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Abstract: We perform a detailed study of (supersymmetric) moduli stabilisation in type

IIB toroidal orientifolds with fluxes. We provide strong evidence towards the finiteness of the

number of inequivalent vacua for a given total 3-form flux charge Nflux. We also find that the

minimal value of the string coupling gs is given in terms of Nflux and present strong evidence

for the asymptotic relation gs,min ∼ c/Nα
flux, with α = 1, 2, valid for not too small Nflux, where

c is an order 1 coefficient and α depends on the orbifold. Imposing tadpole cancellation, Nflux

is bounded from the number of orientifold O3-planes. Combined with the flux quantisation,

this reduces considerably the allowed vacua while the lower bound of the string coupling is

then not far from unity. On the other hand, the presence of negative D3-brane charge induced

by magnetised D7-branes breaks supersymmetry and relaxes the bound, allowing significantly

smaller values for gs.
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1 Introduction

String theory provides a consistent quantum framework for unifying gauge and gravitational

interactions and describing particle physics and cosmology involving phenomena at very dif-

ferent scales. An important prerequisite towards this goal is stabilising the string moduli and

thus fixing the compactification parameters down to four dimensions in a controllable way.

A well known systematic mechanism for the geometric (closed string) moduli stabilisation is

based on turning on 3-form fluxes for the field-strengths of the NS-NS (Neveu-Schwarz) and R-

R (Ramond) 2-form gauge potentials, in the framework of type IIB string compactifications

on Calabi-Yau threefolds, which preserve N = 2 supersymmetry in four dimensions [1–3].

The fluxes can be chosen in a way to break supersymmetry down to N = 1 and lead to a

superpotential depending on the complex structure moduli and the axio-dilaton modulus [4].

The resulting scalar potential can be minimised in a supersymmetric way, fixing all complex

structure deformations of the compactification manifold, as well as the string coupling, in

terms of the discrete flux quanta obeying the Dirac quantisation. Indeed, the number of

complex structure moduli is equal to the number of holomorphic (2, 1) cycles, given by the

Hodge number h2,1, which when supplemented with the axio-dilaton modulus and the flux

around the unique (3, 0) cycle, leads to h2,1 + 1 complex equations for the same number of

complex moduli variables. An a-posteriori consistency condition for the validity of the above

mechanism is to obtain a small value for the string coupling gs justifying the neglect of string

quantum corrections.

The multitude of possible background fluxes stabilising the complex structure and axio-

dilaton leads to a large landscape of vacua. These vacua have undergone great scrutiny in

the past decades. The study of their statistics was initiated in the seminal works of [5, 6],

and was then gradually complemented by searches using different algorithmic methods or

looking for more specific phenomenological properties of flux vacua [7–11]. In parallel, several

works searched for all possible solutions on explicit examples [12–14]. Exhausting flux vacua

in explicit examples is a way to test both the finiteness of the flux landscape [5, 6, 15–17]

and the strong constraints coming from the tadpole cancellation [18–20]. It is one of the

motivation of this work.

After complex structure moduli and axio-dilaton stabilisation, one is left with a constant

superpotential W0 that leads to a supersymmetric anti-de Sitter (AdS) vacuum in the particu-

lar case of no Kähler class moduli, counted by the Hodge number h1,1. However, in the general

case of h1,1 ̸= 0, supersymmetry is broken along the Kähler class moduli directions but the

scalar potential vanishes at lowest order due to the no-scale structure of the corresponding

effective supergravity [21, 22]. An extra ingredient is therefore needed for a controlled sta-

bilisation of the Kähler moduli. A non perturbative superpotential, induced for instance by

gaugino condensation in a strongly coupled gauge sector [23] or by D-brane instantons [24],

leads again, generically, to an AdS supersymmetric minimum. This minimum may be uplifted

to small positive value by adding for instance anti-D3-branes breaking supersymmetry to a

non-linear version [24], or α′ corrections and D-terms [25–28], but their full consistency was
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challenged by swampland conjectures [29] and other constraints, see e.g. [30, 31] for reviews.

An alternative perturbative method was proposed recently, based on quantum corrections

to the Kähler potential that grow logarithmically with the size of the 2-dimensional space

transverse to D7-branes [32]. This is due to the propagation of massless closed strings cor-

responding to local tadpoles whose existence is not forbidden by global tadpole cancellation.

Explicit computations can be done in the case of geometric untwisted moduli in orientifolds

of orbifold compactifications [33]. Such models contain at most three Kähler class moduli,

all from the untwisted orbifold sector, as well as at most three mutually orthogonal stacks of

D7-branes magnetised along their four-dimensional internal world-volume. Using as parame-

ters the values of gs and W0 determined by the first step of moduli stabilisation with 3-form

fluxes, as well as the Fayet-Iliopoulos (FI) D-terms induced by the magnetic fluxes, it was

shown that the resulting scalar potential can develop a shallow de Sitter (dS) minimum and

produce a novel model of inflation starting around the inflection point [34].

Towards the ambitious goal of providing an explicit, calculable and physically interesting

model of complete moduli stabilisation, in this work we restrict to the first step. We perform

an exhaustive investigation of complex structure and axio-dilaton moduli stabilisation in N =

1 orientifolds of toroidal orbifold compactifications of type IIB string theory in the presence

of 3-form closed string fluxes [35–39], as well as of 2-form open string internal magnetic fields

along the world-volume of D7-branes. Such compactifications have been the playground

for many examples of partial moduli stabilisation and Standard Model embedding, but no

systematic study of their flux vacua was performed in the past. Orbifold compactifications

involve two types of closed string moduli:

- toroidal deformations of the six-dimensional internal metric and R-R antisymmetric

tensor which are invariant under the orbifold action. They arise from the untwisted

orbifold sector;

- deformations blowing up the orbifold singularities into smooth Calabi-Yau manifolds.

They arise from the twisted orbifold sector. These twisted deformations are associated

to a discrete symmetry which is unbroken at the orbifold point [17, 35, 40], corresponding

to vanishing vacuum expectation value (VEV) of the twisted deformations.

When implemented by a corresponding transformation of the fluxes around the twisted

cycles, the discrete symmetry of the twisted sector remains an invariance of the effective

supergravity. It follows, as we show explicitly in a particular example, that all twisted de-

formations can be stabilised at the orbifold point by choosing vanishing fluxes around the

twisted cycles. For such fluxes we are therefore left with the stabilisation of the untwisted

complex structure moduli, which are at most three. We analyse their stabilisation in great

detail.

Our study is based mostly on analytic and partly on numerical computations, focusing

mainly on two aspects: (i) the multiplicity of inequivalent vacua by modding out S and U
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duality transformations and (ii) the minimum value of the string coupling which controls the

magnitude of quantum corrections and thus the validity of the stabilisation mechanism.

Our two main results are:

1. we provide strong evidence that there is indeed a finite number of inequivalent vacua

for a given total 3-form flux number Nflux by constructing them explicitely;

2. the minimum value of the string coupling depends only on Nflux and satisfies the asymp-

totic relation

gs,min ∼ c

Nα
flux

; α = 1, 2

with c an order one model dependent parameter and α depends on the number of complex

structure moduli of the orbifold. The 3-form fluxes are subject to the D3-brane tadpole

condition imposing the vanishing of the total charge and since Nflux can be shown to be

positive, it is bounded by the number of orientifold O3-planes to which is added the induced

D3-brane charge. In presence of magnetised D7-branes the latter can have both signs, or be

vanishing. The number of D7-branes is also subject to the D7-brane tadpole condition, which

is non-trivial if the orbifold has Z2 elements implying the existence of O7-planes.

The outline of our paper is the following. In Section 2, we present a short review of the

toroidal orbifolds, including the possible presence of discrete torsion, and describe their com-

plex structures (subsection 2.1 and 2.5). It turns out that there are zero, one or three complex

structure moduli. We also introduce the possible 3-form fluxes and the induced superpoten-

tial, as well as the effective N = 1 supergravity action and describe the complex structure

moduli stabilisation mechanism (subsections 2.2 and 2.3). We then discuss the D3-brane

charge tadpole condition (subsection 2.4). Section 3 contains our detailed analysis of moduli

stabilisation, finiteness of inequivalent string vacua and computation of the minimal value of

the string coupling as a function of the total D3-brane flux Nflux, for the cases of zero (subsec-

tion 3.1) and one complex structure modulus (subsection 3.2). In Section 4, we study in great

detail the moduli stabilisation in the only case of three untwisted complex structure moduli,

which is the orbifold Z2×Z2. This orbifold has also three untwisted Kähler moduli as well as

48 twisted moduli which can be either complex structure or Kähler, depending on whether

there is or not discrete torsion, the two cases being exchanged by mirror symmetry [41]. We

first discuss the stabilisation of twisted moduli (in the presence of discrete torsion) at the

orbifold point (subsection 4.1) and then the stabilisation of the untwisted complex structure

moduli (subsection 4.2). We proceed with the counting of independent string vacua and the

computation of the minimal value of the string coupling (subsection 4.3), while we exclude

the existence of solutions with flux integers hierarchy and parametric control on gs (subsec-

tion 4.4). Finally, we study the presence of magnetised D7-branes (subsection 4.5). Section 5

contains our conclusions, while appendix A displays tables with the complex structure data

of the orbifolds used in our analysis.
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2 Toroidal orbifolds with fluxes

In this work, we consider type IIB string compactifications on an internal space Y chosen to

be an orientifold of a T 6/G toroidal orbifold, with G = ZN ,ZN × ZM .

2.1 Orbifolds construction, cohomology basis and complex structures

Orbifold group and action We start this section by reviewing the construction of toroidal

orbifolds, largely based on [42]. The construction starts from a 6-torus T 6 = R6/Λ, where

Λ is a six dimensional lattice. In the torus, points are thus identified as xi ∼ xi + li where

l ∈ Λ. Once the lattice is specified, we can choose an automorphism Γ as the orbifold group,

or point group, to quotient by. Imposing that the resulting orbifold has SU(3)-holonomy, for

N = 1 supersymmetry purposes, restricts Γ to be a subgroup of SU(3). If we further restrict

to abelian orbifold groups, and require that Γ acts crystallographically on the torus lattice,

we end up with a short list of groups:

Γ = ZN with N = 3, 4, 6, 7, 8, 12,

Γ = ZN × ZM with M = kN and N,M = 2, 3, 4, 6. (2.1)

2

The action of the group on the torus has a simple expression in complex coordinates

(z1, z2, z3). For the group generator element θN ≡ (n1, n2, n3), it reads:

θN : (z1, z2, z3) → (e2iπn1/Nz1, e2iπn2/Nz2, e2iπn3/Nz3). (2.2)

The groups ZN are generated by one element θN and the groups ZN × ZM are generated

by two elements θN , θM . Note that there are two inequivalent embeddings for the ZN with

N = 6, 8, 12. For instance θ6,I = (1, 1,−2) or θ6,II = (1, 2,−3). To illustrate the previous

notation Z6,I acts as

θ6,I : (z1, z2, z3) → (e2iπ/6z1, e2iπ/6z2, e−4iπ/6z3). (2.3)

In table 1, we give the list of toroidal orbifolds considered in [42], along with the corresponding

torus lattices and group actions (θN , θM ).

Untwisted cohomology basis The H3(T 6,Z) complex cohomology basis is written as:

ωA0 = dz1 ∧ dz2 ∧ dz3, ωA1 = dz̄1 ∧ dz2 ∧ dz3, ωA2 = dz1 ∧ dz̄2 ∧ dz3, ωA3 = · · · ,
ωB0 = dz̄1 ∧ dz̄2 ∧ dz̄3, ωB1 = dz1 ∧ dz̄2 ∧ dz̄3, ωB2 = dz̄1 ∧ dz2 ∧ dz̄3, ωB3 = · · · ,
ωC1 = dz1 ∧ dz̄1 ∧ dz2, ωC2 = dz1 ∧ dz̄1 ∧ dz3, ωC3 = · · · ,
ωD1 = dz1 ∧ dz̄1 ∧ dz̄2, ωD2 = dz1 ∧ dz̄1 ∧ dz̄3, ωD3 = · · · , (2.4)

We normalise the top (3, 0)-form Ω to ωA0 , namely:

Ω = dz1 ∧ dz2 ∧ dz3 = ωA0 . (2.5)
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orbifold torus lattice Λ θN θM h1,1 h2,1 h̃1,1 h̃2,1

Z3 SU(3)3 (1, 1,−2) 9 0 27 0

Z4,a SU(4)2 (1, 1,−2) 5 1 20 0

Z4,b SU(2)× SU(4)× SO(5) (1, 1,−2) 5 1 22 2

Z4,c SU(2)2 × SO(5)2 (1, 1,−2) 5 1 26 6

Z6,Ia G2 × SU(3)2 (∗) (1, 1,−2) 5 0 20 1

Z6,Ib G2
2 × SU(3) (1, 1,−2) 5 0 24 5

Z6,IIa SU(2)× SU(6) (1, 2,−3) 3 1 22 0

Z6,IIb SU(3)× SO(8) (1, 2,−3) 3 1 26 4

Z6,IIc SU(2)2 × SU(3)2 (∗) (1, 2,−3) 3 1 28 6

Z6,IId G2 × SU(2)2 × SU(3) (1, 2,−3) 3 1 32 10

Z7 SU(7) (1, 2,−3) 3 0 21 0

Z8,Ia SU(4)× SU(4) (∗) (1, 2,−3) 3 0 21 0

Z8,Ib SO(5)× SO(9) (1, 2,−3) 3 0 24 3

Z8,IIa SU(2)× SO(10) (1, 3,−4) 3 1 24 2

Z8,IIb SO(4)× SO(9) (1, 3,−4) 3 1 28 6

Z12,Ia E6 (1, 4,−5) 3 0 22 1

Z12,Ib SU(3)× F4 (1, 4,−5) 3 0 26 5

Z12,II SO(4)× F4 (1, 5,−6) 3 1 28 6

Z2 × Z2 SU(2)6 (1, 0,−1) (0, 1,−1) 3 3 48 0

Z2 × Z4 SU(2)2 × SO(5)2 (1, 0,−1) (0, 1,−1) 3 1 58 0

Z2 × Z6,I G2 × SU(2)2 × SU(3) (1, 0,−1) (0, 1,−1) 3 1 48 2

Z2 × Z6,II G2
2 × SU(3) (1, 0,−1) (1, 1,−2) 3 0 33 0

Z3 × Z3 SU(3)3 (1, 0,−1) (0, 1,−1) 3 0 81 0

Z3 × Z6 G2
2 × SU(3) (1, 0,−1) (0, 1,−1) 3 0 70 1

Z4 × Z4 SO(5)3 (1, 0,−1) (0, 1,−1) 3 0 87 0

Z6 × Z6 G3
2 (1, 0,−1) (0, 1,−1) 3 0 81 0

Table 1. List of simple toroidal orbifolds borrowed from [42], along with the corresponding torus

lattices, group actions (θN , θM ) and number of untwisted and twisted Kähler and complex structure

moduli, respectively (h1,1, h2,1) and (h̃1,1, h̃2,1), in the absence of discrete torsion. In all of these

orbifolds, the matrix M representing the action of the group on the real coordinates is the transpose

of the Coxeter element of the torus lattice, except for the three entries marked by (∗) where the action
is realised as a generalised Coxeter twist, see [42].

In the above basis, the cohomology structure of the 3-forms is clear: ωA0 is a (3, 0)-form,

ωAi , ωCi are (2, 1)-forms, ωBi , ωDi are (1, 2)-forms and ωB0 is a (0, 3)-form.

