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Abstract

Data-driven controllers design is an important research problem, in particular when data is corrupted by the noise. In this
paper, we propose a data-driven min-max model predictive control (MPC) scheme using noisy input-state data for unknown
linear time-invariant (LTI) system. The unknown system matrices are characterized by a set-membership representation using
the noisy input-state data. Leveraging this representation, we derive an upper bound on the worst-case cost and determine
the corresponding optimal state-feedback control law through a semidefinite program (SDP). We prove that the resulting
closed-loop system is robustly stabilized and satisfies the input and state constraints. Further, we propose an adaptive data-
driven min-max MPC scheme which exploits additional online input-state data to improve closed-loop performance. Numerical
examples show the effectiveness of the proposed methods.

Key words: data-based control, optimal controller synthesis for systems with uncertainties, model predictive control,
adaptive control.

1 Introduction

Data-driven system analysis and control have received
increasing interest in the recent years. Unlike the model-
based control methods, which depend on prior knowl-
edge of system models identified from measured data
using system identification methods [1] or derived from
first principles, data-driven control approaches design
controllers directly from the available data. Several
works have focused on designing controllers for unknown
linear time-invariant (LTI) systems directly from noisy
data [2–8], assuming assumptions on the noise such
as energy bounds or instantaneous bounds. A matrix
inequality can effectively characterize a set of LTI sys-
tems that explain the measured data, forming the basis
of the data informativity framework [3, 9]. Within this
framework, data-driven controller designs aim to find a
controller that stabilizes all systems that are consistent
with the data. Various controller design methods have
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been proposed, including H2 and H∞ control [2, 4, 8],
linear quadratic regulator approaches [5], and stabi-
lization [2, 5, 6]. Nevertheless, the incorporation of con-
straints and controller design using noisy data remains
largely unexplored in this framework. In this paper, we
propose data-driven min-max model predictive control
(MPC) schemes in this framework to design a con-
troller that robustly stabilizes the system and handles
ellipsoidal input and state constraints.

MPC is widely used due to its ability to handle con-
straints and consider performance criteria [10]. The
fundamental concept of MPC is to solve an open-loop
optimal control problem at each sampling time, which
uses the system dynamics to predict future open-loop
trajectories. Recently, data-driven MPC approaches
have been studied, which directly use the measured
input-output data to predict the future outputs [11–18].
This data-driven MPC framework is based on the Fun-
damental Lemma [19, 20], which states that for a con-
trollable LTI system, all possible system trajectories
can be parameterized in terms of linear combinations of
time-shifts of one persistently exciting trajectory. This
framework requires the availability of persistently excit-
ing data, enabling the unique representation of the sys-
tem from the data in the noise-free scenarios. In case of
bounded output measurement noise, robust data-driven
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MPC schemes have been developed, which guarantee
practical stability for the closed-loop system [12, 13].
These MPC schemes can be expanded via suitable
constraint tightening to ensure robust state or output
constraint satisfaction in the presence of bounded pro-
cess or measurement noise [21, 22]. While these MPC
schemes provide strong theoretical guarantees for guar-
anteeing constraint satisfaction of unknown systems
based only on measured data, the employed constraint
tightenings suffer from possibly large conservatism.

Min-max MPC can effectively address scenarios involv-
ing parametric uncertainty on the system dynamics and
disturbance, as discussed in [23–29]. The basic idea of
min-max MPC is to design control inputs that minimize
the worst-case cost w.r.t. disturbances and/or paramet-
ric uncertainty in order to robustly stabilize the system.
An especially popular approach is to employ linear ma-
trix inequalities (LMIs) [30, 31] in the min-max MPC
framework [23] to obtain a tractable state-feedback con-
trol law. This approach involves solving an LMI-based
optimization problem at each time step that incorpo-
rates constraints and a description of the parametric
uncertainty, thereby guaranteeing robust stability. The
min-max MPC schemes typically require prior knowl-
edge of the parametric uncertainty set, i.e., a known
polytopic set [23, 26]. However, addressing min-max
MPC schemes without prior knowledge of the para-
metric uncertainty set, relying solely on available data,
remains an open challenge.

In this work, we propose a data-driven min-max MPC
framework to control LTI systems with unknown system
matrices and additive process noise using noisy input-
state data. Our approach relies on a representation of
the system matrices consistent with a sequence of noisy
input-state data by using a quadratic matrix inequality
[4,7]. The scheme involves an infinite-horizon cost as well
as ellipsoidal input and state constraints. It can be in-
terpreted as a time-varyingH2 state-feedback controller
design, analogous to the model-based min-max MPC
scheme in [23]. We show that the proposed data-driven
min-max MPC guarantees closed-loop recursive feasi-
bility, constraint satisfaction and robust stability. Fur-
ther, we propose an adaptive data-driven min-maxMPC
scheme that integrates online collected input-state data.
Utilizing these online data reduces the parametric uncer-
tainty on the system dynamics, thus the closed-loop per-
formance resulting from the adaptive data-driven min-
max MPC scheme improves. Numerical examples shows
that the proposed scheme ensures robust stability and
constraint satisfaction in a less conservative fashion than
the data-drivenMPC based on the Fundamental Lemma
[22].

We note that the recent works [32,33] also propose data-
driven MPC schemes for linear systems using ideas from
the data informativity framework. However, in these pa-
pers, the data are assumed to be noise-free, contrary to

our framework which allows for process noise in the data.
In [34], a data-drivenMPC scheme employing noisy data
is proposed, focusing on theH∞ control objective. How-
ever, they assume an energy bound on the online noise,
implying that the noise convergences to zero for time
approach infinity, and establish closed-loop stability ac-
cordingly. In contrast, we address a more practical sce-
nario with instantaneous noise bound and establish ro-
bust stability for the closed-loop system. In the recent
work [35], an online data-driven approach is proposed
for iteratively learning controllers for systems with dy-
namic changes over time. The data considered is noise-
free and constraints are not taken into account. Further,
the literature contains various approaches on model-
based adaptiveMPC schemes [36–45]. Specifically, adap-
tive tube-based MPC schemes aim to construct predic-
tion tubes for robust constraint satisfaction and incorpo-
rate model adaptation using set-membership estimation
[36–41]. Model-based adaptive min-max MPC schemes
update the parametric uncertainty set at each time step
and design a MPC controller to robustly stabilize the
uncertain systems [44, 45], which assumes prior knowl-
edge of the parametric uncertainty set. In contrast, the
proposed approach relies on an ellipsoidal uncertainty
characterization based on the recent data-driven control
literature [4,7]. This allows to use LMI methods for the
design of a state-feedback-based MPC scheme with ro-
bust stability guarantees.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces necessary preliminaries about the data-
driven parameterization and the problem setup. In Sec-
tion 3, we propose a data-driven min-max MPC prob-
lem with input and state constraints. We prove recur-
sive feasibility, constraint satisfaction and robust stabil-
ity for the closed-loop system. In Section 4, we consider
an adaptive data-driven min-max MPC scheme which
uses online data to reduce uncertainty and improve per-
formance. We illustrate the advantage of the proposed
schemes with numerical examples in Section 5. Finally,
we conclude the paper in Section 6. Preliminary results
on data-drivenmin-maxMPCwere presented in the con-
ference paper [46]. The present paper extends [46] in
multiple directions. First, [46] assumes that the online
measurements used for feedback are noise-free, whereas
we consider noise in both offline and online data. As a
result, the theoretical analysis in the present paper is
more involved and provides robust stability guarantees
of a robust positive invariant (RPI) set around the ori-
gin. On the contrary, the noise-free setup in [46] allowed
to prove exponential stability. Further, the present pa-
per proposes an adaptive data-driven min-max MPC
scheme which, as shown with a numerical example, can
substantially reduce conservatism using online data.

