
N = 2 superconformal higher-spin multiplets and
their hypermultiplet couplings

Ioseph Buchbindera,b,c Evgeny Ivanov,a,d Nikita Zaigraeva,d

aBogoliubov Laboratory of Theoretical Physics, JINR,
141980 Dubna, Moscow region, Russia

bCenter of Theoretical Physics, Tomsk State Pedagogical University,
634061, Tomsk, Russia

cTomsk University of Control Systems and Radioelectronics (TUSUR),
634034, Tomsk, Russia

dMoscow Institute of Physics and Technology,
141700 Dolgoprudny, Moscow region, Russia

E-mail: joseph@tspu.edu.ru, eivanov@theor.jinr.ru,
nikita.zaigraev@phystech.edu

Abstract: We construct an off-shell N = 2 superconformal cubic vertex for the hyper-
multiplet coupled to an arbitrary integer higher spin s gauge N = 2 supermultiplet in a
general N = 2 conformal supergravity background. We heavily use N = 2, 4D harmonic
superspace that provides an unconstrained superfield Lagrangian description. We start
with N = 2 global superconformal symmetry transformations of the free hypermultiplet
model and require invariance of the cubic vertices of general form under these transforma-
tions and their gauged version. As a result, we deduce N = 2, 4D unconstrained analytic
superconformal gauge potentials for an arbitrary integer s. These are the basic ingredients
of the approach under consideration. We describe the properties of the gauge potentials,
derive the corresponding superconformal and gauge transformation laws, and inspect the
off-shell contents of the thus obtained N = 2 superconformal higher-spin s multiplets in
the Wess-Zumino gauges. The spin s multiplet involves 8(2s − 1)B + 8(2s − 1)F essential
off-shell degrees of freedom. The cubic vertex has the generic structure higher spin gauge
superfields × hypermultiplet supercurrents. We present the explicit form of the relevant
supercurrents.
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1 Introduction

Superconformal field theories constitute an important subclass of field theories, with nu-
merous applications in classical and quantum field theory, gravity and string theory (see,
e.g., [1], [2], [3]). For example, such theories can be treated as fixed points of the proper
renormalization group flows and any quantum field theory can be recovered as a defor-
mation of some conformal field theory (see, e.g.,[4]). One more well known application of
conformal theories, especially in supergravities, is the method of conformal compensators
in diverse dimensions. It allows one to derive standard Einstein gravity and the relevant
non-conformal supergravities, starting from the conformal (super)gravities coupled to the
appropriate matter compensating (super)fields. These compensators ensure the sponta-
neous breaking of conformal (super)groups to some subgroups thereof (see, e.g., [5], [6]).
The compensator approach is a powerful way of constructing diverse supergravity actions.

Higher spin theories are a natural generalization of the standard (super)gauge theories
and (super)gravities, and they attract vast attention due to their intimate relationships with
(super)string theory [7–12]. There arises the natural task of constructing (super)conformal
theories of higher spins as the basis of the whole plethora of the higher-spin theories. To
know such superconformal extensions is also of high importance for constructing higher spin
theories on AdS4 and other conformally flat backgrounds. Indeed, these theories can be
obtained by gauging the proper subgroups of the (super)conformal groups, like the standard
4D Poincaré (super)symmetry in the case of flat (super)Minkowski background.

Free higher-spin theories in 4D Minkowski space were pioneered by Fronsdal and Fang
and Fronsdal in refs. [13, 14]. Their conformal generalizations were constructed by Fradkin
and Tseytlin [15]. They introduced conformal higher spin fields and defined the corre-
sponding gauge transformations. The actions constructed provided a higher-spin cousins
of the Weyl tensor - squared actions. Since then, various generalizations of these theories,
including generalizations to curved gravity backgrounds, were intensively studied (see, e.g.,
[16–27]). Conformal higher-spin cubic vertices were for the first time constructed in refs.
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[28, 29]. Later on, they were widely discussed in the context of induced quantum actions
[10, 30–32]. Using the higher-spin conformal vertices, one can construct consistent inter-
acting higher-spin actions as the induced actions. Another approach to constructing the
complete interacting higher spin conformal theories has been developed in ref. [33]. Such
interacting theories are defined on a flat background and are generalizations of Weyl gravity.
This means that they involve higher derivatives and so are non-unitary on their own.

N = 1, 4D supersymmetric generalization of conformal higher spins was considered in
[29] using the component approach. The free off-shell N = 1 superconformal theories and
their couplings to chiral multiplet were constructed in refs. [34] in N = 1, 4D superspace.
These authors, based on the earlier articles [35–37], constructed unconstrained N = 1

higher-spin prepotentials (see also [38]), found their gauge and superconformal transfor-
mations, investigated their component structure and derived invariant actions in the flat
N = 1 superspace. A minimal extension of the actions constructed to N = 1 conformal
supergravity (for multiplets with integer higher spin) was also proposed and it was shown
that these actions are gauge invariant only on conformally flat superspaces with vanishing
super-Weyl tensor (in particular, on AdS superspace AdS4|4). Some generalizations of these
theories were considered in [25, 39]. In ref. [40] an off-shell formulation of N = 1 higher-spin
theories with the half-integer highest spin was given, using the appropriate compensator
supermultiplets.

The N = 2, 4D superconformal higher-spin theories (equally as their N extended
versions) in an arbitrary conformally flat background were elaborated in [41]1, based on
the notion of N = 2 conformal superspace [43]. The appropriate Noether couplings to
an on-shell hypermultiplet were constructed there. It is worth noting, however, that the
component contents of N = 2 higher-spin superconformal multiplets and the relevant off-
shell cubic vertices were not addressed in that work.

One of the ways to define gauge fields and their gauge transformations is to gauge the
rigid symmetries of some free theory and to construct the corresponding cubic vertex. The
simplest cubic vertex, the (s, 0, 0) vertex, is the product of the higher-spin s gauge field and
the Noether current bilinear in massless complex scalar fields. The vertices of this type
were widely studied. The most natural questions regarding them are as to: is it possible
to make the (s, 0, 0) vertices gauge-invariant to all orders, and is it possible to set up such
vertices on an arbitrary gravitational background?

1. Cubic (s, 0, 0) vertex (plus free scalar action) can be made gauge invariant to all orders
by deforming the gauge transformation laws of higher spin fields [30]. The resulting
gauge transformations are generically nonabelian and nonlinear. They mix different
higher-spin fields among themselves, while the scalar fields are transformed linearly
and homogeneously. In ref. [32] this construction was extended to an arbitrary
conformally flat background in the manifestly covariant way, as well as to N = 1

superconformal case.

2. One can easily construct the conserved spin 1 and spin 2 currents for the conformally-

1The N = 2, 4D superconformal gravitino multiplet was described in [42].
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coupled complex scalar in an arbitrary curved background. Respectively, one can build
(1, 0, 0) and (2, 0, 0) vertices on curved backgrounds. However, starting from s ≥ 3,
the naive attempts to construct conserved currents on a curved background gave
rise to the conclusion that the conservation can be achieved only for the conformally
flat case [22, 32]. So the non-vanishing Weyl tensor provides an obstruction to the
existence of the (s, 0, 0) vertices for s ≥ 3. However, it was shown in ref. [22] that,
by adding the vertex (1, 0, 0) and modifying accordingly the gauge transformation of
the spin 1 field, one can achieve gauge invariance on an arbitrary curved background
too. Similar conclusions were drawn in ref. [39].

In the present paper we perform an analogous analysis for off-shell N = 2 supersym-
metric generalization of the (s, 0, 0) interactions. As we will see, already the N = 2 spin 3

superconformal multiplet simultaneously contains both spin 3 and spin 1, and this property
greatly simplifies the construction of the corresponding vertices in a curved background.

Our work extends to the superconformal case some of our previous results on the off-
shell N = 2, 4D higher spins and their hypermultiplet cubic coupling [44–46] (see also
reviews [47, 48]). Since the hypermultiplet has a natural off-shell formulation in harmonic
superspace (HSS) [49–51] in terms of N = 2 analytic harmonic superfields, here we make
use of just this formulation. We demonstrate that the harmonic analyticity imposes severe
constraints on the admissible structure of the cubic interaction vertices of the hypermulti-
plet and higher-spin conformal N = 2 gauge superfields. We focus just on the construction
of N = 2 superconformal cubic couplings with the matter hypermultiplets 2. To set up such
cubic couplings, we introduce the corresponding off-shell superconformal spin s gauge multi-
plets 3, define the corresponding minimal sets of analytic gauge potentials, derive their rigid
superconformal transformation laws and, at the linearized level, their gauge transformation
laws. We present the relevant Wess-Zumino gauges for the component fields. We also ex-
pound how to promote these cubic vertices to an arbitrary N = 2 conformal supergravity
background: one should consider an infinite tower of N = 2 superconformal higher-spin
fields interacting with a hypermultiplet. This allows one to define a nonabelian deformation
of the gauge transformation algebra and demonstrate that the relevant interacting theory
is gauge-invariant to all orders.

The basic novel features of superconformal couplings of N = 2 higher-spin gauge su-
perfields to the hypermultiplet in HSS compared to the non-conformal case [45] can be
schematically outlined as follows. The difference arises already in the case of the spin
s = 2 multiplet (conformal N = 2 supergravity), where the analyticity-preserving har-
monic derivative D++, when acting on the hypermultiplet superfields, is covariantized as

D++ ⇒ D++ + κ2Ĥ++
(s=2) , Ĥ++

(s=2) = h++M∂M , M = (αα̇ , α+ , α̇+ , ++) . (1.1)

Here there appears a new analytic gauge superfield h(+4) [51]. Its necessity can be sub-
stantiated from requiring rigid conformal N = 2 invariance with respect to which only the

2N = 2 generalizations of Fradkin-Tseytlin action in HSS will be studied elsewhere.
3We use bold s to denote N = 2 multiplet with the highest spin s. For example, hypermultiplet

corresponds to s = 1
2
, N = 2 Maxwell multiplet to s = 1, N = 2 Weyl multiplet to s = 2.
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whole set of the potentials in the operator Ĥ(s=2) turns out to be closed. In the spin s = 3

case, the covariantization is accomplished by the differential operator of the second order,

D++ ⇒ D++ + κ3Ĥ++
(s=3)J , Ĥ++

(s=3) = h++MN∂N∂M + h++ , (1.2)

where the analytic gauge potentials h++MN satisfy some grading and irreducibility condi-
tions (see below), while J is some matrix U(1) generator. Once again, only the whole set of
gauge potentials in (1.2) is closed under a linear realization of rigid N = 2 superconformal
group. So the latter plays the same restrictive role for cubic superconformal vertices, as
the rigid N = 2 supersymmetry for non-conformal vertices [44–46]. The radical extension
of the number of gauge potentials for s ≥ 3 also gives rise to an essential extension of the
gauge freedom compared to the s = 2 case. This can be used to fully gauge away many
gauge potentials,

Ĥ++
(s=3) ⇒ h++αα̇M∂M∂αα̇ . (1.3)

The rigid N = 2 superconformal symmetry acts on this minimal set of potentials by trans-
formations which are in general nonlinear in the potentials. All these notable features
directly generalize to N = 2 spins s > 3.

The paper is organized as follows. In section 2 we recall the basic elements of harmonic
superspace and describe free off-shell hypermultiplet. Section 3 contains discussion of the
N = 2 superconformal symmetry realization in harmonic superspace and expounds our
strategy of construction of the off-shell superconformal N = 2 multiplets in (curved) har-
monic superspace. In sections 4 and 5 we present superconformal transformations for the
spin 1 and spin 2 multiplets and the corresponding off-shell (1, 12 ,

1
2), (2,

1
2 ,

1
2) supercon-

formal couplings. In section 5 we discuss the hypermultiplet in the background of N = 2

conformal supergravity. Section 6 is devoted to the crucial new spin 3 case: we introduce
a minimal set of analytic prepotentials, study their component structure and construct
off-shell (3, 12 ,

1
2) vertices in an arbitrary conformal supergravity background. In section

7 we generalize the spin 3 results to the general N = 2 spin s. In section 8 we sketch
some results on nonabelian (and nonlinear) deformation of higher-spin gauge algebra in
the case of infinite tower of N = 2 conformal higher-spin fields minimally interacting with
the hypermultiplet. Such a theory possesses the exact invariance with respect to these
nonabelian gauge transformations. The concluding comments and the basic problems for
the future study are contents of the last section 9. Appendix A contains technical details
of fixing Wess-Zumino gauge in the spin 3 case. In Appendix B we discuss some interest-
ing reparametrization freedom of free hypermultiplet. The superconformal transformation
properties of the derivatives in the analytic superspace coordinates and those of some gauge
potentials (for s = 2, 3) are collected in Appendix C.

2 Harmonic superspace

We will deal with N = 2 harmonic superspace (HSS) [49–51] parametrized by the coordi-
nates in the analytic basis:

Z := (xαα̇, θ+α̂, θ−α̂, u±i), α̂ = (α, α̇) . (2.1)
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In addition to the standard 4D superspace coordinates (x, θ±), HSS involves additional
SU(2)/U(1) harmonic variables u±i , i = 1, 2, satisfying the unitarity constraint u+iu−i = 1.

The crucial feature of HSS is the presence of the invariant subspace with half the number
of Grassmann variables. This analytic superspace is parametrized by the coordinates:

ζ := (xαα̇, θ+α̂, u±i). (2.2)

For the description of massive hypermultiplet and its higher spin couplings it is also nec-
essary to introduce an auxiliary x5 coordinate, see, e.g., [45]. The analytic superspace is
closed under the tilde-conjugation defined as:

x̃αα̇ = xαα̇, θ̃±α = θ̄±α̇ ,
˜̄θ±α̇ = −θ±α , ũ±i = −u±i , ũ±i = u±i. (2.3)

The covariant harmonic derivatives in the analytic basis are defined by,

D++ := ∂++ − 4iθ+ρθ̄+ρ̇∂ρρ̇ + θ+ρ̂∂+ρ̂ + (θ+̂)2∂5, (2.4a)

D−− := ∂−− − 4iθ−ρθ̄−ρ̇∂ρρ̇ + θ−ρ̂∂−ρ̂ + (θ−̂)2∂5, (2.4b)

D0 = ∂0 + θ+ρ̂∂−ρ̂ − θ−ρ̂∂+ρ̂ , (2.4c)

and satisfy su(2) algebra relations:

[D++,D−−] = D0, [D0,D±±] = ±2D±±. (2.5)

Here we used the following notations for the partial derivatives in harmonic variables:

∂++ = u+i ∂

∂u−i
, ∂−− = u−i ∂

∂u+i
, ∂0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
, (2.6)

[∂++, ∂−−] = ∂0. (2.7)

Other partial derivatives are defined in the standard way, e.g., ∂αα̇ = ∂
∂xαα̇ , etc 4.

The action of tilde-conjugation on various derivatives follows directly from the defini-
tions (2.3):

∂̃αα̇ = ∂αα̇, ∂̃−α = −∂−α̇ , ∂̃−α̇ = ∂−α , ∂̃±± = ∂±±. (2.8)

Harmonic superspace provides efficient tools to deal with N = 2 supersymmetric the-
ories, both on the classical and quantum levels. The hypermultiplet and the most general
hypermultiplet self-couplings [52], N = 2 Yang-Mills theory, different N = 2 supergravities
(see a recent review [53]), as well as N = 2 generalizations of Fronsdal theory [44], are
adequately described in N = 2 HSS approach. The pivotal feature of the HSS approach is
that all the basic N = 2 superfields are analytic, thus manifesting the crucial role of the
harmonic Grassmann analyticity principle in N = 2 supersymmetric theories.

4The relation with the vector notation is the same as in [51], xα̇β = xm(σ̃m)α̇β , ∂m = (σ̃m)α̇β∂α̇β ,
∂αβ̇ = 1

2
σm
αβ̇

∂m.
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2.1 Free hypermultiplet

Since our main subject will be N = 2 superconformal interactions of higher-spin superfields
with hypermultiplet, we start by giving all the necessary details of the HSS formulation
of hypermultiplet. It is described by an analytic unconstrained superfield q+(ζ) with an
infinite number of auxiliary fields off shell. The free hypermultiplet action reads [51]:

Sfree = −1

2

∫
dζ(−4) q+aD++q+a = −

∫
dζ(−4) q̃+D++q+. (2.9)

Here we used the notation:

q+a = (q̃+, q+), q+a = ϵabq
+b =

(
q+

−q̃+

)
. (2.10)

The superfield q+a forms a doublet of the Pauli-Gürsey group SU(2)PG. The SU(2)PG -
covariant notation is useful when constructing higher-spin vertices.

The free hypermultiplet equation of motions is:

D++q+a = 0. (2.11)

The discussion of the on-shell field content of hypermultiplet can be found, e.g., in section
5.1 of ref. [45]. In what follows we will merely use the superfield aspects of the HSS
description of the hypermultiplet. Here we only remark that the hypermultiplet contains a
doublet of complex scalars, so it can interact with both even and odd spins.

3 N = 2 superconformal symmetry of hypermultiplet

The realization of N = 2 superconformal symmetry on the HSS coordinates is given in [51,
54]. We will be interested in constructing N = 2 superconformal cubic (s, 12 ,

1
2) vertices of

the higher spin gauge superfields with the hypermultiplet. To this end, we need to introduce
the appropriate set of analytic higher-spin superconformal gauge potentials and define their
superconformal transformation laws. The hypermultiplet superconformal transformation
law is well known, so from requiring the invariance of the interaction one can determine
transformation properties of the higher spin gauge potentials. Based on the experience
of dealing with the non-conformal case [45, 46], we will use, as a departure point, the
most general type of interaction with higher derivatives and determine the minimal set of
the analytic higher-spin potentials closed under N = 2 superconformal symmetry. In this
section we first discuss N = 2 superconformal symmetry of the free massless hypermultiplet
and then explain our general strategy of constructing N = 2 higher-spin superconformal
couplings.

We start with the general one-derivative hypermultiplet transformations5:

δq+a = −Λ̂q+a − 1

2
Ωq+a, (3.1)

5Such transformations can be realized on the HSS coordinates, see [51]. We basically consider superfield
transformations in their active form, since we are interested in their generalization to the case of higher-spin
symmetries which cannot be realized on the coordinates.
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where6:

Λ̂ := λM∂M = λαα̇∂αα̇ + λ+α̂∂−α̂ + λ++∂−− + λ5∂5, (3.2)

Ω := (−1)P (M)∂Mλ
M = ∂αα̇λ

αα̇ − ∂−α̂ λ
+α̂ + ∂−−λ++. (3.3)

Here Λ̂ is the first-order differential operator, Ω is the weight factor constructed out of the
parameters λM , M = {αα̇,+α̂,++, 5}. Since the superfield q+a is analytic, we impose
the condition that the transformations (3.1) preserve the analyticity, which implies the
parameters λM to be unconstrained analytic:

∂+ρ̂ λ
αα̇ = 0, ∂+ρ̂ λ

+α̂ = 0, ∂+ρ̂ λ
++ = 0, ∂+ρ̂ λ

5 = 0. (3.4)

Also we assume x5-independence of the transformation parameters, since x5 is an auxiliary
coordinate needed merely for the description of massive hypermultiplet. Unlike the rigid
symmetries considered in our previous papers [45, 46], here we allow for a nontrivial coor-
dinate dependence of λM in the rigid case. This will lead to an extended algebra of rigid
hypermultiplet symmetries with a larger number of independent transformation parameters.

Varying the free action (2.9) with respect to the transformations (3.1) with generic
analytic parameters λM yields:

δSfree =
1

2

∫
dζ(−4) q+a[D++, Λ̂]q+a . (3.5)

The precise form of the commutator in (3.5) is as follows:

[D++, Λ̂] =
(
D++λαα̇ + 4iλ+αθ̄+α̇ + 4iθ+αλ̄+α̇

)
∂αα̇

+
(
D++λ+α̂ − λ++θ+α̂

)
∂−α̂ +D++λ++∂−− + λ++D0

+
(
D++λ5 − 2λ+ρ̂θ+ρ̂

)
∂5 + λ++θ−α̂∂+α̂ .