The untwisted orbifold cohomology is obtained from the torus one by keeping only the

forms invariant under the action of the orbifold group. As the orbifold acts simply on the

complex coordinates through (2.2), the complex cohomology basis (2.4) is convenient to iden-

tify the orbifold cohomology basis. For instance, the ωCi and ωDi are projected out in all the
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orbifolds. The numbers of (1, 1)-forms dzi ∧ dz̄j and (2, 1)-forms dzi ∧ dzj ∧ dz̄k left invariant

under the orbifold action are counted by the Hodge numbers h1,1 and h2,1. On top of these

forms, the orbifold contains additional twisted forms, counted by h̃1,1 and h̃2,1. In these

notations, the total Hodge numbers are thus (h1,1 + h̃1,1, h2,1 + h̃2,1). They also count the

number of untwisted and twisted Kähler and complex structure moduli, and are indicated in

table 1.

The cohomology can also be expressed in terms of a real basis. Introducing the notation

(ijk) ≡ dxi ∧ dxj ∧ dxk, we define our real basis as:

α0 = (135), β0 = (246), γ1 = (123), δ1 = −(456), γ5 = (156), δ5 = −(234),

α1 = (235), β1 = −(146), γ2 = (125), δ2 = −(346), γ6 = (356), δ6 = −(124),

α2 = (145), β2 = −(236), γ3 = (134), δ3 = −(256),

α3 = (136), β3 = −(245), γ4 = (345), δ4 = −(126),

(2.6)

One can check that in the convention
∫
dx1 ∧ dx2 ∧ · · · ∧ dx6 = −1, the basis elements satisfy∫

αi ∧ βj = δji and
∫
γi ∧ δj = δji . It is not obvious to construct 3-forms invariant under the

orbifold action from the real basis. The simplest way is to identify them in the complex basis

as explained above, and then express them in terms of the forms of the real basis.

To go from the complex basis eq. (2.4) to the real basis (2.6), one needs the expressions of

the complex coordinates zi in terms of the real ones xi. These are determined by the complex

structure of the orbifold, as is described hereafter.

The complex structure The action of the orbifold group in real coordinates xi is repre-

sented by a six-dimensional matrix M :

xi → M i
jx

j , M = Qt. (2.7)

This matrix can be taken as the transpose of the Coxeter element Q of the torus lattice Λ,

M = Qt. There are other possibilities, see [42] for reference. The orbifold actions in real and

complex coordinates are compatible if the eigenvalues of Q and θN are equal. This selects

only one or a few possible lattices for each orbifold group and embedding.

The complex coordinates zi are written in terms of the real coordinates xi through the

complex structure. The latter is determined by writing the complex coordinates as arbitrary

linear combinations of the real coordinates zi = Ai
jx

j , and imposing invariance under the

orbifold action. For instance, for a ZN orbifold we see from eqs. (2.2) and (2.7) that we

should require:

θN (zi) = e2iπni/Nzi = e2iπni/NAi
jx

j = Ai
jM

j
kx

k. (2.8)

The expression of the matrix elements M j
k thus gives a set of relations between the coefficients

Ai
j . This fixes the complex structure up to a complex normalisation. After fixing the latter,

the remaining free coefficients are the untwisted complex structure moduli. This procedure

gives the complex structures listed in Appendix A, a sample of which is given in table 2.
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Let us show the details of the procedure for the Z4,b orbifold. The group generator given

in table 1 is θN = (1, 1,−2) and the matrix M reads:

M = Qt =



1 −1 0 0 0 0

2 −1 0 0 0 0

0 0 0 0 −1 0

0 0 1 0 −1 0

0 0 0 1 −1 0

0 0 0 0 0 −1


(2.9)

The identification (2.8) thus reads:

iA1
kx

k = (A1
1 + 2A1

2)x
1 − (A1

1 +A1
2)x

2 +A1
4x

3 +A1
5x

4 − (A1
3 +A1

4 +A1
5)x

5 −A1
6x

6,

iA2
kx

k = (A2
1 + 2A2

2)x
1 − (A2

1 +A2
2)x

2 +A2
4x

3 +A2
5x

4 − (A2
3 +A2

4 +A2
5)x

5 −A2
6x

6, (2.10)

−A3
kx

k = (A3
1 + 2A3

2)x
1 − (A3

1 +A3
2)x

2 +A3
4x

3 +A3
5x

4 − (A3
3 +A3

4 +A3
5)x

5 −A3
6x

6,

which is solved for:

z1 = A1
1

(
x1 +

1

2
(i− 1)x2

)
+A1

3

(
x3 + ix4 − x5

)
,

z2 = A2
1

(
x1 +

1

2
(i− 1)x2

)
+A2

3

(
x3 + ix4 − x5

)
, (2.11)

z3 = A3
3

(
x3 − x4 + x5

)
+A3

6x
6.

We see that the space parameterised by z1 and z2 is generated by two vectors, with coefficients

A1
1, A

1
3, A

2
1, A

2
3. To have independent coordinates z1 and z2 with unit overall coefficient, one

can make the choice A1
1 = A2

3 = 1 and A1
3 = A2

1 = 0. On the other hand, the z3 coordinate is

expressed in terms of two additional independent vectors, such that fixing the overall complex

normalisation leaves one free coefficient. The latter corresponds to the complex structure

modulus U which survives the orbifolding, from the initial nine complex structure moduli of

T 6. The final complex coordinates thus read:

z1 = x1 +
1

2
(i− 1)x2,

z2 = x3 + ix4 − x5, (2.12)

z3 = x3 − x4 + x5 + Ux6.

Notice that the orbifold action symmetry z1 ↔ z2 was still clear in eq. (2.11) before making

our choice for the remaining Ai
k. This is not the case anymore once they are fixed in eq. (2.12).

On the other hand, if there remains a symmetry after fixing the arbitrary parameters, it has

to be a symmetry of the orbifold action (see for instance the orbifold T 6/Z3 ×Z3 in table 2).
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coefficients of the complex structure

orbifold x1 x2 x3 x4 x5 x6

z1 1 e2iπ/3 0 0 0 0

Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 e2iπ/3

z1 1 e3iπ/4/
√
2 0 0 0 0

Z4,b z2 0 0 1 i −1 0

z3 0 0 1 −1 1 U
z1 1 U1 0 0 0 0

Z2 × Z2 z2 0 0 1 U2 0 0

z3 0 0 0 0 1 U3

z1 1 e2iπ/3 0 0 0 0

Z3 × Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 −eiπ/3

Table 2. Complex structures of some orbifolds of table 1. U ,U i are complex structure moduli.

Projective coordinates We conclude this section by mentioning that the (3, 0)-form Ω

can be parameterised in the real basis through the complex structure moduli. It takes the

form:

Ω = dz1 ∧ dz2 ∧ dz3 + twisted forms

= Xaαa + Gaβ
a, (2.13)

where Xa are projective coordinates. They can be set to (X0, Xi, XI) = (1,U i,DI) when

evaluating the above relation, with i = 1, . . . , h2,1 parameterising the untwisted complex

structure moduli and I = 1, . . . , h̃2,1 the twisted ones. Similarly, the total cohomology basis

(αa, β
a) = (αi, αI , β

i, βI) is constructed from the untwisted one (2.6) supplemented by the

twisted cohomology basis. See section 2.5 for a more complete introduction to the twisted

moduli. In eq. (2.13), the function G is the prepotential introduced in eq. (2.30) and Ga

denotes its derivative with respect to the Xa coordinate [36, 43–45].

2.2 Fluxes, superpotential and complex structure moduli stabilisation

We just detailed the construction of the toroidal orbifolds considered in this work. In what

follows, we study in detail the stabilisation by background fluxes of their h2,1 untwisted

complex structure moduli. In the orbifolds we consider, h2,1 ∈ {0, 1, 3} and the equations of

stabilisation are algebraic, making an analytic treatment technically possible.

In addition, we will choose fluxes such that the h̃2,1 twisted complex structure moduli

are stabilised at the orbifold point, i.e. have vanishing VEVs. This is possible due to the

orbifolds discrete symmetries, as described in section 2.5 and shown explicitly for T 6/Z2×Z2

in section 4.1.
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Background fluxes superpotential and charge In the effective theory, the presence

of background 3-form fluxes H3 (NS-NS) and F3 (R-R) generate a superpotential for the

complex structure moduli. This superpotential is expressed in terms of the 3-form G3 and

reads [4]:

W =

∫
G3 ∧ Ω, where G3 ≡ F3 + SH3. (2.14)

In our conventions, the axio-dilaton is defined as S ≡ C0+ ie−ϕ = C0+ i/gs. The background

fluxes also contribute to the D3 tadpole by inducing a positive charge Nflux:

Nflux =

∫
T 6

H3 ∧ F3 = mHnF −mFnH + pHqF − pF qH . (2.15)

The last equality is written in terms of the flux integers, that we introduce hereafter. The

products of flux integers denote the sum over all basis elements, e.g. mHnF =
∑4

i=0m
H
i nF

i ,

see eqs. (2.6) and (2.16).

Flux quanta and integers The fluxes F3 and H3 should satisfy a Dirac quantisation

condition, so that their expansion coefficients on a normalised 3-form cohomology basis should

be integers. As introduced in eq. (2.6), we work with a normalised real cohomology basis

generated by αi, β
i, γj , δ

j . Hence, the quantised 3-form G3 is expanded in terms of flux

integer quanta as:

G3 = miαi + niβ
i + pjγj + qjδ

j , where mi = mF
i + SmH

i , ni = nF
i + SnH

i , etc. (2.16)

where i = 0, . . . , 3 and j = 1, . . . 6. The flux quanta mH,F
i , nH,F

i , pH,F
i , qH,F are integers. In

the rest of the paper, we call flux parameters the coefficients of G3 on the real cohomology

basis, hence mi, ni, pj , qj . They are not all independent. Indeed, αi, β
i, γj and δj are elements

of the real basis of the torus T 6. However, as G3 is expanded on the orbifold cohomology basis,

it only depends on real 3-forms surviving the orbifolding. Such forms are linear combinations

of the real basis elements, producing relations between the flux parameters mi, ni, pj , qj . The

easiest way to identify the real 3-forms surviving the orbifolding is to match them to the

complex ones through the complex structure, see section 2.1.

As explained below eq. (2.4), it is indeed easier to identify the orbifold 3-forms in the

complex basis because the orbifold action is simpler there. In the complex basis the G3 form

reads:

G3 = AiωAi +BiωBi , with i = 0, . . . , 3, (2.17)

where the Ai and Bi coefficients are not integer and only the ωAi and ωBi , surviving the

orbifolding, are considered. In this basis, the superpotential W of eq. (2.14) simply reads:

W = B0

∫
ωB0 ∧ ωA0 . (2.18)

As we chose to normalise the real basis, both the integral and the B0 coefficient depend on

the complex structure. The dependence on the flux quanta comes from B0.
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When expanding the (3, 0)-form Ω in the projective coordinates (2.13), we see from

eqs. (2.14) and (2.16) that the flux superpotential is expressed simply as:

W = naX
a +maGa. (2.19)

This latter expression is derived from the special geometry of the moduli space and involves

the derivative Ga of the prepotential G, see eq. (2.30) [46].

To summarize the previous discussion, in order to express the superpotential in terms of

flux integers, we have to compute the B0 coefficients of eq. (2.17), that enters in (2.18), for

the ωAi and ωBi forms surviving the orbifold. This is done by equating the two expressions

of G3 in (2.17) and (2.16) with the ωAi and ωBi expanded on the real basis using the complex

structures of Appendix A. It produces at the same time the Ai andBi coefficients, in particular

B0, and the aforementioned constraints between the flux parameters mi, ni, pj and qj . When

solving these constraints and expressing some parameters as function of others, one should

ensure that the quanta all remain integers. The easiest way to do so is to express all flux

parameters in terms of the smallest parameters, that we call basis parameters. For instance,

if one of the constraints gives n1 = 2m1, one should take m1 as basis parameter rather than

n1, so that taking mF
1 and mH

1 integers ensures that nF
1 and nH

1 are integers as well.

The T 6/Z3 example In this orbifold, only the ωA0 and ωB0 survive the projection. This

means that the complex structure is completely fixed by the orbifold: there is no untwisted

complex structure modulus and h2,1 = 0. The G3 flux should thus be expanded as:

G3 = A0ωA0 +B0ωB0 . (2.20)

The complex structure, i.e. the relation between complex and real coordinates, is given in

table 2 and allows to write the ωA0 and ωB0 forms as:

ωA0 = dz1 ∧ dz2 ∧ dz3 = (dx1 + e2iπ/3dx2) ∧ (dx3 + e2iπ/3dx4) ∧ (dx5 + e2iπ/3dx6)

= α0 + β0 + e2iπ/3(α1 + α2 + α3)− e−2iπ/3(β1 + β2 + β3),

ωB0 = dz̄1 ∧ dz̄2 ∧ dz̄3 = (dx1 + e2iπ/3dx2) ∧ (dx3 + e2iπ/3dx4) ∧ (dx5 + e2iπ/3dx6)

= α0 + β0 + e−2iπ/3(α1 + α2 + α3)− e2iπ/3(β1 + β2 + β3). (2.21)

Using these expansions in eq. (2.20) and matching with the real basis expansion (2.16) we

deduce that pj = qj = 0, m0 = n0 = A0 + B0, m1 = m2 = m3 = A0e2iπ/3 + B0e−2iπ/3, n1 =

n2 = n3 = m0+m1. One can then invert these relations to obtainB0 = −i/
√
3(e2iπ/3m0−m1),

and obtain the flux superpotential (2.18) as:

W = B0

∫
ωB0 ∧ ωA0 = −3e2iπ/3(m0 + e2iπ/3m1). (2.22)

In addition, replacing the flux quanta in (2.15) yields Nflux = −3(mH
0 mF

1 −mF
0 m

H
1 ). Note that

it is a multiple of 3. This is a consequence of the orbifold geometry, without any restriction

on the integers. See later discussion.
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Parameterisations of the superpotential For orbifolds with h2,1 = 0 of table 1, we

parameterise the flux superpotential (2.14) as

W = K(a+ γb), where a = aF + SaH , b = bF + SbH . (2.23)

Here a, b are the independent basis parameters. It turns out that Nflux is always multiple of

an integer k depending on the orbifold, but not of the flux quanta:

Nflux = k(aHbF − aF bH), k ∈ Z fixed by the orbifold geometry. (2.24)

For orbifolds with h2,1 = 1, we can similarly parameterise:

W = UA+B, where A ≡ AF + SAH , B ≡ BF + SBH . (2.25)

The coefficients A and B are simple combinations of flux parameters. With this notation the

flux number reads:

Nflux = k(Re(AHB̄F )− Re(AF B̄H)), k ∈ Q fixed by the orbifold geometry. (2.26)

In these cases k is not necessarily integer anymore. However Nflux turns out to be again

multiple of an integer ℓ depending on the orbifold, due to the specific combination of the flux

parameters appearing in its expression. It indeed reads:

Nflux = ℓn, n ∈ N fixed by the orbifold geometry. (2.27)

For instance, the orbifold T 6/Z4,a has ℓ = 4 and the exact expression of Nflux reads:

Nflux = 4
(
mH

0 nF
0 −mF

0 n
H
0 +mH

1 nF
0 −mF

1 n
H
0 +mH

0 mF
2 −mF

0 m
H
2 +2(mH

1 mF
2 −mF

1 m
H
2 )
)
. (2.28)

In tables 3 and 4, we provide the data for the orbifolds of table 1 with these parameterisations.

