′′′(η) = 0,

(30)

where f ′ denotes the derivative of f with respect to η.
Next, to ensure self-similar behavior of the solution, first
we require each term of Eq. (30) to be of the same power
in R; this leads to q = 1/3. Second, to reduce Eq. (30)
to an ordinary differential for f(η) (independent of any
parameter), we choose w = 5/6 and B = (3α)−1/3. This
way, Eq. (30) reduces to f ′′′ − (ηf)′ = 0 which —due
to the homogeneous boundary conditions— is finally re-
duced to the Airy equation:

f ′′ − ηf = 0. (31)

The bounded solution of the Airy equation is f(η) =
Ai(η), where Ai is the Airy function, which has the fol-
lowing integral representation:

Ai(η) =
1

2π

∫ +∞

−∞

ds exp

[

i

(

sη +
s3

3

)]

. (32)

To this end, the asymptotic solution of Eq. (28) is of
the form [24]: p1(T,R) ∼ psim(T,R)p̂0(0) (where p̂0(0)
is the Fourier transform of the boundary condition at
R = R0). This suggests that the asymptotic solution
of the linearized Boussinesq model, Eq. (20), takes the
form:

p(r, t) ∼ p̂0(0)

(r − r0)−5/6
Ai(η), η =

r−r0
c − t

(3α(r − r0))1/3
. (33)

(b)

(c) (d)

(a)

FIG. 3: Contour plots of the pressure field, for the low-
amplitude (linear) ring-shaped self-similar waveform, at times
t = 787.5, 1575, 2362.5, 3150. The inset in panel (d) shows
a zoom of the pressure profile in the network, revealing the
waveguide structure.

From the asymptotic behavior of the Airy function (see,
e.g., Ref. [53]), one can deduce that in the limit η → 0
the solution will vary as p(r, t) ∼ r−5/6, which is in agree-
ment with the approximate solution found in Ref. [54].
Notice that, due to the curvature term (∝ 1/r), the
decay law r−5/6 differs from that of the linearized 1D
KdV, which is ∼ r−1/3. On the other hand, in the case
where the dispersion coefficient vanishes α → 0 the far-
field amplitude decay in 2D free space is proportional to
∼ r−1/2. Then, one may notice that the joint effects of
the curvature-induced decay and dispersion yield a decay
rate ∼ r−5/6, which coincides with the decay rate of the
self-similar solution Eq. (33).
Next, we corroborate our theoretical findings, i.e the

theoretical self-similarity predictions for the propagation
of linear dispersive rings, with direct numerical simula-
tions of the simplified quasi-1D conservation equations
(7)-(9). In the simulations, each waveguide segment of

length d is discretized to Ñ points (see Appendix B for
details). Having in mind the possibility of future experi-
ments, we choose to simulate a realizable experimental
platform. In particular, we excite the system with a
boundary condition on a circle of radius r0, located at
the center of the network. The size of the network used
in the simulations, is 401 × 401 unit cells. Parameter
values are the ones mentioned in Section II. To compare
the results of the simulations with the analytical predic-
tions, we fix the perturbation parameter to ε = 0.1, while
the radius of the cylindrical boundary condition is set to
r0 = 10d = 1/ε. This choice for the value of the initial
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radius ensures the compatibility of our numerical results,
with the validity of our analytical approximation (where
sufficiently large radii where considered). Furthermore,
for the boundary condition, we use a generic Gaussian
pulse,

p(r0, t) = p0 exp
(

− ((t− t0)/σ)
2
)

, (34)

of amplitude p0 and width σ. We fix p0 = 1.2 × 10−5,
corresponding to a peak pressure of 1 Pa in physical units
(which ensures that nonlinear effects are negligible); fur-
thermore, we use the value σ = 29, corresponding to
≈ 0.9 ms
Contour plots of the resulting pressure field are pre-

sented in Fig. 3 at times t = 787.5, 1575, 2362.5, 3150, in
panels (a)-(d) respectively. A zoom of the pressure field
of the network in panel (d) portrays the structure of con-
nected waveguides. On the periphery of the blue disk at
the center of the network, we apply the boundary condi-
tion of Eq. (34), while in the interior we use a Neumann
boundary condition (zero flux).
The evolution of the initial pulse along the direction