(3.6)

Taking into account the relations D0q+a = q+a and q+aq+a = 0, we derive the condition
of invariance of the action (2.9) as

[D++, Λ̂] = λ++D0, (3.7)

or, in terms of the parameters λM ,

D++λαα̇ + 4iλ+αθ̄+α̇ + 4iθ+αλ̄+α̇ = 0,

D++λ+α − λ++θ+α = 0,

D++λ+α̇ − λ++θ̄+α̇ = 0,

D++λ++ = 0,

D++λ5 − 2λ+ρ̂θ+ρ̂ = 0.

(3.8)

6M = (αα̇, α+, α̇+,++, 5); P (αα̇) = P (++) = P (5) = 0, P (α̂+) = 1.
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The general solution of the system (3.8) is just the sought N = 2 superconformal trans-
formations:

λαα̇sc = aαα̇ − 4i
(
ϵαiθ̄+α̇ + θ+αϵ̄α̇i

)
u−i + xα̇ρkρρ̇x

ρ̇α + axαα̇

−4iθ+αθ̄+α̇λ(ij)u−i u
−
j − 4i

(
xαρ̇ηiρ̇θ̄

+α̇ + θ+αηiρx
ρα̇
)
u−i ,

λ+α
sc = ϵαiu+i + 1

2θ
+α(a+ ib) + xαβ̇kββ̇θ

+β + xαα̇ηiα̇u
+
i

+θ+α
(
λ(ij)u+i u

−
j + 4iθ+ρηiρu

−
i

)
,

λ̄+α̇
sc = ϵα̇iu+i + 1

2 θ̄
+α̇(a− ib) + xα̇βkββ̇ θ̄

+β̇ + xαα̇ηiαu
+
i

+θ̄+α̇
(
λ(ij)u+i u

−
j − 4iθ̄+ρ̇ηiρ̇u

−
i

)
,

λ++
sc = λiju+i u

+
j + 4iθ+αθ̄+α̇kαα̇ + 4i

(
θ+αηiα + ηiα̇θ̄

+α̇
)
u+i .

(3.9)

Respectively, the weight factor (3.3) is expressed as:

Ωsc = 2a+ 2kββ̇x
ββ̇ − 2λ(ij)u+i u

−
j − 8i

(
θ+αηiα + ηiα̇θ̄

+α̇
)
u−i . (3.10)

It satisfies the useful relation:
D++Ωsc = −2λ++

sc . (3.11)

As follows from (3.6), the last condition in the system (3.8) appears only if ∂5q+a ̸= 0.
So we are led to impose the constraint ∂5q+a = 0, i.e. limit our consideration to the
massless hypermultiplet. This is consistent with the well known fact that all theories with
exact (super)conformal symmetry are massless (see, e.g., [5]).

Symmetry (3.9) extends rigid N = 2 supersymmetry of the free massless hypermulti-
plet, which was generalized to the higher-spin symmetries in [45, 46]:

{aαα̇, ϵα̂i}︸ ︷︷ ︸
N=2 supersymmetry

→ {aαα̇, ϵα̂i, a, b, kαα̇, ηα̂i, λ(ij)}︸ ︷︷ ︸
N=2 superconformal symmetry

. (3.12)

The analytic parameters (3.9) are those of N = 2 superconformal symmetry in the realiza-
tion on the coordinates of analytic superspace [51, 54] (here we omit Lorentz transforma-
tions). The transformation parameters can be attributed as:

• aαα̇ - global translations;

• ϵα̂i - rigid N = 2 supersymmetry;

• a - dilatations;

• b - U(1) R-symmetry;

• kαα̇ - special conformal transformations;

• ηα̂i - rigid N = 2 conformal supersymmetry;

• λ(ij) - SU(2)R symmetry.
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One can directly check that these transformations satisfy the relations of su(2, 2|2)
superalgebra, that is N = 2 superconformal algebra. We will require the cubic couplings
to be invariant under these transformations.

For completeness, we also quote how conformal transformations are implemented on
non-analytic coordinates θ−. Using the relation

θ+α̂ = D++θ−α̂ (3.13)

and the transformation laws δ∗θ±α̂ = λ±α̂
sc , one obtains:

λ+α̂
sc = D++λ−α̂

sc + [Λ̂sc,D++]θ−α̂ = D++λ−α̂
sc + λ++

sc θ
−α̂, (3.14)

whence

λ−α
sc = ϵαiu−i +

1

2
θ−α(a+ ib) + xαβ̇kββ̇θ

−β − 2i(θ−)2θ̄+
β̇
kβ̇α

+
(
xαα̇ + 4iθ−αθ̄+α̇

)
ηiα̇u

−
i + 4iηiβθ

−β
(
θ−αu+i − θ+αu−i

)
+ λiju−i

(
u−j θ

+α − u+j θ
−α
)
,

(3.15a)

λ−α̇
sc = ϵ̄α̇iu−i +

1

2
θ̄−α̇(a− ib) + xα̇βkββ̇ θ̄

−β̇ − 2i(θ̄−)2θ+β k
βα̇

+
(
xαα̇ + 4iθ+αθ̄−α̇

)
ηiαu

−
i − 4iηi

β̇
θ̄−β̇

(
θ̄−α̇u+i − θ̄+α̇u−i

)
+ λiju−i

(
u−j θ̄

+α̇ − u+j θ̄
−α̇
)
.

(3.15b)

In the next sections, we shall consider transformations of the three types:

• δsc - rigid N = 2 superconformal transformations;

• δdiff - localized N = 2 superconformal transformations, i.e. local superdiffeomor-
phisms (gauge group of N = 2 Weyl supergravity). The δsc transformations form
a subgroup of the δdiff ones, with the parameters constrained by eqs. (3.8). Us-
ing such an identification, we can study invariance with respect to the more general
transformations δdiff , by imposing additional constraints on the parameters in order
to reduce δdiff to δsc, if necessary;

• δλ - linearized gauge transformations.

3.1 The general strategy of construction of superconformal couplings
and multiplets

While constructing superconformal cubic vertices, we will start with 1 singling out the
minimal set of gauge superfields h++M1...Ms−1(ζ) needed for ensuring the invariance of the
most general coupling 7,

S
(s)
int =− κs

2

∫
dζ(−4) q+ah++M1...Ms−1∂Ms−1 . . . ∂M1 (J)

P (s) q+a

+ lower derivative terms ,
(3.16)

7Here we use the projection operator P (s) := 1+(−1)s

2
.
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under the hypermultiplet rigid superconformal transformations8:

δdiffq
+a = −Λ̂q+a − 1

2
Ωq+a (3.17)

and some appropriate transformations of the gauge superfields

δdiffh
++M1...Ms−1 = . . . . (3.18)

The generator J is defined as:

Jq+a := i(τ3)abq
+b, (τ3)ab =

(
1 0

0 −1

)
. (3.19)

The choice of interaction as in (3.16) is largely motivated by the consideration of the non-
conformal case [46]9 and is strictly constrained by the analyticity of q+a.

As the next steps, we 2 analyze the gauge freedom of the superconformal action
constructed

S(s)
q = Sfree + S

(s)
int (3.20)

and 3 determine the set of unremovable Wess-Zumino gauge fields in the potentials
h++M1...Ms−1(ζ), and hence reveal the irreducible field contents of the full N = 2 off-shell
superconformal multiplet.

In the next sections we start with the well known spin 1 and spin 2 cubic hypermultiplet
couplings in order to illustrate how the above procedure works. Then we apply the same
procedure to the novel case of the superspin 3 superconformal gauge multiplet and finally
generalize the results to an arbitrary integer spin s.

4 N = 2 Maxwell supermultiplet and superconformal (1, 1
2
, 1
2
) coupling

The simplest example of N = 2 superconformal cubic interaction of the hypermultiplet is
supplied by its coupling to the superspin 1 gauge multiplet [51]. The spin 1 hypermultiplet
vertex (1, 12 ,

1
2) has the form:

S
(s=1)
int = −κ1

2

∫
dζ(−4) q+aV ++Jq+a = κ1

∫
dζ(−4) i V ++q̃+q+. (4.1)

Here V ++(ζ) is an arbitrary unconstrained analytic gauge superfield with the gauge trans-
formation δλV ++(ζ) = D++λ(ζ), where λ(ζ) is an arbitrary analytic superfield parameter.
The gauge potential V ++ satisfies the reality condition Ṽ ++ = V ++. According to our
general strategy, this is the most general spin 1 – hypermultiplet coupling containing no
derivatives.

8Though the analytic parameters of N = 2 superconformal transformations are given in (3.9), in what
follows we shall not stick to their specific form and deal with arbitrary analytic parameters λM (ζ) associated
with the transformations δdiff .

9As was noticed in [46], the matrix generator J perfectly well works for all odd spins s ≥ 3. The fact
that the cubic interaction of scalars with the gauge fields of higher odd spins has certain peculiarities is
well known (see, e.g., [55]).
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4.1 N = 2 superconformal symmetry

Next we analyze the superconformal invariance of the vertex (4.1). Under both the local
superconformal hypermultiplet transformations (3.17) and still unspecified local supercon-
formal transformation of V ++ the vertex (4.1) transforms as:

δdiffS
(s=1)
int =

κ1
2

∫
dζ(−4)

[
(Λ̂q+a)V ++Jq+a + q+aV ++J(Λ̂q+a )

]
+
κ1
2

∫
dζ(−4)Ωq+aV ++Jq+a − κ1

2

∫
dζ(−4) q+aδdiffV

++Jq+a ,

(4.2)

where Λ̂ and Ω were defined in (3.1) and (3.3). We will require vanishing of such a variation
by choosing the appropriate spin 1 superconformal transformation law δdiffV

++.
The first line of (4.2), modulo a total derivative, can be rewritten as:

(Λ̂q+a)V ++Jq+a + q+aV ++J(Λ̂q+a ) = Λ̂
(
q+aV ++Jq+a

)
− q+a(Λ̂V ++)Jq+a

= −Ω
(
q+aV ++Jq+a

)
− q+a(Λ̂V ++)Jq+a .

(4.3)

The first term is canceled by the first term in second line of (4.2), and so the requirement
of the invariance of the coupling (4.1) implies

δdiffV
++ = −Λ̂V ++. (4.4)

We observe that in the spin 1 case the N = 2 diffeomorphism transformation of potential
V ++ amounts to the transport term. Thus the vertex (4.1) is invariant with respect to the
total localized N = 2 superconformal transformations, not only to the rigid form of the
latter. Similar results will be found in the higher-spin case. To prevent a misunderstanding,
recall that the free q+a action (2.9) is not invariant under general analytic diffeomorphisms,
but only with respect to the superconformal subclass of them. The same is true of course
for the sum Sfree + S

(s=1)
int .

4.2 Gauge freedom

At the next step we analyze the gauge freedom. The sum

Sfree + S
(s=1)
int = −1

2

∫
dζ(−4) q+aD++q+a − κ1

2

∫
dζ(−4) q+aV ++Jq+a , (4.5)

is invariant under the gauge s = 1 transformations:{
δλV

++ = D++λ,

δλq
+
a = −κ1λJq+a

(4.6)

for an arbitrary analytic parameter λ(ζ). Thus the full symmetry of the action (4.5) is
N = 2 superconformal symmetry and U(1) gauge symmetry.

The conserved current superfield associated with (4.6) can be directly obtained by
varying cubic vertex with respect to V ++ [45]:

J ++ = −1

2
q+aJq+a , D++J ++ = 0 (on shell). (4.7)

N = 2 superconformal transformations of J ++ read:

δscJ ++ = −Λ̂J ++ − ΩJ ++. (4.8)
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4.3 Wess-Zumino gauge: N = 2 Maxwell multiplet

Using the gauge freedom (4.6) one can choose Wess-Zumino gauge for the analytic spin 1

potential:

V ++
WZ =− 4iθ+αθ̄+α̇Aαα̇ − i(θ+)2ϕ̄+ i(θ̄+)2ϕ

+ 4(θ̄+)2θ+αψi
αu

−
i − 4(θ+)2θ̄+α̇ ψ̄

α̇iu−i + (θ+)2(θ̄+)2Diju−i u
−
j ,

(4.9)

which yields just the off-shell field content of massless N = 2 spin 1 multiplet, viz. a
complex scalar, a doublet of gaugini, Maxwell gauge field and a real triplet of auxiliary
fields:

ϕ, ψi
α, Aαα̇ , D(ij) . (4.10)

The residual gauge freedom is given by λ(ζ) = a(x) and it is realized as the gauge
transformation of Maxwell field:

δλAαα̇ = ∂αα̇a. (4.11)

So the spin 1 multiplet has 8B + 8F off-shell degrees of freedom.
For the coordinate-independent parameter a the transformations (4.6) reduce to rigid

U(1) symmetry of the free hypermultiplet action. This manifests the Noether nature of
such an interaction. One can obtain this vertex by gauging rigid U(1) symmetry.

Thus we conclude that the (1, 12 ,
1
2) vertex (4.1) is invariant under general analytic N =

2 superdiffeomorphisms realized as in (3.17) and (4.4). The special choice of parameters
(3.9) yields rigid N = 2 superconformal transformations which leave invariant the total
hypermultiplet action (4.5) as well.

5 N = 2 Weyl supermultiplet and superconformal (2, 1
2
, 1
2
) coupling

The superconformal vertex for the N = 2 spin 2 gauge multiplet interacting with hyper-
multiplet is also known [51, 53, 56, 57]. Here we reproduce it, following our general strategy.
This will give insights in how to construct higher-spin interactions in non-trivial N = 2

conformal supergravity backgrounds. Though the further generalization to higher spins
will require introducing additional derivatives, the spin 2 example is still instructive for
exhibiting the common features of our approach.

In the spin 2 case the most general first-derivative analytic cubic interaction with the
hypermultiplet has the form:

S
(s=2)
int = −κ2

2

∫
dζ(−4) q+ah++M∂Mq

+
a = −κ2

2

∫
dζ(−4) q+aĤ++

(s=2)q
+
a . (5.1)

Here we have introduced the set of unconstrained analytic gauge superfields,

h++αα̇(ζ), h++α+(ζ), h++α̇+(ζ), h(+4)(ζ) , (5.2)

and composed the first-order analytic differential operator out of them:

Ĥ++
(s=2) := h++M∂M = h++αα̇∂αα̇ + h++α+∂−α + h++α̇+∂−α̇ + h(+4)∂−−. (5.3)
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As compared to the analogous operator in the non-conformal case [46], here we have added
the new analytic potential h(+4) entering with the partial harmonic derivative ∂−−. The
necessity of such a modification will become clear later. Due to the reality of the action
(5.1), the operator (5.3) should also satisfy the reality condition:

˜̂H++
(s=2) = Ĥ++

(s=2) ⇒ h̃++αα̇ = h++αα̇, h̃++α+ = h++α̇+, h̃(+4) = h(+4). (5.4)

5.1 N = 2 superconformal symmetry

To start with, we require invariance of the cubic vertex (5.1) under rigid N = 2 supercon-
formal transformations. The variation of the (2, 12 ,

1
2) vertex with respect to local N = 2

superconformal transformations with arbitrary analytic superfield parameters reads:

δdiffS
(s=2)
int =

1

2

∫
dζ(−4) q+a[Ĥ++

(s=2), Λ̂]q
+
a − 1

2

∫
dζ(−4) q+aδdiffĤ++

(s=2)q
+
a . (5.5)

The condition of invariance under local N = 2 superconformal transformations gives
rise to the following transformation law for Ĥ++

(s=2):

δdiffĤ++
(s=2) = [Ĥ++

(s=2), Λ̂], (5.6)

or, in terms of the analytic potentials,

δdiffh
++M = −Λ̂h++M + h++N∂Nλ

M . (5.7)

The resulting N = 2 superconformal transformation laws for the spin 2 analytic potentials
(corresponding to the choice (3.9)) are inhomogeneous, so that various gauge potentials
transform through each other. For example, the transformations of h++α+ under rigid spe-
cial conformal transformations (parameter kαα̇ in (3.9)) and rigid conformal supersymmetry
(parameter ηiα̇) are:

δkαα̇
h++α+ = −Λ̂h++α+ + h++αρ̇kρρ̇θ

+ρ + h++ρ+xαρ̇kρρ̇, (5.8a)

δηiα̇
h++α+ = −Λ̂h++α+ + h++αα̇ηiα̇u

+
i − 4ih++β+θ+β η

αiu−i + h(+4)xαα̇ηiα̇u
−
i . (5.8b)

From the transformation

δkαα̇
h(+4) = −Λ̂h(+4) + 4ih++α+θ̄+α̇kαα̇ + 4iθ+αh++α̇+kαα̇ (5.9)

it is obvious that it is impossible to avoid introducing the extra potential h(+4) in addition to
the potentials of N = 2 Einstein’s supergravity. Indeed, equating it to zero would inevitably
break rigid N = 2 superconformal symmetry (only N = 2 rigid Poincarè supersymmetry
would survive).

5.2 Gauge freedom

Now we shall analyze the gauge freedom of the action:

Sfree + S
(s=2)
int = −1

2

∫
dζ(−4) q+aD++q+a − κ2

2

∫
dζ(−4) q+ah++M∂Mq

+
a . (5.10)
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It is well known that N = 2 Weyl multiplet is produced as a result of gauging N = 2

superconformal transformations, so in this case one should identify δ(s=2)
λ = κ2δdiff . So we

start with the hypermultiplet transformation of the form:

δ
(s=2)
λ q+a = −κ2Λ̂q+a − κ2

2
Ωq+a. (5.11)

Here we treat all gauge parameters

λαα̇(ζ), λ+α(ζ), λ+α̇(ζ), λ++(ζ) (5.12)

as arbitrary unconstrained analytic functions.
In (3.5) we have derived the variation of the free hypermultiplet action under such

transformations:
δ
(s=2)
λ Sfree =

κ2
2

∫
dζ(−4) q+a[D++, Λ̂]q+a . (5.13)

There we required it to vanish in order to derive the constraints on the parameters (5.12)
yielding the rigid superconformal symmetry of the free hypermultiplet. Now, instead of
nullifying this term, we cancel it in the sum (5.10) by picking up the special gauge trans-
formation of the s = 2 operator:

δλĤ++
(s=2) = [D++, Λ̂]− λ++D0. (5.14)

This transformation law amounts to the linearized gauge transformations of the potentials
h++M (ζ): 

δλh
++αα̇ = D++λαα̇ + 4iλ+αθ̄+α̇ + 4iθ+αλ̄+α̇,

δλh
++α+ = D++λ+α − λ++θ+α,

δλh
++α̇+ = D++λ+α̇ − λ++θ̄+α̇,

δλh
(+4) = D++λ++.

(5.15)

These transformations fully reproduce the linearized gauge freedom of N = 2 Weyl
multiplet [57]. Note that eqs. (3.8) specifying rigid symmetries of the hypermultiplet,
are just the conditions of vanishing of the variations (5.15), δλh++M = 0. So one can
interpret N = 2 rigid superconformal group as the transformations preserving the flat
N = 2 conformal supergravity background h++M = 0. This is a consequence of the fact
that the multiplet of N = 2 conformal supergravity can be obtained through the analytic
gauging of rigid N = 2 superconformal transformations.

Since we did not impose any conditions on the parameters λM (ζ) in section 5.1, the ac-
tion Sfree+S

(s=2)
gauge is exactly invariant under the transformations δλ+κ2δdiff with arbitrary

analytic parameters λM (ζ):

δλnonlĤ++
(s=2) := (δλ + κ2δdiff ) Ĥ++

(s=2) = [D++ + κ2Ĥ++
(s=2), Λ̂]− λ++D0. (5.16)

In this way we recover the non-linear gauge freedom of N = 2 Weyl multiplet elaborated
in [57]. In the full nonlinear case, superconformal transformations become a subgroup of

– 14 –



the full gauge supergroup of conformal supergravity. The latter is realized on the analytic
gauge potentials h++M by the same formulas (5.15), however with the replacement

D++ ⇒ D++ := D++ + κ2Ĥ++
(s=2) . (5.17)

In the scalar sector, the action

Ssg
hyper = −1

2

∫
dζ(−4)q+aD++q+a (5.18)

is reduced to the conformally coupled scalars, Ssg
hyper ∼ f̄ i(∇2 − 1

6R)f
i.