The only orbifold with h2,1 = 3 present in our list is T 6/Z2 × Z2. We take it as an

example to discuss full stabilisation of untwisted and twisted complex structure moduli, and

reserve it for section 4.

2.3 Supergravity effective theory, moduli stabilisation and vacuum solutions

The N = 1 effective supergravity theory is described by the Kähler potential K and super-

potential W . In this work, we only consider the flux induced superpotential (2.14). In our

conventions, the tree-level Kähler potential K reads:

K = −2 log(V)− log
(
− i(S − S̄)

)
− log

(
i

∫
Ω ∧ Ω̄

)
, (2.29)

where the three terms correspond respectively to the Kähler moduli, axio-dilaton and complex

structure moduli. The part depending on the internal volume V, parameterised by the Kähler
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orbifold a b K γ k

Z3 m0 m1 −3e2iπ/3 eiπ/3 −3

Z6,Ia m0 m1 2
√
3e5iπ/6

√
3eiπ/6 3

Z6,Ib n0 n1 −
√
3eiπ/6 e5iπ/6/

√
3 3

Z7 m0 m1 7/2(7 + i
√
7) (1 + i

√
7)/4 7

Z8,Ia m0 m1 16i
√
2

√
2eiπ/4 8

Z8,Ib n0 n1 −4i
√
2 e3iπ/4/

√
2 4

Z12,Ia m0 m1 12eiπ/6 eiπ/3 3

Z12,Ib m0 m1 −3e5iπ/6 eiπ/3 3

Z2 × Z6,II n0 n1 −
√
3eiπ/6 e5iπ/6/

√
3 3

Z3 × Z3 m0 m1 3e2iπ/3 eiπ/3 3

Z3 × Z6 n0 n1 −1 e2iπ/3 3

Z4 × Z4 n0 n1 −2 e3iπ/4/
√
2 4

Z6 × Z6 n0 n1 −1 e5iπ/6/
√
3 3

Table 3. Superpotential and Nflux data for orbifolds with h2,1 = 0, with the parameterisation (2.23).

orbifold basis integers A B k ℓ

Z4,a m0,m1,m2, n0 4
√
2e3iπ/4m0 − 8m1 4

√
2e3iπ/4n0 − 8m2 1/8 4

Z4,b m1,m3, n0, n3 2m1 − 2
√
2eiπ/4n3 −2

√
2e3iπ/4m3 − 4in0 1/2 2

Z4,c m1, n0, n1, n3 m1 −
√
2eiπ/4n3 −

√
2eiπ/4n0 + n1 2 2

Z6,IIa m1,m3, n2, p1 −6m1 + 12e2iπ/3p1 −6i
√
3m3 − 18n2 1/18 6

Z6,IIb m0,m1,m2,m3 A6,IIb B6,IIb −2/9 3

Z6,IIc m0,m3, p2, q2 −6m0 − 2i
√
3p2 6m3 − 2i

√
3q2 1/6 2

Z6,IId m0,m1, n0, n1 −eiπ/3m0 − i
√
3m1 −

√
3eiπ/6n0 + n1 2 1

Z8,IIa m0,m1, n0, n2 4im0 − 4
√
2m1 −8in0 + 4(2i+

√
2)n2 −1/8 4

Z8,IIb m1,m2, n0, n2 2(2i−
√
2)m1 − 4im2 4in0 − 2(2i+

√
2)n2 1/4 2

Z12,II m0,m3, p4, q2 −
√
3m0 +

√
6eiπ/4p4

√
3m3 +

√
6eiπ/4q2 2/3 2

Z2 × Z4 m2, n0, n1, n2 im2 −
√
2eiπ/4n1

√
2e3iπ/4n0 − in2 −2 2

Z2 × Z6,I m0,m2, n0, n2 −eiπ/3m0 − i
√
3m2 −

√
3eiπ/6n0 + n2 2 1

Table 4. Superpotential and Nflux data for orbifolds with h2,1 = 1, with the parameterisation (2.25).

To avoid a wide table, we introduced the notation A6,IIb = −3eiπ/3m0+3i
√
3m1+3e2iπ/3m2−3i

√
3m3

and B6,IIb = 3m0 + 3i
√
3m1 + 3e2iπ/3m2. The integer ℓ defined in (2.27) such that Nflux ∈ ℓN, comes

solely from the orbifold action, not from the quantisation of the flux integers, see section 2.4.
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moduli, satisfies the famous no-scale structure [21, 22]. The complex structure moduli part

can be written [36, 43–45] in terms of the projective coordinates (2.13) as:

e−Kc.s. = i

∫
Ω ∧ Ω̄ = −i

(
XaḠa − X̄aGa

)
. (2.30)

The last equality including the derivative Ga of the prepotential G comes from the symplectic

structure of the special geometry of N = 2 moduli space [36, 43–45]. The supergravity scalar

potential is eventually obtained by:

V = eK
(
Kij̄DiWD̄j̄W − 3WW

)
, (2.31)

where the indices run over all moduli fields. The Kähler covariant derivatives are defined as

Di = ∂i +Ki. Due to the tree-level no-scale structure of the Kähler sector, the sum over the

Kähler moduli cancels the negative contribution, leading to the remaining scalar potential:

V = eKKab̄DaWD̄b̄W, (2.32)

where now the a, b̄ indices only run over the complex structure moduli and the axio-dilaton.

This scalar potential is positive and is minimised at points where DaW = 0, for all a. These

are exactly the supersymmetry conditions for the complex structure moduli. They are suf-

ficient conditions to find a vacuum. Minimising this potential thus stabilises the complex

structure moduli and the axio-dilaton totally or partially, depending on the flux background.

2.4 Orientifolding and tadpole condition

Tadpole constraint In addition to quatisation conditions, the mi, ni, pi, qi flux parameters

should also satisfy the tadpole condition. The latter translates the fact that the total D3-

brane charge QD3 supported by the compact manifold must vanish. Using the conventions of

[47], this condition reads
1

2
NY

flux +ND3 =
1

4
NO3, (2.33)

where NY
flux is the Y orientifold flux number obtained from Nflux of (2.15) as described below,

around eq. (2.36). Similarly, ND3, NO3 denote the D3-brane and O3-plane charges in the

quotient space, obtained from the orbifold charges without counting orientifold images. In

the absence of anti-D3-brane charge, ND3 ≥ 0. In that case, as NY
flux is positive at the vacuum

solution, it is bounded by the number of O3-planes.

The number and the loci of O3-planes are fixed by the choice of orientifolding. This

is a further quotient of the orbifold by a geometric involution combined with a reversal of

worldsheet orientation. The number of O3-planes NO3 is obtained by counting the number

of involution fixed points, their localisations are then simply the fixed points coordinates.

We consider the simplest reflection involution xi → −xi. It is the involution maximising the

number of O3-planes NO3, thus giving weakest bound on Nflux.

On the torus T 6, there are 26 = 64 fixed points, with real coordinates (ι1, . . . , ι6) on

the torus lattice, where ιi = 0 or 1/2. Some of these points are however identified by the
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orientifold NO3 orientifold NO3 orientifold NO3

Z3 22 Z7 10 Z2 × Z2 64

Z4,a 22 Z8,Ia 12 Z2 × Z4 40

Z4,b 28 Z8,Ib 22 Z2 × Z6,I 24

Z4,c 40 Z8,IIa 16 Z2 × Z6,II 22

Z6,Ia 14 Z8,IIb 24 Z3 × Z3 10

Z6,Ib 22 Z12,Ia 8 Z3 × Z6 17

Z6,IIa 16 Z12,Ib 14 Z4 × Z4 28

Z6,IIb 24 Z12,II 16 Z6 × Z6 17

Z6,IIc 16

Z6,IId 24

Table 5. Numbers of O3-planes in the orientifolds with involution xi → −xi constructed from the

orbifolds of table 1.

orbifold action, acting through the matrix M introduced in eq. (2.7). Such points should

count only once. We obtain the number of O3-planes reported in table 5 for each orientifold

of table 1. We have some mismatches with the results of [42], for the orientifolds T 6/Z6,Ia

and T 6/Z3×Z3. In this work, we will not consider quantised NS-NS B2 field requiring exotic

Op-planes and lowering the total Op-planes charges [48–50]. All Op-planes RR charges thus

have opposite signs with respect to those of Dp-branes.

In general Calabi-Yau compactifications, O7-planes and D7-branes wrapped around 4-

dimensional submanifolds of the internal space also induce geometric contribution to the

D3-brane charge [51]. This geometric contribution is proportional to the submanifold Euler

characteristic. In the case of toroidal orbifolds, the wrapped submanifolds have vanishing

Euler characteristic and the geometric contribution vanishes. In presence of world-volume

magnetic fluxes, D7-branes can also induce D3-brane charge. Depending on the choice of

fluxes in toroidal orientifolds, magnetised D7-branes thus also contribute to the D3 tadpole

of toroidal orientifolds [52–55]. We come back to this point in section 4.5.

A bit more on flux quantisation in orbifolds: quantised quanta At this stage, we

shall introduce an additional fact about the quantisation of the flux integers [2, 35, 36, 56].

Namely, to avoid subtleties associated with additional 3-cycles that are not present in the

covering T 6, we take the flux quanta to be multiples of 2|G|, where |G| = N,NM is the

cardinal of the orbifold group for T 6/ZN or T 6/ZN × ZM orbifolds. The factor |G| comes

from the orbifold action and the factor of 2 comes from the Z2 involution in the orientifold

action.

Such quantisation can be understood from the fact that in (2.16) we defined the flux

integers on the cohomology of the covering torus T 6. They can indeed be expressed as:

mH
i =

∫
Ai

H3, (2.34)
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where Ai is the 3-cycle that is Poincaré dual to αi. However, under the orbifold quotient of

the torus by G, this cycle is mapped to a cycle Ãi, which is |G| times smaller. More precisely,

the 3-cycles have |G| homologically equivalent images under the orbifold action from the torus

point of view. All of them are identified to a single 3-cycle in the orbifold. The flux integrals

over this cycle can be used to define the “orbifold flux integers” which are thus smaller than

the torus ones. For instance, we get:

m̃H
i =

∫
Ãi

H3 =
1

|G|

∫
Ai

H3 → mH
i = |G|m̃H

i . (2.35)

The Dirac quantisation in the orbifold, hence for m̃H
i , implies that mH

i is multiple of |G|.
Moreover, taking the orientifold quotient, in absence of discrete fluxes on exotic Op-planes,

imposes an additional factor of 2 [2, 57]. The same quantisation conditions hold for all the

flux quanta so that when using the “torus integers” of (2.16) in the orientifold of T 6/G, they

should always be multiples of 2|G|.
In a similar manner, the flux number appearing in the tadpole constraint should be

computed on the orientifold Y rather than on the torus T 6. This is the motivation of the

definition of NY
flux used in the tadpole constraint (2.33):

NY
flux ≡

∫
Y
H3 ∧ F3 =

1

2|G|

∫
T 6

H3 ∧ F3, (2.36)

The ratio between the volumes of the torus and of the orientifold Y gives the factor 2|G|.
The cardinal |G| = N,NM accounts for the volume of the orbifold fundamental cell, while

the additional factor of 2 accounts for the orientifolding. From the quantisation of the “torus

integers”, we thus see that the torus NT 6

flux and the orientifold NY
flux are multiple of a minimal

integer value, namely:

NT 6

flux = 4|G|2Nflux, NY
flux = 2|G|Nflux, |G| = N,NM, (2.37)

where Nflux is computed ignoring the further orbifold quantization of the “torus integers”.

We recall that Nflux is however multiple of an integer k or ℓ for other reasons, see eqs. (2.24)

and (2.27).

In [35, 36], authors considered the orientifold T 6/Z2 × Z2, for which |G| = 4 leads to

NT 6

flux being multiple of 82 = 64. We see that NT 6

flux overshoots the orientifold charge, which is

NO3/2 = 32 for this orientifold, unless one turns-on fluxes on twisted 3-cycles, which carry

smaller quanta. However, the previous discussion shows that we should rather use NY
flux in

the tadpole constraint, which is multiple of 8 and thus seems to invalidate their conclusion1.

2.5 Twisted moduli and discrete torsion

We come back to the twisted Kähler and complex structure moduli. They are additional

degrees of freedom corresponding to strings closing up to the action of the orbifold group, on

1we thank Ralph Blumenhagen and Tomasz R. Taylor for discussion on this topic.
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the covering space of the orbifold. They are necessary for the theory to be well defined on

the singular geometry of the orbifold, in particular to ensure modular invariance of the parti-

tion function. They correspond geometrically to deformation parameters allowing to resolve

singularities lying at fixed loci of the orbifold action. In the effective theory, they correspond

to additional scalars, counted by the twisted Hodge numbers (h̃1,1, h̃2,1), see section 2.1. The

cohomology basis can be extended by addition of twisted forms. The latter are dual to twisted

cycles made from cycles blowing up the orbifold singularities. They are thus located at the

orbifold fixed points and their sizes are parameterised by the twisted moduli.

For the Z2 × Z2 orbifold with discrete torsion (see just below) the twisted cohomology

basis can be constructed taking the dual forms of the twisted 3-cycles [56]:

[Egi
αβ]⊗ [Ai] → αi,αβ, [Egi

αβ]⊗ [Bi] → βi,αβ. (2.38)

The twisted sectors gi = θ2, θ
′
2, θ2θ

′
2, with θ2 and θ′2 the generators of two Z2 of table 1, keep

the torus T 2
i fixed. The 1-cycles [Ai] and [Bi] are the generators of this torus. The indices

α, β = 1, . . . , 4 label the 16 fixed points of gi in the two other tori. In this orbifold, there are

thus 2×3×16 = 96 elements αi,αβ, β
i,αβ in the twisted cohomology basis. The [Egi

αβ] 2-cycles

are parameterised by 48 twisted moduli Di
αβ.

In T 6/ZN × ZM orbifolds, there is an arbitrary choice of discrete torsion [58]. It corre-

sponds to the possibility of a discrete phase between different twisted sectors of the partition

function, keeping modular invariance. The choice of discrete torsion has a non-trivial effect

on the geometric interpretation of the twisted moduli [41]. As shown in [59], it affects the

numbers of twisted Kähler and complex structure moduli (h̃1,1, h̃2,1). The Hodge numbers of

these orbifolds in presence of discrete torsion are explicitly shown in table 6.

orbifold
(h̃1,1, h̃2,1)

without with discrete torsion

Z2 × Z2 (48, 0) (0, 48)

Z2 × Z4 (58, 0) (18, 8)

Z2 × Z6,I (48, 2) (16, 18)

Z2 × Z6,II (33, 0) (13, 15)

Z3 × Z3 (81, 0) (0, 27)

Z3 × Z6 (70, 1) (10, 13)

Z4 × Z4 (87, 0) (39, 0) (3, 12) (3, 12)

Z6 × Z6 (81, 0) (48, 3) (24, 3) (6, 9)

Table 6. Twisted Hodge numbers (h̃1,1, h̃2,1) in ZN × ZM orbifolds with discrete torsion [59].

In particular, in the case of the orbifold T 6/Z2×Z2, we see that discrete torsion exchanges

h̃1,1 with h̃2,1. This is a particular case where the orbifolds with and without discrete torsion

are related by mirror symmetry. This does not happen for the other orbifolds.

