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Abstract

Data-driven controllers design is an important research problem, in particular when data is corrupted by the noise. In this
paper, we propose a data-driven min-max model predictive control (MPC) scheme using noisy input-state data for unknown
linear time-invariant (LTT) system. The unknown system matrices are characterized by a set-membership representation using
the noisy input-state data. Leveraging this representation, we derive an upper bound on the worst-case cost and determine
the corresponding optimal state-feedback control law through a semidefinite program (SDP). We prove that the resulting
closed-loop system is robustly stabilized and satisfies the input and state constraints. Further, we propose an adaptive data-
driven min-max MPC scheme which exploits additional online input-state data to improve closed-loop performance. Numerical

examples show the effectiveness of the proposed methods.
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1 Introduction

Data-driven system analysis and control have received
increasing interest in the recent years. Unlike the model-
based control methods, which depend on prior knowl-
edge of system models identified from measured data
using system identification methods [1] or derived from
first principles, data-driven control approaches design
controllers directly from the available data. Several
works have focused on designing controllers for unknown
linear time-invariant (LTT) systems directly from noisy
data [2-8], assuming assumptions on the noise such
as energy bounds or instantaneous bounds. A matrix
inequality can effectively characterize a set of LTI sys-
tems that explain the measured data, forming the basis
of the data informativity framework [3,9]. Within this
framework, data-driven controller designs aim to find a
controller that stabilizes all systems that are consistent
with the data. Various controller design methods have

* F. Allgower is thankful that his work was funded by

Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC
2075 - 390740016 and under grant 468094890. F. Allgower
acknowledges the support by the Stuttgart Center for Sim-
ulation Science (SimTech). The authors thank the Interna-
tional Max Planck Research School for Intelligent Systems
(IMPRS-IS) for supporting Yifan Xie.

Preprint submitted to Automatica

been proposed, including Hy and H,, control [2,4, 8],
linear quadratic regulator approaches [5], and stabi-
lization [2, 5, 6]. Nevertheless, the incorporation of con-
straints and controller design using noisy data remains
largely unexplored in this framework. In this paper, we
propose data-driven min-max model predictive control
(MPC) schemes in this framework to design a con-
troller that robustly stabilizes the system and handles
ellipsoidal input and state constraints.

MPC is widely used due to its ability to handle con-
straints and consider performance criteria [10]. The
fundamental concept of MPC is to solve an open-loop
optimal control problem at each sampling time, which
uses the system dynamics to predict future open-loop
trajectories. Recently, data-driven MPC approaches
have been studied, which directly use the measured
input-output data to predict the future outputs [11-18].
This data-driven MPC framework is based on the Fun-
damental Lemma [19,20], which states that for a con-
trollable LTI system, all possible system trajectories
can be parameterized in terms of linear combinations of
time-shifts of one persistently exciting trajectory. This
framework requires the availability of persistently excit-
ing data, enabling the unique representation of the sys-
tem from the data in the noise-free scenarios. In case of
bounded output measurement noise, robust data-driven
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MPC schemes have been developed, which guarantee
practical stability for the closed-loop system [12, 13].
These MPC schemes can be expanded via suitable
constraint tightening to ensure robust state or output
constraint satisfaction in the presence of bounded pro-
cess or measurement noise [21,22]. While these MPC
schemes provide strong theoretical guarantees for guar-
anteeing constraint satisfaction of unknown systems
based only on measured data, the employed constraint
tightenings suffer from possibly large conservatism.

Min-max MPC can effectively address scenarios involv-
ing parametric uncertainty on the system dynamics and
disturbance, as discussed in [23-29]. The basic idea of
min-max MPC is to design control inputs that minimize
the worst-case cost w.r.t. disturbances and/or paramet-
ric uncertainty in order to robustly stabilize the system.
An especially popular approach is to employ linear ma-
trix inequalities (LMIs) [30, 31] in the min-max MPC
framework [23] to obtain a tractable state-feedback con-
trol law. This approach involves solving an LMI-based
optimization problem at each time step that incorpo-
rates constraints and a description of the parametric
uncertainty, thereby guaranteeing robust stability. The
min-max MPC schemes typically require prior knowl-
edge of the parametric uncertainty set, i.e., a known
polytopic set [23, 26]. However, addressing min-max
MPC schemes without prior knowledge of the para-
metric uncertainty set, relying solely on available data,
remains an open challenge.

In this work, we propose a data-driven min-max MPC
framework to control LTI systems with unknown system
matrices and additive process noise using noisy input-
state data. Our approach relies on a representation of
the system matrices consistent with a sequence of noisy
input-state data by using a quadratic matrix inequality
[4,7]. The scheme involves an infinite-horizon cost as well
as ellipsoidal input and state constraints. It can be in-
terpreted as a time-varying Hs state-feedback controller
design, analogous to the model-based min-max MPC
scheme in [23]. We show that the proposed data-driven
min-max MPC guarantees closed-loop recursive feasi-
bility, constraint satisfaction and robust stability. Fur-
ther, we propose an adaptive data-driven min-max MPC
scheme that integrates online collected input-state data.
Utilizing these online data reduces the parametric uncer-
tainty on the system dynamics, thus the closed-loop per-
formance resulting from the adaptive data-driven min-
max MPC scheme improves. Numerical examples shows
that the proposed scheme ensures robust stability and
constraint satisfaction in a less conservative fashion than
the data-driven MPC based on the Fundamental Lemma
[22].