The superconformal coupling (4.1) of the hypermultiplet to the spin 1 superfield V ++

is also invariant under the full conformal supergravity gauge supergroup; the U(1) gauge
transformations (4.6) are modified just through the replacement (5.17) in the gauge trans-
formation of V ++. The sum of the q+a action (5.10) covariantized by N = 2 Weyl multiplet
and the (1, 12 ,

1
2) coupling (4.1),

S = −1

2

∫
dζ(−4)q+a

(
D++ + κ1V

++J
)
q+a , (5.19)

is invariant under both the full N = 2 conformal supergravity gauge supergroup and the
modified gauge U(1) transformations:

δλV
++ = [D++, λ]. (5.20)

So we have constructed the vertex (1, 12 ,
1
2) in N = 2 conformal supergravity background.

Note that the superfield V ++ in the action (5.19) does not directly interact with h++M .
At the component level, such an interaction is induced as a result of elimination of the
auxiliary fields of the hypermultiplet.

5.3 Wess-Zumino gauge: N = 2 Weyl supermultiplet

To specify the physical contents of Weyl multiplet, one needs to gauge away the pure
gauge degrees of freedom, thus fixing the Wess-Zumino gauge for the set of spin 2 analytic
potentials:

h++αα̇ = −4iθ+ρθ̄+ρ̇Φαα̇
ρρ̇ − (θ̄+)2θ+ρ ψ

(αρ)α̇iu−i + (θ+)2θ̄+ρ̇ ψ̄
α(α̇ρ̇)iu−i

+(θ+)2(θ̄+)2V αα̇(ij)u−i u
−
j ,

h++µ+ = (θ+)2θ̄+µ̇ P
µµ̇ +

(
θ̄+
)2
θ+ν T

(νµ) + (θ+)2(θ̄+)2χµiu−i ,

h++µ̇+ = h̃++µ+ ,

h(+4) = (θ+)2(θ̄+)2D .

(5.21)

Here we find out the physical content of N = 2 Weyl multiplet [57, 64, 65] involving graviton,
a doublet of conformal gravitinos, gauge fields for SU(2)R and γ5 transformations; all other
fields are auxiliary (after some redefinition):

Φαα̇
ρρ̇ , ψ(αβ)α̇i, V

(ij)
αα̇ , Pµµ̇; T (µν), χµi, D. (5.22)
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At the linearized level, the residual gauge freedom of the theory is spanned by the
parameters:
λαα̇ ⇒ aαα̇(x)− 4iϵαi(x)u−i θ̄

+α̇ − 4iθ+αϵ̄α̇i(x)u−i − 4iθ+αθ̄+α̇λ(ij)(x)u−i u
−
j ,

λµ+ ⇒ ϵµi(x)u+i + θ+ν
[{

1
2

[
a(x) + ib(x)

]
+ λ(ij)(x)u+i u

−
j

}
δµν + l

µ)
(ν (x)

]
− i(θ+)2∂µρ̇ ϵ̄

ρ̇i(x)u−i ,

λ̄µ̇+ ⇒ ϵ̄µi(x)u+i + θ̄+ν̇
[{

1
2

[
a(x)− ib(x)

]
+ λ(ij)(x)u+i u

−
j

}
δµ̇ν̇ + l

µ̇)
(ν̇ (x)

]
+ i(θ̄+)2∂µ̇ρ ϵρi(x)u

−
i ,

λ++ ⇒ λij(x)u+i u
+
j + 4iθ+αθ̄+α̇∂αα̇a(x) + 2i

(
θ+α∂αρ̇ϵ̄

ρ̇i(x)− ∂α̇ρϵ
ρi(x)θ̄+α̇

)
u+i .

(5.23)
These parameters can be identified as follows:

• aαα̇(x) are the remnants of the diffeomorphism parameters which now form the basic
gauge freedom of the free spin 2 field;

• ϵµ̂i(x) originate from the parameters of local supersymmetry and provide N = 2

counterparts of the local aαα̇ transformations;

• l(µν)(x) and l(µ̇ν̇)(x) are the former parameters of local Lorentz transformations which
can be used to gauge away the antisymmetric part of Φαα̇

ρρ̇ and so to leave in the latter
only the symmetric part (traceless “conformal graviton” and the trace itself);

• a(x) is a parameter of Weyl transformation;

• b(x) is a parameter of local UR(1) transformations;

• λ(ij)(x) are parameters of local SU(2)R transformations.

Rigid parameters of special conformal transformations kαα̇ and conformal supersymmetry
ηµ̂i are contained in derivatives of gauge parameters:

kαα̇ = ∂αα̇a(x)|, ηαi =
1

2
∂αρ̇ ϵ̄

ρ̇i(x)|, η̄α̇i = −1

2
∂α̇ρ ϵ

ρi(x)|. (5.24)

To find the residual gauge transformations and their action on the component fields,
one needs to require the preservation of the Wess-Zumino gauge, that is in δλh

++M there
should be no terms which could not be compensated by the appropriate transformations
of fields in h++M

WZ . From this condition one can determine the parameters λMcomp and the
action of these transformations on the fields of N = 2 Weyl multiplet. As a result, the
linearized transformation law for graviton is:

δλΦ
αα̇ρρ̇ = ∂ρρ̇aαα̇ − 2l(αρ)ϵα̇ρ̇ − 2l(α̇ρ̇)ϵαρ − aϵαρϵα̇ρ̇. (5.25)

The decomposition of the field Φαα̇ρρ̇ into the irreducible parts is as follows10:

Φαα̇ρρ̇ = Φ(αρ)(α̇ρ̇) + ϵα̇ρ̇Φ(αρ) + ϵαβΦ(α̇β̇) + ϵαβϵα̇ρ̇Φ. (5.26)
10The linearized relation with the metric tensor gab = ηab + hab is given by:

hab = σa
αα̇σ

b
ββ̇Φ

(αβ)(α̇β̇) +
1

2
ηabΦ.
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The parameters l(αρ), l(α̇ρ̇) and a can be used to gauge away all the components except for
the symmetric part:

δΦ(αρ)(α̇ρ̇) = ∂(ρ̇(ρaα)α̇). (5.27)

In this gauge we have a = 1
4∂ρρ̇a

ρρ̇, l(αρ) = 1
4∂

(ρρ̇a
α)
ρ̇ , l(α̇ρ̇) = 1

4∂
(ρ̇ρa

α̇)
ρ .

Other gauge fields can be worked out in a similar way. Their irreducible form and
gauge transformation laws are given by:

δψ(αρ)α̇i = ∂α̇(αϵρ)i, δV
(ij)
αα̇ = ∂αα̇λ

(ij), δPαβ̇ =
1

2
∂αα̇b. (5.28)

The fields T (µν), χµi, D are auxiliary and carry no any gauge freedom (after appropriate
redefinition), so N = 2 Weyl multiplet collects 24B + 24F off-shell degrees of freedom.

Note that the same form of WZ gauge for the analytic gauge potentials can be fixed
by starting with the full nonlinear N = 2 conformal supergravity group from the very
beginning.

5.4 s = 2 superconformal current superfields

According to the superfield version of Noether’s theorem, the conserved superfield currents
are associated with rigid symmetry transformations. The parameters λM that satisfy the
relation [D++, Λ̂] = 0 form rigid symmetry of the free hypermultiplet. Using the expression
(5.13) for the variation of the action one can easily generalize, to N = 2 superconformal
case, the current superfields found in [45] for the non-conformal case. Actually, since the
variation of the action on shell is vanishing, we obtain a set of conservation laws for each of
the unconstrained parameters λM . Equivalently, one can obtain these current superfields
by varying cubic coupling (5.1) with respect to N = 2 Weyl potentials h++M . As a result,
we obtain:

M = αα̇ ⇒ J++
αα̇ = −1

2
q+a∂αα̇q

+
a , D++J++

αα̇ = 0;

M = α ⇒ J+
α = −1

2
q+a∂−α q

+
a , D++J+

α = 4iθ+ρ̇Jαρ̇;

M = α̇ ⇒ J+
α̇ = −1

2
q+a∂−α̇ q

+
a , D++J+

α̇ = −4iθ+ρJρα̇;

M = ++ ⇒ J = −1

2
q+a∂−−q+a , D++J = −θ+ρ̂J+

ρ̂ .

(5.29)

As was shown in [45] for the component expansion of the non-conformal currents superfields,
the conservation laws of the superfield currents (5.29) lead to the standard x-space conser-
vation of the component currents. All the above current superfields are analytic, but J+

α̂

and J are not invariant under N = 2 supersymmetry. The N = 2 supersymmetry-invariant
supercurrent is defined by the non-analytic superfield:

J := −1

2
q+aD−−q+a = J + θ−ρ̂Jρ̂ − 4iθ−ρθ̄−ρ̇J++

ρρ̇ . (5.30)

It embodies all the analytic currents and satisfies the conservation law

D++J = 0 , (5.31)
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which immediately reproduces the conservation laws (5.29).
Note that the supercurrent J could be obtained from the representation of uncon-

strained analytic parameters λM through an unconstrained non-analytic superfield param-
eter l−−(ζ, θ−):

Λ̂ =
(
D+
)4 (

l−−D−−) . (5.32)

The variation (5.13) of the free hypermultiplet action takes the form:

δ
(s=2)
l Sfree =

∫
d4xd8θdu

(
D++l−−) q+aD−−q+a , (5.33)

which immediately leads to (5.31).
One can also obtain J by varying the coupling (5.1) with respect to an unconstrained

non-analytic prepotential Υ(ζ, θ−) of N = 2 conformal supergravity defined as:

Ĥ++
(s=2) := (D+)4

(
ΥD−−) .

This way of representing analytic gauge potentials through the non-analytic Mezincescu-
type prepotential was used in refs. [58, 59]. It allows one to relate harmonic gauge potentials
to the prepotentials of non-geometric type used for the superfield description of supergravity
beyond the HSS approach [38, 60–62].

So we conclude that the transformations (5.11) correspond to the non-analytic current
superfield J defined in (5.30) and obeying the appropriate conservation law (5.31) on shell.
This is the “master” current superfield discussed recently in [45] and originally introduced in
[59] (see also a recent work [63]). As compared with the non-conformal spin 2 supercurrent
[45], we observe the appearance of a new analytic current J = −1

2q
+a∂−−q+a associated

with the rigid conformal parameter λ++ in (3.1).

Under the N = 2 superconformal transformations of the hypermultiplet, J transforms
as:

δscJ = −Λ̂J − ΩJ +
1

2
q+a[D−−, Λ̂]q+a . (5.34)

The last term implies the presence of inhomogeneities in the current transformation laws.
E.g., for dilatations (parameter a in (3.9)) we obtain

[D−−, Λ̂] = −4iaθ−αθ̄−α̇∂αα̇ +
1

2
aθ−α̂∂−α̂ ,

so J transforms under dilatations as:

δ(a)J = −Λ̂(a)J − Ω(a)J + 4iaθ−αθ̄−α̇Jαα̇ − 1

2
aθ−α̂Jα̂. (5.35)

Using the relation (5.30), one can equivalently rewrite this as

δ(a)J = −Λ̂(a)J − Ω(a)J − 1

2
aθ−α̂∂+α̂ J . (5.36)

The last term appeared due to the dilatation rescaling of non-analytic θ−α̂. So, defining
Λ̂na := Λ̂ + λ−α̂∂+α̂ , the variation (5.36) can be cast in the more suggestive form:

δ(a)J = −Λ̂(a)J − Ω(a)J . (5.37)
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6 N = 2 spin 3 superconformal multiplet and superconformal (3, 1
2
, 1
2
)

coupling

The spin 3 superconformal interaction with hypermultiplet is the first non-trivial case
which was never discussed before in the HSS approach. The most general form of the
two-derivative analytic vertex is:

S
(s=3)
int = −κ3

2

∫
dζ(−4) q+a h++MN∂N∂MJ q

+
a . (6.1)

Here we introduced unconstrained analytic gauge potentials h++MN (ζ), which satisfy the
conditions:

h++MN = (−1)P (M)P (N)h++NM , (6.2)

with

P (M) :=

[
0 for M = αα̇,++ (bosonic indices);

1 for M = α+, α̇+ (fermionic indices).
(6.3)

The conditions (6.2) are necessary in order to avoid “double counting” of terms of the same
type, for example,

h++α+β̇+∂−
β̇
∂−α = h++β̇+α+∂−α ∂

−
β̇
. (6.4)

Taking this into account, the complete expansion of the operator with two derivatives
has the form:

h++MN∂N∂M =h++αα̇ββ̇∂ββ̇∂αα̇

+ h++[β+γ]+∂−γ ∂
−
β + h++[β̇+γ̇]+∂−γ̇ ∂

−
β̇
+ h(+6)∂−−∂−−

+ 2h++β+αα̇∂αα̇∂
−
β + 2h++β̇+αα̇∂αα̇∂

−
β̇
+ 2h++αα̇++∂−−∂αα̇

+ 2h++β+γ̇+∂−γ̇ ∂
−
β + 2h++++β+∂−β ∂

−− + 2h++++β̇+∂−
β̇
∂−−.

(6.5)

We require reality of the action (6.1), so the analytic gauge potentials satisfy the following
tilde-conjugation rules:

˜h++MN∂N∂M = h++MN∂N∂M . (6.6)

It then follows that the analytic potentials h++MN obey the reality conditions:

˜
h++αα̇ββ̇ = h++αα̇ββ̇, h̃(+6) = h(+6), (6.7a)

˜h++[β+γ]+ = −h++[β̇+γ̇]+,
˜

h++[β̇+γ̇]+ = −h++[β+γ]+, (6.7b)

˜h++β+αα̇ = −h++β̇+αα̇,
˜

h++β̇+αα̇ = h++β+αα̇, (6.7c)

˜h++αα̇++ = h++αα̇++, ˜h++α+α̇+ = −h++α+α̇+, (6.7d)

˜h++++β+ = −h++++β̇+,
˜

h++++β̇+ = h++++β+. (6.7e)
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At this step we deal with the most general form of the analytical gauge potentials h++MN ,
without assuming in advance any symmetry between the Lorentz spinorial indices hidden
in the multi-indices M and N 11.

Next we require N = 2 superconformal invariance of vertex (6.1) and determine the
minimal set of potentials h++MN (ζ) needed to secure this invariance. After that we will
analyze gauge freedom of the coupling obtained, as well as the irreducible physical field
contents of the corresponding superconformal spin 3 supermultiplet.

6.1 N = 2 superconformal symmetry

The hypermultiplet transformations (3.1) with arbitrary analytic parameters take the su-
perfield Lagrangian in (6.1), up to total derivative, into:

δdiff
(
q+ah++MN∂N∂MJq

+
a

)
=q+a(Λ̂h++MN )∂N∂MJq

+
a

− 2q+ah++MN (∂Nλ
K)∂K∂MJq

+
a

+
1

2
(−1)P (K)∂K

(
h++MN∂N∂Mλ

K
)
q+aJq+a

+
1

2
(−1)P (M)(∂Mh

++MN )(∂NΩ)q+aJq+a .

(6.8)

Note that in the process of calculation of this variation we made use of the property

Jab = Jba ⇒ q+aJab(∂Zq
+b) =

1

2
∂Z(q

aJabq
b), (6.9)

which ensures reducing all terms with one derivative to those without derivatives by inte-
gration by parts.

We observe the presence of two types of terms: those with two derivatives acting on
the hypermultiplet and terms without derivatives at all. To cancel all these terms one is
led to slightly modify the vertex (6.1) by introducing the spin 1 superfield h++ and adding
the relevant (1, 12 ,

1
2)-type vertex:

(6.1) ⇒ S
(s=3)
int = −κ3

2

∫
dζ(−4) q+ah++MN∂N∂MJq

+
a − κ3

2

∫
dζ(−4)q+ah++Jq+a . (6.10)

Superfield h++ satisfies the reality condition h̃++ = h++.

We start our analysis with the two-derivative terms. Requiring local superconformal
transformation laws for the analytic potentials,

δdiffh
++MN = −Λ̂h++MN + h++MK(∂Kλ

N ) + (−1)P (N)[P (M)+P (K)]h++KN (∂Kλ
M ),

(6.11)
one can cancel the analogous terms with two derivatives in (6.8). The first term is the
transport term, while the second and third ones mix up the potentials carrying different
indices. If one chooses as the parameters just the rigid superconformal parameters (3.9)

11This is an essential difference from the non-conformal case [44], where all indices of the same chirality
were assumed to be symmetrized.

– 20 –



then it is not difficult to make sure that it is necessary to include into the game the whole
set of potentials h++MN . For example, under the conformal supersymmetry (parameter ηiρ
in (3.9)) we have:

δηiρh
++α+β̇+ = −Λ̂h++α+β̇+ + h++(αβ)β̇+

(
ηiβu

+
i

)
+ . . . . (6.12)

We observe that the potential h++α+β̇+ is mixed with h++(αβ)β̇+.
This peculiarity leads to an important difference of the superconformal vertices from

the non-conformal ones constructed in [46]. Indeed, to respect the standard Poincaré su-
persymmetry (parameters aαα̇ and ϵα̂i in (3.9)) it would be enough to deal only with the
restricted set of potentials h++Mαα̇.

The superdiffeomorphism transformation of the (1, 12 ,
1
2) part of the vertex reads

δdiff

∫
dζ(−4)q+ah++Jq+a =

∫
dζ(−4)q+a

(
δdiffh

++ + Λ̂h++
)
Jq+a , (6.13)

and it is required to cancel the terms without derivatives in (6.8). This is achieved with

δdiffh
++ =− Λ̂h++ − 1

2
(−1)P (K)∂K

(
h++MN∂N∂Mλ

K
)

− 1

2
(−1)P (M)(∂Mh

++MN )(∂NΩ) .

(6.14)

The first term coincides with the similar term in the superconformal transformation of spin
1 multiplet (4.4) and so it automatically leaves the action invariant. Then the appropriate
parts of the two-derivative transformations in (6.8) are canceled by the remaining terms in
(6.14).

Thus we arrive at the cubic vertices which are invariant under N = 2 superdiffeomor-
phism transformations with the general analytic parameters λM (i.e. invariant under the
complete gauge group of N = 2 conformal supergravity). The spin 2 gauge transforma-
tions act on the spin 3 potentials according to (6.11) and (6.14), so that the vertex (6.10) is
invariant under the sum of these transformations and the hypermultiplet transformations
(3.1).

Substituting the superconformal parameters (3.9) into (6.11) and (6.14) yields rigid
N = 2 superconformal transformation laws of the spin 3 analytic potentials. The above
reasoning indicates that we need to introduce from the very beginning the most general
set of analytic gauge potentials h++MN and h++ in order to realize N = 2 superconformal
symmetry. It is useful to combine the total set of gauge potentials into the spin 3 second-
order analytic operator as:

Ĥ++
(s=3) := h++MN∂N∂M + h++. (6.15)

The precise realization of rigid N = 2 superconformal transformations on the analytic
gauge potentials in (6.15) is given in Appendix C. It is shown there that all h++MN with
antisymmetric combinations of the Lorentz indices α, β̇ form a set closed under N = 2

superconformal group, while the remaining “essential” ones (with symmetric combinations

– 21 –



of indices) transform through this set and themselves. In other words, h++MN constitute
not fully reducible representation. The auxiliary spin 1 gauge potential h++ properly trans-
forms through h++MN . The linearized gauge transformations to be discussed in the next
subsection are compatible with this not fully reducible superconformal structure: the con-
formally invariant subset just mentioned is transformed by gauge parameters which do not
appear in the gauge transformations of the “essential” potentials. Just this notable group-
theoretical property allows one to gauge away the irreducible subset of gauge potentials
without breaking of superconformal symmetry and to end up with the essential potentials
as carriers of the irreducible s = 3 N = 2 gauge multiplet (in the proper Wess-Zumino
gauges).