Notation: Let I[a,b] denote the set of integers in the inter-
val [a, b], I≥0 denote the set of nonnegative integers, and
I[a,+∞) denote the set of integers larger than or equal to
a. For a matrix P , we write P ≻ 0 if P is positive definite
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and P ⪰ 0 if P is positive semi-definite. For a vector x

and a matrix P ≻ 0, we write ∥x∥P =
√
x⊤Px. For ma-

trices A and B of compatible dimensions, we abbreviate

ABA⊤ to AB
[
⋆
]⊤

.

2 Preliminaries

In Section 2.1, the considered problem setup is intro-
duced. In Section 2.2, we present the data-driven system
parameterization used for the proposed min-max MPC
approach.

2.1 Problem Setup

In this paper, we consider an unknown discrete-time LTI
system

xt+1 = Asxt +Bsut + ωt, (1)

where xt ∈ Rn denotes the state, ut ∈ Rm denotes the in-
put, and ωt ∈ Rn denotes the unknown noise for t ∈ I≥0.
The matrices As ∈ Rn×n and Bs ∈ Rn×m are assumed
to be unknown. The noise ωt is assumed to satisfy the
following assumption.

Assumption 1 For all t ∈ I≥0, the noise ωt ∈ Rn sat-
isfies ∥ωt∥2 ≤ ϵ for a known bound ϵ ≥ 0.

We define a sequence of offline input, noise and corre-
sponding state of length Tf from the system (1), which
are denoted in the matrices

Uf :=
[
uf
0 uf

1 . . . uf
Tf−1

]
,

Wf :=
[
ωf
0 ωf

1 . . . ωf
Tf−1

]
,

Xf :=
[
xf
0 xf

1 . . . xf
Tf

]
.

Throughout this paper, we assume that the offline
input-state measurements Uf and Xf are available. The
noise sequance Wf is unknown, but every element in
Wf satisfies the bound in Assumption 1. In Section 3,
the data-driven min-max MPC algorithm only based
on the knowledge of offline input-state measurements
(Uf , Xf ). Moreover, in Section 4, we employ online
input-state measurements in addition to (Uf , Xf ) to
design an adaptive min-max MPC algorithm.

Our objective is to stabilize the origin for the unknown
LTI system (1), while the closed-loop input and state
satisfy given constraints. We consider the origin for sim-
plicity but note that the results in this paper can be
adapted for non-zero equilibria. In order to stabilize the
origin, we define the following quadratic stage cost func-
tion

l(u, x) = ∥u∥2R + ∥x∥2Q,

where R,Q ≻ 0. We consider ellipsoidal constraints on
the input and the state, i.e.,

∥ut∥Su ≤ 1,∀t ∈ I≥0, (2a)

∥xt∥Sx
≤ 1,∀t ∈ I≥0, (2b)

where Su ≻ 0 and Sx ⪰ 0.

2.2 Data-driven Parameterization

Given that the matrices As and Bs are unknown, the
knowledge about the system relies on inferring infor-
mation from input-state measurements. In this section,
we introduce the employed data-driven parameteriza-
tion method using offline input and state measurements.

First, we define the set of system matrices (A,B) con-

sistent with the offline data xf
i , u

f
i , x

f
i+1, i ∈ I[0,Tf−1] by

Σf
i :=

{
(A,B) : (1) holds for some ωf

i satisfying ∥ωf
i ∥2 ≤ ϵ

}
.

This set includes all system matrices for which there ex-
ists a noise realization satisfying Assumption 1 and the
system dynamics (1). We proceed analogous to [2,4,7] to
derive a data-driven parametrization of the system ma-

trices. Using the system dynamics (1), the state xf
i , x

f
i+1

and input uf
i satisfy the following equation

ωf
i = xf

i+1 −Asx
f
i −Bsu

f
i .

Thus, the set Σf
i can be equivalently characterized by

the following quadratic matrix inequality

Σf
i =

(A,B) :
[
I A B

]
I xf

i+1

0 −xf
i

0 −uf
i


[
ϵ2I 0

0 −I

] [
⋆
]⊤

⪰0

 .

(3)

Furthermore, the set of system matrices consistent
with the sequence of offline input-state measurements
(Uf , Xf ) is defined by

Cf :=

Tf−1⋂
i=0

Σf
i .

We can characterize Cf by the following quadraticmatrix
inequality [4, 7]

Cf =

(A,B) :

[
I A B

]
Πf (τ)

[
I A B

]⊤
⪰0,

∀τ=(τ0, . . . , τTf−1), τi≥0, i ∈ I[0,Tf−1]

 ,

(4)
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where

Πf (τ) =

Tf−1∑
i=0

τi


I xf

i+1

0 −xf
i

0 −uf
i


[
ϵ2I 0

0 −I

]
I xf

i+1

0 −xf
i

0 −uf
i


⊤

. (5)

We will later use the data-driven parameterization of Cf
in equation (4) to formulate the data-driven min-max
MPC problem, thus designing a controller that robustly
stabilizes all system with matrices in Cf .

3 Data-driven Min-Max MPC

In this section, we present a data-driven min-max MPC
problem with input and state constraints using offline
input-state measurements. We restrict the optimization
to state-feedback control laws, which allows to reformu-
late the data-driven min-max MPC problem as an SDP.
We establish that the resulting MPC approach is recur-
sively feasible and the closed-loop system is robustly sta-
bilized and satisfies the input and state constraints.