We note that the recent works [32,33] also propose data-
driven MPC schemes for linear systems using ideas from
the data informativity framework. However, in these pa-
pers, the data are assumed to be noise-free, contrary to

our framework which allows for process noise in the data.
In [34], a data-driven MPC scheme employing noisy data
is proposed, focusing on the H, control objective. How-
ever, they assume an energy bound on the online noise,
implying that the noise convergences to zero for time
approach infinity, and establish closed-loop stability ac-
cordingly. In contrast, we address a more practical sce-
nario with instantaneous noise bound and establish ro-
bust stability for the closed-loop system. In the recent
work [35], an online data-driven approach is proposed
for iteratively learning controllers for systems with dy-
namic changes over time. The data considered is noise-
free and constraints are not taken into account. Further,
the literature contains various approaches on model-
based adaptive MPC schemes [36—45]. Specifically, adap-
tive tube-based MPC schemes aim to construct predic-
tion tubes for robust constraint satisfaction and incorpo-
rate model adaptation using set-membership estimation
[36—41]. Model-based adaptive min-max MPC schemes
update the parametric uncertainty set at each time step
and design a MPC controller to robustly stabilize the
uncertain systems [44,45], which assumes prior knowl-
edge of the parametric uncertainty set. In contrast, the
proposed approach relies on an ellipsoidal uncertainty
characterization based on the recent data-driven control
literature [4,7]. This allows to use LMI methods for the
design of a state-feedback-based MPC scheme with ro-
bust stability guarantees.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces necessary preliminaries about the data-
driven parameterization and the problem setup. In Sec-
tion 3, we propose a data-driven min-max MPC prob-
lem with input and state constraints. We prove recur-
sive feasibility, constraint satisfaction and robust stabil-
ity for the closed-loop system. In Section 4, we consider
an adaptive data-driven min-max MPC scheme which
uses online data to reduce uncertainty and improve per-
formance. We illustrate the advantage of the proposed
schemes with numerical examples in Section 5. Finally,
we conclude the paper in Section 6. Preliminary results
on data-driven min-max MPC were presented in the con-
ference paper [46]. The present paper extends [46] in
multiple directions. First, [46] assumes that the online
measurements used for feedback are noise-free, whereas
we consider noise in both offline and online data. As a
result, the theoretical analysis in the present paper is
more involved and provides robust stability guarantees
of a robust positive invariant (RPI) set around the ori-
gin. On the contrary, the noise-free setup in [46] allowed
to prove exponential stability. Further, the present pa-
per proposes an adaptive data-driven min-max MPC
scheme which, as shown with a numerical example, can
substantially reduce conservatism using online data.

Notation: Let I, ;) denote the set of integers in the inter-
val [a, D], I>o denote the set of nonnegative integers, and
[[a,+00) denote the set of integers larger than or equal to
a. For a matrix P, we write P > 0 if P is positive definite



and P > 0 if P is positive semi-definite. For a vector x

and a matrix P > 0, we write ||z||p = Va T Pz. For ma-
trices A and B of compatible dimensions, we abbreviate

ABAT to AB M .

2 Preliminaries

In Section 2.1, the considered problem setup is intro-
duced. In Section 2.2, we present the data-driven system
parameterization used for the proposed min-max MPC
approach.

2.1 Problem Setup

In this paper, we consider an unknown discrete-time LTI
system

Ter1 = Ay + Boug + wy, (1)

where z; € R” denotes the state, u; € R™ denotes the in-
put, and w; € R™ denotes the unknown noise for ¢t € I>q.
The matrices A; € R™*™ and By € R*"™™ are assumed
to be unknown. The noise w; is assumed to satisfy the
following assumption.

Assumption 1 For all ¢t € I, the noise w; € R sat-
isfies ||wt||2 < € for a known bound e > 0.

We define a sequence of offline input, noise and corre-
sponding state of length T from the system (1), which
are denoted in the matrices

Up = [u{; u{ u%,fl} ,

Wy = [wg w{ w;f_l} ,

Xy= [:5{; L xéf]

Throughout this paper, we assume that the offline
input-state measurements Uy and X are available. The
noise sequance Wy is unknown, but every element in
Wy satisfies the bound in Assumption 1. In Section 3,
the data-driven min-max MPC algorithm only based
on the knowledge of offline input-state measurements
(U¢, Xs). Moreover, in Section 4, we employ online
input-state measurements in addition to (U, X¢) to
design an adaptive min-max MPC algorithm.

Our objective is to stabilize the origin for the unknown
LTI system (1), while the closed-loop input and state
satisfy given constraints. We consider the origin for sim-
plicity but note that the results in this paper can be
adapted for non-zero equilibria. In order to stabilize the
origin, we define the following quadratic stage cost func-
tion
lu,2) = lullf + [l]3,

where R, > 0. We consider ellipsoidal constraints on
the input and the state, i.e.,

HutHSu S 17Vt € ]IZO7
thHSE < 1,Vt S ]IZO’

where S, = 0 and S, > 0.
2.2  Data-driven Parameterization

Given that the matrices A, and B are unknown, the
knowledge about the system relies on inferring infor-
mation from input-state measurements. In this section,
we introduce the employed data-driven parameteriza-
tion method using offline input and state measurements.

First, we define the set of system matrices (4, B) con-
sistent with the offline data a?if, u'f7 mzfﬂ,i € ljor,—1) by

sz = {(A7 B):(1) holds for some wzf satisfying ||wlf\|2 <
This set includes all system matrices for which there ex-
ists a noise realization satisfying Assumption 1 and the
system dynamics (1). We proceed analogous to [2,4,7] to
derive a data-driven parametrization of the system ma-
trices. Using the system dynamics (1), the state xlf, x{H
f

and input u; satisfy the following equation

wlf = x{_H - Asx{ - Bsulf.

Thus, the set EZ can be equivalently characterized by
the following quadratic matrix inequality

Ixzf-i-l 27 T
o/ =3(A4B): |1 4B |0 ! [6 ] ] =0
IR

K2

3)

Furthermore, the set of system matrices consistent
with the sequence of offline input-state measurements
(Ug, Xy) is defined by

Cy:= ﬂ E{.
i=0

We can characterize Cy by the following quadratic matrix
inequality [4,7]

[I A B} 1 (r) {1 A B}TEO,

V7= (70, ..