6.2 Gauge freedom

As the following step we analyze the gauge freedom of the action:

Sfree + S
(s=3)
int = −1

2

∫
dζ(−4)q+a

(
D++ + κ3h

++MN∂N∂MJ + κ3h
++J

)
q+a . (6.16)

A generalization of the s = 2 gauge transformations (5.11) is obtained by adding one
more derivative, ∂−−,

∂M = {∂αα̇, ∂−α̂ , ∂
−−}. (6.17)

Then the most general s = 3 generalization of s = 2 gauge freedom (5.11) is given by 12

δ
(s=3)
λ q+a = −κ3

2
{Λ̂M , ∂M}AGBJq

+a − κ3
4
{ΩM , ∂M}AGBJq

+a. (6.18)

Here we have introduced the first-order analytic operators

Λ̂M :=
∑
N≤M

λMN∂N , (6.19)

with the analytic parameters satisfying the condition λMN = (−1)P (M)P (N)λNM , as well
as the analytic weight factor

ΩM :=
∑
N<M

(−1)P (N)∂Nλ
NM . (6.20)

The transformation law (6.18) is of the second order in the superspace derivatives.
Gauge parameters satisfy reality conditions, which follows from the requirement of

reality of variation (6.18). These conditions have the same form as those for the analytic
potentials (6.7):

λ̃αα̇ββ̇ = λαα̇ββ̇, λ̃(+4) = λ(+4), (6.21a)

λ̃[β+γ]+ = λ[β̇+γ̇]+, λ̃[β̇+γ̇]+ = λ[β+γ]+, (6.21b)

λ̃β+αα̇ = −λβ̇+αα̇, λ̃β̇+αα̇ = λβ+αα̇, (6.21c)
12Anti-graded bracket is defined as {F1, F2}AGB := [F1, F2] for fermionic objects and {B1, B2}AGB :=

{B1, B2} for bosonic ones. Also, {F,B}AGB := [F,B].
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λ̃αα̇++ = λαα̇++, λ̃α+α̇+ = −λα+α̇+, (6.21d)

λ̃++β+ = −λ++β̇+, λ̃++β̇+ = λ++β+. (6.21e)

The variation of the free hypermultiplet Lagrangian under the general transformations
(6.18) with arbitrary analytic parameters λMN (ζ) has the form (up to a total derivative)13:

δ
(s=3)
λ Sfree =

κ3
4

∫
dζ(−4) q+a

[
D++, {Λ̂M , ∂M}AGB

]
Jq+a

=
κ3
2

∫
dζ(−4) q+a[D++, Λ̂M ]∂MJq

+
a

+
κ3
4

∫
dζ(−4) q+a

{
Λ̂M , [D++, ∂M ]

}
AGB

Jq+a .

(6.22)

The first line involves terms with two derivatives. The second line, modulo integration by
parts, collects terms with two derivatives and those without derivatives.

Requiring gauge invariance

δ
(s=3)
λ Shyper + δ

(s=3)
λ Sint = 0 (6.23)

to the leading order gives the linearized gauge transformation law for the analytic potentials.
It can be formally represented as14:

δ
(s=3)
λ Ĥ++

(s=3) =
1

2

[
D++, {Λ̂M , ∂M}AGB

]
= [D++, Λ̂M ]∂M +

1

2

{
Λ̂M , [D++, ∂M ]

}
AGB

.
(6.24)

The action Shyper + S
(s=3)
int also respects an additional U(1) gauge freedom:

δλq
+a = −κ3λJq+a, δλh

++ = D++λ. (6.25)

6.3 Wess-Zumino gauge: N = 2 superconformal spin 3 multiplet

The linearized gauge transformations of independent analytic potentials can be deduced
from (6.24):



δλh
++αα̇ββ̇ = D++λαβα̇β̇ + 2i

(
λαα̇β+θ̄+β̇ + λββ̇α+θ̄+α̇

)
− 2i

(
λ̄αα̇β̇+θ+β + λ̄ββ̇α̇+θ+α

)
,

2δλh
++αα̇β+ = D++λαα̇β+ − 8iλ[α+β]+θ̄+α̇ − 8iλβ+α̇+θ+α − λαα̇++θ+β,

2δλh
++αα̇++ = D++λ++αα̇ + 4iλ++α+θ̄+α̇ − 4iλ++α̇+θ+α,

(6.26a)

13Using this result one can obtain rigid symmetries (“higher-spin” superconformal symmetries) of the free
massless hypermultiplet and the corresponding current superfields. We hope to address this issue elsewhere.

14One needs to integrate by parts the terms with one derivative and to reduce them to terms without
derivatives in order to be able to cancel them by a gauge transformation of the h++ term in Ĥ++

(s=3). In
formula (6.24) we assume that such manipulations have been done.
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
δλh

++[α+β]+ = D++λ[α+β]+ − λ++[α+θ+β],

2δλh
++α+α̇+ = 2D++λα+α̇+ − λ++α+θ̄+α̇ + λ++α̇+θ+α,

2δλh
++α̂+++ = D++λα̂+++ − 2θ+α̂λ(+4),

δλh
(+6) = D++λ(+4),

(6.26b)

δλh
++ = D++λ+ 2iθ̄+ρ̇

(
∂αρ̇∂

−
β λ

[α+β]+
)
+ 2iθ+ρ

(
∂ρα̇∂

−
β̇
λ[α̇+β̇]+

)
+ 2iθ̄+ρ̇

(
∂αρ̇∂

−
β̇
λα+β̇+

)
− 2iθ+ρ

(
∂ρα̇∂

−
β λ

α̇+β+
)

+ 2iθ̄+ρ̇
(
∂αρ̇∂

−−λα+++
)
− 2iθ+ρ

(
∂ρβ̇∂

−−λβ̇+++
)

− 8i∂αα̇λ
α+α̇+ +

1

2
θ+ρ̂

(
∂−ρ̂ ∂

−−λ(+4)
)
− 2(∂−−λ(+4)).

(6.26c)

Using these transformations, one can impose Wess-Zumino type gauge. Potentials of
the form h++αα̇M span N = 2 spin 3 superconformal multiplet (s = 3 Weyl multiplet):

h++(αβ)(α̇β̇) = −4iθ+ρ θ̄
+
ρ̇ Φ

(αβρ)(α̇β̇ρ̇) − (θ̄+)2θ+ρ ψ
(αβρ)(α̇β̇)iu−i

− (θ+)2θ̄+ρ̇ ψ̄
(αβ)(α̇β̇ρ̇)iu−i + (θ+)2(θ̄+)2V (αβ)(α̇β̇)iju−i u

−
j ,

h++(αβ)α̇+ = (θ+)2θ̄+ν̇ P
(αβ)(α̇ν̇) + (θ̄+)2θ+ν T

(αβν)α̇ + (θ+)4χ(αβ)α̇iu−i ,

h++α(α̇β̇)+ = ˜h++(αβ)α̇+ ,

h++αα̇++ = (θ+)2(θ̄+)2Dαα̇ .

(6.27)

It is essential that the field P(αβ)(α̇ν̇) is real,

˜P(αβ)(α̇ν̇) = P(αν)(α̇β̇).

The originally present imaginary part of such a field proves to be pure gauge.
All other potentials (including those parts of the original potentials which are antisym-

metric in the spinorial indices) can be fully gauged away15 using the gauge freedom (6.26b)
and (6.26c) (see also discussion in appendix C). The technical details of this procedure are
collected in appendix A. In the physical sector we are left with the following fields16:

15Similar pure gauge field parameters were also used in ref. [32] (see sect. 3.4 there). These fields can
also be gauged away. After eliminating these redundant fields, gauge transformations cease to be linear
in fields. The purpose of introducing extra fields in the work [32] was the desire to close the algebra of
gauge transformations. In our case, their introduction is dictated by N = 2 superconformal invariance
and, since gauge transformations are chosen to have a general form, we expect that the algebra of gauge
transformations will be automatically closed.

16Some fields require redefinitions, here we assume that such a procedure has been performed. Explicitly,
these redefinitions are given in Appendix A. For simplicity and clarity of notation we also use the properly
rescaled gauge parameters here. The precise relation between the gauge parameters a(αβ)(α̇β̇), vαα̇(ij), pββ̇ ,
t(αβ), c used below and the components of the analytic superfield parameters λMN used in Appendix A can
be established by comparing with eqs. (A.65), (A.75), (A.69), (A.55), and (A.74).
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Bosonic sector :
• Conformal spin 3 field with gauge freedom (7 off-shell d.o.f.):

δΦ(αβρ)(α̇β̇ρ̇) = ∂(ρ̇(ρaαβ)α̇β̇). (6.28)

• Triplet of conformal gravitons (spin 2 fields) (15 off-shell d.o.f.):

δV (αβ)(α̇β̇)(ij) = ∂(α̇(αvβ)β̇)(ij). (6.29)

• Conformal graviton (5 off-shell d.o.f.):

δP(αβ)(α̇β̇) = ∂(α̇(αpβ)β̇). (6.30)

• Gauge field for self-dual two-form symmetry (10 off-shell d.o.f.):

δT (αβρ)α̇ = ∂α̇(ρtαβ). (6.31)

Fields T (αβγ)α̇ and complex conjugated T̄ (α̇β̇γ̇)α are in one-to-one correspondence with a
real tensor field T [ab]d:

T [ab]c = σ
[ab]
(αβ)σ

c
γγ̇T

(αβγ)γ̇ + σ̃
[ab]

(α̇β̇)
σcγ̇γ T̄

(α̇β̇γ̇)γ . (6.32)

Due to the σ-matrices properties, the following identity holds:

T [abc] = 0 ⇔ T [ab]c + T [bc]a + T [ca]b = 0. (6.33)

These symmetry properties correspond to the simple hook Young diagram . Additionally,
properties of σ-matrices imply the traceless condition T [ab]

b = 0. Gauge freedom are given
by:

δT [ab]c = 2∂[atb]c − 2∂ct[ab], t[ab] = σ
[ab]
(αβ)t

(αβ) + σ
[ab]

(α̇β̇)
t̄(α̇β̇). (6.34)

This field is called “hook field” (or conformal pseudo-graviton field). Hook field was firstly
studied in [66, 67] as a generalized gauge field17. The basic motivation for their consideration
was the construction of dual formulations of gauge fields with spin s ̸= 1. These fields can
be viewed as a natural generalization of the notoph field of Ogievetsky and Polubarinov
[68]18 (for review see [70]).

• Spin 1 gauge field (3 off-shell d.o.f.):

δDαα̇ = ∂αα̇ c. (6.35)

Fermionic sector19:
• Doublet of conformal spin 5

2 fields (24 off-shell d.o.f.):

δψ(αβρ)(α̇β̇)i = ∂(α̇(ρbαβ)β̇)i. (6.36)
17It is not difficult to construct a conformal and gauge-invariant action for the hook field, see for example

Appendix C of ref. [26].
18This kind of gauge theories was later re-discovered by Kalb and Ramond [69].
19The relations between the gauge parameters b(αβ)β̇i, cβi and components of the superfield parameters

λMN can be found by comparing with eqs. (A.86) and (A.91).
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• Gauge spin 3
2 fermion χ(αβ)α̇i (16 off-shell d.o.f.):

δχ(αβ)α̇i = ∂α̇(αcβ)i. (6.37)

So N = 2 off-shell superconformal spin 3 multiplet contains 40B+40F off-shell degrees
of freedom. Note that the spin 3 and spin 1 fields appear in the same N = 2 gauge
supermultiplet. This may simplify the implementation of Grigoriev and Tseytlin assumption
[21, 22] about the gauge invariance of a system of conformal spins 1 and 3 on an arbitrary
curved background.

The residual gauge transformations and their action on these fields can be analyzed
in full analogy with the spin 2 case considered in Section 5.3. We do not give the explicit
formulas, because the detailed component considerations are beyond the scope of our study.

All the potentials except h++αα̇M can be put equal to zero using the original large
gauge freedom. One can choose such a gauge from the very beginning to bring the vertex
to the simpler form:

S
(s=3)
int|fixed = −κ3

2

∫
dζ(−4) q+ah++αα̇M∂M∂αα̇Jq

+
a , (6.38)

where, like in the non-conformal case, the spinorial indices of the same chirality in h++αα̇M

are assumed to be symmetrized. In such a form the vertex, up to terms involving har-
monic derivative ∂−−, fully matches the non-conformal (3, 12 ,

1
2) vertex. However in such

a gauge one is led to accompany the superconformal transformations (6.11) by the proper
compensating gauge transformations in order to preserve the gauge:

δh++MN
WZ = δdiffh

++MN
WZ + δλh

++MN ∼ h++MN
WZ . (6.39)

From this condition one can determine the parameters λMN involving the explicit depen-
dence on gauge potentials h++MN . So the vertex (6.38) is invariant under the modified
superconformal transformations

δsc|modq
+a = δscq

+a + δλ|WZq
+a. (6.40)

These transformations generically involve the spin 3 potentials and so are essentially non-
linear.

As an example, we quote the explicit form of such a transformation in the sector of
conformal supersymmetry (parameter ηiα). In WZ gage h++αβ̇++

WZ = 0, which amounts to
the condition:

δh++αβ̇++
WZ = D++λ+αβ̇+ − λ+α++θ̄+β̇ + λ+β̇++θ+α + h

++(αβ)β̇+
WZ ηiβu

+
i = 0. (6.41)

Using the explicit form of WZ gauge for h++(αβ)β̇+
WZ , one has:

λ+αβ̇+ = −h++(αβ)β̇+
WZ ηiβu

−
i + . . . . (6.42)

Here ellipses stand for possible contributions from λ+α̂++.
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The resulting modified hypermultiplet superconformal transformation with parameter
ηiα (conformal supersymmetry) is found to be:

δηsc|modq
+a =δηscq

+a +
κ3
2

{
h
++(αβ)β̇+
WZ ηiβu

−
i ∂

−
β̇
, ∂−β

}
AGB

Jq+a

+
κ3
4

{
∂−
β̇
h
++(αβ)β̇+
WZ ηiβu

−
i , ∂

−
β

}
AGB

Jq+a + . . .
(6.43)

To summarize, it was necessary to start with the most general form of the vertex (6.10)
in order to realize (local) N = 2 superconformal symmetry linearly on the hypermulti-
plet. The elimination of the auxiliary analytic potentials leads to the minimal set of the
gauge potentials on which rigid N = 2 superconformal group generically acts by nonlinear
transformations explicitly involving the spin 3 potentials.

6.4 s = 3 superconformal current superfields

Putting δ(s=3)
λ Sfree = 0 in (6.22), we recover rigid symmetries of the free hypermultiplet

action. There exist two ways to derive the corresponding s = 3 Noether current superfields.
One can either study the variation (6.22) of the action, or, equivalently, vary the cubic cou-
pling (6.1) with respect to the analytic potentials h++MN . The relevant current superfields
are given by the expressions:

J++
MN = −1

2
q+a∂N∂MJq

+
a , D++J++

MN = −1

2
q+a[D++, ∂N∂M ]Jq+a . (6.44)

When deducing the current conservation condition in (6.44), we made use of the free hy-
permultiplet equations of motion (2.11). The current superfields obtained in this way are
sources of the equations of motion for the spin 3 gauge potentials. In this article we do
not discuss the issue of constructing an N = 2 spin 3 superconformal action and the
corresponding equations of motion.

In the more detailed notation, we are left with nine independent current superfields:

J++

αβα̇β̇
, J+

αβα̇, J+

α̇β̇α
, Jαβ, J

α̇β̇
, Jαα̇, J−

α , J−
α̇ , J−−. (6.45)

The current superfields (6.44) (or (6.45)) are analytic but they are not invariant under
N = 2 supersymmetry. Like in the s = 2 case, one can introduce non-analytic current
superfields which are invariants of N = 2 supersymmetry. In contrast to the s = 2 case,
here we deal with few different “master” currents.

The simplest option corresponds to the choice M = αα̇. The non-analytic current
superfield has the following form:

Jαα̇ = −1

2
q+aD−−∂αα̇Jq

+
a , D++Jαα̇ = −1

2
q+a∂αα̇Jq

+
a . (6.46)

This expression satisfies various conservation laws, for example:

D++
(
D+

β̂
Jαα̇

)
= 0, D++

(
D+

βD
+

β̇
Jαα̇

)
= 0. (6.47)
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For the choice M = α̂ we analogously obtain:

J −
α̂ = −1

2
q+aD−−D−

α̂ Jq
+
a , D++J −

α̂ = 0. (6.48)

At last, choosing M = ++ yields:

J −− = −1

2
q+aD−−D−−Jq+a , D++J −− = 0. (6.49)

The set of the s = 3 superconformal current superfields {Jαα̇,J −
α̂ ,J

−−} incorporate
all the analytic supercurrents (6.44), (6.45) in their θ− expansions. For example,

Jαα̇ = −4iθ−β θ̄−β̇J++

αβα̇β̇
+ θ−βJ+

αβα̇ + Jαα̇. (6.50)

An alternative way to derive these superconformal currents is through varying cu-
bic couplings with respect to the unconstrained non-analytic prepotentials {Υαα̇,Υ+α̂,
Υ++,Υ−−} defined as:

Ĥ++
(s=3) := (D+)4

(
Υαα̇∂αα̇D−− +Υ+α̂D−

α̂D
−− +Υ++D−−D−− +Υ−−

)
. (6.51)

From this definition one can deduce the transformation laws of non-analytic prepotentials.
In the next section we will show that it is possible to select a gauge Υ+α̂ = 0, Υ++ = 0 and
Υ−− = 0. In this gauge we can describe the spin 3 supermultiplet in terms of unconstrained
non-analytic prepotential Υαα̇. Such a prepotential (in the gauge where it does not depend
on harmonics) can presumably be identified with the one introduced in ref. [41]. Thus the
relation (6.51) gives a hint of how the prepotentials of ref. [41] could appear within the
harmonic superspace approach. It should be pointed out that all these prepotentials and
their gauge freedom are of non-geometric character, like the original Mezincescu potential for
N = 2 Maxwell theory. In contrast, the analytic gauge potentials have the clear geometric
meaning as the objects covariantizing the analyticity-preserving harmonic derivative D++.

6.5 Summary and superconformal (3, 12 ,
1
2) vertex on conformal supergravity

background

Let us summarize the results collected in section 6. We started from the action containing
the spin 2 and the spin 3 couplings to hypermultiplet ,

S = −1

2

∫
dζ(−4) q+a

(
D++ + κ2Ĥ++

(s=2) + κ3Ĥ++
(s=3)J

)
q+a . (6.52)

Here the operators Ĥ++
(s=2) and Ĥ++

(s=3) were defined in (5.3) and (6.15). This action is exactly
invariant under the nonlinear spin 2 gauge transformations (3.1), (5.16), (6.11) (and so is
also invariant under rigid N = 2 superconformal transformations), as well as under the
linearized spin 3 gauge transformations (6.18), (6.24) (i.e., to the leading order in κ2, κ3).

Under the spin 3 gauge transformations (6.18) of the hypermultiplet the vertex (2, 12 ,
1
2)

transforms as:

δ
(s=3)
λ

(
q+aĤ++

(s=2)q
+
a

)
=− κ3

2
q+a

[
Ĥ++

(s=2), {Λ̂
M , ∂M}AGB

]
Jq+a

− κ3
4
q+a

[
Ĥ++

(s=2), {Ω
M , ∂M}AGB

]
Jq+a .

(6.53)
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One can cancel these terms (using integrations by parts) by introducing the additional spin
2-dependent terms in the gauge transformations (6.24) of the spin 3 multiplet:

δadλ Ĥ++
(s=3) =

κ2
2

[
Ĥ++

(s=2), {Λ̂
M , ∂M}AGB

]
+
κ2
4

[
Ĥ++

(s=2), {Ω
M , ∂M}AGB

]
. (6.54)

These terms deform the transformations law (6.24) by the general N = 2 conformal super-
gravity background:

δ
(s=3)
λ|fullĤ

++
(s=3) =

1

2

[
D++, {Λ̂M , ∂M}AGB

]
+
κ2
4

[
Ĥ++

(s=2), {Ω
M , ∂M}AGB

]
. (6.55)

The last term acts only on the h++ part of Ĥ++
(s=3).