3.1 Data-driven Min-Max MPC Problem

At time t, given offline input-state measurements
(Uf , Xf ) and an initial state xt, the data-driven min-
max MPC optimization problem is formulated as fol-
lows:

J∗
∞(xt) :=min

ū(t)
max

(A,B)∈Cf

∞∑
k=0

l(ūk(t), x̄k(t)) (6a)

s.t. x̄k+1(t) = Ax̄k(t) +Būk(t), (6b)

x̄0(t) = xt. (6c)

∥ut∥Su
≤ 1,∀t ∈ I≥0, (6d)

∥xt∥Sx ≤ 1,∀(A,B) ∈ Cf , t ∈ I≥0, (6e)

The objective function aims to minimize the worst-case
value of the sum of infinite stage cost among all consis-
tent system matrices in Cf by adapting the control in-
put ūk(t),∀k ∈ I≥0. In the optimization problem, x̄k(t)
and ūk(t) are the predicted state and control input at
time t + k based on the measurement at time t. We
use the nominal system dynamics xt+1 = Axt + But

with (A,B) ∈ Cf for future state prediction in con-
straint (6b). In constraint (6c), we initialize x̄0(t) as
the state measurement at time t. In constraints (6d)
and (6e), the closed-loop input and state satisfy the
ellipsoidal constraints in (2) for any system dynamics
xt+1 = Axt +But +ωt with (A,B) ∈ Cf and ωt satisfy-
ing Assumption 1.

Remark 1 In the data-driven min-max MPC problem
(6), we use the nominal system dynamics without the

noise ωt to predict the future state. This approach avoids
an additional maximization with regard to the noise in
the min-max MPC problem. Even though the influence
of the noise is not considered in the min-max problem,
the proposed method guarantees robust stability for the
closed-loop system in the presence of noise (cf. Section
3.3).

Remark 2 Similar to the existing LMI-based min-max
MPC scheme in [23], we consider to minimize the worst-
case value of infinite-horizon cost. The infinite-horizon
cost allows us to reformulate the data-driven min-max
MPC problem as an SDP. This reformulation fits well
to the data-driven system parametrization described by
(4), as detailed in Section 3.2.

3.2 Reformulation based on LMIs

The data-driven min-max MPC problem (6) is in-
tractable because of the min-max formulation and the
constraints for all possible (A,B) within a set charac-
terized by data. To effectively address problem (6) and
derive a tractable solution, we limit our focus to find a
state-feedback control law of the form ūk(t) = F ⋆

t x̄k(t),
where F ⋆

t ∈ Rm×n. In the following, we formulate an
SDP to derive an upper bound on the optimal cost over
the set Cf and to determine a state-feedback gain that
minimizes this upper bound.

At time t, given offline input-state measurements
(Uf , Xf ), an initial state xt ∈ Rn and a constant
c > λmin(Q), the SDP is formulated as follows:

minimize
γ>0,H∈Rn×n,L∈Rm×n,τ∈RTf

γ (7a)

s.t.

[
1 x⊤

t

xt H

]
⪰ 0, (7b)

[
−H + γ

c I 0

0 0

]
+Πf (τ)


0

H

L

 0

[
0 H L⊤

]
−H Φ⊤

0 Φ −γI


≺ 0, (7c)

τ = (τ0, . . . , τTf−1), τi ≥ 0,∀i ∈ I[0,Tf−1], (7d)[
H L⊤

L S−1
u

]
⪰ 0, (7e)

[
H H

H S−1
x

]
⪰ 0. (7f)

where Φ =

[
MRL

MQH

]
, M⊤

RMR = R and M⊤
QMQ = Q.
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The optimal solution of problem (7) at time t is de-
noted by γ⋆

t , H
⋆
t , L

⋆
t , τ

⋆
t . The corresponding optimal

state-feedback gain is given by F ⋆
t = L⋆

t (H
⋆
t )

−1.

We solve the SDP problem (7) in a receding-horizon
manner to repeatedly find an optimal state-feedback
gain, see Algorithm 1. In particular, at time t, we solve
the optimization problem (7) and obtain the optimal
state-feedback gain F ⋆

t . Only the first computed input
ut = F ⋆

t xt is implemented and, at time t + 1, we re-
iterate the described procedure.

Algorithm 1Data-driven min-max MPC scheme.

1: Input: Uf , Xf , Q,R, Sx, Su, c
2: At time t = 0, measure state x0

3: Solve the problem (7)
4: Apply the input ut = F ⋆

t xt

5: Set t = t+ 1, measure state xt and go back to 3

Remark 3 The constant c is required to prove robust
stability for the resulting closed-loop system, as detailed
in Section 3.3. At the initial time t = 0, we select c such
that the optimization problem (7) is feasible for the ini-
tial state x0. The value of c remains constant in Algo-
rithm 1 when t ∈ I[1,∞). This approach ensures con-
vexity and recursive feasibility of the SDP problem (7),
thereby simplifying computational burden. The precise
choice of c influences the performance. As will be proved
later in Theorem 2, ∥xt∥2P is lower bounded by ∥xt∥2Q
and upper bounded by c∥xt∥2. Therefore, this requires
c ≥ λmin(Q). A smaller value of c gives a smaller robust
positive invariant (RPI) set to which the closed loop con-
verges, as shown later in Theorem 2, but also a smaller
feasible region and possibly larger optimal cost γ⋆

t .

In the following theorem, we first neglect the input and
state constraints (6d)-(6e) in the data-driven min-max
MPC problem (6). We show that the optimal cost of
problem (7) is an upper bound on the optimal cost of
(6a)-(6c) using (7b)-(7d). Later in Theorem 2, we will
show that Algorithm 1 ensures constraint satisfaction in
closed loop.

Theorem 1 Given a state xt ∈ Rn at time t and a con-
stant c > λmin(Q), suppose there exist γ, H, L, τ such
that the LMIs (7b)-(7d) hold. Let P = γH−1. Then,
the optimal cost of (6a)-(6c) is guaranteed to be at most
∥xt∥2P and ∥xt∥2P is upper bounded by γ, i.e.,

J⋆
∞(xt) ≤ ∥xt∥2P ≤ γ.

PROOF. Applying the Schur complement to the con-

straint (7c) twice yields the equivalent inequalities
−H + γ

c I 0

0

[
H

L

]
(H − 1

γΦ
⊤Φ)−1

[
H

L

]⊤

+Πf (τ) ≺ 0,

(8a)

−H +
1

γ
Φ⊤Φ ≺ 0. (8b)

According to (4), given any τ satisfying constraint (7d),
the inequality[

I A B
]
Πf (τ)

[
I A B

]⊤
⪰ 0 (9)

holds for any (A,B) ∈ Cf . Pre-multiplying (8a) with[
I A B

]
and post-multiplying (8a) with

[
I A B

]⊤
, the

resulting inequality together with (9) imply that the fol-
lowing inequality must hold for any (A,B) ∈ Cf

I

A⊤

B⊤


⊤
−H + γ

c I 0

0

[
H

L

]
(H − 1

γΦ
⊤Φ)−1

[
H

L

]⊤




I

A⊤

B⊤

≺0.