Cr=1<(A,B):
o Tr-1), i > 0,4 € g 1y 1

(4)



where

Izf 12l
Ty—1 Tit1 27 0 Tit1
(1) = Z 7 |0 —xif [ 0 I] 0 —x{ (5)
=0 0 fu{ 0 fu{

We will later use the data-driven parameterization of Cy
in equation (4) to formulate the data-driven min-max
MPC problem, thus designing a controller that robustly
stabilizes all system with matrices in Cy.

3 Data-driven Min-Max MPC

In this section, we present a data-driven min-max MPC
problem with input and state constraints using offline
input-state measurements. We restrict the optimization
to state-feedback control laws, which allows to reformu-
late the data-driven min-max MPC problem as an SDP.
We establish that the resulting MPC approach is recur-
sively feasible and the closed-loop system is robustly sta-
bilized and satisfies the input and state constraints.

3.1 Data-driven Min-Maxz MPC Problem

At time t, given offline input-state measurements
(Uy, Xy) and an initial state x;, the data-driven min-
max MPC optimization problem is formulated as fol-
lows:

o0
Js :=mi Hag(t), T (t 6
o (Tt) min max, 2 (u(t), 7x(t)) (6a)
st Zrpa(t) = AZ(t) + Bug(t), (6b)
To(t) = . (6¢)
|uells, <1,Vt €I, (6d)
HfCtHSz < l,V(A,B) S Cf,t € ]120, (66)

The objective function aims to minimize the worst-case
value of the sum of infinite stage cost among all consis-
tent system matrices in Cy by adapting the control in-
put @y (t), vk € I>¢. In the optimization problem, Zy (%)
and g (t) are the predicted state and control input at
time t 4+ k based on the measurement at time ¢t. We
use the nominal system dynamics z;11 = Azy + Buy
with (A,B) € Cy for future state prediction in con-
straint (6b). In constraint (6¢), we initialize Zo(t) as
the state measurement at time ¢. In constraints (6d)
and (6e), the closed-loop input and state satisfy the
ellipsoidal constraints in (2) for any system dynamics
Ty = Azy + Buy +wy with (A4, B) € Cy and w; satisfy-
ing Assumption 1.

Remark 1 In the data-driven min-max MPC problem
(6), we use the nominal system dynamics without the

noise w; to predict the future state. This approach avoids
an additional maximization with regard to the noise in
the min-max MPC problem. Even though the influence
of the noise is not considered in the min-max problem,
the proposed method guarantees robust stability for the
closed-loop system in the presence of noise (cf. Section
3.3).

Remark 2 Similar to the existing LMI-based min-max
MPC scheme in [23], we consider to minimize the worst-
case value of infinite-horizon cost. The infinite-horizon
cost allows us to reformulate the data-driven min-max
MPC problem as an SDP. This reformulation fits well
to the data-driven system parametrization described by
(4), as detailed in Section 3.2.

3.2  Reformulation based on LMIs

The data-driven min-max MPC problem (6) is in-
tractable because of the min-max formulation and the
constraints for all possible (A, B) within a set charac-
terized by data. To effectively address problem (6) and
derive a tractable solution, we limit our focus to find a
state-feedback control law of the form @ (t) = F¥Zx(t),
where F} € R™*™. In the following, we formulate an
SDP to derive an upper bound on the optimal cost over
the set C; and to determine a state-feedback gain that
minimizes this upper bound.

At time t, given offline input-state measurements
(Uy,Xy), an initial state z; € R™ and a constant
¢ > Amin(Q), the SDP is formulated as follows:

minimize o (7a)
7>0,H€R"X”,LGR’"X",TERTf
T
s.t. Tl w0, (7b)
Tt H
_ H+2I0 0 _
I S s YO N 23 B
0 o 7(7)
L <0, (7c)
[0 H LT] ~H &7
0 I
T = (T07...,TTf,1),’Ti ZO,VZ.G]I[O7Tf_1], (7d)
(7 LT
=0, (7e)
L St
Pigis
= 0. (7f)
|H 5,1
MgL
where & = | 71 M Mg = R and MJ Mg = Q.
MoH




The optimal solution of problem (7) at time ¢ is de-
noted by ~f,H},L},7/. The corresponding optimal
state-feedback gain is given by F} = Ly (H})~ .

We solve the SDP problem (7) in a receding-horizon
manner to repeatedly find an optimal state-feedback
gain, see Algorithm 1. In particular, at time ¢, we solve
the optimization problem (7) and obtain the optimal
state-feedback gain F}*. Only the first computed input
uy = Frx; is implemented and, at time ¢ + 1, we re-
iterate the described procedure.

Algorithm 1 Data-driven min-max MPC scheme.

: Input: Us, X, Q, R, S, Su,

: At time ¢ = 0, measure state xg

: Solve the problem (7)

: Apply the input u; = Fjxy

: Set t =t + 1, measure state z; and go back to 3

U W N~

Remark 3 The constant c is required to prove robust
stability for the resulting closed-loop system, as detailed
in Section 3.3. At the initial time ¢t = 0, we select ¢ such
that the optimization problem (7) is feasible for the ini-
tial state xy. The value of ¢ remains constant in Algo-
rithm 1 when ¢ € I ). This approach ensures con-
vexity and recursive feasibility of the SDP problem (7),
thereby simplifying computational burden. The precise
choice of ¢ influences the performance. As will be proved
later in Theorem 2, [|lz;[|% is lower bounded by [|lz¢[|3,

and upper bounded by ¢||z||2. Therefore, this requires
¢ > Amin(@). A smaller value of ¢ gives a smaller robust
positive invariant (RPT) set to which the closed loop con-
verges, as shown later in Theorem 2, but also a smaller
feasible region and possibly larger optimal cost v;.

In the following theorem, we first neglect the input and
state constraints (6d)-(6e) in the data-driven min-max
MPC problem (6). We show that the optimal cost of
problem (7) is an upper bound on the optimal cost of
(6a)-(6¢c) using (7b)-(7d). Later in Theorem 2, we will
show that Algorithm 1 ensures constraint satisfaction in
closed loop.