ΓX is also depicted in the 3D plot of Fig. 4(a); notice
that the evolution along the direction ΓM (not shown
here) is almost identical. Each of the individual snap-
shots, shown in this figure at fixed distances, features an
increasing width due to dispersion, and exhibits a profile
which follows the shape of the Airy function. In fact,
as seen in Fig. 4(b), a direct comparison between the
numerical result [solid (red) line] and the estimation of
Eq. (33) [dashed (blue) line] at r = 70d, shows a very
good agreement between the two —especially given the
asymptotic nature of Eq. (33). Notice that the agreement
is better for the main pulse, and becomes worse for the
secondary pulses, with errors basically occurring in the
amplitude and, in large times, also in the frequency of
the dispersive waveform. It is finally mentioned that, as
seen in Fig. 4(a), the amplitude of the main pulse decays
rapidly as it propagates in the network. The relevant
decay rate (again along the direction ΓX) is shown in
Fig. 4(c). In particular, shown are the numerical result
[(red) circles] and the analytically obtained decay law,
∝ r−5/6, pertinent to the self-similar solution [dashed
(blue) line]. Obviously, there is an excellent agreement
between the two.

B. Ring solitons

We now proceed with the case where the dispersion,
nonlinearity, and curvature-induced decay terms of the
cKdV equation (26) are of the same order. This opti-
mal balance may be achieved for amplitudes of the order
of ∼ 10kPa, and initial radii of the order of ∼ 10d. In
this case, there exist an exact ring-shaped soliton solu-
tion (usually called “cylindrical soliton”) of the cKdV
equation, which can be found by the formal reduction of
the cKdV to the usual 1D KdV model [56]. The relevant

(a)

(b)

(c)

FIG. 4: (a) Evolution of the initial pressure pulse along the
direction ΓX at fixed distances. (b) Comparison of the nu-
merical simulation [solid line (red)] and the Airy self-similar
solution Eq. (33) [dotted line (blue)] at r = 70d. (c) Am-
plitude decay along the direction ΓX; numerical simulation
[circles (red)] and the analytical prediction Eq. (33) [dotted
line (blue)].

solution is a ring-shaped pulse of a sech2 profile, on top
of a rational background ∝ T/R (see, e.g., Refs. [38, 56]).
Obviously, the divergence of the background at the ori-
gin (i.e., for R → 0), makes the above exact solution
difficult to be investigated either numerically or exper-
imentally. Nevertheless, a much more convenient form
of the cylindrical soliton is available. Indeed, an asymp-
totic analysis, valid for solutions of sufficiently large radii
[37, 40], shows that an approximate form of the cylindri-
cal soliton’s core can be well approximated by the planar
KdV soliton, but with a slowly varying amplitude A(R),
due to the expansion of the solution. This approximate
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(b)

(c) (d)

(a)

FIG. 5: Contour plots of the pressure field, for the
high-amplitude (nonlinear) ring soliton, at times t =
787.5, 1575, 2362.5, 3150. The inset in panel (d) shows a
zoom of the ring soliton’s pressure profile in the network, re-
vealing the waveguide structure.

form of the soliton is:

p1(T,R) ≈ A(R) sech2
[

w0(R0)

(

T − R−R0

v(R0)

)]

, (35)

where A(R) = A0 (R0/R)
2/3

is the spatially-varying soli-
ton amplitude (with A0 being the soliton amplitude at
the initial radius R = R0), while the soliton’s width
w0(R) and velocity v(R) are accordingly given by:

w0(R) =

(

A(R)β

12α

)1/2

, v(r) =
3

A(R)β
. (36)

It is convenient to express Eq. (35) in terms of the original
variables r and t, as follows:

p(r, t) ≈ εA(r) sech2
{

ε1/2w0(r)

×
[(

1

c
− ε

1

v(r)

)

(r − r0)− t

]

}

. (37)

To verify the existence of the cylindrical soliton in
the acoustic network, we proceed by presenting results
of numerical simulations of Eqs. (7)-(9), as we did for
the linear case. In this case, the boundary condition
at r = r0 = 10d is chosen to be a sech2 pulse, whose
amplitude-width relation is given by the cKdV approxi-
mate solution given by Eq. (37), namely:

p(r0, t) = εA0 sech
2
(

ε1/2w(r0)t
)

, (38)

(a)

(b)

(c)

FIG. 6: (a) Evolution of the initial ring soliton along the di-
rection ΓX at fixed distances. (b) Comparison of the numeri-
cal simulation [solid line (red)] and the cKdV soliton solution
(37) [dotted line (blue)] at r = 70d. (c) Amplitude decay
along the direction ΓX; numerical simulation [circles (red)]
and the analytical prediction (37) [dotted line (blue)].

where the normalized amplitude A0 is chosen so that it
corresponds to a peak pressure of 27.25 kPa; this, sub-
sequently fixes the initial inverse width w(r0), and the
initial velocity v(r0) of the pulse, respectively.