(10)
This is equivalent to

(−H+
γ

c
I)+(AH+BL)(H− 1

γ
Φ⊤Φ)−1(AH+BL)⊤≺0.

(11)
Using the Schur complement, (11) together with (8b) is
equivalent to[

−H + 1
γΦ

⊤Φ (AH +BL)⊤

(AH +BL) −H + γ
c I

]
≺ 0. (12)

Using the Schur complement again, (12) yields the equiv-
alent inequality

(AH +BL)⊤(H− γ

c
I)−1(AH +BL)−H+

1

γ
Φ⊤Φ ≺ 0,

(13a)

−H +
γ

c
I ≺ 0. (13b)

Let P = γH−1 and F = LH−1. Using the Woodbury
matrix identity [47], we have γ[P +P (cI −P )−1P ]−1 =
H − γ

c I. Replacing (H − γ
c I)

−1 with γ−1[P + P (cI −
P )−1P ] in the inequality (13a), multiplying both sides
of the resulting inequality with P , and then dividing the
resulting inequality by γ, we have

(A+BF )⊤[P+P (cI−P )−1P ](A+BF )−P+Q+F⊤RF ≺0.
(14)

5



Replacing H with γP−1 in (13b) and dividing by γ, we
have 1

c I − P−1 ≺ 0. Multiplying with cP from left and
right, we obtain

P − cI ≺ 0. (15)

Using the Schur complement, (14) and (15) yield the
equivalent inequality[
(A+BF )⊤P (A+BF )−P+Q+F⊤RF (A+BF )⊤P

P (A+BF ) P − cI

]
≺0.

(16)
This implies for any (A,B) ∈ Cf , we have

(A+BF )⊤P (A+BF )− P +Q+ F⊤RF ≺ 0. (17)

Multiplying left and right sides of (17) with x⊤ and x,
the following inequality holds for any x ∈ Rn and any
(A,B) ∈ Cf

x⊤(A+BF )⊤P (A+BF )x−x⊤Px ≤ −x⊤(Q+F⊤RF )x.
(18)

The inequality (18) implies that the following inequal-
ity is satisfied for all states and inputs x̄k(t), ūk(t) =
Fx̄k(t), k ∈ I≥0 predicted by the system dynamics (6b)
with any (A,B) ∈ Cf

∥x̄k+1(t))∥2P − ∥x̄k(t))∥2P ≤ −l(ūk(t), x̄k(t)). (19)

Summing the inequality (19) from k = 0 to k = T − 1
along an arbitrary trajectory, we obtain

∥x̄T (t)∥2P − ∥x̄0(t)∥2P ≤ −
T−1∑
k=0

l(ūk(t), x̄k(t)). (20)

Since ∥x̄T (t)∥2P ≥ 0 and x̄0(t) = xt, letting T → ∞, we
obtain

∞∑
k=0

l(ūk(t), x̄k(t)) ≤ ∥xt∥2P . (21)

The inequality (21) holds for any (A,B) ∈ Cf , it also
holds for the worst-case value, i.e., we obtain

max
(A,B)∈Cf

∞∑
k=0

l(ūk(t), x̄k(t)) ≤ ∥xt∥2P . (22)

This provides an upper bound on the optimal cost of (6).
Using the Schur complement, ∥xt∥2P ≤ γ is equivalent to
the inequality (6b).

In conclusion, given that (7b)-(7d) hold, we have thus
shown that γ is an upper bound on the optimal cost of
problem (6) without input and state constraints (6d)-
(6e). 2

Remark 4 Theorem 1 derives an upper bound on the
optimal cost of the data-driven min-max MPC problem

(6). Inequality (19) together with the convergence of
x̄k(t) to the origin as k tends to infinity allow us to show
that ∥xt∥2P serves as an upper bound on the infinite-
horizon sum of stage costs of the nominal closed-loop
system with any (A,B) ∈ Cf . The optimal solution of
(7) minimizes this upper bound and returns the corre-
sponding state-feedback gain. However, it is important
to note that this upper bound may not always be tight.
The conservatism of this upper bound is due to the linear
state-feedback form of the input as well as the quadratic
choice of the upper bound. Reducing conservatism by
consideringmore general state-feedback law and cost up-
per bounding functions is an interesting issue for future
research.

Remark 5 The proof to derive the upper bound on the
worst-case cost, i.e., (19)-(22), is inspired by the existing
LMI-based min-max MPC approach in [23]. The differ-
ence is that [23] propose a model-based min-max MPC
scheme where the parametric uncertainty set is a prede-
fined polytope. On the other hand, in our case, Cf is an
ellipsoidal set characterized by offline input-state trajec-
tory generated by the noisy system, requiring different
technical tools for the convex reformulation.

Remark 6 In case of noise-free and persistently ex-

citing data, i.e., ϵ = 0 and
[
U⊤
f , X⊤

f

]⊤
has full row

rank, the data-driven min-max MPC problem (6) with-
out the input and state constraints (6d)-(6e) reduces to a
discrete-time linear quadratic regulator problem, as ex-
plored in [2–5]. In this case, the optimal state-feedback
gain F ⋆

t remains constant and does not depend on the
state xt. However, in the presence of model uncertainty,
even without the input and state constraints, employing
a receding horizon algorithm and recalculating F at each
sampling time shows significant performance improve-
ment compared to using a static state-feedback control
law. This is illustrated with a numerical example in Sec-
tion 5.1.

3.3 Closed-loop Guarantees

In the following theorem, we first establish the recursive
feasibility of the problem (7). Then, we use the optimal
solution of problem (7) to define a Lyapunov function
V (xt) = ∥xt∥2P⋆

t
and prove robust stability for the result-

ing closed-loop system with any (A,B) ∈ Cf . Finally, we
prove that the input and state constraints are satisfied
for the closed-loop trajectory.

Theorem 2 Suppose Assumption 1 holds. If the opti-
mization problem (7) is feasible at time t = 0, then

i) the optimization problem (7) is feasible at any time
t ∈ I[1,∞);

ii) the set ERPI := {x ∈ Rn : V (x) ≤ c2ϵ2

λmin(Q)} is ro-

bustly stabilized for the closed-loop system xt+1 =
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(A+BF ⋆
t )xt + ωt with any (A,B) ∈ Cf ;

iii) the closed-loop trajectory of xt+1 = (A+BF ⋆
t )xt+

ωt with any (A,B) ∈ Cf satisfies the constraints,
i.e., ∥ut∥Su

≤ 1, ∥xt∥Sx
≤ 1 for all t ∈ I≥0.