As a result, we have found that the action (6.52) is invariant with respect to the spin
3 transformations to the leading order in κ3 and to any order in κ2. This means that we
have constructed a cubic vertex (3, 12 ,

1
2) which is invariant under the gauge transforma-

tions of conformal N = 2 supergravity. In the component approach this amounts to the
property that, after elimination of the auxiliary fields, one will recover the superconformal
action of the spin 3 supermultiplet coupling (3, 12 ,

1
2) on generic N = 2 Weyl supergrav-

ity background. Note that the spin 3 multiplet fields in the action (6.52) do not directly
interact with the supergravity fields; the interaction is mediated by the auxiliary fields of
hypermultiplet.

7 Generalization to arbitrary spin s

In this section we generalize the results for the superconformal spin 3 hypermultiplet cou-
pling to the general spin s case. We follow the general strategy of section 3.1.

The relevant cubic superconformal (s, 12 ,
1
2) vertex has the form:

S
(s)
int = −κs

2

∫
dζ(−4) q+aĤ++

(s) (J)P (s) q+a . (7.1)

Here Ĥ++
(s) is analytic differential operator including general terms with s−1, s−3, . . . 1/0

(for even s/odd s) derivatives:

Ĥ++
(s) := h++M1...Ms−1∂Ms−1 . . . ∂M1+h

++M1...Ms−3∂Ms−3 . . . ∂M1+· · ·+

[
h++M∂M (even s)

h++ (odd s).

(7.2)
Like in the s = 2 and s = 3 cases, the necessity to include the derivatives of general type
follows from the requirement of N = 2 superconformal invariance. The analytic superfields
h++...(ζ) for any pair of adjacent indices satisfy the symmetry conditions:

h++M1...MnMk...Ms−1 = (−1)P (Mk)P (Mn)h++M1...MkMn...Ms−1 . (7.3)

From here one can deduce how to permute any 2 indices. Also, the operator Ĥ++
(s) satisfies

the reality condition:
˜̂H++

(s) = Ĥ++
(s) . (7.4)
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7.1 N = 2 superconformal symmetry

The analytic superdiffeomorphism transformation (3.17) of the hypermultiplet generates
the following transformation of the vertex:

δdiffS
(s)
int =

κs
2

∫
dζ(−4) q+a[Ĥ++

(s) , Λ̂] (J)
P (s) q+a +

κs
4

∫
dζ(−4) q+a[Ĥ++

(s) ,Ω] (J)
P (s) q+a

− κs
2

∫
dζ(−4) q+aδdiffĤ++

(s) (J)P (s) q+a .

(7.5)

Calculating the commutators in the first line, we get terms with various numbers of deriva-
tives acting on the hypermultiplet, analogously to the spin 3 case (recall eq. (6.8)).

• For even spin s one can always reduce the terms with even number of derivatives to
those with odd number. In this case, they are entirely compensated by the corresponding
transformations of the gauge potentials in (7.2).

For example, the contribution of the two-derivative term in the spin 4 case is:

q+ah++MNKL
(
∂L∂K∂Nλ

R
)
∂R∂Mq

+
a . (7.6)

The expression T++MR := h++MNKL
(
∂L∂K∂Nλ

R
)

has the proper symmetry under per-
muting the indices R and M :

T++MR = (−1)P (R)P (M)T++RM . (7.7)

because it is a coefficient of ∂R∂M . After integration by parts and omitting total derivatives
we obtain:

T++MRq+a∂R∂Mq
+
a ⇒ −(−1)(P (M)+P (R))P (R)

(
∂RT

++MR
)
q+a∂Mq

+
a −T++MR∂Rq

+a∂Mq
+
a .

(7.8)
Due to the symmetry (7.7) the second term vanishes. So we have reduced the term with
two derivatives acting on q+a to a term with one derivative.

In the general case, one should integrate by parts and bring all the terms either to
an odd number of derivatives acting on q+a (and those without derivatives), which can be
compensated by the proper transformation of gauge potentials, or to a term with equal
number of derivatives acting on q+a and q+a , and then use the identities of the type:

h++...N1...NnM1...Mn...∂N1 . . . ∂Nnq
+a∂M1 . . . ∂Mnq

+
a = 0, (7.9)

which are a direct generalization of the identity q+aq+a = 0.

• For odd s one can also transform the terms with an odd number of derivatives to
those with the even number, integrating by parts and making use of the relation:

h++N1...NnM1...MnK∂N1 . . . ∂Nnq
+a∂K∂M1 . . . ∂MnJq

+
a

=
1

2
h++N1...NnM1...MnK∂K

(
∂N1 . . . ∂Nnq

+a∂M1 . . . ∂MnJq
+
a

)
. (7.10)
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As a result, for any s we are able to cancel terms coming from [Ĥ++
(s) , Λ̂] and [Ĥ++

(s) ,Ω]

by the proper transformations of the set of gauge potentials (7.2) and thereby to ensure
the diffeomorphism (and so superconformal) invariance of the cubic interaction (7.1). Once
again, since we have not used the explicit form of N = 2 superconformal parameters
anywhere, this vertex is covariant under the complete gauge group of N = 2 conformal
supergravity.

Based upon this reasoning, from (7.5) we can figure out the transformation law of the
analytic spin s operator Ĥ++

(s) , which can be symbolically written as:

δdiffĤ++
(s) = [Ĥ++

(s) , Λ̂] +
1

2
[Ĥ++

(s) ,Ω]. (7.11)

Here we assumed that the various terms in the right hand side must be re-organized as was
explained above. The auxiliary gauge potentials of the lower spins play the same role as in
the spin 3 case: they cancel terms with a lesser number of derivatives, which result from
the commutators [Ĥ++

(s) , Λ̂] and [Ĥ++
(s) ,Ω].

7.2 Gauge freedom

The action
Sfree + S

(s)
int = −1

2

∫
dζ(−4) q+a

(
D++ + κsĤ++

(s) (J)P (s)
)
q+a (7.12)

is invariant under the hypermultiplet gauge transformations of the form (k = s, s− 2, s− 4 . . .):

δ
(k)
λ q+a =− κs

2

{
Λ̂M1...Mk−2 , ∂Mk−2

. . . ∂M1

}
AGB

(J)P (s) q+a

− κs
4

{
ΩM1...Mk−2 , ∂Mk−2

. . . ∂M1

}
AGB

(J)P (s) q+a
(7.13)

accompanied by the gauge transformations of the gauge potentials:

δλĤ++
(s) =

[
D++, Λ̂M1...Mk−2

]
∂Mk−2

. . . ∂M1

+
1

2

{
Λ̂M1...Mk−2 , [D++, ∂Mk−2

. . . ∂M1 ]
}
AGB

.
(7.14)

These formulas are a direct generalization of the spin 3 transformations. The spin s gauge
transformation of the hypermultiplet contains s− 1 superspace derivatives.

The formula (7.14) is symbolic like (7.11). One needs to reorganize the terms in the
second line as was explained above for the diffeomorphisms invariance, using the fact that
they act on the hypermultiplet and integrating by parts.

Here we used the following notations for the first-order analytic operator:

Λ̂M1...Mk :=
∑

N≤Mk···≤M1

λM1...MkN∂N (7.15)

and for the analytic weight factor:

ΩM1...Mk :=
∑

N≤Mk···≤M1

(−1)P (N)∂Nλ
NM1...Mk . (7.16)

– 31 –



Analytic parameters satisfy the conditions

λ...MN... = (−1)P (M)P (N)λ...NM... (7.17)

for any pair of adjacent indices. These conditions have the same form as those for analytic
gauge potentials in (7.3). The reality of the variation (7.13) implies the appropriate reality
conditions for the transformation parameters.

These transformations constitute the gauge freedom of the spin s, spin s− 2, . . . parts
of the differential operator Ĥ++

(s) (i.e. those entering with s− 1, s− 3, . . . derivatives).

7.3 Wess-Zumino gauge: N = 2 superconformal spin s multiplet

The gauge freedom (7.14) enables to eliminate a large number of fields. The Wess-Zumino
gauge can be imposed quite analogously to the spin 3 case (as described in detail in Ap-
pendix A). The field contents of this gauge completely repeats the form of the corresponding
Wess-Zumino gauge in the case of spin 3:



h++α(s−1)α̇(s−1) = −4iθ+ρ θ̄
+
ρ̇ Φ

(ρα(s−1))(ρ̇α̇(s−1)) − (θ̄+)2θ+ρ ψ
(ρα(s−1))α̇(s−1)iu−i

− (θ+)2θ̄+ρ̇ ψ̄
α(s−1)(α̇(s−1)ρ̇)iu−i + (θ+)2(θ̄+)2V α(s−1)α̇(s−1)iju−i u

−
j ,

h++α(s−1)α̇(s−2)+ = (θ+)2θ̄+ν̇ P
α(s−1)(α̇(s−2)ν̇) + (θ̄+)2θ+ν T

(α(s−1)ν)α̇(s−2)

+ (θ+)4χα(s−1)α̇(s−2)iu−i ,

h++α(s−2)α̇(s−1)+ = ˜h++α(s−1)α̇(s−2)+ ,

h(+4)α(s−2)α̇(s−2) = (θ+)2(θ̄+)2Dα(s−2)α̇(s−2) .

(7.18)
All the remaining analytic potentials in (7.2) are pure gauge and can be entirely gauged
away. Also, as in the spin 3 case, one can consider a special gauge in which only the
potentials h++α(s−2)α̇(s−2)M survive 20. Generically, in such a gauge the superconformal
transformations must be accompanied by the proper gauge transformations, with composite
parameters involving gauge potentials (recall, e.g., the spin 3 example (6.43)).

So we have obtained N = 2 spin s superconformal off-shell gauge multiplet as the set
of surviving fields in W-Z gauge. It consists of the fields with gauge transformations:

Bosonic sector:
• Conformal spin s gauge field (2s+ 1 off-shell d.o.f.):

δΦα(s)α̇(s) = ∂(α(α̇aα(s−1))α̇(s−1)). (7.19)

Such fields are also known as Fradkin-Tseytlin fields [15].
• Triplet of the spin s− 1 conformal gauge fields [3(2s− 1) off-shell d.o.f.]:

δV α(s−1)α̇(s−1)ij = ∂(α(α̇vα(s−2))α̇(s−2)). (7.20)
20In such a gauge one can rewrite the analytic differential operator as

H++
s = h++α(s−2)α̇(s−2)M∂M∂

(s−2)

α(s−2)α̇(s−2) = (D+)4
(
Υα(s−2)α̇(s−2)D−−

)
∂
(s−2)

α(s−2)α̇(s−2).

This gives a direct connection with the Mezincescu-type prepotentials studied in [41].
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• Conformal spin s− 1 gauge field [3(2s− 1) off-shell d.o.f.]:

δPα(s−1)α̇(s−1) = ∂(α(α̇pα(s−2))α̇(s−2)). (7.21)

• Generalized conformal “hook-type” gauge field [2(2s− 1) off-shell d.o.f.]:

δTα(s)α̇(s−2) = ∂(α(α̇tα(s−1))α̇(s−3)). (7.22)

Such a complex gauge field was already considered in the context of N = 1 superconformal
multiplets in [34] (see eq. (3.16) there) and in [39]. Gauge invariant field strengths and
conformal actions for such fields were also presented in [34]. In refs. [24–26] the gauge
invariant actions for such fields were constructed in conformally flat spaces.

• Spin s− 2 conformal gauge field (2s− 3 off-shell d.o.f.):

δDα(s−2)α̇(s−2) = ∂(α(α̇Ωα(s−3))α̇(s−3)). (7.23)

Fermionic sector:
• Doublet of the fermionic spin s− 1

2 gauge field (8s off-shell d.o.f.):

δψα(s)α̇(s−1)i = ∂(α(α̇bα(s−1))α̇(s−2))i. (7.24)

• Doublet of the spin s− 3
2 fermionic gauge fields [8(s− 1) off-shell d.o.f.]:

δχα(s−1)α̇(s−2)i = ∂(α(α̇cα(s−2))α̇(s−3))i. (7.25)

So the general integer-spin sN = 2 superconformal multiplet encompasses 8(2s− 1)B+

8(2s− 1)F off-shell degrees of freedom21. Interestingly, all fields in the N = 2 supercon-
formal higher-spin multiplets are gauge fields: no non-gauge auxiliary fields are present
(the cases of N = 2 spin 1 theory and N = 2 conformal supergravity are an exception).
It is the significant difference from the case of non-conformal N = 2 higher spins [44].
It is worth noting that there appear no auxiliary fields in the superconformal N = 1

higher spin multiplets as well [34] 22. In this connection we mention that the N = 2

higher-spin superconformal multiplets constructed can be decomposed into the sum of
three N = 1 supermultiplets: higher-spin s multiplet (4sB + 4sF off-shell d.o.f), higher-
spin s− 1 multiplet (4(s− 1)B + 4(s− 1)F off-shell d.o.f) and higher-spin s− 1

2 multiplet
(4(2s− 1)B + 4(2s− 1)F off-shell d.o.f.).

21In the case of non-conformal N = 2 spin s supermultiplet one deals with 8[s2 + (s− 1)2]B +

8[s2 + (s− 1)2]F off-shell degrees of freedom. These multiplets were constructed in [44] as a general-
ization of off-shell multiplet of N = 2 Einstein supergravity. The superconformal multiplets described
here naturally generalize the Weyl multiplet of conformal N = 2 supergravity [53, 57] to arbitrary integer
higher spins. It is interesting to note that the number of d.o.f. in N = 2 superconformal multiplet can
be parametrized as 8[s2 − (s− 1)2]B + 8[s2 − (s− 1)2]F . This leads to the conjecture on the structure of
superconformal compensators for the general spin s: they should be composed of two towers of all integer
N = 2 superconformal higher spins.

22Based on these affinities, it is reasonable to assume that an arbitrary N -extended superconformal
multiplet also does not contain auxiliary fields.
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Generalizing the spin 3 superconformal current superfields of Section 6.4 to the general
spin s is straightforward. For example, for the special case of vector indices we find:

Jα(s−2)α̇(s−2) = −1

2
q+aD−−∂s−2

α(s−2)α̇(s−2)Jq
+
a ,

D++Jα(s−2)α̇(s−2) = −1

2
q+a∂s−2

α(s−2)α̇(s−2)Jq
+
a .

(7.26)

These expressions satisfy various conservation laws, e.g.,

D++
(
D+

β̂
Jα(s−2)α̇(s−2)

)
= 0, D++

(
D+

βD
+

β̇
Jα(s−2)α̇(s−2)

)
= 0. (7.27)

Other supercurrents can be constructed in a similar way. We leave the general case for the
future work.

7.4 Summary of the superconformal spin s

The action (7.12) admits the natural generalization to an arbitrary N = 2 conformal
supergravity background:

S = −1

2

∫
dζ(−4)q+a

(
D++ + κsĤ++

(s) (J)
P (s)

)
q+a . (7.28)

The generalized action (7.28) is invariant under:

1. Nonlinear spin 2 gauge transformations (i.e. N = 2 conformal supergravity group).
The action of these transformations on the spin s analytic potentials is given in (7.11).

2. Spin s gauge transformations to the leading order in κs (like in the spin 3 case, one
needs to add the proper Ĥ++

(s=2) terms to the Ĥ++
(s) gauge transformation law). The

full form of such transformations, with the proper spin 2 part added, is given by:

δλĤ++
(s) =

1

2

[
D++,

{
Λ̂M1...Mk−2 , ∂Mk−2

. . . ∂M1

}
AGB

]
+
κ2
4

[
Ĥ++

(s=2),
{
ΩM1...Mk−2 , ∂Mk−2

. . . ∂M1

}
AGB

]
.

(7.29)

The second term acts only on the lower-spin parts.

As in the cases of interaction of the spin 1 and 3 fields with N = 2 conformal supergravity
fields, the interaction of N = 2 spin s multiplet with N = 2 conformal supergravity
multiplet is mediated by auxiliary hypermultiplet fields.

Thus eq. (7.28) provides the covariant superconformal vertex (s, 12 ,
1
2) in an arbitrary

N = 2 conformal supergravity background.

8 Fully consistent higher-spin hypermultiplet coupling

In the previous sections we have constructed superconformal cubic vertices (s, 12 ,
1
2) consis-

tent to the leading order in higher-spin analogs of Einstein constant. In this section, we
will consider the possibility of making the resulting cubic vertices invariant with respect to
gauge transformations in the next orders in these coupling constants.
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For example, consider the simplest case of the spin 3 on curved superspace:

S(s=3) = −1

2

∫
dζ(−4) q+a

(
D++ + κ3Ĥ++

(s=3)J
)
q+a . (8.1)

This action is gauge invariant to the leading order in κ3. In the next order we have the
following gauge transformation of cubic vertex under the spin 3 gauge transformations
(6.18) of the hypermultiplet :

δ
(s=3)
λ

(
−κ3

2
q+aĤ++

(s=3)Jq
+
a

)
= −κ

2
3

4
q+a

[
Ĥ++

(s=3),

{
Λ̂M +

1

2
ΩM , ∂M

}
AGB

]
q+a . (8.2)

So we arrived at the differential operator of the third order in superspace derivatives. Mak-
ing use of the spin 4 superconformal multiplet described in the previous section (modulo
integrations by parts), one can compensate this term by deforming the spin 4 differential
operator Ĥ++

s=4 transformation law as:

κ4δ
(s=3)
λ Ĥ++

s=4 = −κ
2
3

4

[
Ĥ++

(s=3),

{
Λ̂M +

1

2
ΩM , ∂M

}
AGB

]
. (8.3)

Here we assumed that the appropriate integration by parts has been performed, like in the
previous sections. Such a modified transformation law mixes different N = 2 superconfor-
mal multiplets, i.e. it is a nonabelian-type gauge symmetry. So the action

Ss=3,4 = −1

2

∫
dζ(−4) q+a

(
D++ + κ3Ĥ++

(s=3)J + κ4Ĥ++
(s=4)

)
q+a (8.4)

respects the spin s = 3 gauge invariance to κ23 order. However, the action (8.4) is not
invariant in the κ3κ4 order. Then the procedure just described can be continued step by
step.

To summarize this procedure, we introduce an analytical differential operator that
includes all integer higher spins:

Ĥ++ :=
∞∑
s=1

κsĤ++
(s) (J)

P (s). (8.5)

The action of the infinite tower of integer N = 2 superconformal higher spins interacting
with the hypermultiplet on an arbitrary N = 2 conformal supergravity background reads:

Sfull = −1

2

∫
dζ(−4) q+a

(
D++ + Ĥ++

)
q+a . (8.6)

Then, assuming the proper gauge transformation of Ĥ++, one can achieve gauge invariance
to any order in couplings constants. Collecting the hypermultiplet gauge transformations
(7.13) for all spins, we obtain

δλq
+a = −Ûq+a = −

∞∑
s=1

κsÛsq
+a. (8.7)
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This transformation acts linearly on the hypermultiplet superfield. For the set of gauge
fields we obtain the transformation law:

δλĤ++ =
[
D++ + Ĥ++, Û

]
. (8.8)

Here we also assumed the proper integration by parts, as in the previous sections. This
transformation law mixes different spins, so this is a nonabelian deformation of the spin s

transformation laws.
The invariance of (8.6) under N = 2 conformal supergravity transformations is auto-

matic for the reasons expounded in the previous section. So we have constructed the fully
consistent gauge-invariant and conformally invariant interaction of hypermultiplet with an
infinite tower of N = 2 higher spins in an arbitrary N = 2 conformal supergravity back-
ground. To spot some possible hidden subtleties of the general construction, it seems
necessary to perform a further deeper inspection of this procedure and, in particular, to
make a detailed comparison with the known couplings among higher-spin gauge fields and
scalar fields.