Similarly to the linear case, Fig. 5 depicts contour
plots of the resulting pressure field at times t =
787.5, 1575, 2362.5, 3150 —see panels (a)-(d) respec-
tively. A zoom of the pressure field in panel (d) illus-
trates the localized nonlinear wavefront of the ring soli-
ton in the network. Once again, the periphery of the
blue disc depicts the location of the boundary condition
(38) [Neumann boundary condition (zero flux) are taken
in the interior of the disk].

The evolution of the initial pulse along the direction
ΓX is also depicted in the 3D plot of Fig. 6(a); notice
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that similarly to the linear case, the evolution along the
direction ΓM (not shown here) is almost identical. Each
of the individual snapshots, shown in this figure at fixed
distances, features an amplitude decay of the soliton’s
core, while its width slowly increases due the balance of
dispersion and nonlinearity, as predicted.
Notably, in panel (b) we corroborate our numerical re-

sult [solid (red) line] with the temporal profile suggested
by the analytical prediction, Eq. (37) [dotted (blue) line]
for r = 70d; the two are found to be in very good agree-
ment, especially as concerns the soliton’s core. In partic-
ular, the numerical solution [solid (red) line in Fig. 6(b)]
has a structure which is composed by the main pulse —
which is well approximated by the soliton profile— and a
radiation tail. The formation of the latter, is attributed
to the fact that the sech2-pulse is not an exact solution
of Eqs. (7)-(9). Finally, the small discrepancy between
the velocity of the analytical prediction and the numer-
ical solution is of order O(ε2), which is consistent with
our perturbation method.
The amplitude decay (for the direction ΓX) of the soli-

ton core is presented in Fig. 6(c). Here, we compare the
numerical result [(red) circles] and the analytically ob-
tained decay law of the ring soliton, ∝ r−2/3, [dashed
(blue) line]. Once again, the agreement between the nu-
merical and analytical result is excellent, solidifying the
formation and propagation of ring solitons in the acoustic
network.

IV. CONCLUSIONS

In this work, we have studied the formation and dy-
namics of ring-shaped linear and nonlinear waves (soli-
tons) that can be supported by a square lattice of acous-
tic waveguides. First we studied the linear dispersion
relation of the acoustic network, and found that it fea-
tures an anisotropic behavior. We demonstrated that
the relevant anisotropy can be suppressed, in the long-
wavelength limit, upon introducing Helmholtz resonators
at the junctions of the network. This suppression was
shown to be necessary for the formation of radially sym-
metric, linear and nonlinear, waveforms in the network.
Utilizing the fluid conservation laws, we introduced

the electroacoustic analogy for the 2D network, which
we then used to derive an effective 2D Boussinesq equa-
tion. The latter, was then reduced to a cylindrical KdV
(cKdV) equation, which captures the weakly nonlinear
and weakly dispersive characteristics of the network. The
effective cKdV description, which is valid for radially-
symmetric waves of large radii, allowed us to investigate
both the low- and high-pressure regimes, with the former
(latter) being relevant to linear (nonlinear) waves in the
network.
We have shown that, in the linear regime (relevant to

low initial pressure), the linearized cKdV model admits
a self-similar solution of the form of an Airy function.
This way, we have found that initial data of the form

of ring-shaped Gaussian pulses undergo a dispersion-
induced broadening, together with a curvature-induced
decay. In fact, the decay was found to be significantly
faster than that of linear waves in free space, due to the
combined effects of dispersion and curvature. Direct nu-
merical simulations, performed at the level of the fluid
equations, corroborated our analytical predictions. In
particular, we have found that the profile of the main
pulse, as well as its amplitude decay and its velocity, can
be approximated quite accurately by the solution of the
linearized cKdV.
On the other hand, in the nonlinear regime (relevant

to high initial pressure), we have predicted the existence
of ring (alias cylindrical) solitons in the acoustic network.
These structures are, in fact, solutions of the cKdV equa-
tion, which decay significantly slower than the linear Airy
solutions, due to the balancing of the combined effects of
dispersion and curvature with nonlinearity. The theoret-
ical predictions, obtained in the framework of the cKdV
equation, were found be in very good agreement with
results of direct numerical simulations for the acoustic
network.
Our analysis and findings suggest a number of interest-