PROOF. The proof is composed of four parts. Part I
proves the lower bound and upper bound on the Lya-
punov function V (xt). Part II proves recursive feasibil-
ity of the problem (7). Part III establishes the robust
stability of the set ERPI and Part IV shows that the in-
put and state constraints are satisfied for the closed-loop
trajectory.

Part I:First, we derive an upper bound and lower bound
on V (xt). As we have shown in Theorem 1, ∥xt∥2P with
any feasible solution P of the LMIs (7b)-(7d) is an upper
bound on the optimal cost of (6). Thus, V (xt) = ∥xt∥2P⋆

t

is an upper bound on the optimal cost of (6). Thus, we
have

V (xt) ≥ l(ut, xt) ≥ ∥xt∥2Q. (23)

In the proof of Theorem 1, we have shown that any fea-
sible solution of problem (7) satisfies the inequality (15).
Thus, V (xt) is upper bounded by c∥xt∥22. Since Q ≻ 0,
we have c∥xt∥22 ≤ c

λmin(Q)∥xt∥2Q. Thus,

V (xt) ≤ c∥xt∥22 ≤ c

λmin(Q)
∥xt∥2Q. (24)

Part II: In the following, we prove recursive feasibility
of the problem (7). Assuming problem (7) is feasible at
time t, we have shown in the proof of Theorem 1 that the
inequality (16) holds for γ⋆

t , F
⋆
t , P

⋆
t and any (A,B) ∈ Cf .

Pre-multiplying (16) with
[
x⊤
t ω⊤

t

]
and post-multiplying

(16) with
[
x⊤
t ω⊤

t

]⊤
, we have

[(A+BF ⋆
t )xt + ωt]

⊤P ⋆
t [(A+BF ⋆

t )xt + ωt]− x⊤
t P

⋆
t xt

≤− x⊤
t (Q+ F ⋆⊤

t RF ⋆
t )xt + cω⊤

t ωt

(25)
for any xt ∈ Rn, ωt ∈ Rn and (A,B) ∈ Cf . Since xt+1 =
(A+BF ⋆

t )xt+ωt and ωt satisfies the Assumption 1, we
have that

∥xt+1∥2P⋆
t
− ∥xt∥2P⋆

t
≤ −x⊤

t (Q+ F ⋆⊤
t RF ⋆

t )xt + cω⊤
t ωt

≤ −∥xt∥2Q + cϵ2.
(26)

By the upper bound on V (xt) = ∥xt∥2P⋆
t

in (24), the

inequality (26) implies

∥xt+1∥2P⋆
t
− ∥xt∥2P⋆

t
≤ −λmin(Q)

c
∥xt∥2P⋆

t
+ cϵ2. (27)

Subtracting c2ϵ2

λmin(Q) from both sides of the inequality

(27) and adding ∥xt∥2P⋆
t
on both sides, we have

∥xt+1∥2P⋆
t
− c2ϵ2

λmin(Q)
≤(1− λmin(Q)

c
)(∥xt∥2P⋆

t
− c2ϵ2

λmin(Q)
).

(28)
We define a set EROA := {x ∈ Rn : V (x) ≤ γ⋆

0} and
separate the state xt into two cases to show recursive
feasibility for the problem (7).

Case I:The state is outside the robust positive invariant
(RPI) set, i.e., xt ∈ EROA\ERPI . As c > λmin(Q), we

derive 1 > 1− λmin(Q)
c > 0. By the definition of ERPI and

EROA, we have V (xt) = ∥xt∥2P⋆
t

∈ ( c2ϵ2

λmin(Q) , γ0]. Thus,

the inequality (28) implies

∥xt+1∥2P⋆
t
− c2ϵ2

λmin(Q)
≤ ∥xt∥2P⋆

t
− c2ϵ2

λmin(Q)
.

We further derive

∥xt+1∥2P⋆
t
≤ ∥xt∥2P⋆

t
≤ γ⋆

t . (29)

The only constraint in the problem (7) that depends
explicitly on the measured state xt is the inequality (7b).
The inequality (29) implies that the feasible solution of
the optimization problem (7) at time t is also feasible at
time t+1. This argument can be continued to establish
feasibility for any time t ∈ I[1,∞).

Case II: The state is in the RPI set, i.e., xt ∈ ERPI .
By the definition of ERPI , we have V (xt) = ∥xt∥2P⋆

t
≤

c2ϵ2

λmin(Q) . Plugging V (xt) ≤ c2ϵ2

λmin(Q) into the inequality

(28), we derive

∥xt+1∥2P⋆
t
− c2ϵ2

λmin(Q)
≤ 0. (30)

Therefore, γ′
t+1 = c2ϵ2

λmin(Q) , H
′
t+1 = H⋆

t , L
′
t+1 =

L⋆
t , τ

′
t+1 = τ⋆t is a feasible solution of problem (7) at

time t+ 1.

Part III: Now we prove robust stability of the set ERPI .
Since P ⋆

t+1 = γ⋆
t+1(H

⋆
t+1)

−1 is the optimal solution of
problem (7) at time t+1 while P ⋆

t is a feasible solution,
we have

V (xt+1) = ∥xt+1∥2P⋆
t+1

≤ ∥xt+1∥2P⋆
t
. (31)

When the state is outside the RPI set, i.e., xt ∈
EROA\ERPI , we derive the following inequality using
(28) and (31)

V (xt+1)−
c2ϵ2

λmin(Q)
≤(1− λmin(Q)

c
)[V (xt)−

c2ϵ2

λmin(Q)
].

(32)
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Since 1 > 1 − λmin(Q)
c > 0, the inequality (32) implies

that all states in EROA converge exponentially to the set
ERPI . When the state is in the RPI set, i.e., xt ∈ ERPI ,
we have

V (xt+1) ≤ ∥xt+1∥2P⋆
t
≤ c2ϵ2

λmin(Q)
, (33)

which implies that the state xt+1 stay inside the RPI set
ERPI . Thus, the set ERPI is robustly stabilized for the
closed-loop system xt+1 = (A + BF ⋆

t )xt + ωt with any
(A,B) ∈ Cf .

Part IV: Finally, we prove that the input and state
constraints are satisfied for any closed-loop trajectory
with (A,B) ∈ Cf .

By constraint (7b), we have xt ∈ Et = {x ∈ Rn :
∥x∥2P⋆

t
≤ γ⋆

t }. Given that the input is in a state-feedback

form, we can write the input constraint (2a) as

max
t∈N

∥ut∥2Su
= max

t∈N
∥F ⋆

t xt∥2Su
≤ 1.