If we do not turn on fluxes on the twisted 3-cycles parameterised by the twisted moduli,

the latter are generically stabilised locally at the orbifold point, i.e. with vanishing vacuum
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expectation value. This is due to the discrete symmetry of the moduli space at the orbifold

point. By choosing fluxes that are invariant under this symmetry, the vacuum equations

of the non-invariant moduli are solved automatically [35]. Similar discrete symmetries have

been used in the past in more general Calabi-Yau compactifications to reduce the number of

complex structure moduli to be stabilised by fluxes [60–65]. To summarise, as long as we do

not turn on fluxes on the twisted 3-cycles the corresponding twisted moduli are automatically

stabilised at the orbifold point. We show it explicitly in the case of the T 6/Z2 × Z2 orbifold

in section 4.1.

3 Orbifolds with h2,1
untw. = 0, 1: vacuum solutions and string coupling

In this section, we study the stabilisation of the untwisted complex structure moduli and

axio-dilaton for the orbifolds listed in table 1, except the T 6/Z2 × Z2 treated in section

4. As reminded in section 2.2, we search for sets of background fluxes that stabilise the

moduli. A vacuum solution is thus a combination of the flux quanta together with a point in

moduli space, depending on the flux quanta, which minimises the scalar potential. The scalar

potential depends on the superpotential W , which for the orbifolds of table 1 was presented

and parameterised in section 2.2. The expression (2.32) of the scalar potential shows that its

minimisation is ensured for solutions satisfying the supersymmetry conditions DaW = 0. We

thus look for such solutions. We remind that these are not a necessary conditions.

We find vacua stabilising all the complex structure moduli and the dilaton for these

orbifolds and we exhibit evidence for an exact relation between the minimal value of the

string coupling gs and Nflux. In orbifolds with h2,1 = 0, 1, i.e. with zero or one untwisted

complex structure modulus, this relation goes in the large flux number limit Nflux ≫ 1 as:

gs,min ∼ 1

Nflux
, (3.1)

The exact relation is given in the next subsections. We comment that this relation does not

seem to match in these cases with the one that could be estimated from the early works [5, 6]

on flux vacua statistics. See discussion around eq. (4.32) for such estimate in the case of

Z2 × Z2 where it gives the correct result.

When supplemented with the tadpole condition (2.33) satisfied by Nflux, the above rela-

tion places a constraint on the value of the string coupling. In absence of negative D3 charge,

this constraint is a lower bound, which depends on the particular orbifold. We stress that all

these conclusions only hold for supersymmetric vacua, satisfying DaW = 0.

3.1 Orbifolds with no complex structure moduli

Vacuum relation between gs and Nflux We derive relation (3.1) for orbifolds with no

untwisted complex structure moduli, thus with h2,1 = 0. We parameterised the flux superpo-

tential of such orbifolds in eq. (2.23). It reads:

W = K(a+ γb) where a = SaH + aF and b = SbH + bF , (3.2)
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orbifold C orbifold C

Z6,Ia 2
√
3 Z2 × Z6,II 2

√
3

Z6,Ib 2
√
3 Z3 × Z3 2

√
3

Z7 2
√
7 Z3 × Z6 2

√
3

Z8,Ia 8 Z4 × Z4 4

Z8,Ib 4 Z6 × Z6 2
√
3

Z12,Ia 2
√
3

Z12,Ib 2
√
3

Table 7. Values of C in the relation (3.5) for the toroidal orbifolds with no complex structure moduli.

It only depends on the flux integers and the axio-dilaton S, as long as aH or bH is non-

vanishing. The flux charge reads Nflux = k(aHbF − aF bH), with k ∈ Z, see eq. (2.24). See

table 3 for the values of K, γ and k for each h2,1 = 0 orbifold.

Vacua are obtained solving DSW = 0, which yields:

S̄ = − aF + γbF

aH + γbH
, aH ̸= 0 or bH ̸= 0. (3.3)

The inverse of the string coupling, defined below eq. (2.14), is given by the imaginary part of

S. It thus reads:
1

gs
=

Im(γ)(aHbF − aF bH)

(aH + bHRe(γ))2 + (bHIm(γ))2
=

Nflux

k

Im(γ)

(aH + bHRe(γ))2 + (bHIm(γ))2

≤ Nflux

k

Im(γ)

min(Re2(γ), Im2(γ))
. (3.4)

The last inequality comes from the fact that, when (aH , bH) are integers different from (0, 0),

the denominator is bounded from below. Equation (3.4) leads to a relation between the

minimal value for the string coupling and the flux charge Nflux, as advertised in (3.1). This

relation depends on γ and k, with values for each h2,1 = 0 orbifold shown in table 3, and

reads:

gs,min =
C

Nflux
. (3.5)

The values of C are shown in table 7.

Note that the sign of C is the one of Im(γ)/k. For T 6/Z3, C is negative. Since Nflux is

positive we deduce that there are no physical vacua with gs > 0 at the points DSW = 0 for

the orbifold T 6/Z3.

Duality, fundamental domain and equivalent vacua In this paragraph we comment

on the use of S-duality to relate seemingly different vacuum solutions. The S-duality enjoyed

by type IIB string theory [66] is implemented by the transformation acting on the axio-dilaton

and the fluxes as:

S → aS + b

cS + d
and

(
H3

F3

)
→

(
d −c

−b a

)(
H3

F3

)
, (3.6)
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with a, b, c and d integers satisfying ad − bc = 1. This transformation defines the SL(2,Z)
group, generated by S → −1/S and S → S + 1.

Through their action on the fluxes H3 and F3, these transformations also act on the flux

integers. They however leave Nflux invariant

Nflux = mHnF −mFnH → (ad− bc)(mHnF −mFnH) = Nflux. (3.7)

Such SL(2,Z) transformations can be used to bring the dilaton S in the fundamental domain:

F = {−1/2 < |Re(S)| ≤ 1/2 and |S| ≥ 1}. (3.8)

We can infer that a priori different vacuum solutions, obtained through eq. (3.3) from different

choices of integers aH , bH , aF , bF , can be mapped by means of S-duality transformations. The

easiest way to compare vacuum solutions is thus to bring S to its fundamental domain.

As an example, we take the γ parameter of the superpotential (3.2) with value γ = 1+ i.

It does not correspond to any orbifold of table 3 but serves as a simple illustration of the

duality. For Nflux = 1 and integers with |aH |, |bH |, . . . ≤ 1, we obtain 20 choices of fluxes

stabilising S with Im(S) ̸= 0. Not all of these 20 combinations have S in the fundamental

domain. For instance, the following vacuum solution:

(aH , bH , aF , bF ) = (1, 1, 0, 1), ⟨S⟩ = −3

5
+

i

5
, (3.9)

can be mapped through S-duality to ⟨S⟩ → i, its representative in F . The parameters

(3.6) of this duality transformation are (a, b, c, d) = (2, 1, 1, 1). It brings the flux integers to

(aH , bH , aF , bF ) = (1, 0,−1, 1).

We find that all of the 20 combinations with Nflux = 1 and integers in the range

|aH |, |aF |, |bH |, |bF | ≤ 1 have the same representative S = i in the fundamental domain.

Even with integers above this range, we checked that all integer combinations with Nflux = 1

lead to S = i once brought in the fundamental domain. We conclude that the axio-dilaton

solution S = i can be obtained with different choices of flux parameters satisfying Nflux = 1.

Although all these choices of parameters give the same S, the specific values of parameters

may give different masses for the stabilised moduli.

For Nflux ≥ 1, we obtain other vacuum solutions for S. They always come in finite

numbers for each value of Nflux: when spanning for integers below a certain range k, we find

a certain range kNflux
max# above which no new vacua exist. In table 8 we give the number of

different values of S found for the first values of Nflux in the toy orbifold under consideration,

with γ = 1+ i in (3.2). In figure 1, we also plot the locations of the values of S for Nflux = 8,

before and after duality transformation. All of the eight inequivalent vacua are found within

the range |m|, |n| ≤ k8max# = 4. Greater ranges k ≥ kNflux
max# lead to the same number of

solutions.

The tadpole constraint The previous relation between the minimal value of the string

coupling and the flux charge Nflux can be combined with the tadpole constraint (2.33). In
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Nflux 1 2 3 4 5 6 7 8 9 10

# of values for S 1 2 2 4 3 6 4 8 7 8

Table 8. Numbers of different vacuum solutions for S, at fixed Nflux, obtained solving DSW = 0 for

the axio-dilaton dependent superpotential (3.2) with γ = 1 + i.
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Figure 1. Values of S for vacuum solutions with Nflux = 8 in the complex plane. Each blue dot

corresponds to a different combination of integers. The corresponding values of S are all mapped to

one of the eight orange dots in the fundamental domain (shaded blue region) under S-duality.

absence of negative D3 charge, the latter gives a bound Nflux given by the number of O3-

planes. For the involution xi → −xi this number was given in table 5 for each orbifold. For

instance, in T 6/Z6,Ia in absence of negative D3-charge, the tadpole bound reads:

1

2
NY

flux = |G|Nflux = 6Nflux ≤ NO3

4
=

7

2
, Nflux = kn = 3n, n ∈ N∗. (3.10)

We remind that according to the discussion around equation (2.35), NY
flux = 2|G|Nflux =

12Nflux, and that Nflux is multiple of k = 3 in this orbifold, see table 3. Hence, the tadpole

condition cannot be satisfied in absence of negative D3-charge. The same conclusion is reached

for all the orientifolds listed in table 3.

3.2 Orbifolds with one complex structure modulus

Vacuum solutions In toroidal orbifolds with h2,1 = 1, i.e. with one untwisted complex

structure modulus, the relation (3.1) is analytically harder to derive. We recall that we search

for vacua satisfying DaW = 0 for the superpotential parameterised in (2.25) by:

W = UA+B, where A ≡ AF + SAH , B ≡ BF + SBH . (3.11)
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The expressions of A,B in terms of the flux integers can be found in table 4 for each orbifold.

We also parameterise Nflux = k(Re(AHB̄F )−Re(AF B̄H)), see eq. (2.26). Solving DUW = 0

gives:

Ū = −SBH +BF

SAH +AF
. (3.12)

Once plugged in the second equation DSW = 0, it yields a second order equation for S:

Im(AHB̄H)S2 +
(
Im(AF B̄H) + Im(AHB̄F )

)
S + Im(AF B̄F ) = 0. (3.13)

The imaginary part of S thus reads:

1

gs
=

√
4Im(AHB̄H)Im(AF B̄F )− (Im(AHB̄F ) + Im(AF B̄H))2

2Im(AHB̄H)
, (3.14)

when the argument of the square root is positive. Otherwise, the imaginary part of S van-

ishes. Eventual solutions with AH = BH = 0 do not satisfy this solution either, since the

superpotential does not depend on the axio-dilaton S. The latter is thus not stabilised by

such fluxes.

Contrary to the solutions of h2,1 = 0 orbifolds, with gs given in eq. (3.4), it seems difficult

to identify Nflux in the current solution (3.14). To extract our relation, we first investigate

inequivalent vacua, as in the previous subsection.

Dualities, fundamental domains and equivalent vacua We verify again that some

different choices of flux integers, leading to vacua with different (S,U), can be related by

duality transformations. As before, we can bring S to its fundamental domain using S-

duality transformations (3.6). Under this transformation Nflux is unmodified, see (3.7), and

so is U , as can be checked from its vacuum solution (3.12).

In addition to S-duality, the theory is invariant under the following U -duality:

U → aU + b

cU + d
,

(
BH,F

AH,F

)
=

(
d −c

−b a

)(
BH,F

AH,F

)
. (3.15)

It can be understood from the invariance of the superpotential (3.11) under S ↔ U and

AF ↔ BH . In the exchange, S-duality is traded with the above U -duality. Just like Nflux

and U are invariant under S-duality, one can check using the previous expressions that Nflux

and S are invariant under this U -duality.

We can thus bring both S and U into their fundamental domains by using both duality

transformations. For a given value of Nflux, we find a finite number of inequivalent vacua.

We proceed by choosing a range for the flux integers, finding combinations of integers in this

range which give the correct Nflux and finally scanning over all these combinations to find

solutions satisfying eq. (3.14). We increase this range and observe that after some value there

are no new vacua. We show this procedure more explicitly for the case of T 6/Z2 × Z2 in

section 4.3. The boundedness of gs, advertised in (3.1), appears thus as a byproduct of this

finiteness of the number of inequivalent vacua.
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In table 9, we report the number of vacua for the first values of Nflux for the T 6/Z4,a

orbifold. We also give the obtained minimal vacuum values of 1/g2s,min. The multiplicative

factor in Nflux is the parameter ℓ = 4 of table 4, coming from the geometry of the orbifold.

It does not come from the quantisation of the flux integers explained around equation (2.35).

Nflux/4 1 2 3 4 5 6 7 8 9 10

# of vacua 0 1 3 9 20 37 66 104 159 226

1/g2s,min − 3/4 2 15/4 6 35/4 12 63/4 20 99/4

Table 9. Number of inequivalent vacua and values of 1/g2s,min, at fixed Nflux/4, obtained solving

DU,SW = 0 for the T 6/Z4,a orbifold.

In the T 6/Z4,a orbifold of table 9, we can guess the explicit relation between gs,min and

Nflux. It reads:

gs,min =

√
64

N2
flux − 16

, (3.16)

and realises the relation (3.1) for large Nflux. Similar results and relations can be obtained

for the other orbifolds. We can always parameterise gs,min as:

gs,min =

(
N2

flux

c2
− 1

c0

)−1/2

. (3.17)

The values of the parameters c2 and c0 for the orbifolds under consideration are given in table

10. They all have c2 ̸= 0 and therefore satisfy the advertised relation (3.1), i.e. gs,min ∼ 1/Nflux

in the limit Nflux ≫ 1. For some orbifolds, the parameter c0 is a function of r, defined through

Nflux/ℓ = r mod p, where the integer p depends on the orbifold, see table 10.

Note the absence of the orbifolds T 6/Z6,IIb and T 6/Z8,IIa and T 6/Z2×Z4 from this table.

Table 4 shows that they have k < 0, see eq. (2.26) for the definition of k. They thus suffer

from the same issue as the orbifold T 6/Z3 explained after equation (3.5): they do not admit

solutions of DU ,SW = 0 with gs > 0.

Tadpole constraint As we did for the orientifolds with no complex structure modulus

around equation (3.10), we now discuss the tadpole condition (2.33). For the xi → −xi

involution, the number of O3-planes are given in table 5. In absence of negative D3-brane

charge, the tadpole condition puts a constraint on the flux charge. For instance, in the

orientifold of T 6/Z4,a, containing 22 O3-planes, the constraint reads:

1

2
NY

flux = |G|Nflux = 4Nflux ≤ NO3

4
=

11

2
, Nflux = ℓn = 4n, n ∈ N∗. (3.18)

We remind that NY
flux = 2|G|Nflux = 8Nflux, due to the quantisation of flux integers discussed

around equation (2.35). On top of this, we recalled the quantisation of Nflux by ℓ = 4

consequence of the orbifold projection. We deduce that the tadpole constraint cannot be

satisfied in absence of negative D3-charge.
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orbifold ℓ c2 c0

Z4,a 4 64 4

Z4,b 2 16
1

for Nflux/ℓ ∼=
{ 0 mod 2

2 1 mod 2

Z4,c 2 16 4

Z6,IIa 6 48
4

for Nflux/ℓ ∼=
{ 0 mod 2

4/3 1 mod 2

Z6,IIc 2 48

4

for Nflux/ℓ ∼=


0 mod 6

12 1, 5 mod 6

3 2, 4 mod 6

4/3 3 mod 6

Z6,IId 1 12
1

for Nflux/ℓ ∼=
{ 0 mod 3

3 1, 2 mod 3

Z8,IIb 2 32

4

for Nflux/ℓ ∼=

{ 0 mod 4

8 1, 3 mod 4

2 2 mod 4

Z12,II 2 16 4

Z2 × Z6,I 1 12
1

for Nflux/ℓ ∼=
{ 0 mod 3

3 1, 2 mod 3

Table 10. Values of the parameters in the relation (3.17) between gs,min and Nflux for the toroidal

orbifolds with one complex structure modulus of table 4. See (2.27) for the definition of ℓ.