ing future research directions. In particular, while in this
work we considered a square acoustic lattice, it would
be quite relevant to investigate other lattice symme-
tries. This way, one could predict novel linear and non-
linear propagation phenomena, due to other, geometry-
induced, dispersive behaviors. On the other hand, poten-
tial use of resonant elements other than Helmholtz res-
onators, and possibly along different directions of prop-
agation, could significantly alter the dispersion of the
setup. Such settings may allow for the formation of 2D
localized pulses (“sound bullets”) that can be excited in
the network. It would also be particularly interesting
to study wave dynamics in the fully anisotropic square
network, so as to investigate (and possibly manipulate)
the form of linear or nonlinear wave structures that can
be formed along different directions. Finally, pertinent
studies, also combined by experimental realizations, are
of great interest.

Appendix A: Transfer matrix method

Let us consider the unit cell, of the infinite square net-
work, which is depicted in Fig. 1 (c). Our starting point
is the consideration of an ideal fluid neglecting nonlinear-
ity, viscosity and other dissipative terms. In this regime,
the acoustic pressure field p(x, y) inside each waveguide
of Fig. 1 (a) is governed by the two-dimensional (2D)
Helmholtz equation:

∂2p

∂x2
+

∂2p

∂y2
+ k2p = 0, (A1)

with Neumann conditions corresponding to zero normal
velocity at the rigid walls ∂np = 0. Here k = ω/c0 with ω
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the angular frequency and c0 the speed of sound. More-
over, we are interested in sufficiently low frequencies, i.e
the wavelength is much larger than the cross section of
each waveguide, such that only the fundamental acous-
tic mode of the waveguide is propagating (monomodal
approximation).
We start by considering the conservation of flux in the

central junction of the unit cell

un−1,m
n,m + un,m+1

n,m + un,m−1
n,m + un+1,m

n,m + uH
n,m = 0, (A2)

where un±1,m+±1
n,m , uH

n,m are the incoming fluxes from the
nodes (n ± 1,m + ±1) to the node (n,m) and the flux
entering the resonator respectively. For sufficient low fre-
quencies one may approximate the HR as a point scat-
terer with the following impedance,

ZHR ≈ i
ρ0l

Sn

ω2 − ω2
0

ω
, (A3)

with ω0 = c0(Sn/(lhSc))
1/2 the resonance frequency of

the HR in the longwavelength regime [23, 57, 58]. Notice,
that the resonance frequency depends on the geometrical
characteristics of the resonator, namely l, h, Sn, Sc the
radius of the neck, the height of the cavity and the cross
sections of the neck and the cavity respectively. In addi-
tion, we can express each flux as a function of the pressure
of the unit cell, pn,m , and the pressure of the neighbour
unit cells, pn±1,m+±1, through the TMM [27, 35, 36].
After, some algebra we arrive at the following eigenvalue
problem for the pressure field pn,m,

4

(

cos (kd) + i
Zw

ZHR
sin (kd)

)

pn,m = pn−1,m

+pn+1,m + pn,m−1 + pn,m+1 (A4)

Finally, to obtain the corresponding dispersion relation,
we seek solutions in form of Bloch waves,

pn,m = p0e
iq·Rn,m = p0e

iqxndeiqymd, (A5)

where qx and qx are the Bloch wavenumber along the
directions x and y of the first Brillouin zone. By substi-
tuting the periodic wave solution in Eq. (A4) we obtain
Eq. (2). In the absence of resonators, the dispersion re-
lation Eq. (2), is reduced to the form given in Eq. (1).

Appendix B: Numerical scheme

Our numerical scheme is based on the integration of
the simplified fluid conservation laws, Eqs. (7)-(9), with
a finite-difference method. It is worth to note that the
discretization of the aforementioned equations is equiv-
alent to the electroacoustic analogy proposed in Sec. II
(see also Refs [23, 49]). As explained in the main text,
the choice of the discretization is the lattice distance d,
which finally lead to the DDE (16).
For our numerical scheme, since we are interested in

accurately capturing the dispersive and nonlinear char-
acteristics of the network, we choose a smaller discretiza-
tion distance, d̃ = d/Ñ where Ñ is the number of points
per unit cell, for a single waveguide segment (see details
in Ref. [52]). In terms of the electroacoustic analogue,
this approach employs a transmission line, whose unit
cell is in fact a “supercell”; notice that this is a generic
scheme that is commonly used in numerical studies of
continuum systems [59]. For the numerical simulations

presented in this study we fix Ñ = 10.
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