Theorem 1 Given a state z; € R™ at time ¢t and a con-
stant ¢ > Anin (@), suppose there exist v, H, L, 7 such
that the LMIs (7b)-(7d) hold. Let P = vH~!. Then,
the optimal cost of (6a)-(6¢) is guaranteed to be at most
|z+||% and ||z¢||% is upper bounded by 7, i.e.,

Too(@e) < b <.

PROOF. Applying the Schur complement to the con-

straint (7c) twice yields the equivalent inequalities

—H+2] 0
4 o o ' +1I¢(r) <0
T 3
0 (H—-173)"! !
L K L
(8a)
1
~H+-0"d<0. (8b)
gl

According to (4), given any 7 satisfying constraint (7d),
the inequality

[JA B} I (7) [IA B]TEO 9)

holds for any (A, B) € Cy. Pre-multiplying (8a) with

.
[I A B} and post-multiplying (8a) with [I A B} , the

resulting inequality together with (9) imply that the fol-
lowing inequality must hold for any (A, B) € Cy

.
1] [FH+21 0 I
AT H H AT |=o0.
0 H-L1pTp)?
BT L‘|( Y ) L BT
(10)

This is equivalent to

(—H+%I)+(AH+BL)(H—%(IDT@)*(AHJrBL)Tﬂ).
(11)

Using the Schur complement, (11) together with (8b) is
equivalent to

—H+29"® (AH + BL)"

< 0. 12
(AH+BL) —-H+12I (12)

Using the Schur complement again, (12) yields the equiv-
alent inequality

(AH + BL)T (H—21)"Y(AH + BL)— H+ -7 ® < 0,
c ¥

(13a)

“H+ %I <0. (13b)

Let P = yH ! and F = LH~'. Using the Woodbury
matrix identity [47], we have y[P + P(cI — P)~'P]7! =
H — 2. Replacing (H — 2I)~! with y~'[P + P(cI —
P)~1P] in the inequality (13a), multiplying both sides
of the resulting inequality with P, and then dividing the
resulting inequality by =, we have

(A+BF)"[P+P(cI—-P)"'P|(A+BF)—P+Q+F "RF <0.
(14)



Replacing H with vP~! in (13b) and dividing by v, we
have 11 — P~! < 0. Multiplying with cP from left and
right, we obtain

P—cl=<0. (15)
Using the Schur complement, (14) and (15) yield the
equivalent inequality

(A+BF)TP(A+BF)—P+Q+F'RF (A+BF)"P 0
P(A+BF) P—cl

(16)
This implies for any (A4, B) € Cy, we have

(A+BF)"P(A+ BF)—P+Q+F"RF <0. (17)

Multiplying left and right sides of (17) with 2" and z,
the following inequality holds for any z € R™ and any
(A, B) € Cy

' (A+BF)'P(A+BF)x—x'Px < —2'(Q+F'RF)z.

(i8)
The inequality (18) implies that the following inequal-
ity is satisfied for all states and inputs Zy(t),ar(t) =
FZy(t), k € I>g predicted by the system dynamics (6b)
with any (A, B) € Cy

|Zr+1EDIE = 2R O)F < —U@n(t), Ze(t).  (19)

Summing the inequality (19) from k =0tok =T —1
along an arbitrary trajectory, we obtain

IZr O — IZo ()7 < - i Han(t), 2k (1)), (20)
k=0

Since ||Z7(t)]|% > 0 and Zo(t) = x4, letting T — oo, we

obtain
o0

D Wan(t), () < [l (21)
k=0
The inequality (21) holds for any (A4, B) € Cy, it also
holds for the worst-case value, i.e., we obtain

o0

i T < 2. 22
AW kzol(uk(t)7 Ti(t)) < llaellp (22)

This provides an upper bound on the optimal cost of (6).
Using the Schur complement, ||z;||% < v is equivalent to
the inequality (6b).

In conclusion, given that (7b)-(7d) hold, we have thus
shown that « is an upper bound on the optimal cost of
problem (6) without input and state constraints (6d)-
(6e). O

Remark 4 Theorem 1 derives an upper bound on the
optimal cost of the data-driven min-max MPC problem

(6). Inequality (19) together with the convergence of
Zx(t) to the origin as k tends to infinity allow us to show
that ||z;]|% serves as an upper bound on the infinite-
horizon sum of stage costs of the nominal closed-loop
system with any (A, B) € C;. The optimal solution of
(7) minimizes this upper bound and returns the corre-
sponding state-feedback gain. However, it is important
to note that this upper bound may not always be tight.
The conservatism of this upper bound is due to the linear
state-feedback form of the input as well as the quadratic
choice of the upper bound. Reducing conservatism by
considering more general state-feedback law and cost up-
per bounding functions is an interesting issue for future
research.

Remark 5 The proof to derive the upper bound on the
worst-case cost, i.e., (19)-(22), is inspired by the existing
LMI-based min-max MPC approach in [23]. The differ-
ence is that [23] propose a model-based min-max MPC
scheme where the parametric uncertainty set is a prede-
fined polytope. On the other hand, in our case, Cy is an
ellipsoidal set characterized by offline input-state trajec-
tory generated by the noisy system, requiring different
technical tools for the convex reformulation.

Remark 6 In case of noise-free and persistently ex-

-
citing data, i.e., ¢ = 0 and [U}LX?} has full row

rank, the data-driven min-max MPC problem (6) with-
out the input and state constraints (6d)-(6e) reduces to a
discrete-time linear quadratic regulator problem, as ex-
plored in [2-5]. In this case, the optimal state-feedback
gain F} remains constant and does not depend on the
state x;. However, in the presence of model uncertainty,
even without the input and state constraints, employing
areceding horizon algorithm and recalculating F' at each
sampling time shows significant performance improve-
ment compared to using a static state-feedback control
law. This is illustrated with a numerical example in Sec-
tion 5.1.