The same goes for all the orientifolds of table 10 except for T 6/Z4,c and T 6/Z6,IId. For

these two cases, there are a few allowed values for NY
flux before hitting the tadpole bound. For

the orientifold T 6/Z4,c, which has ℓ = 2 and NO3 = 40 we get:

NY
flux ≤ NO3

2
= 20, NY

flux = 2|G|Nflux = 2|G|ℓn = 16n, n ∈ N∗, (3.19)

while for T 6/Z6,IId, which has ℓ = 1 and NO3 = 24 we get:

NY
flux ≤ NO3

2
= 12, NY

flux = 2|G|Nflux = 2|G|ℓn = 12n, n ∈ N∗. (3.20)

Both cases allow the value Nflux = n = 1. However, this is too small to allow for the existence

of vacua. Indeed, as we can see on table 9, and later on table 14, there are generally no vacua

for the first few values of Nflux.
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4 The T 6/Z2 × Z2 orbifold: vacuum solutions and string coupling

The T 6/Z2 × Z2 orbifold is unique on several respects. First, it is the only orbifold of our

lists with h2,1 = 3, hence three untwisted complex structure moduli Ui, i = 1, 2, 3. Second,

adding discrete torsion transform all the twisted sector from Kähler to complex structure

moduli. The latter can be stabilised with 3-form fluxes, leaving behind only three untwisted

Kähler class moduli. Third, its orientifold has the greatest number of O3-planes of the list,

NO3 = 64.

We treat this example in great detail and show explicitly that we can stabilise all complex

structure moduli, untwisted and twisted, for certain choices of flux. We showcase the following

relation between the minimal value of the string coupling and Nflux:

gs,min ∼ 16

N2
flux

. (4.1)

We also show that for this orbifold, this relation agrees with the one derived from the seminal

works on flux vacua statistics [5, 6].

We proceed as follows. We start by presenting explicitly how to stabilise the twisted

moduli at the orbifold point, realising the method described in section 2.5. We then study

analytic solutions to the equations DSW = 0, DUiW = 0, ensuring scalar potential minimi-

sation and stabilisation of the untwisted moduli. Next, we show evidence that the number

of inequivalent vacua is finite for given value of Nflux and that they realise the relation (4.1).

We then point that in absence of negative D3-charge the tadpole condition can be satisfied,

with however a minimal string coupling of gs,min ≃ 0.669. We eventually describe how to

relax this bound by introducing supersymmetry breaking magnetised D7-branes.

4.1 Twisted moduli stabilisation

We study the T 6/Z2 ×Z2 orbifold with discrete torsion. According to table 6, it has h2,1 = 3

untwisted complex structure moduli Ui, i = 1, 2, 3, and h̃2,1 = 48 twisted ones. The latter are

denoted Di
αβ with i = 1, 2, 3 and α, β = 1, . . . , 4 labelling the fixed points of the twist element

gi = θ, θ′, θθ′. They correspond to the elements of the cohomology basis shown in section 2.5.

The complex structure moduli Kähler potential can be expanding around the orbifold

point as:

K =− log
(
− i(U1 − Ū1)(U2 − Ū2)(U3 − Ū3)− i

2
(U1 − Ū1)(D1

αβ − D̄1
αβ)

2

− i

2
(U2 − Ū2)(D2

αβ − D̄2
αβ)

2 − i

2
(U3 − Ū3)(D3

αβ − D̄3
αβ)

2 +O(D4)
)
. (4.2)

The untwisted sector part, depending only on the U i, can be obtained from the last term of

eq. (2.29) once the Ω (3, 0)-form is expressed in terms of the complex structure of table 2,

following the method of section 2.1. In the expansion around the orbifold point, twisted

moduli should appear in pairs. Indeed, they are acted upon by a discrete Z2 symmetry of the

orbifold group [67], and they do not mix among themselves, which is reminiscent of the fact
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that the exceptional divisors of a T 4/Z2 do not intersect one another [68]. Their coefficients

are related to those of the untwisted moduli [67], ensuring the form of the expansion (4.2).

From the above Kähler potential, we infer the corresponding prepotential through eq.

(2.30):

G =
X1X2X3

X0
+

1

2

Xi(XI)2

X0
= U1U2U3 +

1

2
U i(Di

αβ)
2 +O(D4). (4.3)

In the first equality we kept the projective coordinates, used to compute the derivatives

Ga, while in the second we replaced them as explained below eq. (2.13) by (X0, Xi, XI) =

(1,U i,Di
αβ). This prepotential allows to compute the flux superpotential as expressed in

eq. (2.19):

W =n0 + n1U1 + n2U2 + n3U3 +m1U2U3 +m2U1U3 +m3U1U2 −m0U1U2U3

+ (ni,αβ +mi,αβU i)Di
αβ + (mi −m0U i)(Di

αβ)
2. (4.4)

The ni,αβ,mi,αβ are the flux parameters on the twisted cycles parameterised by the twisted

complex structure moduli Di
αβ.

From this superpotential and the Kähler potential of eq. (4.2), we can derive the scalar

potential (2.32). If terms of the scalar potential linear in the twisted complex structure moduli

Di
αβ (and their conjugates D̄i

αβ) all vanish at the same time, the twisted moduli are stabilised

at the orbifold point, where they all vanish. This is achieved when taking vanishing fluxes on

twisted cycles, as we show now.

Take background fluxes such that mi,αβ = ni,αβ = 0, i.e. with no component along the

twisted 3-cycles. In that case, the superpotential (4.4) contains quadratic but no linear terms

in Di
αβ (and conjugates), and so does the Kähler potential (4.2). This implies that terms

in the scalar potential linear in Di
αβ can only come from terms containing exactly one of

the following terms: ∂Di
αβ
W , KDi

αβ
≡ ∂Di

αβ
K or KUi D̄j

αβ ≡ ∂Ui D̄j
αβK. The first two appear

through the covariant derivatives DDi
αβ

while the last is just a component of the inverse

Kähler metric. Such terms are only included in the scalar potential (2.32) as:

V ⊃ KDi
αβD̄

j
γδ(DDi

αβ
W )(D̄D̄j

γδ
W̄ ) +KUi Dj

αβ (DUiW )(D̄D̄j
αβ
W̄ ), (4.5)

so that they always come in pairs. Hence, in that case, the scalar potential does not contain

linear terms in the twisted moduli Di
αβ nor in their conjugate. It however contains positive

quadratic terms, which shows that all twisted moduli are stabilised at the orbifold point:

Di
αβ = 0, i = 1, 2, 3, α, β = 1, . . . , 4. (4.6)

To summarise, as advertised and previously used in the literature [35], taking vanishing

fluxes along the twisted cycles mi,αβ = ni,αβ = 0 allows to stabilise the twisted moduli at

the orbifold point. We have shown it explicitly. The remaining superpotential is just the

one for the untwisted complex structure moduli, the stabilisation of which we study below.

We conclude this section mentioning that twisted moduli can also be stabilised with non-

vanishing twisted fluxes, albeit away from the orbifold point. This was done for instance in

the large complex structures limit in [57, 69] to study new flux vacua.
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4.2 Untwisted moduli stabilisation

Solving the vacuum equations DS,U iW = 0 analytically Once the twisted moduli are

stabilised at the orbifold point (4.6), the flux-induced superpotential (4.4) reduces to:

W = n0 + n1U1 + n2U2 + n3U3 +m1U2U3 +m2U1U3 +m3U1U2 −m0U1U2U3, (4.7)

We recall that the dependence in the axio-dilaton is contained in the flux parameters ma, na

through ma = SmH
a +mF

a , . . . , see eq. (2.16). The equations DSW = 0, DUiW = 0 read:

n̄0 + n̄1U1 + n̄2Ū2 + n̄3Ū3 + m̄1Ū2Ū3 + m̄2U1Ū3 + m̄3U1Ū2 − m̄0U1Ū2Ū3 = 0,

n0 + n1U1 + n2Ū2 + n3U3 +m1Ū2U3 +m2U1U3 +m3U1Ū2 −m0U1Ū2U3 = 0,

n0 + n1U1 + n2U2 + n3Ū3 +m1U2Ū3 +m2U1Ū3 +m3U1U2 −m0U1U2Ū3 = 0,

n̄0 + n̄1U1 + n̄2U2 + n̄3U3 + m̄1U2U3 + m̄2U1U3 + m̄3U1U2 − m̄0U1U2U3 = 0. (4.8)

The symmetry of this system makes it solvable under certain conditions through the steps

described below. As will be clear from the procedure, the necessary condition is that the solu-

tion has all imaginary parts of the complex structure moduli and axio-dilaton stabilised and

non-vanishing. This condition corresponds to non-vanishing tori angles and string coupling

constant and is thus a necessary assumption. It is also consistent with the definitions of the

axio-dilaton S and complex structure moduli Ui Kähler potentials shown in (2.29) and (4.2).

In our conventions we thus look for solutions satisfying:

Im(U i) < 0, Im(S) > 0. (4.9)

To solve the system (4.8), we first notice that all four equations are linear in each moduli,

e.g. in U1. They can thus be written as:

Lk ×

(
1

U1

)
= 0, (4.10)

where Lk is a 1× 2 matrix that depends on (U2,U3). For instance,

L1 = (n̄0 + n̄2Ū2 + n̄3Ū3 + m̄1Ū2Ū3, n̄1 + m̄2Ū3 + m̄3Ū2 − m̄0Ū2Ū3). (4.11)

With pairs of such Lk, we can form 2×2 matrices which, by virtue of (4.10), have a vanishing

eigenvalue with eigenvector (1,U1). Their determinants thus vanish and can be combined

to rewrite the system. One combination of such determinants turns out to be particularly

useful:

det

(
L̄1

L̄4

)
− det

(
L2

L3

)
= 0. (4.12)

The U2 dependence of this combination completely factorises as (U2 − Ū2), which according

to contributions (4.9) is nonzero. We thus obtain a second order equation on U3 only

n1n2 −m3n0 + (m0n0 +m1n1 +m2n2 −m3n3)ReU3 + (m0n3 +m1m2)|U3|2 = 0. (4.13)
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Similar equations can be obtained for U1 and U2 by the same procedure. We parameterise

them as:

ai + biReU i + ci|U i|2 = 0, (4.14)

From the explicit equation (4.13), we see that for U3 the a3, b3, c3 parameters read:

a3 = n1n2 −m3n0, b1 = m0n0 −m3n3 +m1n1 +m2n2, c1 = m0n3 +m1m2. (4.15)

Similar expressions hold for a1, b1, c1 and a2, b2, c2. Equation (4.14) is solved by:

xi ≡ Re(U i) = ρi cos θi = − Im(āici)

Im(b̄ici)
, ρ2i = |U i|2 = Im(āibi)

Im(b̄ici)
, U i ≡ ρie

iθi . (4.16)

These solutions hold as long as the denominator Im(b̄ici) does not vanish. We come back

to this point in the next paragraph. Note that U i is uniquely determined, because we look

for solutions with ImU i < 0, see eq. (4.9), which uniquely determines θi. Moreover, for this

solution to make sense, we must ensure that ρi > 0.

So far, we have obtained the complex structure moduli U i as functions of the axio-dilaton

S, through the expressions of ma, na. We can thus obtain an equation on S by inserting the

expressions of U i in any of the initial equations (4.8). There is however a more convenient

way to proceed, making use of the symmetry of the system. We rewrite the system (4.8)

by making explicit the dependence in S and hiding the dependence in e.g. U1. Indeed, the

superpotential (4.7) can be rewritten as

W = q0 + q1S + q2U2 + q3U3 + p1U2U3 + p2SU3 + p3SU2 − p0SU2U3, (4.17)

with

p0 = −mH
1 +mH

0 U1, p1 = mF
1 −mF

0 U1, p2 = nH
3 +mH

2 U1, p3 = nH
2 +mH

3 U1

q0 = nF
0 + nF

1 U1, q1 = nH
0 + nH

1 U1, q2 = nF
2 +mF

3 U1, q3 = nF
3 +mF

2 U1. (4.18)

We obtain a system of the same form as the previous one, with U1 ↔ S and (ma, na) ↔
(pa, qa). Note that in our conventions, the Kähler potential is not invariant under the exchange

U1 ↔ S. We can solve this system as before and obtain an expression for S as a function of

U1. Indeed, by defining:

as = q2q3 − p1q0, bs = p0q0 − p1q1 + p2q2 + p3q3, cs = p0q1 + p2p3, (4.19)

we get the solution:

xs ≡ Re(S) = ρs cos θs = − Im(āscs)

Im(b̄scs)
, ρ2s = |S|2 = Im(āsbs)

Im(b̄scs)
, where S ≡ ρse

iθs .

(4.20)

Here again, this holds for non-vanishing Im(āsbs), see next paragraph.

At this point, eqs. (4.15) and (4.16) provide U1 as a function of S while eqs. (4.18)

and (4.20) provide S as a function of U1. Combining the two thus gives an equation for
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S. But for that, we should make explicit the S-dependence of U1 and vice versa. Upon

inspection, we obtain that the imaginary parts appearing in eqs. (4.16) and (4.20) all take

the following form:

Im(ā1b1) = ys(N
0
ab +N1

abxs +N2
abρ

2
s), Im(āsbs) = y1(N

0
ab + 2N0

acx1 +N0
bcρ

2
1),

Im(ā1c1) = ys(N
0
ac +N1

acxs +N2
acρ

2
s), Im(āscs) =

1

2
y1(N

1
ab + 2N1

acx1 +N1
bcρ

2
1),

Im(b̄1c1) = ys(N
0
bc +N1

bcxs +N2
bcρ

2
s), Im(b̄scs) = y1(N

2
ab + 2N2

acx1 +N2
bcρ

2
1). (4.21)

Similarly to the real parts xs, xi introduced before, ys, yi are the imaginary parts of S,U i.

The N ’s are combinations of the integers mH
a , nH

a ,mF
a , n

F
a defined as:

N0
ab ≡ aFF

1 bHF
1 − aHF

1 bFF
1 , N1

ab ≡ 2(aFF
1 bHH

1 − aHH
1 bFF

1 ),

N2
ab ≡ aHF

1 bHH
1 − aHH

1 bHF
1 , (4.22)

and similarly for the Nac and Nbc. We used the following notation, derived naturally from

the definition (4.15) of the parameters ai:

aFF
1 = nF

2 n
F
3 −mF

1 n
F
0 , aHH

1 = nH
2 nH

3 −mH
1 nH

0 ,

aHF
1 = nH

2 nF
3 + nF

2 n
H
3 −mH

1 nF
0 −mF

1 n
H
0 , (4.23)

and similarly for the bi and ci. Combining (4.16), (4.20) and (4.21), we then obtain:

xs = −A1 +A2xs +A3ρ
2
s

B1 +B2xs +B3ρ2s
, ρ2s =

C1 + C2xs + C3ρ
2
s

B1 +B2xs +B3ρ2s
, (4.24)

with

A0 = P 0
suN

0
bc − P 1

suN
0
ac + P 2

suN
0
ab,

A1 = P 0
suN

1
bc − P 1

suN
1
ac + P 2

suN
1
ab, Bi = (su) → (tu),

A2 = P 0
suN

2
bc − P 1

suN
2
ac + P 2

suN
2
ab, Ci = (su) → (st). (4.25)

These are, again, integers expressed as combinations of the mH
a , nH

a ,mF
a , n

F
a , obtained com-

bining the previous formulae. Their complete expressions are horrendous.