For any state xt ∈ Et, the state xt+1 = (A+BF ⋆
t )xt+ωt

lies inside the set Et at the next time step. Thus, the
input constraint (6d) can be written as

max
t∈N

∥F ⋆
t xt∥2Su

≤ max
x∈Et

∥F ⋆
t x∥2Su

≤ 1. (34)

The inequality (34) holds if[
x

1

]⊤ [
−F ⋆⊤

t SuF
⋆
t 0

0 1

][
x

1

]
≥ 0,

holds for all x such that[
x

1

]⊤ [
−P ⋆

t 0

0 γ⋆
t

][
x

1

]
≥ 0.

Using the S-procedure [31], if there exists λt ≥ 0 such
that [

−F ⋆⊤
t SuF

⋆
t 0

0 1

]
− λt

[
−P ⋆

t 0

0 γ⋆
t

]
⪰ 0, (35)

then the input constraint (6d) must be satisfied. The
inequality (35) holds iff the following inequalites hold

λtP
⋆
t − F ⋆⊤

t SuF
⋆
t ⪰ 0, (36a)

1− λtγ
⋆
t ≥ 0. (36b)

Without loss of generality, we choose the multiplier to
be λt = 1

γ⋆
t
. Multiplying both sides of (36a) with H⋆

t ,

the inequality (36a) is equivalent to

H⋆
t − L⋆⊤

t SuL
⋆
t ⪰ 0. (37)

Using the Schur complement, the inequality (37) is
equivalent to [

H⋆
t L⋆⊤

t

L⋆
t S−1

u

]
⪰ 0. (38)

Similarly, the state constraint (6e) can be written as

max
t∈N

∥xt∥2Sx
≤ max

x∈Et

∥x∥2Sx
≤ 1.

Thus, the state constraint (6e) holds if x⊤Sxx ≤ 1 holds
for all x such that x⊤P ⋆

t x ≤ γ⋆
t . The statement holds if

Sx ⪯ (γ⋆
t )

−1P ⋆
t . Multiplying H⋆

t from left and right, we
have

H⋆
t SxH

⋆
t ⪯ H⋆

t . (39)

Using the Schur complement, the inequality (39) is
equivalent to (7f). Thus, if problem (7) is feasible at
time t, then the input and state constraints are satisfied
for the closed-loop system at time t. Since the prob-
lem (7) is recursively feasible, the closed-loop system
xt+1 = (A+BF ⋆

t )xt +ωt with any (A,B) ∈ Cf satisfies
the input and state constraints (2). 2

Remark 7 Theorem 2 shows that if the optimization
problem (7) is feasible at initial time t = 0, then the
closed-loop trajectory converges robustly and exponen-
tially to the RPI set ERPI for the closed-loop system
with any (A,B) ∈ Cf . The idea is to construct a Lya-
punov function V satisfying the inequality (26). The size
of the RPI set depends on the optimal solution of prob-
lem (7) at time t = 0, the pre-chosen constant c and the
noise bound ϵ. Furthermore, Theorem 2 shows that the
input and state constraints are satisfied for the closed-
loop system. This is achieved via a Lyapunov function
sublevel set Et inside the constraints that contains the
state. Since (As, Bs) ∈ Cf , the closed-loop trajectory of
(1) is robustly stabilized and satisfy the input and state
constaints.

Remark 8 The length of the offline data influences the
close-loop system performance. A longer offline data se-
quence may lead to smaller volume of the set Cf , hence
leading to a better closed-loop performance. However,
this leads to a higher computational complexity. As the
length of offline input-state measurements Tf increases,
the computational complexity of problem (7) increases
due to the decision variable τ ∈ RTf . It is possible to use
different choices of multipliers which reduce the com-
putational complexity at the cost of additional conser-
vatism, see [4, Section V.B]. For example, when impos-
ing the additional condition τi = τ,∀i ∈ I[1,Tf ] for some
τ ≥ 0, the number of decision variables of problem (7)
is independent of the data length.

4 Adaptive Data-driven Min-Max MPC

The data-driven min-max MPC scheme proposed in the
previous section employs only an offline input-state data
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sequence to characterize consistent systems matrices for
prediction. During online operation, the collection of ad-
ditional online data can improve performance especially
when offline data are inadequate. To this end, in the
present section, we propose an adaptive data-drivenmin-
max MPC scheme using both offline and online data.

4.1 Adaptive Data-driven Min-Max MPC Problem

The online input-state measurements collected in the
closed loop from initial time 0 until time t are denoted by

Ut :=
[
u0 u1 . . . ut−1

]
,

Xt :=
[
x0 x1 . . . xt

]
.

The set of system matrices (A,B) consistent with the
online data xt, ut, xt+1 is defined by

Σo
t :={(A,B) : (1) holds for some ωt satisfying∥ωt∥2≤ϵ} .

which can be characterized using the same manner as in
equation (3). The set of system matrices consistent with
the offline input-state sequence (Uf , Xf ) and the online
input-state sequence (Ut, Xt) is updated recursively by

Ct =
{
Ct−1 ∩ Σo

t−1, t ∈ I[1,∞)

Cf , t = 0
(40)

where Cf is characterized by (4). The set Ct can also be
written as

Ct =
t−1⋂
i=1

Σo
i ∩

Tf−1⋂
i=0

Σf
i .

We can characterize Ct by the following inequality

Ct =

(A,B) :

[
I A B

]
(Πf (τ) + Πo(δ))

[
I A B

]⊤
⪰0,

∀τ=(τ0, . . . , τTf−1), τi≥0, i ∈ I[0,Tf−1]

∀δ=(δ0, . . . , δt−1), δi≥0, i ∈ I[0,t−1]

,

(41)
where Πf (τ) is defined as in equation (5) using the offline
input-state sequence and Πo(δ) is defined by

Πo(δ) =

t−1∑
i=0

δi


I xo

i+1

0 −xo
i

0 −uo
i


[
ϵ2I 0

0 −I

]
I xo

i+1

0 −xo
i

0 −uo
i


⊤

. (42)

Given the offline input-state sequence (Uf , Xf ) of length
Tf , the online input-state sequence (Ut, Xt), the current

state xt, the adaptive data-driven min-max MPC opti-
mization problem is formulated as follows:

J∗
∞(xt) :=min

ū(t)
max

(A,B)∈Ct

∞∑
k=0

l(ūk(t), x̄k(t)) (43a)

s.t. x̄k+1(t) = Ax̄k(t) +Būk(t), (43b)

x̄0(t) = xt, (43c)

∥ut∥Su
≤ 1,∀t ∈ I≥0, (43d)

∥xt∥Sx ≤ 1,∀(A,B) ∈ Ct, t ∈ I≥0, (43e)

Different from the data-driven min-max MPC problem
(6), the objective function (43a) is a minimization of
the worst-case cost over all consistent system matrices
in Ct. The set Ct is recursively updated using the input-
state measurements collected online by (40). The state
prediction, the initial state constraint and the input and
state constraints remain the same as the data-driven
min-max MPC problem.