3.3 Closed-loop Guarantees

In the following theorem, we first establish the recursive
feasibility of the problem (7). Then, we use the optimal
solution of problem (7) to define a Lyapunov function
V(zy) = || H%; and prove robust stability for the result-
ing closed-loop system with any (A4, B) € C;. Finally, we
prove that the input and state constraints are satisfied
for the closed-loop trajectory.

Theorem 2 Suppose Assumption 1 holds. If the opti-
mization problem (7) is feasible at time ¢ = 0, then

i) the optimization problem (7) is feasible at any time
t e ]I[l,oo);

ii) the set Egpr := {z € R" : V(x) < )\Cée(?Q)} is ro-

bustly stabilized for the closed-loop system xy41 =




(A+ BF})xy + wy with any (A, B) € Cy;

iii) the closed-loop trajectory of w411 = (A+ BEF} )z +
w; with any (A4, B) € C; satisfies the constraints,
e, [lutlls, <1, |lzells, <1foralltels.

PROOF. The proof is composed of four parts. Part I
proves the lower bound and upper bound on the Lya-
punov function V(z;). Part II proves recursive feasibil-
ity of the problem (7). Part III establishes the robust
stability of the set Egpr and Part IV shows that the in-
put and state constraints are satisfied for the closed-loop
trajectory.

Part I: First, we derive an upper bound and lower bound
on V(x;). As we have shown in Theorem 1, ||z;]|% with
any feasible solution P of the LMIs (7b)-(7d) is an upper
bound on the optimal cost of (6). Thus, V(z;) = th||%;

is an upper bound on the optimal cost of (6). Thus, we
have

V(@) > UWug, w0) > [l][)- (23)

In the proof of Theorem 1, we have shown that any fea-
sible solution of problem (7) satisfies the inequality (15).
Thus, V (z¢) is upper bounded by c||z¢||3. Since @ > 0,
we have cf|z¢[|3 < 55y [lz[[3- Thus,

V(ze) < cllaf} < \ (24)

mHIfHQ

Part II: In the following, we prove recursive feasibility
of the problem (7). Assuming problem (7) is feasible at
time ¢, we have shown in the proof of Theorem 1 that the
inequality (16) holds for v/, Fy, PF and any (A, B) € Cy.
Pre-multiplying (16) with [;{;t w, } and post-multiplying

.
(16) with [xt wt—'—] , we have

(A4 BF )z, 4w " Pr[(A+ BE)zy + wy]
<— 2/ (Q+ FTRFE )z + cw/ wy

T px
—x, Plzy

(25)
for any 2, € R", w, € R™ and (A, B) € Cy. Since 441 =
(A+ BF})xt + wy and wy satisfies the Assumption 1, we
have that

—2] (Q + F}TRF} )y + cw, wy
< —||xt||2Q + c€?.

sl — zel3e <
(26)
By the upper bound on V(z;) = ”xt”%’? in (24), the
inequality (26) implies
Amin(Q)
c

sl = el < - el + et (21)

Subtracting )\ (Q) from both sides of the inequality

(27) and addlng thHP: on both sides, we have

2¢? )\Inin 2.2
vl =5 gy <0 Dl =5 )
(28)

We define a set Erpa = {x € R" : V(x) < g} and
separate the state x; into two cases to show recursive
feasibility for the problem (7).

Case I: The state is outside the robust positive invariant
(RPI) set, i.e., 2+ € Eroa\Erpr- As ¢ > Anin(Q), we

derive 1 > 1— Ai() > 0. By the definition of Egpy and

2
Eroa, we have V(mt) = thHPJ € ()\Hcie@)7 vo]- Thus,
the inequality (28) implies
2.2 2.2
9 c’e 9 c’e
Toa1]|Br — ————— < [|2g||Br — ————.
|| t+ ||Pt )\min(Q) || Z‘/”Pt )\min(Q)
We further derive
ool < lalide < (29)

The only constraint in the problem (7) that depends
explicitly on the measured state x; is the inequality (7b).
The inequality (29) implies that the feasible solution of
the optimization problem (7) at time ¢ is also feasible at
time ¢ + 1. This argument can be continued to establish
feasibility for any time ¢ € Ij; ).

Case II: The state is in the RPI set, i.e., z; € Erpy.
By the definition of Egpr, we have V(x) = ||1Ut||%:; <

mm(Q) Plugging V (z;) < riﬁ(zQ) into the inequality

(28), we derive

c2e?

[ FWN(a)] <0. (30)

mm(QwH{H = Hi Ly, =
L}, 7l , = 7/ is a feasible solution of problem (7) at
time ¢ 4 1.

Therefore, 7,

Part ITI: Now we prove robust stability of the set Egp;.
Since P}, = 771 (Hf )" is the optimal solution of
problem (7) at time ¢ + 1 while P} is a feasible solution,
we have

V(zerr) = leeallp;, | < llzeal?, (31)
When the state is outside the RPI set, ie., x; €

Eroa\Erpr, we derive the following inequality using
(28) and (31)

V(241)—



Since 1 > 1 — 2mnl@ 5 0 the inequality (32) implies
that all states in Ego 4 converge exponentially to the set
Erpr. When the state is in the RPI set, i.e., z; € Erpr,
we have

c2e?

Amin(CZ) ’

which implies that the state x4y stay inside the RPI set
Erpr. Thus, the set Egpy is robustly stabilized for the
closed-loop system x441 = (A + BF})z; + w; with any
(A, B) S Cf.

V(@e1) < llze By < (33)

Part IV: Finally, we prove that the input and state
constraints are satisfied for any closed-loop trajectory
with (A4, B) € Cy.

By constraint (7b), we have z, € & = {z € R" :
2|3+ < 7} Given that the input is in a state-feedback
form, we can write the input constraint (2a) as

2 2
max [|uel|s, = max||Fyzs, <1.