The system (4.24) can be solved easily. One of the equation is used to express e.g. ρ2s as

a function of xs, and the result is inserted in the other equation. This yields a third order

polynomial in xs, which can be solved. Once we have solved (4.24) for S, we can inject it in

(4.16) to get the U i, and end up with a complete solution of the system (4.8).

Some comments Let us make two important comments on the solution we obtained. First,

as already mentioned, the denominators in eqs. (4.16) and (4.20) must be non-vanishing for

the solutions to be well defined. In cases where a denominator vanishes, the solution breaks

down, and a special treatment is needed. Actually, this only happens when a modulus is

unstabilised. Indeed, the vanishing of the denominator is a condition on the flux integers,
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which removes the dependence of the superpotential in the real or imaginary part of one of

the moduli. For instance, if b1 = 0, the denominator of (4.16) vanishes. However as Re(U1)

drops out of the equation (4.14), Re(U1) ends up unstabilised.

Having unstabilised real parts of complex structure moduli is not necessarily problematic.

For instance, the unstabilised real part of the modulus associated to a D-brane anomalous

U(1) can be eaten by the gauge boson. This scenario implies Kähler moduli or the axio-

dilaton. If such mechanism occurs for the latter, we should also consider cases where xs is

not stabilised by the fluxes. In the unitary gauge, we could then impose xs = 0 to remove the

dependence of the superpotential in this variable, as discussed above. In the results presented

in the following sections, this possibility was not considered. As far as we checked it does

not significantly affects our result. It introduced a few additional vacua and hence changed

slightly some of the values reported in the following tables. However, all the conclusions

remained the same.

Second, the solution involves solving a third order polynomial equation on either xs or ρ
2
s.

Such equations can have up to three real solutions, so it seems that some choices of fluxes can

lead to multiple vacua. However, the system (4.24) has to be supplemented by constraints

ensuring that xs and ρ2s are the real part and the square modulus of S. In particular, we must

impose ρ2s ≥ x2s on the solution. The same goes with xi and ρ2i in (4.16). After imposing

these constraints, we did not find any choice of fluxes leading to multiple solutions.

Dualities As for the orbifolds with h2,1 = 0, 1, we now study the possibility to go from one

solution to another using duality transformations. We reintroduce S-duality transformations

shown in eq. (3.6):

S → aS + b

cS + d
and

(
H3

F3

)
→

(
d −c

−b a

)(
H3

F3

)
, (4.26)

and recall that they leave Nflux unchanged. We can also explicitly check on the solutions for

U i given by (4.16) that the complex structure moduli are left invariant. This is expected since

the theory, and thus equations (4.8) are themselves invariant. It is a however a non-trivial

consistency check.

Let us recall that in orbifolds with one complex structure modulus described in section

3.2, the S ↔ U symmetry of the superpotential (3.11) trades S-duality with a U -duality (3.15)

acting on U . For our current orbifold T 6/Z2 × Z2, we encountered a similar symmetry when

deriving the analytic solution above. The superpotential is indeed symmetric under U1 ↔ S
and (ma, na) ↔ (pa, qa), see (4.17). This later exchange trades S-duality with a U1-duality

acting on U1 just like (3.15) and leaving (S,U2,U3) invariant. Similarly, there exist U2 and

U3-dualities acting only on U2 and U3 respectively. Using all these dualities, we can bring

the axio-dilaton S and all of the complex structure moduli U i to their fundamental domain

independently:

F = {−1/2 < |Re(A)| ≤ 1/2 and |A| ≥ 1} with A = S or U i. (4.27)
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4.3 Finite number of vacua

Counting vacua algorithmically Once the background fluxes are set to zero on the

deformations cycles, thus setting the twisted moduli VEVs to zero, see eq. (4.6), we are left

with the choice of 16 free flux integers mF
i ,m

H
i , nF

i , n
H
i , i = 0, . . . , 3. Indeed, contrary to the

cases with h2,1 = 0, 1 studied in sections 2 and 3, the presence of three untwisted complex

structure moduli does not introduce any relation between these integers. We recall that Nflux

is computed from unquantised, thus arbitrary, flux integers. The orientifold NY
flux appearing

in the tadpole condition is however multiple of Nflux, thus taking the quantisation of integers

into account, see eq. (2.37).

We searched for solutions proceeding as follows. For a given Nflux, we chose flux integers

in a certain range k:

|mF
i |, |mH

i |, |nF
i |, |nH

i | ≤ k, for a certain fixed range k ∈ N. (4.28)

We constructed algorithmically all combinations of integers in the range k giving flux number

Nflux. We then used the flux integers of such combinations in the expressions (4.24) and (4.16)

of the vacuum solutions found in the previous section. Eventually, we brought the moduli

and axio-dilaton in their fundamental domains using dualities.

Note that the combinations of flux integers in a range k giving Nflux are just a fraction of

all combinations of integers in the range k. This helps decreasing the number of combinations

to be plugged in the analytic solutions. Nevertheless, when increasing the allowed range k

for a given Nflux, there is still a large and rapidly growing number of combinations. Even for

solutions preserving some symmetry between the different tori of T 6 = T 2
1 × T 2

2 × T 2
3 , this

number stays large. We illustrate these facts in table 11, showing the number of combinations

of integers giving Nflux = 4 for ranges k ≤ 7.

# of flux integer combinations, with:

k three eq. tori two eq. tori no symmetry

1 416 21492 975968

2 18276 14325076 8726828016

3 99428 386921556 1099101964400

4 622732 5566156388 · · ·
5 1999388 37625301028

6 4905948 213491079460

7 11893404 · · ·

Table 11. Number of combinations giving Nflux = 4 for flux integers in the range k, see (4.28),

depending on the symmetry between the three tori.

The actual number of choices can be reduced by taking into account symmetries of the

system. For instance, solutions can be related by reversing the sign of all the flux integers at
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once. The numbers of table 11 are thus upper bounds, which however make clear that algo-

rithmic explorations are challenging. We will show evidence that the number of inequivalent

vacua for fixed Nflux is nevertheless finite, and that these vacua realise the relation (4.1).

Let us start with the symmetric case where the three tori are equivalent. In this case,

it is still manageable to compute the analytic solutions for every combination of integers,

with given Nflux and flux integers in the range k defined in eq. (4.28). For each solution, we

bring both S and U i in the fundamental domain (4.27). We then simply count the number

of distinct (S,U i) obtained in this way. In table 12, we report the number of inequivalent

symmetric vacua found in T 6/Z2 × Z2. Note that our results approximatively match the

formula (3.28) of [6] for the number of supersymmetric vacua of T 6/Z2 with equivalent tori.

According to [6], for T 6 with factorized identical tori the number of SUSY flux vacua follows

the relation:

NSUSY ∼ NK
flux ∼ N4

flux. (4.29)

The exponent K = 2m = 4 in the above formula is given by 1+ the number of moduli, which

in the case of equivalent tori gives indeed m = 1 + 1 = 2.

# solutions imposing three equivalent tori

k
Nflux 1 2 3 4 5 6 7 8 9 10

1 0 0 0 5 7 0 5 1 0 0

2 0 0 0 6 13 27 56 81 101 112

3 0 0 0 6 13 29 65 101 165 234

4 0 0 0 6 13 29 65 102 168 252

5 0 0 0 6 13 29 65 102 168 252

6 0 0 0 6 13 29 65 102 168 252

Table 12. Number of inequivalent flux vacua for T 6/Z2 × Z2, as a function of Nflux and the flux

integers range k, see (4.28), for solutions found by imposing three equivalent tori. For each Nflux we

underlined the maximal number of vacua obtained with the smallest range kNflux

max# (e.g. k8max# = 4).

Greater ranges k ≥ kNflux

max# lead to the same number of solutions.

In table 12 we also observe the behaviour mentioned in the previous sections: for given

Nflux, when increasing the allowed range k for the integers, we reach a value kNflux
max# above

which we find no new vacua. Even if the table stops at k = 6, we checked beyond this value,

e.g. up to k = 30 for Nflux = 4. This allows us to claim that we have found all the vacua

for this value of Nflux, unless a great hierarchy is present between the flux parameters, see

section 4.4 for discussion on this point. Note that all the vacua are often found for small

kNflux
max#. We comment on a subtlety here: as explained above, we found vacua by looking at

integer combinations in a range k with given Nflux, and then bringing the moduli in their

fundamental domains by dualities. Under these dualities the integers transform as shown in
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1/gs,min for solutions imposing three equivalent tori

k
Nflux 4 5 6 7 8 9 10

1 1.148 1.263 none 1.990 1.000 none none

2 1.495 2.076 2.632 3.056 4.000 2.760 3.331

3 1.495 2.076 2.632 3.175 4.000 5.061 6.249

4 1.495 2.076 2.632 3.175 4.000 5.061 6.249

5 1.495 2.076 2.632 3.175 4.000 5.061 6.249

Table 13. Values of 1/gs,min for T 6/Z2 × Z2, as a function of Nflux and the flux integers range

k, see (4.28), for solutions found by imposing three equivalent tori. For each Nflux, we underlined

the maximal inverse string coupling constant 1/gs,min obtained with the smallest range kNflux

min (e.g.

k7min = 3). Greater ranges k ≥ kNflux

min lead to the same value.

eq. (4.26), such that they might exit the range k. The ranges in the tabulars counting vacua

are thus to be understood as the minimal ranges along the duality orbits.

The fact that gs is bounded, as advertised in (4.1), is thus a byproduct of the finiteness

of the number of vacua. In table 13, we give the values of 1/gs,min as a function of Nflux and

the range k for the integers. Here again, for a given Nflux the minimal value is reached at

certain range kNflux
min , and above this range no new minimal value is found. When Nflux = 4p

for integer p ≥ 2, we find the exact formula:

gs,min =
16

N2
flux

for Nflux = 4p, p ∈ N \ {0, 1}. (4.30)

It obviously realises the relation (4.1). For other values of Nflux, this formula does not hold

exactly, but still gives a very good fit, exception made of the very first values of Nflux. This

is shown in figure 2. Such conclusions could be infer from past work on flux vacua statistics

[5]. Imposing bounds on the coupling constant amounts to reduce the integration domain of

the axio-dilaton integral appearing in their computation of the number of vacua. They thus

obtain:

NSUSY g2s<ϵ ∼ 3ϵNSUSY . (4.31)

Using this formula, the minimum value of gs can be estimated by finding ϵmin = g2s,minAD

such that NSUSY g2s<ϵmin
= 1, giving:

g2s,minAD = ϵmin =
1

3NSUSY
∼ 1

N4
flux

, (4.32)

where in the last line we used the estimate (4.29) of the number of vacua. We see that this

estimate, derived from the flux vacua statistics of [5, 6], is consistent with our result (4.30).

So far, we discussed solutions preserving three equivalent tori. Relaxing this condition,

we still expect to find a finite number of inequivalent vacua at given Nflux. This number is

higher, since relaxing the symmetry between the three tori allows for more freedom. In table
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Figure 2. Minimal string coupling gs,min as a function of Nflux, for our vacuum solutions. The blue

points are the exact values found as explained in the text. The orange curve is the fit gs,min = 16/N2
flux.

The green shaded points are the values gs,min found with lower ranges of integers. Increasing this range,

the points converge towards the orange curve.

# solutions imposing only two equivalent tori

k
Nflux 1 2 3 4 5 6 7 8 9 10

1 0 0 0 9 66 14 17 1 0 0

2 0 0 0 11 94 406 1181 2724 4866 6878

3 0 0 0 11 94 410 1248 3047 6876 13356

Table 14. Number of inequivalent flux vacua for T 6/Z2 × Z2, as a function of Nflux and the allowed

flux integers range k, see (4.28), for solutions found by imposing two equivalent tori. For each Nflux

we underlined the maximal number of vacua obtained with the smallest range kNflux

max# (e.g. k5max# = 2).

Greater ranges k ≥ kNflux

max# lead to the same number of solutions.

14, we show the number of vacuum solutions preserving only two equivalent tori. In principle,

the values of gs,min could differ from the case imposing three equivalent tori. As we can see in

table 15, this is the case for some values of k, but as far as we explored, the absolute gs,min for

given Nflux remains the same as in the symmetric case in table 13. This suggests that gs,min

is obtained from solutions with three equivalent tori, even looking for solutions imposing only

two equivalent ones. We checked that explicitly in the cases with Nflux ≤ 10. This would

mean that the relation between gs,min and Nflux remains unchanged even when not imposing

symmetry in the solution among the three tori. The number of choices of integers is however

too large to check this explicitly for larger values of Nflux.
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1/gs,min for solutions imposing only two equivalent tori

k
Nflux 4 5 6 7 8 9 10

1 1.148 1.654 1.925 1.990 1.000 none none

2 1.495 2.076 2.632 3.056 4.000 5.032 5.396

3 1.495 2.076 2.632 3.175 4.000 5.061 6.249

Table 15. Values of 1/gs,min for T 6/Z2 × Z2 as a function of Nflux and the range k of the integers,

for solutions found imposing two equivalent tori. For each Nflux, we underlined the maximal inverse

string coupling constant 1/gs,min obtained with the smallest range kNflux

min (e.g. k8min = 2). Greater

ranges k ≥ kNflux

min lead to the same value.

Tadpole constraint and minimal gs in absence of negative D3-charge We continue

this discussion by studying the tadpole condition (2.33). For the xi → −xi involution, we

read the number of O3-planes from table 5, NO3 = 64. In absence of negative D3-brane

charge, the tadpole condition thus puts the following constraint on the flux charge:

1

2
NY

flux = |G|Nflux = 4Nflux ≤ NO3

4
= 16, Nflux = n, n ∈ N∗. (4.33)

We recall that NY
flux = 2|G|Nflux = 8Nflux due to the integer quantisation discussed around

equation (2.35). In absence of negative D3 charge, the tadpole condition eq. (4.33) constrains

the flux charge Nflux ≤ 4. This equivalently constrains the minimal string coupling constant,

as can be seen from tables 13 and 15. It is bounded from below by:

gs ≥
1

51/4
≃ 0.669. (4.34)

We insist on the fact that this constraint is obtained in constructions without negative D3-

charges. In section 4.5 we show how it can be lifted in presence of negative D3-charges induced

by magnetised D7-branes.

Residual constant superpotential We eventually introduce the following Kähler invari-

ant quantity, related to the residual constant superpotential W0 after complex structure

moduli stabilisation:

W̃0 ≡ VeK/2W0 = Vm3/2, (4.35)

where the volume factor V compensate the Kähler moduli part of the Kähler potential (2.29).

It is related to the complex gravitino mass parameter m3/2 of the supergravity effective

Lagrangian [70]. It is also invariant under the S- and U -dualities described above. In figure

3, we show the distributions of W̃0 for our vacuum solutions with Nflux ≤ 9. In this plot we

did not bring the moduli to their fundamental domains through the S- and U -dualities: the

different values of W̃0 organise in the complex plane in circles of fixed |W̃0|, corresponding to

different orbits of these dualities. The fact that we obtain distinct circles shows that |W̃0| is
discrete, which is again a consequence of the finiteness of flux vacua. The number of circles

– 35 –



approximatively matches the number of vacua found in table 12. There is however a small

discrepancy because few distinct vacua give the same value of |W̃0|. In other words, different

solutions with S and Ui in their fundamental domains give the same value of |W̃0|, so that

some of the circles correspond to superposed duality orbits.