4.2 Reformulation based on LMIs

To derive a tractable solution, we consider a state feed-
back control law ūk(t) = Ftx̄k(t) in problem (43), where
Ft ∈ Rm×n is the optimized state-feedback gain at time
t. In the following, we formulate an SDP to derive a state-
feedback control law that minimizes an upper bound on
the optimal cost of (43) employing analogous techniques
as in Section 3.

At time t ∈ I[1,∞), given offline input-state measure-
ments (Uf , Xf ) and online input-state measurements
(Ut, Xt), an initial state xt ∈ Rn and a constant c >
λmin(Q), the SDP is formulated as follows:

minimize
γ>0,H∈Rn×n,L∈Rm×n,τ∈RTf ,δ∈Rt

γ (44a)

s.t. (7b), (7e) and (7f) hold, (44b)

[
−H + γ

c I 0

0 0

]
+Πf (τ) + Πo(δ)


0

H

L

 0

[
0 H L⊤

]
−H Φ⊤

0 Φ −γI


≺ 0,

(44c)

τ=(τ0, . . . , τTf−1),τi ≥ 0,∀i ∈ I[0,Tf−1], (44d)

δ=(δ0, . . . , δt−1), δi ≥ 0,∀i ∈ I[0,t−1]. (44e)

The optimal solution of the optimization problem (44)
at time t is denoted by γ⋆

t , H
⋆
t , L

⋆
t , τ

⋆
t , δ

⋆
t , providing the

optimal state-feedback gain F ⋆
t = L⋆

t (H
⋆
t )

−1.

Similar to Theorem 1, given the state xt, we can show
that the optimal cost of problem (43) is guaranteed
to be at most ∥xt∥2P with P = γ(H)−1 and ∥xt∥2P is
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upper bounded by γ if (7b) and (44c)-(44d) hold for
γ,H,L, τ, δ. Therefore, problem (44)minimizes an upper
bound on the optimal cost of the adaptive data-driven
min-max MPC problem (43).

We solve the SDP problem (44) in a receding horizon
manner, see Algorithm 2. At time t = 0, we solve the
optimization problem (7) and implement the first com-
puted input ut = F ⋆

t xt. At the next sampling time t+1,
we measure the state xt+1. With the collection of on-
line input-state data xt, ut, xt+1, we adapt the set of
consistent system matrices Ct by (41). A new optimiza-
tion variable δt ≥ 0 is introduced to the optimization
problem (44) and the constraint (44e) is updated. Ad-
ditionally, we update the the constraint (44c) by incor-
porating the collected online input-state measurements
xt, ut, xt+1 and variable δt into Πo(δ). Then we solve the
problem (44) and iterate the above procedure.

Algorithm 2 Adaptive data-driven min-max MPC
scheme.
1: Input: (Uf , Xf ), Q,R, Sx, Su, c
2: At time t = 0, measure state x0

3: Solve the problem (44)
4: Apply the input ut = F ⋆

t xt

5: Set t = t+ 1 and measure state xt

6: Update the constraints (44c) and (44e)
7: Go back to 4

In the following theorem, we show recursive feasibility
of the problem (44) and robust stability for the closed-
loop system (1) resulting from the adaptive data-driven
min-max MPC scheme.

Theorem 3 Suppose Assumption 1 holds. If the opti-
mization problem (7) is feasible at time t = 0, then

i) the optimization problem (44) is feasible at any time
t ∈ I[1,∞);

ii) the set ERPI := {x ∈ Rn : V (x) ≤ c2ϵ2

λmin(Q)} is ro-

bustly stabilized for the closed-loop system (1) re-
sulting from Algorithm 2;

iii) the closed-loop trajectory of (1) resulting from Al-
gorithm 2 satisfies the constraints, i.e., ∥ut∥Su ≤
1, ∥xt∥Sx ≤ 1 for all t ∈ I≥0.

PROOF. The proof is similar to that of Theorem 2;
hence, we only provide a sketch. The difference is that a
new optimization variable is introduced to the problem
(44) at each time step. To prove recursive feasibility,
suppose the optimal solution of the problem (44) at time
t is γ⋆

t , H
⋆
t , L

⋆
t , τ

⋆
t , δ

⋆
t . When the state is outside the RPI

set, i.e., xt ∈ EROA\ERPI , we define a candidate solution
of problem (44) at time t+ 1 as follows:

γ′
t+1=γ⋆

t , H
′
t+1=H⋆

t , L
′
t+1=L⋆

t , τ
′
t+1=τ⋆t , δ

′
t+1=

[
δ⋆t , 0

]
.

When the state is inside the RPI set, i.e., xt ∈ ERPI , we
define a candidate solution of problem (44) at time t+1
as follows:

γ′
t+1=

c2ϵ2

λmin(Q)
, H ′

t+1=H
⋆
t , L

′
t+1=L

⋆
t , τ

′
t+1=τ

⋆
t , δ

′
t+1=

[
δ⋆t , 0

]
.

Constraint (44c) is trivially satisfies with the defined
candidate solution in these two cases.

The satisfaction of (7b) and (44c)-(44e) implies that (16)
is satisfied for any (A,B) ∈ Ct. The set Ct is recursively
updated over time. Based on its definition, the uncer-
tainty set Ct satisfies (As, Bs) ∈ Ct+1 ⊆ Ct for all t ∈ N.
As t approaches infinity, we can establish that (16) holds
for any (A,B) ∈ Ct, where the true system matrices al-
ways lie within this set. Using (16), we can show robust
stability and constraint satisfaction for the closed-loop
system (1) following the same steps as Theorem 2. 2

Remark 9 As the online input-state measurements are
collected and Ct is recursively updated, the uncertainty
due to the set Ct never increased and may possibly
decreases. Thus, the closed-loop performance resulting
from the adaptive data-driven min-max MPC scheme is
no worse than the approach in Section 3.

Remark 10 The adaptive data-driven min-max MPC
scheme directly incorporates new data to the SDP prob-
lem (44), which increases the computational complex-
ity due to the introduction of a new optimization vari-
able δt in problem (44) at each time step. One possi-
ble method to reduce the computational complexity is
to stop adding new data when the closed-loop perfor-
mance is satisfactory. Alternatively, one can recursively
compute an outer approximation of the set Ct using the
previous uncertainty set along with the newly collected
data at time t. Possible methods for computing an outer
approximation have been investigated in [7, 48].