For any state z; € &, the state z;41 = (A+ BF})xi+wy
lies inside the set & at the next time step. Thus, the
input constraint (6d) can be written as

* 2 < * 012 < 1.
max [[Fyz s, < max||Ffzs, <1 (34)

T
>0,
holds for all  such that

.
x x

> 0.
Using the S-procedure [31], if there exists A; > 0 such
that

The inequality (34) holds if

il

TS, FF 0
0 1

—P; 0
0 9

—F TS, Fr 0 —Pr 0
0 1 0

then the input constraint (6d) must be satisfied. The
inequality (35) holds iff the following inequalites hold

MNPy — FFTS,Fr =0, (36a)
1= Xnf >0 (36b)

Without loss of generality, we choose the multiplier to
be \; = 7—1* Multiplying both sides of (36a) with H},

the inequality (36a) is equivalent to

Hf — LS, L; = 0. (37)

Using the Schur complement, the inequality (37) is
equivalent to

Hy L'
Ly s,

Similarly, the state constraint (6e) can be written as

= 0. (38)

2 < 2 <1,
max [lo.[[3, < max|le3, <

Thus, the state constraint (6e) holds if z T S,z < 1 holds
for all x such that 2" PFx < ~7. The statement holds if
S, = (vF)~1Pr. Multiplying H;} from left and right, we
have

H!S,H < H}. (39)
Using the Schur complement, the inequality (39) is
equivalent to (7f). Thus, if problem (7) is feasible at
time ¢, then the input and state constraints are satisfied
for the closed-loop system at time ¢. Since the prob-
lem (7) is recursively feasible, the closed-loop system
zi41 = (A+ BF})x, +w, with any (A, B) € Cy satisfies
the input and state constraints (2). O

Remark 7 Theorem 2 shows that if the optimization
problem (7) is feasible at initial time ¢ = 0, then the
closed-loop trajectory converges robustly and exponen-
tially to the RPI set Egps for the closed-loop system
with any (A, B) € Cy. The idea is to construct a Lya-
punov function V satisfying the inequality (26). The size
of the RPI set depends on the optimal solution of prob-
lem (7) at time ¢ = 0, the pre-chosen constant ¢ and the
noise bound e. Furthermore, Theorem 2 shows that the
input and state constraints are satisfied for the closed-
loop system. This is achieved via a Lyapunov function
sublevel set & inside the constraints that contains the
state. Since (As, Bs) € Cy, the closed-loop trajectory of
(1) is robustly stabilized and satisfy the input and state
constaints.

Remark 8 The length of the offline data influences the
close-loop system performance. A longer offline data se-
quence may lead to smaller volume of the set Cy, hence
leading to a better closed-loop performance. However,
this leads to a higher computational complexity. As the
length of offline input-state measurements 7' increases,
the computational complexity of problem (7) increases
due to the decision variable 7 € R77. It is possible to use
different choices of multipliers which reduce the com-
putational complexity at the cost of additional conser-
vatism, see [4, Section V.B]. For example, when impos-
ing the additional condition 7; = 7,Vi € I|; 1, for some
7 > 0, the number of decision variables of problem (7)
is independent of the data length.

4 Adaptive Data-driven Min-Max MPC

The data-driven min-max MPC scheme proposed in the
previous section employs only an offline input-state data



sequence to characterize consistent systems matrices for
prediction. During online operation, the collection of ad-
ditional online data can improve performance especially
when offline data are inadequate. To this end, in the
present section, we propose an adaptive data-driven min-
max MPC scheme using both offline and online data.

4.1 Adaptive Data-driven Min-Max MPC Problem

The online input-state measurements collected in the
closed loop from initial time 0 until time ¢ are denoted by

Uy := [UO wy ... ut_l} 5

X = [.’1?0 T .’Et}

The set of system matrices (A, B) consistent with the
online data xy, us, x441 is defined by

%7:={(A, B):(1) holds for some w; satisfying||w:||2 <€} .

which can be characterized using the same manner as in
equation (3). The set of system matrices consistent with
the offline input-state sequence (Uy, Xf) and the online
input-state sequence (Uy, X}) is updated recursively by

Cio1NXPy, telh o
C; = ’ 40
K {Cf, t=20 (40)

where C; is characterized by (4). The set C; can also be

written as

t—1
a=(%n ()%
i=1 =0

We can characterize C; by the following inequality

-
[I A B} (I () + I, (6)) [I A B} =0,
G = (A’ B) V1= (TQ, ey TTf—l), 7,2>0,1 € H[O,Tffl] )
Vo= (507 s 751571)7 62 2072 € ]I[O,t—l]
(41)
where IT;(7) is defined as in equation (5) using the offline
input-state sequence and I1,(d) is defined by

-
Iz Iz
t—1 i+1 621 0 1+1
M,(8) = 6 |0 —a? 0 —a| . (42)
i=0 0 —I

o o
0 —ug 0 —uyg

Given the offline input-state sequence (U, X ) of length
T}, the online input-state sequence (U, X;), the current

state xy, the adaptive data-driven min-max MPC opti-
mization problem is formulated as follows:

o0

J5(z¢) :=min max

W (t), T (t 4
alt) (A,B)ec, & (ur(t), Zx (1)) (43a)

st Tpy1(t) = AZg(t) + Bug(t), (43b)
To(t) = 4, (43¢)
Jutlls, < 1,Vt € I>o, (43d)
lzells, <1,¥(A,B) € Cy,t €59, (43e)

Different from the data-driven min-max MPC problem
(6), the objective function (43a) is a minimization of
the worst-case cost over all consistent system matrices
in C;. The set C; is recursively updated using the input-
state measurements collected online by (40). The state
prediction, the initial state constraint and the input and
state constraints remain the same as the data-driven
min-max MPC problem.

4.2 Reformulation based on LMIs

To derive a tractable solution, we consider a state feed-
back control law @ (t) = F;Z(t) in problem (43), where
F; € R™*™ is the optimized state-feedback gain at time
t. In the following, we formulate an SDP to derive a state-
feedback control law that minimizes an upper bound on
the optimal cost of (43) employing analogous techniques
as in Section 3.