-3     -2     -1 0 1 2 3 0 0

0

-1

-2

-3

1

2

3

0

Figure 3. Distributions of W̃0 in the orientifold T 6/Z2 × Z2 with three equivalent tori, for values

Nflux = 4, . . . , 9.

4.4 Eventual solutions with flux integers hierarchy and parametric control on gs

We just showed how to obtain solutions with the complex structure moduli and axio-dilaton

stabilised at tree-level by fluxes in the orientifold T 6/Z2×Z2. We saw that the value gs ≃ 0.669

of eq. (4.34) is the minimal possible string coupling in absence of negative D3-brane charges,

namely for bounded allowed Nflux. This is due to the finiteness of the number of vacua for

each Nflux and it does not allow parametric control over gs.

We recall that we found our vacua from the analytic solutions to theDSW = 0, DUiW = 0

supersymmetric equations by scanning over a range of flux integers |mH,F |, |nH,F | ≤ k and

increasing the range k. As explained in the previous section, the maximal number of vacua for

a given Nflux was obtained at a certain range kNflux
max#. Increasing the range further we found

no new vacua and stopped the search after a while. For instance, for Nflux = 4 we obtain

k4max# = 2 and we searched until k = 30. One drawback of this procedure is that we might

be missing solutions with a huge hierarchy between some integers. Indeed, a solution with

nH
0 = 1 and mF

2 = 2048, which can in principle have small Nflux if some flux quanta cancel
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between each others, could only be reached for the range k = 2048. Reaching this range by

scanning over all combinations is way too time consuming. If such solution exists, we expect

that it comes together with an entire family of solutions, parameterised by the ratio of some

integers or, equivalently, parameterised by one or several of the integers. These families could

allow for parametric control on gs.

We thus searched for infinite families of solutions of the system DSW = 0, DU iW = 0,

parameterised by the choice of one flux integer. We would say that we have parametric

control on gs if the family is such that we can vary the integers while keeping Nflux constant,

keeping the complex structure moduli in a physical region, and sending ys = 1/gs to infinity.

If such a family exists, we should be able to solve the system order by order in the quantities

(integers and moduli) that become large. In the T 6/Z2 ×Z2 orbifold, the flux charge defined

in eq. (2.15) reads:

Nflux = mHnF −mFnH . (4.36)

The summation over the indices labelling the cohomology basis is implicit, see below eq. (2.15).

We show in few examples different obstructions to the existence of such family of solutions,

and hence of parametric control. Expanding the system DSW = 0, DUiW = 0 in real and

imaginary parts leads to:

nF
1 x1 + nF

2 x2 + nF
3 x3 +mF

1 x2x3 +mF
2 x1x3 +mF

3 x1x2

+ xs(n
H
1 x1 + nH

2 x2 + nH
3 x3 +mH

1 x2x3 +mH
2 x1x3 +mH

3 x1x2)

+ nF
0 + nH

0 xs −mF
0 x1x2x3 −mH

0 x1x2x3xs +mH
0 y1y2y3ys = 0, (4.37)

nH
1 x1ys + nH

2 x2ys + nH
3 x3ys +mH

1 x2x3ys +mH
2 x1x3ys

+mH
3 x1x2ys + nH

0 ys −mF
0 y1y2y3 −mH

0 xsy1y2y3 −mH
0 x1x2x3ys = 0, (4.38)

mF
1 y2y3 +mH

1 xsy2y3 −mH
2 x3y1ys −mH

3 x2y1ys − nH
1 y1ys

−mF
0 x1y2y3 −mH

0 x1xsy2y3 +mH
0 x2x3y1ys = 0, (4.39)

nF
1 y1 +mF

2 x3y1 +mF
3 x2y1 + nH

1 xsy1 +mH
1 y2y3ys +mH

2 x3xsy1

+mH
3 x2xsy1 −mF

0 x2x3y1 −mH
0 x2x3xsy1 −mH

0 x1y2y3ys = 0. (4.40)

and cyclic permutations of these two last equations. We again used the notation S = xs+ iys
and U i = xi + iyi.

Case 1: ys → +∞ with one integer going to infinity We first try simple limits where

only one integer goes to infinity, while the imaginary part ys blows together with this integer,

ys → +∞, and other quantities stay of order xs, xi, yi ∼ O(1).

Take for instance nF
0 → +∞. In this case, (4.37) becomes, at leading order, nF

0 +

mH
0 y1y2y3ys = 0. We must impose mH

0 = 0 for Nflux to remain finite, so we end up with

nF
0 = 0, which is contradiction with nF

0 → ∞.

One can also choosemF
0 → +∞, with nH

0 = 0. In this case, the system eqs. (4.37) to (4.40)

at leading order gives ys = (mF
0 x1x2x3)/(m

H
0 y1y2y3) and x2i + y2i = (mH

i /mH
0 )xi, along with

the constraints mH
0 nH

1 +mH
2 mH

3 = 0, with cyclic permutations, and mH
1 mH

2 mH
3 = 0. Hence,
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one of the mH
i needs to be zero. However, for the corresponding i we then have x2i + y2i = 0.

This leads to a vanishing untwisted complex structure modulus. This is not a valid solution,

as can be seen from the T -dual theory where it corresponds to the decompactification limit.

Case 2: ys → +∞ with two integers going to infinity A more elaborate example

would be with two integers going to infinity, for instance nF
0 ,m

F
0 → +∞, with mH

0 , nH
0 = 0.

We can further simplify by assuming that the three tori are equivalent (1 = 2 = 3 = i). In

this case, the system of eq. (4.37) to eq. (4.40) becomes, at leading order:

nF
0 −mF

0 x
3
i = 0, −mF

0 y
3
i + 3mH

i x2i ys + 3nH
i xiys = 0,

mF
0 xiy

2
i + 2mH

i xiyiys + nH
i yiys = 0, mF

0 x
2
i yi −mH

i y2i ys = 0, (4.41)

The first, third and last equations give directly:

x3i =
nF
0

mF
0

, y3s =
mF

0 (n
F
0 )

2

(mH
i )3y3i

and y2i = − (nF
0 )

1/3nH
i

(mF
0 )

1/3mH
i

− 2(nF
0 )

2/3

(mF
0 )

2/3
, (4.42)

while the second equation becomes a constraint on the integers that can be written as:(
(mF

0 )
1/3nH

i + (nF
0 )

1/3mH
i

)2
− (mF

0 )
1/3(nF

0 )
1/3mH

i nH
i = 0. (4.43)

This equation is of the form (x+ y)2 = xy, and it has no solutions with both x and y real.

Case 3: ys, xs → +∞ with two integers going to infinity Finally, we can imagine limits

where both xs and ys go to infinity with the integers that go to infinity, while xi, yi ∼ O(1).

Let us still take again nF
0 ,m

F
0 → +∞ and mH

0 , nH
0 = 0, still with equivalent tori. In this

rather specific case, the system eq. (4.37) to eq. (4.40) reads at leading order:

3nH
i xixs + 3mH

i x2ixs + nF
0 −mF

0 x
3
i = 0, (4.44)

3nH
i xiys + 3mH

i x3i ys −mF
0 y

3
i = 0, (4.45)

mH
i xsy

2
i − 2mH

i xiyiys − nH
i yiys −mF

0 xiy
2
i = 0, (4.46)

nH
i xsyi +mH

i y2i ys + 2mH
i xixsyi −mF

0 x
2
i yi = 0. (4.47)

The first two equations are solved by:

xs =
mF

0 x
3
i − nF

0

3xi(mH
i xi + nH

i )
and ys =

mF
0 y

3
i

3xi(mH
i xi + nH

i )
, (4.48)

and the third one by:

y2i = −2mF
0 m

H
i x3i + 3mF

0 n
H
i x2i + nF

0 m
H
i

2mF
0 m

H
i xi +mF

0 n
H
i

. (4.49)

Once plugged in eq. (4.47) these solutions give a cubic equation in xi, with coefficients de-

pending on the flux quanta only:(
4mF

0 n
F
0 (m

H
i )3 + 2(mF

0 )
2(nH

i )3
)
x3i + 6mF

0 n
F
0 (m

H
i )2nH

i x2i

+ 6mF
0 n

F
0 m

H
i (nH

i )2xi − (nF
0 )

2(mH
i )3 +mF

0 n
F
0 (n

H
i )3 = 0. (4.50)

– 38 –



It can be used to eliminate the x3i term in the solution for y2i of (4.49), yielding the new

equation:

y2i = − 3(nF
0 (m

H
i )2 −mF

0 (n
H
i )2xi)

2

mF
0 (m

F
0 (n

H
i )3 + 2nF

0 (m
H
i )3)(2mH

i xi + nH
i )

. (4.51)

The numerator being positive, we need a negative denominator to ensure that y2i is positive.

It is rather difficult to evaluate its sign using our system of equations. The value of y2i
obtained from eq. (4.51) can however be evaluated by plugging the solutions of the third

order equation in xi. We show in figure 4 the numerical values obtained for all combinations

of integers satisfying |mH,F
i |, |nH,F

i | ≤ 10. We see that the result is always negative, suggesting

that the system does not have consistent solution in the limit chosen in the present case.

-7.5 -5.0 -2.5 0 2.5 5.0 7.5

-80

-60

-40

-20

0

Figure 4. Values of y2i obtained from eq. (4.51) with xi numerically evaluated as the a solution of its

third order equation (4.50), for all flux quanta satisfying |mH,F
i |, |nH,F

i | ≤ 10.

We considered other limits in addition to the ones displayed here. They all fail to be

consistent for similar reasons: they lead to the vanishing of the imaginary part of a complex

structure modulus, the impossibility of satisfying certain constraint on the integers, or present

other inconsistency as the one just described. There are of course too many possible limits

to be exhaustive, and some of them are hard to analyse, but all hints towards the absence of

family of solutions and hence parametric control over the string coupling.

This result seems yet to suggest finiteness of flux vacua. A family of solutions with

parametric control over the string coupling and constant Nflux would lead to infinite number

of solutions with the dilaton in its fundamental domain and taking different values. The

fact that we did not find such families agrees with the fact that we found finite numbers of

solutions for each Nflux through the analysis of previous sections.
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4.5 Magnetised D7-branes

We come back to the possibility of evading the tadpole constraint (4.34) in the T 6/Z2 × Z2

orbifold. As explained there, it requires the presence of negative D3-brane charge, namely D3-

brane charges. Such charges are directly related to supersymmetry breaking objects. They

could be either genuine D3-branes or magnetised D7-branes [35, 71]. As we discuss below,

D7-branes being naturally present in most of the toroidal orientifolds, we focus on this latter

option. Magnetised D7-branes also play a key role in the fully perturbative Kähler moduli

stabilisation mechanism using logarithmic loop corrections [32, 72].

We stress that including magnetised D7-branes does not change the relation (4.1) between

the minimal string coupling gs,min and the flux number Nflux. This relation comes directly

from complex structure moduli and axio-dilaton stabilisation by quantised background 3-form

fluxes and is thus insensitive to the presence of the D7-branes. Yet, the value of Nflux in the

construction is directly related to the brane configuration.

Worldvolume fluxes and RR charges In the T 6/Z2 × Z2 orbifold, a stack a of mag-

netised D7-branes, with worldvolumes along two tori and localised in the third torus, carry

magnetic fields Fa associated to their U(1) gauge group. The latter satisfy the standard Dirac

quantisation on fluxes:

mi
a

∫
T 2
i

F i
a = 2πni

a, (4.52)

for each of the two wrapped tori T 2
i . The wrapping numbers mi

a and flux quanta ni
a shall

be coprime integers. Moreover, due to the Z2 orientifold quotient, ni
a can take half-integer

values. Through their Chern-Simons couplings, such magnetised D7-branes induce RR D3-

charges on top of their D7-charges. Similarly, D7-branes can themselves be seen as magnetised

D9-branes with vanishing wrapping number on the torus where they are localised [35]. We

thus assign vanishing wrapping numbers mk
a = 0 and unit fluxes nk

a = 1 on the torus where

D7-branes are localised, on top of the flux quantas of eq. (4.52) on the tori wrapped by their

worldvolumes. E.g., a stack a of Na D7-branes localised in the first torus T 2
1 has magnetic

numbers:

T 2
1 T 2

2 T 2
3

Na → D7a (1, 0) (n2
a,m

2
a) (n3

a,m
3
a) (4.53)

In these conventions, the magnetic numbers of a standard D7-brane wrapping the second and

third tori without magnetic flux are:

D7F=0 (1, 0) (0, 1) (0,−1) (4.54)

In terms of these magnetic numbers, the RR charges of a stack a of Na D7-branes read [35]:

Qa
D3 = Nan

1
an

2
an

3
a, (4.55)

(i)Qa
D7 = −Nan

i
am

j
am

k
a, i ̸= j ̸= k ̸= i. (4.56)
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The stack a only has non-vanishing D7-charge on the torus where it is localised, e.g. (1)Qa
D7 ̸=

0 and (2)Qa
D7 =

(3)Qa
D7 = 0 for the stack (4.53). We see that magnetised D7-branes can easily

induce negative D3-charges, namely D3-charges, for flux quanta ni
a of opposite signs on the

wrapped tori. For instance, a single D7a as in eq. (4.53) with opposite fluxes n2
a = −n3

a = 1,

induces a negative unit charge Qa
D3 = −1. Note also that in these conventions, the standard

D7-brane without magnetic flux eq. (4.54) has positive RR charge QD7 = 1.

Tadpole conditions with magnetised D7-branes The induced charge Qa
D3 should be

included in the D3-brane number ND3 appearing in the tadpole condition (2.33). As adver-

tised, magnetised D7-branes inducing negative D3-charges can relax the constraint imposed

by the tadpole condition on the G3 flux charge Nflux. In T 6/Z2 × Z2 the tadpole constraint

obtained in absence of negative D3-charge was given in eq. (4.33). It can thus a priori be

relaxed. Consistency of the orientifold construction however also requires the cancellation

of the RR tadpole related to the D7-charge. Such tadpole condition relates the magnetised

brane charges (4.56) to the charges of the O7-planes present in the construction. Hence for a

fixed orientifold geometry, one cannot choose arbitrary D7 magnetic fluxes na
i and wrappings

ma
i .

The T 6/Z2 × Z2 orientifold with involution reversing all coordinates xj → −xj , j =

1, . . . , 6, contains 3×4 O7i-planes, i = 1, 2, 3. Each of them wraps two tori and is localised in

the third torus T 2
i at one of the four fixed points of the orbifold action, see section 2.4. For

instance, the four O72-plane are localised at (0, 0, ι3, ι4, 0, 0) with ι3, ι4 = 0, 1/2.

The RR tadpole cancellation then requires the total magnetised D7a charges (4.56) to

satisfy [35]: ∑
a

Qa
D3 +

1

2
NY

flux =
∑
a

Nan
1
an

2
an

3
a +

1

2
NY

flux =
1

4
NO3 = 16, (4.57)∑

a

(1)Qa
D7 = −

∑
a

Nan
1
am

2
am

3
a = 4NO71 = 16, (4.58)∑

a

(2)Qa
D7 = −

∑
a

Nam
1
an

2
am

3
a = 4NO72 = 16, (4.59)∑

a

(3)Qa
D7 = −

∑
a

Nam
1
am

2
an

3
a = 4NO72 = 16. (4.60)

The first line is a rewriting of the tadpole condition (2.33) associated to the D3-charge,

expressing explicitly the charge from magnetised D7-branes. These four tadpole conditions

are the same as in the T-dual model of [73, 74] with D6-branes at angles [75, 76].