9 Conclusions and outlook

In this paper we have derived and discussed in details the structure of the off-shell manifestly
N = 2 superconformal cubic interaction of N = 2, 4D hypermultiplet theory with an arbi-
trary superconformal higher spin s gauge superfield. The basic results can be summarized
as:

• We considered the off-shell hypermultiplet model in N = 2, 4D harmonic superspace
and described its rigid superconformal symmetries. For invariance of the cubic higher-
spin vertices (s, 12 ,

1
2) under these symmetries it proved necessary to properly modify

the superconformal transformations of the hypermultiplet by the corresponding su-
perconformal gauge superfields;

• To this end, we introduced the complete set of N = 2, 4D unconstrained analytic
spin s superconformal higher-spin potentials, defined their superconformal and gauge
transformations and revealed the physical field contents of the corresponding higher-
spin Weyl supermultiplets in Wess-Zumino gauges. Their most notable features are:
(i) all fields in the multiplets starting from s = 3 are gauge; (ii) the sets of bosonic
fields necessarily contain “hook-type” generalized gauge fields;

• As a result, we have derived the manifestly N = 2 superconformal cubic vertex
of the hypermultiplet coupled to superconformal higher spin external gauge super-
fields. Generically, the vertex has the structure: higher spin superconformal gauge
superfields × superconformal hypermultiplet supercurrents. The corresponding super-
currents have been explicitly constructed in terms of the hypermultiplet superfields;

• As particular cases, we have constructed and discussed in detail the off-shell (s, 12 ,
1
2)

vertices in the background of N = 2 conformal supergravity for s = 2, 3.
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It should be specially pointed out that the geometric basis of the superconformal
N = 2, 4D off-shell gauge supermultiplets and their couplings to q+ hypermultiplets, like in
the previously discussed non-conformal case, proved to be the preservation of N = 2 Grass-
mann harmonic analyticity. First of all, the fundamental gauge potentials encompassing
superconformal gauge multiplets are unconstrained N = 2 analytic harmonic superfields.
Secondly, they are naturally recovered from the demand of analyticity of the q+a Lagrangian
and requiring them to be closed under the analyticity-preserving coordinate realization of
rigid N = 2 superconformal symmetry.

Finally, let us list possible directions of the future study:

• Dynamical actions for higher-spin N = 2 superconformal multiplets

The natural foremost task is to construct N = 2 Fradkin-Tseytlin superconformal
actions for the superconformal multiplets presented, at least at the linearized level.
In components, these actions should be reducible to higher-spin generalizations of the
square of the linearized generalized Weyl tensors which were firstly introduced in [15].
In the HSS approach, such actions were not considered even for the standard Weyl
(s = 2) multiplet.

• Superconformal current superfield and rigid higher-spin superconformal symmetries

In this paper, we have addressed the important issue of the rigid symmetries of the free
hypermultiplet and of the corresponding superfield currents only in passing. In fact,
like in [45], one can easily identify the corresponding rigid symmetries by imposing
the obvious conditions on the parameters (7.14):[

D++, Λ̂M1...Mk−2

]
∂Mk−2

. . . ∂M1 +
1

2

{
Λ̂M1...Mk−2 , [D++, ∂Mk−2

. . . ∂M1 ]
}
AGB

= 0

(9.1)
The solutions of these equations (modulo possible terms vanishing after integrations
by parts) yield rigid higher-order conformal symmetries of the free hypermultiplet.
It would be of significant interest to study the algebra of the corresponding group
variations.

Using N = 2 superfield Noether theorem or directly varying the cubic interactions
with respect to the superfield gauge potentials, one can derive the conserved supercur-
rents for these symmetries. As one of the instructive examples one could construct the
“master” current superfields, discussed in [45] and briefly sketched here. An interest-
ing task is to study the component current expansion of the supercurrents obtained.
Another important problem is the study of the superconformal transformation laws
of the current superfields.

• Induced actions

Finding out the manifestly N = 2 superconformal interaction vertex for the hypermul-
tiplet coupled to external gauge higher spin superfields opens a principal possibility
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to study the higher spin quantum effects in such a theory. One of the topical prob-
lems in this area is the one-loop effective action of a higher-spin gauge field induced
by its interaction with a lower-spin quantum field. For the explicit construction of
such an effective action, there exists a general procedure going back to Schwinger and
DeWitt and based upon the representation of the effective action as an integral over
the proper time (see, e.g., [71]). In general, the induced effective action is essentially
non-local. However, it can be perturbatively calculated as a series in the background
field derivatives, which makes it possible to obtain various local invariants as func-
tionals of the background gauge fields. In the context of the theory of higher spin
fields, this opens up the possibility to find out, by direct algorithmic calculations, new
invariants depending on the higher spin gauge fields. To the best of our knowledge,
the study of the induced effective action in the conformal theory of higher spin fields
was initiated in refs [33] in the world-line approach (see also the later paper [31]). In
the theory of the lower-spin fields cubically coupled to conformal gauge higher spin
fields, some approaches to the problem of calculating the induced effective actions
were worked out in refs. [30], [72], [73], [32], [74] including the superfield approaches
for N = 1 and N = 2 supersymmetric higher-spin theories formulated in N = 1

superspace [32], [74]. In the present paper, we have constructed the manifestly N = 2

superconformally invariant cubic interaction vertex for a hypermultiplet coupled to
N = 2 higher spin gauge superfields. This makes it possible to develop the manifestly
N = 2 supersymmetric proper time technique and use it to calculate the induced
effective action depending on N = 2 higher-spin gauge superfields treated as classical
external superfields. In other words, knowing the explicit expressions for the general
superfield coupling of the hypermultiplet to the N = 2 higher-spin superconformal
gauge potentials could help to find out the invariant Lagrangians of the latter.

• Higher-spin conformal compensators

N = 2 supersymmetric extension of Fronsdal theory constructed in [44] generalized
merely one of the available versions of N = 2 Einstein supergravity. An important
question is how to construct the higher-spin generalization of other versions of N = 2

supergravity. It is well known that the most general set of distinct versions of Ein-
stein (super)gravity can be obtained by making use of the method of (super)conformal
compensators. It is of primary interest to learn what is a generalization of this com-
pensator mechanism to higher N = 2 spins23. To answer this question it is necessary,
first of all, to explore the issue of quartic interacting conformal vertices. The severe
restrictions imposed by extended supersymmetry and harmonic superspace methods
could greatly simplify the problem of constructing such vertices24. On the other hand,
the generic matter conformal compensator for N = 2 supergravity is just the massless
hypermultiplet with the wrong sign of kinetic term (plus vector N = 2 compensator
with the analogous “wrong” sign of the kinetic term) [51, 57]25. So there naturally

23Few earlier ideas regarding conformal compensators for higher spins were adduced in [33].
24One of the possible sources of such vertices in the HSS approach was addressed in a recent paper [48].
25The relevant off-shell version of Einstein N = 2 supergravity was dubbed “principal version” in [51, 57];
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emerges the problem of extending this picture to higher-spin N = 2 supergravity.
It is obvious in advance that, in order to recover the hypermultiplet coupling of ref.
[46], one needs to start with a conformal system involving at least two independent
hypermultiplet superfields, one being a compensator.

• AdS background

One more actual problem is to develop a similar formalism for N = 2 higher spins
in the AdS and other conformally flat backgrounds. Since the super AdS group is
a subgroup of N = 2 superconformal group, we hope that such a problem can be
attacked, based largely on the results of the present work.

• Construction of more general interactions

An important task is to generalize supercurrents and cubic vertices constructed here
for hypermultiplets to the more general cases of interaction with other matter N = 2

multiplets, e.g., with N = 2 Maxwell multiplet (massless or massive). We hope to
tackle this task (closely related also to the issue of conformal compensators) elsewhere.
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A Wess-Zumino gauge for superconformal spin 3

In this appendix, we expound how to fix the Wess-Zumino gauges for the spin 3 analytic
potentials h++MN . The relevant linearized gauge transformations are collected in (6.26).
We show that one can fix gauge in such a way that all superfields, except their subset
h++Mαα̇, are gauged away. Then we deduce the Wess-Zumino form of the residual gauge
potentials and find out the irreducible off-shell component content of the s = 3 N = 2

gauge multiplet.

A.1 Fixing “harmonic” freedom

As the first important step, consider the analytic superfield h(+n)K with the following gauge
freedom:

δλh
(+n)K = D++λ(+(n−2))K . (A.1)

Here K is an arbitrary multi-index, λ(+(n−2))K is an unconstrained analytic superfield
parameter. Terms of just this type appear in the transformation laws of all gauge potentials,
see (6.26). Once this gauge freedom is fixed, we can inspect contributions of other terms.

it is the only one which admits the most general N = 2 matter off-shell couplings.
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The generic component expansions of h(+n)K(ζ) and λh(+n)K read, respectively,

h(+n)K(ζ) =A(+n)K + θ+ρ̂B
(+(n−1))K
ρ̂

+ (θ+)2C
(+(n−2))K
1 + (θ̄+)2C

(+(n−2))K
2 + θ+αθ̄+α̇C

(+(n−2))K
αα̇

+ (θ+)2θ̄+α̇D
(+(n−3))K
α̇ + (θ̄+)2θ+αD(+(n−3))K

α + (θ+)4E(+(n−4))K ,

(A.2)

λ(+(n−2))K(ζ) =a(+(n−2))K + θ+ρ̂b
(+(n−3))K
ρ̂

+ (θ+)2c
(+(n−4))K
1 + (θ̄+)2c

(+(n−4))K
2 + θ+αθ̄+α̇c

(+(n−4))K
αα̇

+ (θ+)2θ̄+α̇d
(+(n−5))K
α̇ + (θ̄+)2θ+αd(+(n−5))K

α + (θ+)4e(+(n−6))K .

(A.3)

The coefficients A,B . . . and a, b . . . are arbitrary x-dependent harmonic functions with the
properly fixed harmonic charges.

The result of action of the partial harmonic derivative ∂++ on (A.3) is as follows:

∂++λ(+(n−2))K(ζ) =∂++a(+(n−2))K + θ+ρ̂∂++b
(+(n−3))K
ρ̂

+ (θ+)2∂++c
(+(n−4))K
1 + (θ̄+)2∂++c

(+(n−4))K
2

+ θ+αθ̄+α̇∂++c
(+(n−4))K
αα̇

+ (θ+)2θ̄+α̇∂++d
(+(n−5))K
α̇ + (θ̄+)2θ+α∂++d(+(n−5))K

α

+ (θ+)4∂++e(+(n−6))K .

(A.4)

In this expression, the harmonic derivative produces general harmonic functions if the charge
of the corresponding function ≥ 0. Then, for the harmonic charges with n ≥ 5, one can
gauge away all the components by the gauge transformations (A.1). For n = 4, one cannot
gauge away by this mechanism the highest component in the harmonic expansion of EK ,
for n = 3 those in the expansion of DK

α̂ , E
K , and so forth.

The corresponding residual gauge freedom is specified by the lowest components of the
λ(+(n−2))K(ζ) coefficients with the positive harmonic charge. For example, in n = 3 case
these parameters are aiK , bK . Due to the presence of the term with x-derivative in D++,
these surviving parameters (with derivatives on them) can appear in the transformations of
some other non-vanishing components. Also, the appropriate contributions from the terms
with explicit θ s in (6.26) can modify the residual gauge transformations and ensure some
additional gauge conditions. All these subtleties can be uniquely fixed from the condition
of preserving the final Wess-Zumino type gauges.

Now we can proceed to the precise discussion of the gauge-fixing procedure for the
superconformal spin 3 potentials. Using merely terms with harmonic derivatives, and based
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on the reasoning around eqs. (A.3) - (A.4), we can partially fix the gauge as:

h++αα̇ββ̇ = i(θ+)2Cαα̇ββ̇ − i(θ̄+)2C̄αα̇ββ̇ − 4iθ+ρθ̄+ρ̇Φαα̇ββ̇
ρρ̇

+ (θ̄+)2θ+ρψαα̇ββ̇i
ρ u−i + (θ+)2θ̄+ρ̇ψ̄αα̇ββ̇i

ρ̇ u−i + (θ+)4V αα̇ββ̇iju−i u
−
j ,

h++αα̇β+ = (θ+)2θ̄+ρ̇Pαα̇β
ρ̇ + (θ̄+)2θ+ρTαα̇β

ρ + (θ+)4χαα̇βiu−i ,

h++αα̇++ = (θ+)4Dαα̇,

h++[α+β]+ = (θ+)4K [αβ],

h++α+α̇+ = i(θ+)4Kαα̇,

h++α̂+++ = 0,

h(+6) = 0.

(A.5)

The reality conditions for the involved fields can be figured out from the generalized re-
ality conditions for the analytic gauge potentials (6.7). The ultimate effect of the shift
transformations (6.26) on the component fields in (A.5) can be determined by considering
separately various sectors. Using these transformations, one can find the transformation
laws of the remaining fields and learn which fields survive after the WZ gauges have been
completely fixed (up to the residual gauge transformations involving only x-derivatives of
the relevant parameters).

A.2 Further gauge-fixing

Inspecting the transformations (6.26) more carefully, we found that, besides the primary
gauge-fixing (A.5), based on the general properties of the harmonic expansions, the further
steps of the gauge fixing can be effected, which become possible due to the presence of the
explicit θs in (6.26). Namely, it is self-consistent to put

ĥ(+4) = 0 , ĥ++ = 0 , ĥ+3α̂ = 0 , h++α+β̇+ = 0 (and c.c.) , (A.6)

where

ĥ++ := ϵαβϵα̇β̇h
++αα̇ ββ̇ , ĥ+3α̇ := ϵαβh

++α+βα̇,

¯̂
h+3α = ϵα̇β̇h

++α̇+αβ̇, ĥ(+4) :=
1

2
ϵβαh

++[β+α]+ (and c.c.) . (A.7)

Then all physical fields are contained in the remaining parts of the original gauge
potentials

h++(αβ)(α̇ β̇) , h++(α+β)α̇ , h++(α̇+β̇)α , h++αα̇++ . (A.8)

Requiring the gauges (A.6) and the last two gauges in (A.5) to be preserved under the
general linearized gauge transformations (6.26) impose the following constraints on the
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relevant residual analytic gauge parameters:

h(+6) = 0 =⇒ D++λ(+4) = 0 , (A.9)

h+5β̂ = 0 =⇒ D++λ+3β̂ − 2λ(+4)θ+β̂ = 0 , (A.10)

ĥ(+4) = 0 =⇒ D++λ̂+2 − λ+3αθ+α = 0 , and c.c. , (A.11)

h++β+γ̇+ = 0 =⇒ D++λβ+γ̇+ − 1

2

(
λ+3β θ̄+γ̇ − λ+3γ̇θ+β

)
= 0 , (A.12)

ĥ+3α̇ = 0 =⇒ D++λ̂+α̇ + 8iλ̂+2θ̄+α̇ + λ̂++αα̇θ+α = 0 , and c.c. , (A.13)

ĥ++ = 0 =⇒ D++λ̂− 4iλ̂+β̇ θ̄+
β̇
+ 4iλ̂+βθ+β = 0 , and c.c. , (A.14)

where

λ̂ := ϵαβϵα̇β̇λ
αβα̇β̇, λ̂+β̇ := ϵαβλ

α+ββ̇ and c.c. , λ̂+2 := ϵαβλ
[α+β]+ and c.c. ,

λ̂++αα̇ := λ++αα̇ − 8iλα+α̇+ . (A.15)

The gauge transformations of the “physical” set (A.8) are given by

δh++(αβ)(α̇ β̇) = D++λ(αβ)(α̇β̇) + 4i
(
λ(β+α)(α̇θ̄+β̇) − λ(α̇+β̇)(βθ+α)

)
, (A.16)

2δh++(β+α)α̇ = D++λ(α+β)α̇ − θ+(α
(
λβ)α̇++ + 8iλβ)+α̇+

)
, and c.c. , (A.17)

2δh++αα̇++ = D++λ++αα̇ + 4i
(
λ+3αθ̄+α̇ − λ+3α̇θ+α

)
. (A.18)

We observe that the eqs. (A.9) - (A.13) involve some gauge parameters which appear
also in (A.16) - (A.18). So we need first to fully exhibit the consequences of (A.9) - (A.12).

A.3 Bosonic sector

We will start from the bosonic sector.
For what follows we will need the component structure of the analytic gauge parameters.

Firstly we present it for the gauge parameters associated with the pure gauge potentials
appearing in (A.9) - (A.14):

λ(+4) = ℓ+4 + ℓ+2(θ+)2 + ℓ̄+2(θ̄+)2 + ℓ+2αα̇θ+α θ̄
+
α̇ + ℓ(θ+)4,

λ+3α = µ+2α
β θ+β + µ+2α

β̇
θ̄+β̇ + γαβ (θ̄

+)2θ+β + γα
β̇
(θ+)2θ̄+β̇ ,

λ̂+2 = σ+2 + σ(θ+)2 + σ′(θ̄+)2 + σαα̇1 θ+α θ̄
+
α̇ + σ−2

2 (θ+)4,

λα+β̇+ = ψ++αβ̇ + ψαβ̇
1 (θ+)2 − ψ̄αβ̇

1 (θ̄+)2 + ψαβ̇γγ̇
2 θ+γ θ̄

+
γ̇ + ψ−2αβ̇

3 (θ+)4. (A.19)

λ̂+α = ναγ θ
+γ + ναγ̇ θ̄

+γ̇ + ϕ−2α
γ (θ̄+)2θ+γ + ϕ−2α

γ̇ (θ+)2θ̄+γ̇ ,

λ̂ = β + β−2(θ+)2 + β̄−2(θ̄+)2 + β−2γγ̇θ+γ θ̄
+
γ̇ + β−4(θ+)4 . (A.20)

The analogous expansions for the remaining superfield gauge parameters read

λ(αβ)(α̇β̇) = ρ(αβ)(α̇β̇) +
[
ρ
−2(αβ)(α̇β̇)
1 (θ+)2 + c.c.

]
+ ρ

−2(αβ)(α̇β̇)γγ̇
2 θ+γ θ̄

+
γ̇

+ ρ
−4(αβ)(α̇β̇)
3 (θ+)4, (A.21)

λ(β+α)β̇ = ω(αβ)β̇γθ+γ + ω(αβ)β̇γ̇ θ̄+γ̇ + ω
−2(αβ)β̇γ
1 (θ̄+)2θ+γ + ω

−2(αβ)β̇γ̇
2 (θ+)2θ̄+γ̇ , (A.22)

λ+2αβ̇ = χ+2αβ̇ + χαβ̇
1 (θ+)2 + χ̄αβ̇

1 (θ̄+)2 + χαβ̇γγ̇
2 θ+γ θ̄

+
γ̇ + χ−2αβ̇

3 (θ+)4. (A.23)
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The conjugation rules for the component gauge parameters follow from the superfield ones
listed earlier.