5 Simulation

In this section, we demonstrate the effectiveness of the
proposed data-driven min-max MPC schemes through
two numerical examples. First, we implement the pro-
posed MPC schemes in Sections 3 and 4 on a continuous
stirred-tank reactor (CSTR). Both schemes have good
closed-loop performance and the adaptive scheme shows
performance improvement compared to the approach in
Sections 3. Second, we compare the proposed approach
with the robust data-driven MPC scheme based on the
Fundamental Lemma from [22]. Simulation results illus-
trate that our scheme is less conservative and achieves
better closed-loop performance.
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5.1 Implementation of the Proposed MPC Schemes

We consider the linearization of the nonlinear CSTR

consider in [49], which is linearized at
[
0.9831, 0.3918

]⊤
and discretized with a sampling time 0.5 seconds. The
linearized system is given by

xt+1 =

[
0.9749 −0.0135

0.0004 0.9888

]
xt + 10−4 ·

[
0.041

5.934

]
ut + ωt,

(45)
where the noise satisfies Assumption 1, i.e., ωt ∈ {ω ∈
R2 : ∥ω∥2 ≤ 10−3}. The system matrices are unknown,
but an offline input-state trajectory (Uf , Xf ) of length
Tf = 15 is available, where the input u ∈ Uf is cho-
sen uniformly from the unit interval [−10, 10]. Moreover,
the input and state constraints are given by ∥ut∥Su ≤ 1
and ∥xt∥Sx ≤ 1, where Su = 0.01, Sx = 100I. We
choose the weighting matrices of the stage cost func-
tion by Q = 0.01I,R = 10−4. The initial state is given
as x0 = [0.04,−0.04]⊤. We apply the proposed MPC
schemes in Sections 3 and 4 to the system (45), respec-
tively.

Figure 1 illustrates the closed-loop input and state tra-
jectories resulting from the application of the proposed
data-driven min-maxMPC schemes and the static state-
feedback control law. The static state-feedback gain is
computed at time t = 0 of the data-driven min-max
MPC scheme in Section 3, as explained in Remark 6.
For all three approaches, closed-loop state trajectories
converge to a neighborhood of the origin. Note that the
input and state constraints are satisfied in the closed-
loop operation. The inputs does not get close to the con-
straint boundary, which can be attributed to the conser-
vatism due to two factors: first, we only optimize over
state-feedback inputs, and second, the reformulation of
the constraints may be conservative. Comparison of the
closed-loop input trajectories reveals that the state and
input trajectory of the proposed schemes converges to
a region closer to the origin compared with the static
state-feedback control law. Table 1 presents the sum of
closed-loop stage costs over all 300 iterations and the av-
erage computational time per iteration for the proposed
data-driven min-maxMPC schemes and the static state-
feedback control law. The closed-loop cost of the adap-
tive data-driven min-max MPC scheme is smaller than
the other two, while the average computational time per
iteration is larger than the scheme in Section 3.

Table 1
Closed-loop cost and average computation time.

cost time (s)

static feedback 0.0068 -

scheme in Sec.3 0.0059 0.0501

scheme in Sec.4 0.0040 0.1212
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Fig. 1. Closed loop trajectories under the proposed data–
driven min-max MPC schemes: (a) Closed-loop state x(1).
(b) Closed-loop state x(2). (c) Closed-loop input u.

5.2 Comparison to the Data-driven MPC Schemes in
literature

In this section, we contrast our data-driven min-
max MPC scheme with the data-driven MPC scheme
from [22], which relies on the Fundamental Lemma and
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includes a constraint tightening guaranteeing robust
constraint satisfaction. While our approach incorpo-
rates ellipsoidal constraints, [22] employs hypercube
constraints. To facilitate a comparative analysis, we
implement both schemes on a scalar system

xt+1 = 1.1xt + 0.5ut + ωt, (46)

where the noise satisfies ωt ∈ {ω ∈ R : ∥ω∥2 ≤ ϵ} with
ϵ = 10−4. The input and state constraints are |ut| ≤
2 and |xt| ≤ 2. An input-state trajectory (Uf , Xf ) of
length Tf = 20 is available. The weighting matrices of
the stage cost function are Q = 1, R = 0.1. The initial
state is given as x0 = −1.

We apply the proposed data-driven min-max MPC
scheme and the data-driven MPC scheme in [22]. While
our approach accounts for process noise in the system
described by (46), [22] focuses on measurement noise.
To translate the bound on process noise into a bound
on measurement noise as required for [22], we use the
fact that process noise bounded by ϵ results in measure-

ment noise bounded by
∑k−1

i=0 Ai
sϵ at time k. Figure 2

illustrates the closed-loop input and state trajectories
resulting from the application of both schemes. The in-
put and state trajectories from both schemes converges
to a neighborhood of the origin and satisfy the input
and state constraints. The sum of closed-loop stage
costs over all 20 iterations for the proposed data-driven
min-max MPC scheme is 9.58% lower than that for
data-driven MPC scheme in [22].

We now increase the bound on the noise and implement
both schemes as explained above. When ϵ approaches
0.0005, the approach from [22] becomes infeasible. In
contrast, the proposed MPC scheme remains feasible
and robustly stabilizes the system for ϵ up to 0.02. This
result shows that our proposed data-driven min-max
MPC scheme exhibits less conservatism compared to the
approach in [22], allowing for stability and constraint
satisfaction guarantees with higher noise levels. Further,
as shown in Section 4, it allows to employ online data in
order to improve closed-loop performance, which is not
easily possible for the approach from [22].

6 Conclusion

In this paper, we present a data-driven min-max MPC
scheme that uses noisy input-state data to design state-
feedback controllers for unknown LTI systems. We re-
formulate the data-driven min-max MPC problem with
ellipsoidal input and state constraints as an SDP. A
receding-horizon algorithm is proposed to repeatedly
solve the SDP at each time step and obtain a state-
feedback gain. We establish that the proposed scheme
guarantees closed-loop recursive feasibility, constraint
satisfaction and robust stability for any systems consis-
tent with the noisy input-state data. Furthermore, we
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Fig. 2. Closed loop trajectories under the proposed data–
driven min-max MPC scheme and the robust constraint
tightening data-driven MPC scheme in [22]: (a) Closed-loop
state x. (b) Closed-loop input u.

propose an adaptive data-driven min-max MPC scheme
that employing online collected input-state data to im-
prove closed-loop performance when the offline data are
insufficient. We establish that the resulting closed-loop
trajectory satisfies the input and state constraint and is
robustly stabilized. Two numerical examples show that
the adaptive scheme indeed improve the closed-loop per-
formance compared with the robust scheme, and our
proposed data-driven min-max MPC scheme exhibits
less conservatism than the robust constraint tightening
MPC scheme in the literature In the future, we plan to
investigate the data-driven min-max MPC scheme using
noisy input-output data. Further, extending our results
to nonlinear systems is another interesting direction.
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