Solutions relaxing the constraint on Nflux The tadpole condition (4.57) shows that

each stack a with an odd number of negative ni
a contributes negatively to the D3-charge,

thus increasing the allowed NY
flux = 2|G|Nflux. In the conventions (4.53) the flux number

corresponding to the torus not wrapped by the stack is always nk
a = 1, so that to have negative

contributions we need one positive and one negative flux numbers for the two wrapped tori.

Moreover, as explained under eq. (4.56) a single stack Na contributes to only one among the
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tadpole conditions (4.58) to (4.60). For this contribution to be of the correct sign, we need

one positive and one negative wrapping number, as for the unmagnetised brane (4.54).

We consider the simple configuration of three D7-branes stacks with magnetic numbers:

T 2
1 T 2

2 T 2
3

N1 → D71 (1, 0) (n2
1,−1) (−n3

1, 1)

N2 → D72 (−n1
2, 1) (1, 0) (n3

2,−1)

N3 → D73 (n1
3,−1) (−n2

3, 1) (1, 0) (4.61)

with all ni
a > 0. The configuration satisfies all the tadpole conditions related to the D7-charges

for Na = 16, a = 1, 2, 3.

We recall that a negative Qa
D3 only requires one positive and one negative flux numbers,

so that we made an arbitrary choice for the relative signs between the fluxes of different stacks

and tori. We chose to take unit wrapping numbers mi
a = ±1. A configuration with the same

(i)Qa
D7 charge, hence satisfying the tadpole condition, but with greater wrapping numbers mi

a

would require lower Na, thus leading to a smaller absolute value of the Qa
D3 charge. The total

D3-charge for the configuration (4.61) is:

QD3 =
3∑

a=1

Qa
D3 =

3∑
a=1

Nan
1
an

2
an

3
a = −16(n2

1n
3
1 + n1

2n
3
2 + n1

3n
2
3). (4.62)

For all the stacks a to preserve supersymmetry, their flux numbers need to satisfy a constraint,

which in the present context reads:

3∑
i=1

ζ(i)
a ≡

∑
i

1

π
Arctan(2πα′F i

a) =
∑
i

1

π
Arctan

(
mi

aα
′

ni
aAi

)
= 0. (4.63)

The ζ(i)
a correspond to oscillator shifts of open string modes caused by the modification of

boundary conditions by magnetic fields [52, 77]. The second equality used the explicit mag-

netic flux quantisation condition (4.52) for wrapped tori T 2
i of area 4π2Ai.

We see that in the configuration (4.61), all D7-brane stacks break SUSY. They cannot

satisfy the condition (4.63). Such configuration generically produce tachyons, coming from

open strings with endpoints on the same or different stacks, called doubly charged or mixed

states. The mass of such states were explicitly written in e.g. [72]. Doubly charged tachyons

can be eliminated by introducing separations between branes and their orientifold images,

namely by moving the branes away from the orientifold planes [72]. This allows to increase

the mass of such states to positive values. On the other hand, the following conditions on ζ
(i)
a
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allow to cancel the mass of all mixed tachyonic states [72]:

(A−1) ζ(3)

1 = ζ(1)

2 = ζ(2)

3 , ζ(2)

1 = ζ(3)

2 = ζ(1)

3 ;

2) ζ(3)

1 = ζ(1)

2 = −ζ(2)

3 , ζ(2)

1 = ζ(3)

2 = −ζ(1)

3 ;

3) ζ(3)

1 = −ζ(1)

2 = ζ(2)

3 , ζ(2)

1 = −ζ(3)

2 = ζ(1)

3 ;

4) ζ(3)

1 = −ζ(1)

2 = −ζ(2)

3 , ζ(2)

1 = −ζ(3)

2 = −ζ(1)

3 ;

(B−1) ζ(2)

1 = ζ(3)

1 , ζ(1)

2 = ζ(3)

2 , ζ(1)

3 = ζ(2)

3 ;

2) ζ(2)

1 = −ζ(3)

1 , ζ(1)

2 = −ζ(3)

2 , ζ(1)

3 = −ζ(2)

3 . (4.64)

Solution (B − 2) satisfies (4.63) and thus preserves supersymmetry, with all lowest-lying

states remaining massless. In the solutions (A − i), all the doubly charged states D7a–D7a
have identical tachyonic masses, equal to α′m2 = −2

∣∣ζ(2)

1 + ζ(3)

1

∣∣, while for solution (B − 1)

they can have different masses. The possible arbitrary choices of relative signs between ni
a,

in configurations similar to (4.61), always allow to satisfy (B − 1) or only one of the (A− i).

The specific choice (4.61) allows to satisfy (A − 1) or (B − 1). For these configurations the

QD3 charge (4.62) then reads:

(A− 1) QD3 = −48n2
1n

3
1, (4.65)

(B − 1) QD3 = −16
(
(n2

1)
2 + (n1

2)
2 + (n1

3)
2
)
. (4.66)

We see that in any of these two cases, the QD3 charge can be made arbitrary large choosing

large values of ni
a. The tadpole condition (4.57) for these two configurations free of mixed

tachyons leads to:

(A− 1)
1

8
NY

flux = Nflux = n = 4(1 + 3n2
1n

3
1), n ∈ N∗, (4.67)

(B − 1)
1

8
NY

flux = Nflux = n = 4
(
1 + (n2

1)
2 + (n1

2)
2 + (n1

3)
2
)
, n ∈ N∗. (4.68)

This shows that the constraint (4.33) obtained without negative D3-charge is, as expected,

totally lifted in such a configuration. The flux charge Nflux = n ∈ N∗ can thus in principle be

arbitrarily large, while still satisfying the tadpole condition. Therefore, one can get smaller

values of gsmin, relaxing the lower bound (4.34). For instance, in both cases (A−1) or (B−1)

with ni
a = 1, the tadpole condition (4.68) forces Nflux = 16. The minimal string coupling

found in our vacuum solutions is then bounded following eq. (4.30), giving:

gs ≥ gs,min =
16

N2
flux

=
1

16
= 0.0625. (4.69)

As explained below eq. (4.63), such D7-brane setup totally breaks supersymmetry. Con-

dition (4.63) shows that supersymmetry is recovered in the limit of large volumes, with tori

areas Ai → +∞, which corresponds to diluted magnetic fluxes. This SUSY breaking con-

figuration induces Fayet-Ilipopoulos (FI) terms in the 4d effective theory, which depend on
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the Kähler moduli related to the areas Ai [55, 72, 78]. When these FI terms are associated

with logarithmic loop corrections to the Kähler potential of these moduli, the latter can be

stabilised at a metastable de Sitter vacuum [32, 34]. Hence, with the complex structure mod-

uli stabilisation presented in the present paper, this leads to a toroidal orbifold model with

metastable de Sitter vacuum and all moduli stabilised explicitly. The explicit model with all

moduli stabilised in this way is left for future work.

5 Conclusions

In this work, we studied the stabilisation by fluxes of the axio-dilaton and complex structure

moduli of simple N = 1 orientifolds of orbifold compactifications of type IIB string theory.

In this simple but calculable setup, we showed how the finiteness of (inequivalent up to S

and U - duality) flux vacua manifests itself. Enumerating all flux integer combinations for

fixed 3-form flux contribution to the D3-brane tadpole Nflux and fixed range of the integers

|m|, |n| ≤ k, there is simply a value of k above which no new vacua are found numerically.

We also found explicit expressions for the minimal string coupling gs,min of the form

gs,min ∼ 1/Nα
flux, with α = 1 for orbifolds with zero or one complex structure modulus, and

α = 2 in the case of T 6/Z2 × Z2. Since Nflux is bounded by the tadpole constraint, these

relations can be used in principle to obtain the lowest value of the string coupling achievable

by flux compactification on these orbifolds, in the absence of magnetised D7-branes. In the

case of orbifolds with zero or one untwisted complex structure moduli, the tadpole constraint

turns out to be too constraining for turning on fluxes in the first place. But for T 6/Z2 × Z2

this gives gs ≥ 0.669, which is arguably too large to ignore string loop corrections.

The simplicity of toroidal orbifolds allows to be relatively explicit, but it may lack some

important features of a Calabi-Yau compactification.

Magnetised D7-branes can give a negative contribution to the D3-brane tadpole and the

strict bound on Nflux is in general relaxed, allowing for much smaller values of the string

coupling. The case of T 6/Z2 × Z2 with discrete torsion is particularly interesting since after

stabilisation of all complex structure moduli, one is left with only three untwisted Kähler

moduli that may be stabilised based on perturbative corrections and the use of magnetic

fluxes on the three sets of D7-branes. It remains to be seen if a concrete physically interesting

example exists with all closed string moduli stabilised in a controllable way.
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A Complex structures of the orbifolds

In this Appendix, we give the complex structure of all the orbifolds listed in table 1. Details

of their computation were given in section 2.
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coefficients of the complex structure

orbifold x1 x2 x3 x4 x5 x6

z1 1 e2iπ/3 0 0 0 0

Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 e2iπ/3

z1 1 i −1 0 0 0

Z4,a z2 0 0 0 1 i −1

z3 1 −1 1 U −U U
z1 1 e3iπ/4/

√
2 0 0 0 0

Z4,b z2 0 0 1 i −1 0

z3 0 0 1 −1 1 U
z1 1 e3iπ/4/

√
2 0 0 0 0

Z4,c z2 0 0 1 e3iπ/4/
√
2 0 0

z3 0 0 0 0 1 U
z1 1 e5iπ/6/

√
3 0 0 0 0

Z6,Ia z2 0 0 1 e2iπ/3 −1 eiπ/3

z3 0 0 1 e2iπ/3 1 −eiπ/3

z1 1 e5iπ/6/
√
3 0 0 0 0

Z6,Ib z2 0 0 1 e5iπ/6/
√
3 0 0

z3 0 0 0 0 1 −eiπ/3

z1 1 eiπ/3 e2iπ/3 −1 −eiπ/3 0

Z6,IIa z2 1 e2iπ/3 −eiπ/3 1 e2iπ/3 0

z3 1 −1 1 −1 1 U
z1 1 eiπ/3 −1 −1 0 0

Z6,IIb z2 0 0 0 0 1 e2iπ/3

z3 1 −1 U 1− U 0 0

z1 1 −e2iπ/3 −eiπ/3 −e2iπ/3 0 0

Z6,IIc z2 1 eiπ/3 −e2iπ/3 −eiπ/3 0 0

z3 0 0 0 0 1 U
z1 1 e5iπ/6/

√
3 0 0 0 0

Z6,IId z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 U

Table 16. Complex structures of the orbifolds listed in table 1 (part 1 of 3). Here, U is a complex

structure modulus, and the table reads in a straightforward way. For instance, for the orbifold T 6/Z3,

the complex coordinates are given by z1 = x1 + e2iπ/3x2, z2 = x3 + e2iπ/3x4, z3 = x5 + e2iπ/3x6, etc.
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coefficients of the complex structure

orbifold x1 x2 x3 x4 x5 x6

z1 1 e2iπ/7 e4iπ/7 e6iπ/7 −eiπ/7 −e3iπ/7

Z7 z2 1 e4iπ/7 −eiπ/7 −e5iπ/7 e2iπ/7 e6iπ/7

z3 1 −eiπ/7 e2iπ/7 −e3iπ/7 e4iπ/7 −e5iπ/7

z1 1 i −1 −eiπ/4 e3iπ/4 eiπ/4

Z8,Ia z2 1 −1 1 i −i i

z3 1 i −1 eiπ/4 −e3iπ/4 −eiπ/4

z1 1 eiπ/4 i −(1 +
√
2 + i)/2 0 0

Z8,Ib z2 0 0 0 0 i e3iπ/4/
√
2

z3 1 −eiπ/4 i −(1−
√
2 + i)/2 0 0

z1 1 eiπ/4 i −(1 +
√
2 + i)/2 −(1 +

√
2 + i)/2 0

Z8,IIa z2 1 e3iπ/4 −i −(1−
√
2− i)/2 −(1−

√
2− i)/2 0

z3 0 0 0 1 −1 U
z1 1 eiπ/4 i −(1 +

√
2 + i)/2 0 0

Z8,IIb z2 1 e3iπ/4 −i −(1−
√
2− i)/2 0 0

z3 0 0 0 0 1 U
z1 1 eiπ/6 eiπ/3 −1 −eiπ/6 −

√
2eiπ/12

Z12,Ia z2 1 e2iπ/3 −eiπ/3 1 e2iπ/3 0

z3 1 −eiπ/6 eiπ/3 −1 eiπ/6 −
√
2e7iπ/12

z1 1 eiπ/6 e11iπ/12/
√
2 −eiπ/12/

√
2 0 0

Z12,Ib z2 0 0 0 0 1 e2iπ/3

z3 1 −eiπ/6 e5iπ/12/
√
2 −e7iπ/12/

√
2 0 0

z1 1 eiπ/6 e11iπ/12/
√
2 −eiπ/12/

√
2 0 0

Z12,II z2 1 e5iπ/6 −e7iπ/12/
√
2 e5iπ/12/

√
2 0 0

z3 0 0 0 0 1 U

Table 17. Complex structures of the orbifolds listed in table 1 (part 2 of 3). Here, U is a complex

structure modulus, and the table reads in a straightforward way. For instance, for the orbifold T 6/Z7,

the complex coordinates are given by z1 = x1 + e2iπ/7x2 + e4iπ/7x3 + e6iπ/7x4 − eiπ/7x5 − e3iπ/7x6,

etc.
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coefficients of the complex structure

orbifold x1 x2 x3 x4 x5 x6

z1 1 U1 0 0 0 0

Z2 × Z2 z2 0 0 1 U2 0 0

z3 0 0 0 0 1 U3

z1 1 U 0 0 0 0

Z2 × Z4 z2 0 0 1 e3iπ/4/
√
2 0 0

z3 0 0 0 0 1 −eiπ/4/
√
2

z1 1 U 0 0 0 0

Z2 × Z6,I z2 0 0 1 e5iπ/6/
√
3 0 0

z3 0 0 0 0 1 e2iπ/3

z1 1 e5iπ/6/
√
3 0 0 0 0

Z2 × Z6,II z2 0 0 1 −eiπ/3 0 0

z3 0 0 0 0 1 e5iπ/6/
√
3

z1 1 e2iπ/3 0 0 0 0

Z3 × Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 −eiπ/3

z1 1 e2iπ/3 0 0 0 0

Z3 × Z6 z2 0 0 1 e5iπ/6/
√
3 0 0

z3 0 0 0 0 1 −eiπ/6/
√
3

z1 1 e3iπ/4/
√
2 0 0 0 0

Z4 × Z4 z2 0 0 1 e3iπ/4/
√
2 0 0

z3 0 0 0 0 1 −eiπ/4/
√
2

z1 1 e5iπ/6/
√
3 0 0 0 0

Z6 × Z6 z2 0 0 1 e5iπ/6/
√
3 0 0

z3 0 0 0 0 1 −eiπ/6/
√
3

Table 18. complex structure of the orbifolds listed in table 1 (part 3 of 3). Here, the U are a

complex structure moduli, and the table reads in a straightforward way. For instance, for the orbifold

T 6/Z2 × Z2, the complex coordinates are given by z1 = x1 + U1x2, z2 = x3 + U2x4, z3 = x5 + U3x6.
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