Eqs. (A.9) - (A.12) yield the following restrictions on the four sets of the component
parameters in (A.19):

(a) ℓ+4 = ℓ+4
(0), ℓ

+2 = ℓ+2
(0), ℓ

+2αα̇ = ℓ+2αα̇
(0) + 4i ∂αα̇ℓ+3−

(0) ,

(b) ℓ = ℓ(0) + i∂αα̇ℓ
+−αα̇
(0) − 2□ℓ+2−2

(0) , (A.24)

(a) µ+2β
α = µ+2β

α (0) + 2δβαℓ
+3−
(0) , µ+2β

α̇ = µ+2β
α̇ (0) ,

γαβ = γαβ (0) − 2i ∂α̇α µ
+−β
α̇ (0) + 2 δαβ ℓ

+−
(0) ,

(b) γβα̇ = γβα̇(0) − 2i ∂αα̇ µ
+−β
α (0) − ℓ+−β

α̇ (0) − 4i ∂βα̇ ℓ
+2−2
(0) (A.25)

(a) σ+2 = σ+2
(0) , σ

′ = σ′(0) , σ = σ(0) +
1

2
µ+−β
β(0) + ℓ+2−2

(0) ,

(b) σγγ̇1 = σγγ̇1(0) + 4i ∂γγ̇ σ+−
(0) + µ+−γγ̇

(0)

(c) σ−2
2 = −2□σ−2

(0) + ℓ̄−2
(0) + i∂αα̇µ

−2αα̇
(0) , (d) γαα (0) = −2i∂γγ̇ σ

γγ̇
1(0) , (A.26)

(a) ψ+2αα̇ = ψ+2αα̇
(0) , ψαα̇

1 = ψαα̇
1(0) +

1

4
µ̄+−αα̇
(0) ,

(b) ψαβ̇γγ̇ = ψαβ̇γγ̇
(0) + 4i∂γγ̇ ψ+−αβ̇

(0) +
1

2
εργεβ̇γ̇ [µ+−α

ρ(0) + ℓ+2−2
(0) δαρ ]

+
1

2
εαγεα̇γ̇ [µ̄+−β̇

α̇(0) + ℓ+2−2
(0) δβ̇α̇],

(c) ψ−2αα̇
3 = −2□ψ−2αα̇

(0) +
i

2
[∂ρα̇ µ−2α

ρ(0) + ∂αβ̇µ̄−2α̇

β̇(0)
] +

1

4
ℓ−2αα̇
(0) + i∂αα̇ℓ−3+

(0) ,

(d) γαβ̇(0) − γ̄αβ̇(0) = 4i∂γγ̇ψ
αβ̇γγ̇
2(0) . (A.27)

Analogously, eqs. (A.13), (A.14) yield, for the component parameters in (A.20),

(a) ναγ = ναγ(0) + 8iδαγ σ̄
+−
(0) , ναγ̇ = ναγ̇(0) +

[
χ+−α
γ̇(0) − 8i ψ+−α

γ̇(0)

]
,

(b) ϕ−2α
γ = −2i∂γ̇γ

[
χ−2α
γ̇(0) − 8i ψ−2α

γ̇(0)

]
− 4iµ−2α

γ(0) −
8i

3
δαγ ℓ

−3+
(0) ,

ϕ−2αγ̇ = 16 ∂αγ̇ σ̄−2
(0) ,

(c) χαγ̇
1(0) − 8i ψαγ̇

1(0) = 2i ∂γγ̇ ναγ(0) − 4i σ̄αγ̇1(0) , (A.28)

(a) β = β(0) , β−2 = 16σ̄−2
(0) , ναα(0) = ν̄α̇α̇(0) = 0 ,

(b) β−2γγ̇ = −4i
[
χ−2γγ̇
(0) − 8i ψ−2γγ̇

(0)

]
, νγγ̇(0) + ν̄γγ̇(0) = ∂γγ̇ β(0) ,

(c) β−4 = −16

3
ℓ−4
(0) , µ−2α

α(0) + µ̄−2α̇
α̇(0) =

3

2
∂γγ̇

[
χ−2γγ̇
(0) − 8i ψ−2γγ̇

(0)

]
. (A.29)

Hereafter, the suffix (0) denotes the lowest-order terms in the relevant harmonic expansions.
Thus we have shown that plenty of the superconformal gauge potentials, including

h(+6) and h++α̂+++ in (A.5) and those in (A.6), can be completely gauged away and we are
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left with the restricted set of the analytic superfield potentials which eventually encompass
the irreducible s = 3 multiplet. In the bosonic sector, these basic gauge potentials have the
following component expansions (before passing to the partly gauge-fixed form (A.5)):

h++(αβ)(α̇β̇) = h
++(αβ)(α̇β̇)
0 +

[
h
(αβ)(α̇β̇)
1 (θ+)2 + c.c.

]
+ h

(αβ)(α̇β̇)γγ̇
2 θ+γ θ̄

+
γ̇

+h
−2(αβ)(α̇β̇)
3 (θ+)4, (A.30)

h++(β+α)α̇ = h
+2(βα)α̇
1 γ θ+γ + h

+2(βα)α̇
2 γ̇ θ̄+γ̇ + h

(βα)α̇
3 γ (θ̄+)2θ+γ

+h
(βα)α̇
4 γ̇ (θ+)2θ̄+γ̇ , (A.31)

h+4αα̇ = h+4αα̇
0 + h+2αα̇

1 (θ+)2 + h̄+2αα̇
1 (θ̄+)2 + h+2αα̇γγ̇

2 θ+γ θ̄
+
γ̇ + hαα̇3 (θ+)4. (A.32)

The component fields of h++(αβ)(α̇β̇) have the following gauge transformation laws:

δh
++(αβ)(α̇β̇)
0 = ∂++ρ(αβ)(α̇β̇) ,

δh
(αβ)(α̇β̇)
1 = ∂++ρ

−2(αβ)(α̇β̇)
1 − 2i ω̄

(αβ)(α̇β̇)
(0) , (and c.c.) , (A.33)

δh
(αβ)(α̇β̇)γγ̇
2 = ∂++ρ

−2(αβ)(α̇β̇)γγ̇
2 − 4i ∂γγ̇ ρ(αβ)(α̇β̇)

+4i
[
ω(αβ)γ(α̇εβ̇)γ̇ + ω̄(α̇β̇)γ̇(αεβ)γ

]
, (A.34)

δh
−2(αβ)(α̇β̇)
3 = ∂++ρ

−4(αβ)(α̇β̇)
3 − i ∂γγ̇ ρ

−2(αβ)(α̇β̇)γγ̇
2

+2i
[
ω
−2(αβ)(α̇β̇)
2 − ω̄

−2(αβ)(α̇β̇)
2

]
. (A.35)

Using eqs.(A.33), one can impose the gauges

h
++(αβ)(α̇β̇)
0 = 0 ⇒ ρ(αβ)(α̇β̇) = ρ

(αβ)(α̇β̇)
(0) ,

h
(αβ)(α̇β̇)
1 = 0 , ⇒ ρ

−2(αβ)(α̇β̇)
1 = 0 , ω

(αβ)(α̇β̇)
(0) = 0 , ⇒ ω

(αβ)α̇

(0) β̇
=

1

2
δα̇
β̇
ω
(αβ)
(0) . (A.36)

The analysis of consequences of eqs. (A.34) and (A.35) requires more effort. First of
all, we need the gauge transformations of the component fields in the other two superfield
potentials (A.32) and (A.31)

2δh+4αα̇
0 = ∂++χ+2αα̇ , (A.37)

2δh+2αα̇
1 = ∂++χαα̇

1 + 2i µ̄+2αα̇, (A.38)

2δh̄+2αα̇
1 = ∂++χ̄αα̇

1 − 2i µ+2αα̇, (A.39)

2δh+2αα̇γγ̇
2 = ∂++χαα̇γγ̇

2 − 4i
[
∂γγ̇χ++αα̇ − εβγεα̇γ̇µ+2α

β − εαγεβ̇γ̇µ̄+2α̇

β̇

]
, (A.40)

2δhαα̇3 = ∂++χ−2αα̇
3 − i∂γγ̇χ

αα̇γγ̇
2 − 2i

(
γαα̇ − γ̄αα̇

)
, (A.41)

2δh
+2(βα)α̇
1 γ = −

[
∂++ω(αβ)α̇

γ +Σ+2(αα̇δβ)γ
]
, (A.42)

2δh
+2(βα)α̇
2 γ̇ = −∂++ω

(αβ)α̇
γ̇ , (A.43)

2δh
(βα)α̇γ
3 = −

[
∂++ω

−2(αβ)α̇γ
1 + 2i∂γγ̇ω

(αβ)α̇
γ̇ − Σ̄

(αα̇
1 εβ)γ

]
, (A.44)

2δh
(βα)α̇γ̇
4 = −

[
∂++ω

−2(αβ)α̇γ̇
2 + 2i∂γγ̇ω(βα)α̇

γ − 1

2
Σ
(αβ)α̇γ̇
2

]
, (A.45)
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where

Σ++αα̇ := χ++αα̇ + 8iψ++αα̇ , Σαα̇
1 := χαα̇

1 + 8i ψαα̇
1 , Σ̄αα̇

1 = χ̄αα̇
1 − 8i ψ̄αα̇

1

Σαα̇γγ̇
2 := χαα̇γγ̇

2 + 8i ψαα̇γγ̇
2 + 4i∂γγ̇

[
χ+−αα̇ + 8iψ+−αα̇

]
. (A.46)

We start with the analysis of (A.37) - (A.41). One observes that the fields h+4αα̇
0 , h+2αα̇

1

and h+2αα̇γγ̇
2 can be completely gauged away:

h+4αα̇
0 = 0 ⇒ χ+2αα̇ = χ+2αα̇

(0) , h+2αα̇
1 = 0 ⇒ χαα̇

1 = χαα̇
1(0) − 2iµ̄+1αα̇

(0) ,

h+2αα̇γγ̇
2 = 0 ⇒ χαα̇γγ̇

2 = χαα̇γγ̇
2(0) + 4i

[
∂γγ̇χ+−αα̇

(0) − εβγεα̇γ̇µ+−α
β(0) − εαγεβ̇γ̇µ̄+−α̇

β̇(0)

−2εαγεα̇γ̇ℓ+2−2
(0)

]
. (A.47)

In this gauge we also have

Σ++αα̇ = Σ++αα̇
(0) = χ++αα̇

(0) + 8iψ++αα̇
(0) , Σαα̇

1 = Σαα̇
1(0) = χαα̇

1(0) + 8i ψαα̇
1(0) ,

Σαα̇γγ̇
2 = Σαα̇γγ̇

2(0) + 4i ∂γγ̇Σ+−αα̇
(0) , Σαα̇γγ̇

2(0) = χαα̇γγ̇
2(0) + 8i ψαα̇γγ̇

2(0) , (A.48)

where we made use of eq. (A.27b).
Finally, looking at δhαα̇3 we find that it is possible to impose one more gauge,

hαα̇3 = hαα̇3(0) = Dαα̇ ⇒ 2 δDαα̇ = −i∂γγ̇χαα̇γγ̇
2(0) − 2i

[
γαα̇(0) − γ̄αα̇(0)

]
,

2 δDαα̇ = −i∂γγ̇Ωαα̇γγ̇ , Ωαα̇γγ̇ := Σαα̇γγ̇
2(0) , (A.49)

where we used eq. (A.27d). Below we show that (A.49) amounts to the standard Maxwell
gauge transformation for the properly redefined vector field D̃αα̇.

The next steps towards the eventual WZ gauge are based on the transformations (A.42)
- (A.45). Eqs. (A.42), (A.43) imply the possibility to choose the gauge

h+2(βα)α̇γ = 0 ⇒ ω(βα)α̇γ = ω
(βα)α̇γ
(0) +Σ

+−(αα̇
(0) εβ)γ , (A.50)

h+2(βα)α̇γ̇ = 0 ⇒ ω(βα)α̇γ̇ = ω
(βα)α̇γ̇
(0) =

1

2
εγ̇α̇ ω

(αβ)
(0) , (A.51)

where we used eq. (A.36). Eq. (A.44) permits the gauge choice

h
(αβ)α̇γ
3 = h

(αβ)α̇γ
3(0) ⇒ ω

−2(αβ)α̇γ
1 = 0 , (A.52)

δh
(αβ)α̇γ
3(0) = −1

2

(
i ∂γα̇ ω

(αβ)
(0) + εγ(β Σ̄

α)α̇
1(0)

)
. (A.53)

It is clear from (A.53) that the further gauge-fixing is possible,

h
(αβ)α̇γ
3(0) = T (αβγ)α̇ ⇒ Σ̄βα̇

1(0) = −2i

3
∂α̇γ ω

(βγ)
(0) , (A.54)

δT (αβγ)α̇ = i∂
(γ
γ̇ ωβα)α̇γ̇ = − i

2
∂α̇(γω

βα)
(0) , (A.55)

where we used the notations introduced in (A.5). The field T (αβγ)α̇ is just the ”hook” gauge
field. It involves 16− 6 = 10 essential off-shell degrees of freedom.
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It remains to reveal the consequences of the gauge freedom (A.45). First, it allows for
the gauge choice

h
(βα)α̇γ̇
4 = h

(βα)α̇γ̇
4(0) ⇒ ω

−2(αβ)α̇γ̇
2 = 2i ∂γ̇(βΣ

−2α)α̇
(0) , (A.56)

δh
(βα)α̇γ̇
4(0) =

1

4
Ω(αα̇β)γ̇ − i∂γγ̇ω

(αβ)α̇
γ(0) . (A.57)

Now, let us decompose

Ωαα̇ββ̇ = Ω(αβ)(α̇β̇) + εαβΩ(α̇β̇) − εα̇β̇Ω(αβ) − iεαβεα̇β̇Ω , (A.58)

(Ω(αβ)(α̇β̇)) = −Ω(αβ)(α̇β̇) , (Ω(αγ)) = Ω(α̇γ̇) , Ω̄ = Ω . (A.59)

Then, we can impose the further gauge

h
(βα)α̇γ̇
4(0) = h

(βα)(α̇γ̇)
4(0) ⇒

Ω(αβ) = −2i∂γα̇ ω
(αβ)α̇γ
(0) , Ω(α̇β̇) = 2i∂αγ̇ ω̄

(α̇β̇)αγ̇
(0) , (A.60)

and, using the complex conjugation rules (A.59), make h(βα)(α̇γ̇)4(0) real

h
(βα)(α̇γ̇)
4(0) = h̄

(βα)(α̇γ̇)
4(0) = P (βα)(α̇γ̇) ⇒

Ω(αβ)(α̇β̇) = −i
[
∂γ̇γ ω

(αβ)α̇γ
(0) + ∂α̇γ ω

(αβ)γ̇γ
(0) + ∂αρ̇ ω̄

(α̇γ̇)βρ̇
(0) + ∂αρ̇ ω̄

(α̇γ̇)βρ̇
(0)

]
. (A.61)

At this step, we are left with the following gauge transformation of real P (βα)(α̇γ̇)

δP (βα)(α̇γ̇) =
i

4

[
∂γ̇γ ω

(αβ)α̇γ
(0) + ∂α̇γ ω

(αβ)γ̇γ
(0) − ∂αρ̇ ω̄

(α̇γ̇)βρ̇
(0) − ∂βρ̇ ω̄

(α̇γ̇)αρ̇
(0)

]
. (A.62)

Now we should be back to the discussion of the structure of gauge potential h++(αβ)(α̇β̇).
The gauge transformation (A.34) implies that the whole harmonic-dependent part of h(αβ)(α̇β̇)γγ̇

can be gauged away, in agreement with the general structure (A.5),

h
(αβ)(α̇β̇)γγ̇
2 = h

(αβ)(α̇β̇)γγ̇
2(0) ⇒

ρ−2(αβ)(α̇β̇)γγ̇ = −2i
[
εβγΣ

−2α(α̇
(0) εβ̇)γ̇ + (α↔ β)

]
, (A.63)

δh
(αβ)(α̇β̇)γγ̇
2(0) = −4i∂γγ̇ρ

(αβ)(α̇β̇)
(0) + 4i

[
ω
(αβ)γ(α̇
(0) εβ̇)γ̇ + ω̄

(α̇β̇)γ̇(α
(0) εβ)γ

]
. (A.64)

From (A.64) we also observe that all parts of h(αβ)(α̇β̇)γγ̇2(0) , excepting the totally symmetric
one, can be gauged away, leading to the following gauge transformation for the conformal
spin 3 gauge field (in the notation of (A.5)):

δΦ(αβγ)(α̇β̇γ̇) = ∂(γγ̇ρ
(αβ)(α̇β̇))
(0) (A.65)

(where total symmetrizations with respect to dotted and undotted indices are assumed).
Thus we are left with 16− 9 = 7 off-shell degrees of freedom in Φ(αβγ)(α̇β̇γ̇).
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Preserving the gauge on h(αβ)(α̇β̇)γγ̇2(0) just mentioned, yields the following restrictions on
the gauge ω-parameters

ω
(αβγ)β̇
(0) = −2

3
∂
(γ
α̇ ρ

αβ)(α̇β̇)
(0) , ω̄

(α̇β̇γ̇)β
(0) = −2

3
∂(γ̇α ρ

α̇β̇)(αβ)
(0) , (A.66)

ωββ̇
(0) + ω̄ββ̇

(0) = −2

3
∂αα̇ρ

(αβ)(α̇β̇)
(0) , ωββ̇

(0) := ω
(αβ)β̇
(0) α , ω̄

ββ̇
(0) := ω̄

(β̇α̇)β
α̇ (0) . (A.67)

Defining new independent gauge parameter

pββ̇ := i
(
ωββ̇
(0) − ω̄ββ̇

(0)

)
(A.68)

and substituting (A.66), (A.67) in (A.62), we obtain

δP (βα)(α̇γ̇) = −1

3
∂(β(γ̇pα)α̇) . (A.69)

So P (βα)(α̇γ̇) is “conformal graviton”: it carries 9− 4 = 5 off-shell degrees of freedom.
At this step let us come back to the transformation law (A.49). One can check that

δDαα̇ = −1

2
∂αα̇

[
Ω+

2

9
∂ββ̇∂γγ̇ρ

(βγ)(β̇γ̇)
(0)

]
− 2

9
□∂γγ̇ρ

(αγ)(α̇γ̇)
(0) (A.70)

In order to pass to the gauge field with the standard gradient transformation law, let us
define

Zαα̇ := ∂ββ̇∂γγ̇Φ
(αβγ)(α̇β̇γ̇). (A.71)

Under the spin s = 3 gauge transformations:

δZαα̇ =
1

27

[
∂αα̇(∂ββ̇∂γγ̇ρ

(βγ)(β̇γ̇)
(0) ) + 5□∂γγ̇ρ

(αγ)(α̇γ̇)
(0)

]
. (A.72)

Then it is easy to check that

D̃αα̇ = Dαα̇ +
6

5
Zαα̇ (A.73)

has the correct spin s = 1 gauge transformation with the properly redefined gauge parameter

δD̃αα̇ = −1

2
∂αα̇Ω̃ , Ω̃ := Ω +

2

15
(∂ββ̇∂γγ̇ρ

(βγ)(β̇γ̇)
(0) ). (A.74)

The final step is to reveal the role of the gauge transformation (A.35). It admits
imposing the gauge

h
−2(αβ)(α̇β̇)
3 = h

−2(αβ)(α̇β̇)
3(0) ⇒ ρ

−4(αβ)(α̇β̇)
3 = 0 ,

δh
−2(αβ)(α̇β̇)
3(0) = −12∂(α̇(βΣ

−2α)β̇)
(0) , (A.75)

where we used the expressions (A.63) for ρ−2(αβ)(α̇β̇)γγ̇ and (A.56) for ω−2(αβ)(α̇β̇)
2 . The

triplet gauge field h
−2(αβ)(α̇β̇)
3(0) := V (αβ)(α̇β̇)(ij)u−i u

−
j carries 27 − 12 = 15 off-shell degrees

of freedom.
To summarize, the whole set of bosonic gauge fields carries just total of 15+ 3+ 7+

5+ 10 = 40 essential off-shell degrees of freedom. All essential bosonic fields are gauge, in
contradistinction to the lower spin (s = 1 and s = 2) multiplets containing also auxiliary
fields in the bosonic sector.
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A.4 Fermionic sector

The analysis of the component structure of the conformal N = 2, s = 3 gauge supermultiplet
in the fermionic sector basically follows the same pattern as in the bosonic one, so we will
concentrate on the final answers rather than on the intermediate computations.