At time ¢ € I[j ), given offline input-state measure-
ments (Uy, X¢) and online input-state measurements
(U, X¢), an initial state x; € R™ and a constant ¢ >
Amin (@), the SDP is formulated as follows:

minimize 5 (44a)
v>0,HERn*n LeRm*n rcRTF SRt
s.t. (7b), (7e) and (7f) hold, (44b)
H+2I0 0
0 ¢ + 10 () +1,(0) |[H| O

L <0,

0 H L] —H o7

0 ® —9I
(44c)
T:(To,...,TTf,1>7TZ‘ ZO,V’L'E]I[()_’Tffl], (44d)
5:(507...,(5},1),52' >0,Vi € ]I[O,t—l]' (446)

The optimal solution of the optimization problem (44)
at time ¢ is denoted by ~;, Hf, L}, 7/, df , providing the
optimal state-feedback gain Fy* = Ly (H})™%.

Similar to Theorem 1, given the state z;, we can show
that the optimal cost of problem (43) is guaranteed
to be at most ||z;||% with P = v(H)™! and |z;]|% is



upper bounded by v if (7b) and (44c)-(44d) hold for
v, H, L, 7,§. Therefore, problem (44) minimizes an upper
bound on the optimal cost of the adaptive data-driven
min-max MPC problem (43).

We solve the SDP problem (44) in a receding horizon
manner, see Algorithm 2. At time ¢ = 0, we solve the
optimization problem (7) and implement the first com-
puted input u; = F}*x;. At the next sampling time ¢ + 1,
we measure the state z;11. With the collection of on-
line input-state data ¢, us, x¢41, we adapt the set of
consistent system matrices C; by (41). A new optimiza-
tion variable §; > 0 is introduced to the optimization
problem (44) and the constraint (44e) is updated. Ad-
ditionally, we update the the constraint (44c) by incor-
porating the collected online input-state measurements
X, Ut, Te41 and variable d; into I1,(4). Then we solve the
problem (44) and iterate the above procedure.

Algorithm 2 Adaptive data-driven min-max MPC
scheme.
1: Input: (Uys, X¢), Q, R, Sg, Su, ¢
At time ¢t = 0, measure state xg
Solve the problem (44)
Apply the input u; = Fyay
Set t =t 4+ 1 and measure state x;
Update the constraints (44c) and (44e)
Go back to 4

In the following theorem, we show recursive feasibility
of the problem (44) and robust stability for the closed-
loop system (1) resulting from the adaptive data-driven
min-max MPC scheme.

Theorem 3 Suppose Assumption 1 holds. If the opti-
mization problem (7) is feasible at time ¢ = 0, then

i) the optimization problem (44) is feasible at any time
te ]I[l,oo);

ii) the set Egpr := {x € R™ : V(2) < %ﬁf@} is ro-
bustly stabilized for the closed-loop system (1) re-
sulting from Algorithm 2;

iii) the closed-loop trajectory of (1) resulting from Al-
gorithm 2 satisfies the constraints, i.e., ||us, <
1, ||zells, <1 foralltelsg.

PROOF. The proof is similar to that of Theorem 2;
hence, we only provide a sketch. The difference is that a
new optimization variable is introduced to the problem
(44) at each time step. To prove recursive feasibility,
suppose the optimal solution of the problem (44) at time
tis~y, HY, Ly, 7}, 65. When the state is outside the RPI
set, i.e., x; € Eroa\Erp1, we define a candidate solution
of problem (44) at time ¢t + 1 as follows:

/ _x / I / _rx I % 5/ _
Yer1 =" Hypn=H{ Ly =L, 7y 1 =T} 75t+1— {5?,0] :

10

When the state is inside the RPI set, i.e., z; € Egrpr, we
define a candidate solution of problem (44) at time ¢ + 1
as follows:

c2e?

! ! * ! * A * !
o= B —H L ,=L' 7. =17, :[5* 0}.
t+1 )\mln(Q) t+1 t t+1 t t+1 t t+1 t

Constraint (44c) is trivially satisfies with the defined
candidate solution in these two cases.

The satisfaction of (7b) and (44c)-(44e) implies that (16)
is satisfied for any (A, B) € C;. The set C; is recursively
updated over time. Based on its definition, the uncer-
tainty set C; satisfies (As, Bs) € Ciq41 C C; for all t € N.
As t approaches infinity, we can establish that (16) holds
for any (A, B) € C;, where the true system matrices al-
ways lie within this set. Using (16), we can show robust
stability and constraint satisfaction for the closed-loop
system (1) following the same steps as Theorem 2. O

Remark 9 As the online input-state measurements are
collected and C; is recursively updated, the uncertainty
due to the set C; never increased and may possibly
decreases. Thus, the closed-loop performance resulting
from the adaptive data-driven min-max MPC scheme is
no worse than the approach in Section 3.

Remark 10 The adaptive data-driven min-max MPC
scheme directly incorporates new data to the SDP prob-
lem (44), which increases the computational complex-
ity due to the introduction of a new optimization vari-
able d; in problem (44) at each time step. One possi-
ble method to reduce the computational complexity is
to stop adding new data when the closed-loop perfor-
mance is satisfactory. Alternatively, one can recursively
compute an outer approximation of the set C; using the
previous uncertainty set along with the newly collected
data at time ¢. Possible methods for computing an outer
approximation have been investigated in [7,48].

5 Simulation

In this section, we demonstrate the effectiveness of the
proposed data-driven min-max MPC schemes through
two numerical examples. First, we implement the pro-
posed MPC schemes in Sections 3 and 4 on a continuous
stirred-tank reactor (CSTR). Both schemes have good
closed-loop performance and the adaptive scheme shows
performance improvement compared to the approach in
Sections 3. Second, we compare the proposed approach
with the robust data-driven MPC scheme based on the
Fundamental Lemma from [22]. Simulation results illus-
trate that our scheme is less conservative and achieves
better closed-loop performance.