We will need the following fermionic terms in the general analytic gauge parameters:

λ+4 ⇒ (θ̄+)2θ+αℓ+α − (θ+)2θ̄+α̇ℓ̄+α̇ ,

λα+β̇+ ⇒ θ+γp+αβ̇
γ + θ̄+γ̇ p̄+αβ̇

γ̇ ,

λ++αβ̇ ⇒ θ+γk+αβ̇
γ − θ̄+γ̇ k̄+αβ̇

γ̇ ,

λ(β+α)α̇ ⇒ τ+(βα)α̇ + (θ+)2τ
−(βα)α̇
1 + (θ̄+)2τ̂

−(βα)α̇
1 + θ+ρθ̄+ρ̇τ

−(βα)α̇
1 ρρ̇

+(θ+)4τ
−3(βα)α̇
2 ,

λ(βα)(α̇β̇) ⇒ θ+ρλ−(αβ)(α̇β̇)
ρ − θ̄+ρ̇λ̄

−(αβ)(α̇β̇)
ρ̇ + (θ̄+)2θ+ρλ−3(αβ)(α̇β̇)

ρ

− (θ+)2θ̄+ρ̇λ̄
−3(αβ)(α̇β̇)
ρ̇ . (A.76)

We can impose the same preliminary gauge conditions as in the bosonic case, in par-
ticular, fully gauge away the set of the gauge potentials h(+6), h++α̂+++, ĥ+4, ĥ++, ĥ+3α̂,
h++α+β̇+ also in the fermionic sector. The whole fermionic part of h+4αα̇ can also be
gauged away. These gaugings imply certain conditions on the residual component gauge
parameters. In particular, the conditions

h++α+β̇+
F = 0 , h++α+β̇+

F = 0 (A.77)

give rise to

p+αβ̇γ = p+αβ̇γ
(0) = pαβ̇γ iu+i , k+αβ̇γ = k+αβ̇γ

(0) = kαβ̇γ iu+i (and c.c.). (A.78)

The rest of constraints can also be straightforwardly solved. The corresponding reduced
gauge parameters are of no interest for our purposes.

We end up with the symmetrized vielbeins h+3(αβ)α̇
F and h+2(αβ)(α̇β̇)

F :

h
+3(αβ)α̇
F = h

+3(αβ)α̇
1 + (θ+)2h

+(αβ)α̇
2 + (θ̄+)2ĥ

+(αβ)α̇
2 + θ+ρ θ̄ρ̇h

+(αβ)α̇ρρ̇
3

+(θ+)4h
−(βα)α̇
4 , (A.79)

h
+2(αβ)(α̇β̇)
F = θ+γh+(αβ)(α̇β̇)

γ − θ̄+ρ̇h̄
+(α̇β̇)(αβ)
γ̇ + (θ̄+)2θ+γ ĥ−(αβ)(α̇β̇)

γ

−(θ+)2θ̄+γ̇ ˆ̄h
−(α̇β̇)(αβ)
γ̇ . (A.80)

Firstly we elaborate on (A.79). From the gauge conditions,

h
+3(αβ)α̇
1 = 0 , h

+(αβ)α̇
2 = 0 , ĥ

+(αβ)α̇
2 = 0 , h

+(αβ)α̇ρρ̇
3 = 0 (A.81)

we find the constraints on the residual gauge parameters

τ+(βα)α̇ = τ
+(βα)α̇
(0) = τ (βα)α̇iu+i , τ̂

−(βα)α̇
1 = 0 ,

τ
−(βα)α̇
1 =

1

2
ερ(αR−β)α̇

ρ , R−βα̇
ρ := k−βα̇

ρ(0) + 8ip−βα̇
ρ(0) = Rβα̇i

ρ u−i ,

τ
−(βα)α̇
1 ρρ̇ = 4i∂ρρ̇τ

−(βα)α̇
(0) − δ(βρ R̄

−α)α̇
ρ̇ . (A.82)
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For the surviving part of the gauge potential h−(βα)α̇
4 , that is h

−(βα)α̇
4(0) := χ−(βα)α̇ =

χ(βα)α̇iu−i (recall “master gauge” (A.5)), at this step we obtain the following gauge trans-
formation

δχ−(βα)α̇ = i∂(βρ̇R̄
−α)α̇
ρ̇ + 2□ τ

−(αβ)α̇
(0) . (A.83)

In order to find the final form of this gauge transformation, we need first to work out
(A.80). The choice of the gauge

h+(αβ)(α̇β̇)
γ = 0 (and c.c.), ĥ−(αβ)(α̇β̇)

γ = ĥ
−(αβ)(α̇β̇)
γ(0) ,

(A.84)

implies the relations

λ−(αβ)(α̇β̇)
ρ = −4iδ(αρ τ̄

−(α̇β̇)β) , λ̄
−(αβ)(α̇β̇)
ρ̇ = −4iδ

(α̇
ρ̇ τ

−(αβ)β̇) ,

λ−3(αβ)(α̇β̇)
ρ = 0 (and c.c.),

and the following gauge transformation of ĥ−(αβ)(α̇β̇)
γ(0) := ψ

(αβ)(α̇β̇)i
γ u−i

δψ−(αβ)(α̇β̇)
ρ = −8∂(α̇ρ τ

−(βα)β̇
(0) + 4i δ(αρ τ̄

−(β̇α̇)β
1 + 2i τ

−(βα)(α̇β̇)
1ρ . (A.85)

Using the expressions (A.82), this variation can be rewritten as

δψ−(αβ)(α̇β̇)
ρ = −16 ∂(α̇ρ τ

−(αβ)β̇)
(0) + 4i δ(αρ εγ̇(β̇R̄

−β)α̇)
γ̇ .

This transformation law implies

δψ−(αβρ)(α̇β̇) = −16 ∂(α̇(ρ τ
−αβ)β̇)
(0) . (A.86)

while the rest of components in ψ−(αβ)(α̇β̇)
ρ can be gauged away

ψ−(αβ)(α̇β̇)
α = 0 ⇒ R̄−(α̇β̇)α =

8i

3
∂(α̇ρ τ

−(βρ)β̇)
(0) (A.87)

The transformation law (A.86) means that the complex field ψ−(αβρ)(α̇β̇) = ψ(αβρ)(α̇β̇)iu−i
encompasses the SU(2) doublet of the spin 5/2 gauge fields with 48 − 24 = 24 essential
degrees of freedom off shell.

As the next step, one can define

w−(αβ)β̇ := ∂γα̇ψ
−(αβγ)(β̇α̇) , (A.88)

δw−(αβ)β̇ = −4

3

[
∂(αβ̇ b−β) + 5□ τ

−(αβ)β̇
(0)

]
, b−β := ∂γγ̇τ

−(βγ)γ̇
(0) . (A.89)

Now, coming back to eq. (A.83) and redefining

χ̂−(βα)α̇ := χ−(βα)α̇ +
1

10
w−(αβ)α̇ , (A.90)
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we find that χ̂−(βα)α̇ is transformed as

δχ̂−(βα)α̇ =
i

2
∂(αα̇ c−β) , c−β := R̄−βγ̇

γ̇ − 12i

5
b−β . (A.91)

Since c−β = cβiu−i involves just 8 independent real gauge parameters cβi, the field χ̂−(βα)α̇ =

χ̂(βα)α̇ iu−i describes SU(2) doublet of the spin 3/2 gauge fields with 24− 8 = 16 essential
degrees of freedom off shell.

Thus in the fermionic sector we end up with the spin 5/2 and spin 3/2 conformal gauge
fields with the total of 40 off-shell essential degrees of freedom. This number precisely
matches the number of essential degrees of freedom in the bosonic sector, and it remains to
show that the last gauge potential h++ does not contribute any degree of freedom in the
full WZ gauge.

A.5 h++ gauge potential

Using the D++λ gauge freedom, one can fix the gauge:

h++ =θ+αθ̄+α̇Aαα̇ + (θ+)2ϕ+ (θ̄+)2ϕ̄

+ 4(θ̄+)2θ+αξiαu
−
i + 4(θ+)2θ̄+α̇ξ̄iα̇u

−
i + (θ+)4Diju−i u

−
j .

(A.92)

This is the standard WZ gauge for the spin 1 multiplet. However, the full h++ gauge
transformation law (6.26c) contain additional terms which can be used to gauge away all
fields in (A.92). In the process, only those terms in the θ and u-expansions of (6.26c) are of
interest, which have the form (A.92). All other terms can be absorbed into the redefinition
of the gauge parameters which were used to ensure (A.92).

After some straightforward algebra, using eqs. (A.24) - (A.27), we obtain (up to some
U(1) gauge transformation of Aγγ̇):

δϕ = −i∂αα̇σ̄αα̇1(0), δϕ̄ = i∂αα̇σ
αα̇
1(0) , (A.93)

δAγγ̇ =
1

2
∂αα̇

[
Σ
(αγ)(α̇γ̇)
− − 4i

9
□ ρ

(αγ)(α̇γ̇)
(0)

]
, (A.94)

Σ
(αγ)(α̇γ̇)
− := χ

(αγ)(α̇γ̇)
2(0) − 8iψ

(αγ)(α̇γ̇)
2(0) ,

δD−2 = −4i∂αα̇

[
ℓ−2αα̇
(0) +

15i

16
□χ−2αα̇

(0) − 3

2
□ψ−2αα̇

(0)

]
, (A.95)

δξ−ρ = ∂−−ℓ+ρ(0) + . . . , (A.96)

where ellipses stand for some terms with x-derivatives.
Thus we see that all bosonic fields in (A.92) are shifted by divergences of the appropriate

vector parameters. Since the parameters in (A.93), (A.94) and (A.95) are unconstrained
and independent (they are new compared to those which were used earlier in fixing various
WZ gauges), these parameters are capable to gauge away all bosonic fields in (A.92). The
fermionic field ξiρ is shifted by an unconstrained parameter ℓiρ (defined in (A.76)), so one
can also choose ξiα = 0. As a result, one can fix the gauge h++ = 0.

Note that the gauge transformations of the form δhα(s)α̇(s) = ∂ββ̇λβα(s)β̇α̇(s) are fre-
quently encountered in the free theory of massless higher spins [13, 14] (see also [5, 40] for
review).
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B On residual parameters and reparametrization freedom of free hyper-
multiplet

Note that among the parameters of the spin 3 transformations (6.26) there are special
parameters which do not appear in transformations of the gauge potentials h++MN and
h++.

For instance, the transformation with parameter

λ(+4) = (θ+)4e(x) (B.1)

acts only on the hypermultiplet26:

δe(x)q
+a = (θ+)4e(x)∂−−∂−−Jq+a. (B.2)

This is the exact off-shell symmetry of the free part of the hypermultiplet action, δe(x)Sfree =
0. This transformation and other symmetries of similar kind mix the auxiliary fields of the
hypermultiplet,

q+a = · · ·+K(ijk)au+i u
+
j u

−
k + · · ·+ (θ+)4F (ijk)au−i u

−
j u

−
k + . . . , (B.3)

δe(x)K
(ijk)a(x) = e(x)JF (ijk)a(x), (B.4)

and seemingly have no impact on the structure of superconformal vertices.

C Superconformal transformations of N = 2 superspace derivatives and
gauge potentials

For checking the transformation properties of various analytic vielbeins under the rigid
N = 2 superconformal group, it is useful to be aware of the superconformal transformation
laws of the partial derivatives with respect to the co-ordinates of the analytic harmonic
superspace. It suffices to know such laws for rigid N = 2 supersymmetry and special
conformal transformations, since the whole superconformal group is the closure of these
two.

Using the infinitesimal superconformal coordinate shifts (3.9), we obtain

Supersymmetry:

δϵ∂
−
α = 4iϵ̄−β̇∂αβ̇ , δϵ∂̄

−
α̇ = −4iϵ−β∂βα̇ , δϵ∂

−− = −ϵ−α∂−α − ϵ̄−α̇∂̄−α̇ , δϵ∂αα̇ = 0 ; (C.1)

Special conformal transformations:

δk∂αα̇ = −(kαβ̇x
γβ̇∂γα̇ + kγα̇x

γβ̇∂αβ̇)− kβα̇θ
+β∂−α − kαβ̇ θ̄

+β̇ ∂̄−α̇ , δk∂
−− = 0 ,

δk∂
−
α = −kαβ̇x

ββ̇ ∂−β − 4ikαβ̇ θ̄
+β̇∂−− , δk∂̄

−
α̇ = −kγα̇xγβ̇ ∂̄−β̇ + 4ikγα̇θ

+γ∂−− . (C.2)

26One can define even more general off-shell symmetry transformation of the hypermultiplet:

δc(ab)
q+a = (θ+)4cab(x)(∂

−−)2q+b

with an arbitrary symmetric matrix c(ab)(x).
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It is straightforward to calculate the corresponding transformation properties of vari-
ous products of these derivatives, e.g. of the bilinear products ∂N∂M appearing in (6.1),
(6.10). As an example we first present the passive form (without “transport” term) of the
transformation rules of the analytic gauge potentials of the spin 2 case:

δ∗ϵh
++αα̇ = −4i

(
ϵ−αh̄++α̇+ − ϵ̄−α̇h++α+

)
, δ∗ϵh

+4 = 0 ,

δ∗ϵh
++α+ = ϵ−αh+4 , δ∗ϵh

++α̇+ = ϵ̄−α̇h+4 , (C.3)

δ∗kh
++αα̇ = kγβ̇

(
h++γα̇ xαβ̇ + h++αβ̇ xγα̇

)
, δ∗kh

+4 = 4ikγβ̇
(
h++γ+θ̄+β̇ − h++β̇+θ+γ

)
,

δ∗kh
++α+ = kγβ̇

(
h++γ+ xαβ̇ − h++αβ̇θ+γ

)
,

δ∗kh
++α̇+ = kγβ̇

(
h++β̇+ xγα̇ − h++γα̇θ̄+β̇

)
. (C.4)

It is also useful to explicitly give how the s = 3 gauge potentials defined in (6.5) are
transformed by N = 2 superconformal group (before any gauge-fixing). We skip the passive
transformation rules of the products of various partial derivatives and quote at once the
transformation laws of the analytic potentials

Supersymmetry:

δ∗ϵh
++αα̇ ββ̇ = 4i

[
ϵ̄−β̇h++β+αα̇ − ϵ−βh++β̇+αα̇

]
+ (α, α̇⇔ β, β̇) ,

δ∗ϵh
++[β+γ]+ = 2ϵ−[β h++++ γ]+ , δ∗ϵh

++[β̇+γ̇]+ = 2ϵ̄−[β̇ h++++ γ̇]+ ,

δ∗ϵh
++β+αα̇ = ϵ−β h++αα̇++ + 4i

(
ϵ−α h++β+α̇+ − ϵ̄−α̇h++[β+α]+

)
δ∗ϵh

++β̇+αα̇ = ˜δ∗ϵh
++β+αα̇ , δ∗ϵh

(+6) = 0 ,

δ∗ϵh
++++β+ = ϵ−βh(+6) , δ∗ϵh

++++β̇+ = ˜δ∗ϵh
++++β+ ,

δ∗ϵh
++αα̇++ = −4i

(
ϵ−αh++++α̇+ − ϵ̄−α̇h++++α+

)
,

δ∗ϵh
++α+α̇+ = ϵ−αh++++α̇+ − ϵ̄−α̇h++++α+ . (C.5)

Special conformal transformations:

δ∗kh
++αα̇ ββ̇ = kλρ̇x

αρ̇h++λα̇ ββ̇ + kρλ̇x
ρα̇h++αλ̇ ββ̇ + (α, α̇⇔ β, β̇) ,

δ∗kh
++[β+γ]+ = (k · x)h++[β+γ]+ + 2kρα̇θ

+
ρ h

++[β+γ]α̇ , δ∗kh
++[β̇+γ̇]+ = − ˜

(δ∗kh
++[β̇+γ̇]+)

δ∗kh
(+6) = 8i

(
kγβ̇θ

+γ h++++β̇+ − kββ̇ θ̄
+β̇ h++++β+

)
,

δ∗kh
++β+αα̇ = kλρ̇x

βρ̇h++λ+αα̇ + kλρ̇x
αρ̇h++β+λα̇ + kρλ̇x

ρα̇h++β+αλ̇ + kρβ̇θ
+ρ h++αα̇ ββ̇ ,

δ∗kh
++β̇+αα̇ = ˜δ∗kh

++β+αα̇ ,

δ∗kh
++++β+ = kλρ̇x

βρ̇ h++++λ+ + 4ikγρ̇θ̄
+ρ̇ h++[β+γ]+ , δ∗kh

++++β̇+ = ˜(δ∗kh
++++β+) ,

δ∗kh
++αα̇++ = kλρ̇x

βρ̇ h++λα̇++ + kρλ̇x
ρα̇ h++αλ̇++ + 4i

(
kλρ̇θ

+λ h++ρ̇+αα̇ϵ−α − kλρ̇θ̄
+ρ̇ h++λ+αα̇

)
,

δ∗kh
++α+α̇+ = kλρ̇x

βρ̇ h++λ+α̇+ + kρλ̇x
ρα̇ h++α+λ̇+ + kλρ̇θ

+λ h++ρ̇+αα̇ϵ−α − kλρ̇θ̄
+ρ̇ h++λ+αα̇.

(C.6)
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A curious feature of the realization (C.5) and (C.6) is that with respect to it the set
of analytic gauge superfields is divided into an invariant subset and a quotient over this
subset. The invariant subspace is spanned by the potentials

ĥ++ := ϵαβϵα̇β̇h
++αα̇ ββ̇ , ĥ+3α̇ := ϵαβh

++α+βα̇, h̄+3α̇, ĥ+4 :=
1

2
ϵαβh

++[β+α]+ ,
¯̂
h+4 ,

h(+6) , h++++α+, h++++α̇+ = ˜h++++α+, ĝ+4αα̇ := h++αα̇++ − 4ih++α+α̇+, (C.7)

while the quotient by

h++(αβ) (α̇β̇), h+++(αβ)α̇, ˜h+++(αβ)α̇, g+4αα̇ := h++αα̇++ + 4ih++α+α̇+. (C.8)

The closedness of (C.7) under both (C.5) and (C.6) can be readily checked. The remaining
set (C.8) transforms through (C.7) and itself.

Inspecting the linearized gauge transformations (6.26a) and (6.26b), we observe that
the gauge potentials from the set (C.5) are transformed through the restricted set of gauge
parameters

ϵαβϵα̇β̇λ
αβα̇β̇, ϵαβλ

αβ̇β (and c.c.), λ(+4) , ϵαβλ
[α+β]+ (and c.c.),

λ++α+ (and c.c.), λ++αα̇ − 8iλα+α̇+ . (C.9)

Based on this observation, we can choose the gauge in which all potentials from the set
(C.7) are equal to zero and end up with (C.8) as encoding the irreducible gauge s =

3 supermultiplet. Such a gauge does not break rigid superconformal symmetry at all.
Note that, instead of choosing the gauge h++αα̇++ − 4ih++α+α̇+ = 0, in section 6.3 (and
Appendix A) we imposed the equivalent gauge h++α+α̇+ = 0, which is technically more
convenient. Looking at the ϵ and k-transformations of h++α+α̇ in (C.5) and (C.6) we observe
that in the latter case the r.h.s. of the k-transformation contains the “physical” non-zero
gauge potentials h+3(ρ̇α̇)α and h+3(λα)α̇. So this gauge seemingly breaks superconformal
covariance. However, it is easy to check that in the WZ gauge (6.27) for these gauge
potentials the sum of the problematic terms in δ∗kh

++α+α̇ vanishes. So the breaking just
mentioned is in fact fictitious.

As the last topic of this Appendix, we discuss the modification (before imposing any
gauge) of the superconformal properties of h++ compared to the standard superconfomal
law (4.4) of the spin 1 analytic gauge potential. As before, we will deal with the passive
form of the conformal transformations. The modification appears only in the realization
of special conformal transformations due to the property that such transformations of the
bilinear products of partial derivatives in Ĥs=3 contain terms with one derivative. After
integrating by parts, with taking into account that Ωsc defined in (3.10) is reduced to 2(x·k)
for k-transformations, we obtain the following addition to the conformal transformation of
h++:

δ∗kh
++ = 2kαα̇

(
∂−β h

+++(βα)α̇ + ∂−
β̇
h+++(β̇α̇)α − ∂ββ̇h

++(αβ)(α̇β̇) − 1

2
∂−−h++αα̇++

)
.

It is easy to find the compensating gauge transformation of h++ of the type (6.26c), which
ensures the k-invariance of the gauge h++ = 0 (with WZ gauge (6.27) for all other poten-
tials).
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