5.1 Implementation of the Proposed MPC Schemes

We consider the linearization of the nonlinear CSTl_li
consider in [49], which is linearized at [0.9831, 0.3918}

and discretized with a sampling time 0.5 seconds. The
linearized system is given by

Ty + U + Wy,

0.9749 —0.0135
Ti41 =
0.0004 0.9888

- [0.041

(45)
where the noise satisfies Assumption 1, i.e., w; € {w €
R? : |lw||2 < 1073}. The system matrices are unknown,
but an offline input-state trajectory (U, Xs) of length
Tty = 15 is available, where the input v € Uy is cho-
sen uniformly from the unit interval [—10, 10]. Moreover,
the input and state constraints are given by ||u¢||s, <1
and |z¢|ls, < 1, where S, = 0.01,S, = 100/. We
choose the weighting matrices of the stage cost func-
tion by Q = 0.011, R = 10~*. The initial state is given
as 19 = [0.04,—0.04]". We apply the proposed MPC
schemes in Sections 3 and 4 to the system (45), respec-
tively.

Figure 1 illustrates the closed-loop input and state tra-
jectories resulting from the application of the proposed
data-driven min-max MPC schemes and the static state-
feedback control law. The static state-feedback gain is
computed at time ¢ = 0 of the data-driven min-max
MPC scheme in Section 3, as explained in Remark 6.
For all three approaches, closed-loop state trajectories
converge to a neighborhood of the origin. Note that the
input and state constraints are satisfied in the closed-
loop operation. The inputs does not get close to the con-
straint boundary, which can be attributed to the conser-
vatism due to two factors: first, we only optimize over
state-feedback inputs, and second, the reformulation of
the constraints may be conservative. Comparison of the
closed-loop input trajectories reveals that the state and
input trajectory of the proposed schemes converges to
a region closer to the origin compared with the static
state-feedback control law. Table 1 presents the sum of
closed-loop stage costs over all 300 iterations and the av-
erage computational time per iteration for the proposed
data-driven min-max MPC schemes and the static state-
feedback control law. The closed-loop cost of the adap-
tive data-driven min-max MPC scheme is smaller than
the other two, while the average computational time per
iteration is larger than the scheme in Section 3.

Table 1
Closed-loop cost and average computation time.
cost | time (s)
static feedback | 0.0068 -
scheme in Sec.3 | 0.0059 | 0.0501
scheme in Sec.4 | 0.0040 | 0.1212
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Fig. 1. Closed loop trajectories under the proposed data—
driven min-max MPC schemes: (a) Closed-loop state x(1).
(b) Closed-loop state x(2). (c) Closed-loop input u.

5.2 Comparison to the Data-driven MPC Schemes in
literature

In this section, we contrast our data-driven min-
max MPC scheme with the data-driven MPC scheme
from [22], which relies on the Fundamental Lemma and



includes a constraint tightening guaranteeing robust
constraint satisfaction. While our approach incorpo-
rates ellipsoidal constraints, [22] employs hypercube
constraints. To facilitate a comparative analysis, we
implement both schemes on a scalar system

Ti41 = ].].l't + 05Ut + W, (46)
where the noise satisfies w; € {w € R : ||lwl||2 < €} with
¢ = 107%. The input and state constraints are |us| <
2 and |z¢| < 2. An input-state trajectory (U, Xs) of
length Ty = 20 is available. The weighting matrices of
the stage cost function are @ = 1, R = 0.1. The initial
state is given as zg = —1.

We apply the proposed data-driven min-max MPC
scheme and the data-driven MPC scheme in [22]. While
our approach accounts for process noise in the system
described by (46), [22] focuses on measurement noise.
To translate the bound on process noise into a bound
on measurement noise as required for [22], we use the
fact that process noise bounded by € results in measure-

ment noise bounded by Zi:ol Ale at time k. Figure 2
illustrates the closed-loop input and state trajectories
resulting from the application of both schemes. The in-
put and state trajectories from both schemes converges
to a neighborhood of the origin and satisfy the input
and state constraints. The sum of closed-loop stage
costs over all 20 iterations for the proposed data-driven
min-max MPC scheme is 9.58% lower than that for
data-driven MPC scheme in [22].

We now increase the bound on the noise and implement
both schemes as explained above. When € approaches
0.0005, the approach from [22] becomes infeasible. In
contrast, the proposed MPC scheme remains feasible
and robustly stabilizes the system for € up to 0.02. This
result shows that our proposed data-driven min-max
MPC scheme exhibits less conservatism compared to the
approach in [22], allowing for stability and constraint
satisfaction guarantees with higher noise levels. Further,
as shown in Section 4, it allows to employ online data in
order to improve closed-loop performance, which is not
easily possible for the approach from [22].

6 Conclusion

In this paper, we present a data-driven min-max MPC
scheme that uses noisy input-state data to design state-
feedback controllers for unknown LTI systems. We re-
formulate the data-driven min-max MPC problem with
ellipsoidal input and state constraints as an SDP. A
receding-horizon algorithm is proposed to repeatedly
solve the SDP at each time step and obtain a state-
feedback gain. We establish that the proposed scheme
guarantees closed-loop recursive feasibility, constraint
satisfaction and robust stability for any systems consis-
tent with the noisy input-state data. Furthermore, we
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Fig. 2. Closed loop trajectories under the proposed data—
driven min-max MPC scheme and the robust constraint
tightening data-driven MPC scheme in [22]: (a) Closed-loop
state z. (b) Closed-loop input u.

propose an adaptive data-driven min-max MPC scheme
that employing online collected input-state data to im-
prove closed-loop performance when the offline data are
insufficient. We establish that the resulting closed-loop
trajectory satisfies the input and state constraint and is
robustly stabilized. Two numerical examples show that
the adaptive scheme indeed improve the closed-loop per-
formance compared with the robust scheme, and our
proposed data-driven min-max MPC scheme exhibits
less conservatism than the robust constraint tightening
MPC scheme in the literature In the future, we plan to
investigate the data-driven min-max MPC scheme using
noisy input-output data. Further, extending our results
to nonlinear systems is another interesting direction.
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