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HÖLDER REGULARITY FOR DEGENERATE PARABOLIC

DOUBLE-PHASE EQUATIONS

WONTAE KIM, KRISTIAN MORING, AND LAURI SÄRKIÖ

Abstract. We prove that bounded weak solutions to degenerate parabolic
double-phase equations of p-Laplace type are locally Hölder continuous. The
proof is based on phase analysis and methods for the p-Laplace equation. In
particular, the phase analysis determines whether the double-phase equation
is locally similar to the p-Laplace or the q-Laplace equation.

1. Introduction

We consider parabolic double-phase equations whose prototype is

∂tu− div
(
|∇u|p−2∇u+ a(x, t)|∇u|q−2∇u

)
= 0

for 1 < p < q < ∞ and a nonnegative Hölder continuous coefficient function a.
More precisely, in this paper we consider equations of type

∂tu− divA(x, t, u,∇u) = 0 in ΩT ,(1.1)

where the vector field A satisfies appropriate structure conditions of double-phase
type with a ∈ Cα,α2 (ΩT ,R≥0) defined in Section 2. Here we focus on the range

(1.2) 2 ≤ p < q ≤ p+ α.

The theory for elliptic double-phase problems is well understood. As relatively
recent developments we mention that Harnack’s inequality for minimizers of func-
tionals with non-standard growth was shown in [2]. Regularity properties for so-
lution and its gradient were studied without boundedness assumption in [10], and

with boundedness assumption local C1,β-regularity was proved in [9]. We stress
the fact that the condition q ≤ p + α in [9] is the same as here in (1.2), and the
optimality of the range was demonstrated in [17]. For related results in the elliptic
case, we refer also to [1, 3, 10, 12].

In the parabolic case, gradient regularity has been studied in terms of higher
integrability in [18, 20]. For questions on existence, uniqueness and assumptions
on energy space, we refer to [8, 19, 23]. We also mention that an approach towards
Harnack’s inequality has been suggested in [6]. However, many regularity questions
are still open. In the present paper, we address such a problem by showing that
weak solutions to (1.1) are Hölder continuous in the range (1.2).

The results on local Hölder continuity for parabolic p-Laplace type equations go
back to the results by DiBenedetto [13] in the degenerate case and by DiBenedetto
and Chen [7] in the singular case. The treatment of both cases can be found in
the monograph [14], in which the proof relies on DeGiorgi type iteration argument
based on energy and logarithmic estimates for truncations of solutions. For more
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recent developments of the proof technique, we refer to [16] and [21]. Moreover,
local Hölder continuity has been shown for several other nonlinear parabolic PDEs,
e.g. for porous medium type equations in [15, 16, 21] and for doubly nonlinear
equations in [4, 5, 22].

At this stage we state our main result. For a compact subset K ⊂ ΩT , we denote
an intrinsic parabolic q-distance to the parabolic boundary ∂pΩT = (Ω × {0}) ∪
(∂Ω× [0, T )) by

distq(K,Γ) = inf
(x,t)∈K

(y,s)∈∂pΩT

{
|x− y|+ (1 + ‖a‖∞)

1
q ‖u‖

q−2
q

∞ |t− s|
1
q

}
.

Theorem 1.1. Let u be a bounded weak solution to (1.1) according to Definition 2.1
such that (2.1) and (2.2) are in force. Then u is locally Hölder continuous in ΩT .
Moreover, there exist c > 0 and β ∈ (0, 1) depending only on n, p, q, α, C0, C1, [a]α
and ‖u‖∞ such that for any compact set K ⊂ ΩT

|u(x1, t1)− u(x2, t2)| ≤ c


 |x1 − x2|+ (1 + ‖a‖∞)

1
q ‖u‖

q−2
q

∞ |t1 − t2|
1
q

min{1, distq(K, ∂pΩT )}




β

holds for every pair of points (x1, t1), (x2, t2) ∈ K.

The overall strategy of the proof is based on measure theoretic alternatives to-
gether with DeGiorgi type iteration argument as in [14, 25]. In order to apply this
method, we pose a suitable criterion to be able to reduce the energy estimates of
the equation to estimates of either the p-Laplace or the q-Laplace equation.

The cylinders we consider are of the form

(1.3) Q̺,θ̺̺2(x0, t0) = B̺(x0)× (t0 − θ̺̺
2, t0),

in which

θ̺ =
(
ω

̺

)2((ω
̺

)p
+ a(x0, t0)

(
ω

̺

)q)−1

,

where ω denotes an upper bound for the oscillation of the solution u in the very
cylinder (1.3). The quantity θ̺ reflects an appropriate pointwise intrinsic scaling
parameter with respect to the solution to the double-phase problem in our context.
Moreover, we separate the cases where the energy estimates of (1.1) in Lemma 3.1
behave like a p-Laplace or a q-Laplace equation in a given cylinder, i.e., where

(1.4) a(x0, t0)
(
ω

̺

)q
≤ K

(
ω

̺

)p
,

or the negation (>), respectively, holds true. The constant K in (1.4) depends on
the Hölder coefficient of a as well as the quantity ‖u‖q−p

∞ , see (4.3). With this choice
we can further show that in the q-phase a(x, t) is comparable to the value a(x0, t0)
in the considered cylinder, as shown in Lemma 4.1. Then the aim is to use (1.4)
and its alternative to transform Caccioppoli inequality, Lemma 3.1, to correspond
either parabolic p-Laplace or q-Laplace equation, respectively, in the iteration.

In this paper, we consider solutions which belong to the space Lq(0, T ;W 1,q(Ω))∩
L∞(ΩT ) by assumption. The first condition on the Sobolev space property is a
somewhat stronger assumption compared to what is considered to be the natural
energy space, but we suppose it in order to avoid additional technical complications
in deriving energy estimates in Section 3. For relaxation of such an assumption,
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we encourage an interested reader to consult e.g. [19]. In connection to the second
condition, we note that the local boundedness of solutions to the double-phase
equation was studied in [24] in the context of problems with non-standard growth
(see also [11] for the elliptic case). In the present paper, we consider solutions that
are bounded by definition, as it may occur that the range of q in (1.2) is beyond
the range considered in [24] when α is close to 1.

2. Preliminaries

2.1. Notations and definition of solution. Let Ω ⊂ R
n be an open set for

n ≥ 2, T > 0 and denote ΩT = Ω× (0, T ). In (1.1) we suppose that A(x, t, u,∇u) :
ΩT ×R×R

n −→ R
n is a Carathéodory vector field satisfying the following structure

assumptions: there exist constants 0 < C0 ≤ C1 <∞ such that

|A(z, v, ξ)| ≤ C1(|ξ|
p−1 + a(z)|ξ|q−1),

A(z, v, ξ) · ξ ≥ C0(|ξ|
p + a(z)|ξ|q)

(2.1)

for almost every z ∈ ΩT and every pair (v, ξ) ∈ R× R
n.

Throughout the paper, we assume that 2 ≤ p < q < ∞ and the non-negative
coefficient function a : ΩT −→ R≥0 satisfies

q ≤ p+ α and a ∈ Cα,α2 (ΩT ,R≥0) for some α ∈ (0, 1].(2.2)

Here a ∈ Cα,α2 (ΩT ) means that a ∈ L∞(ΩT ) and that there exists a constant
[a]α <∞ such that

|a(x, t)− a(y, t)| ≤ [a]α|x− y|α and |a(x, t) − a(x, s)| ≤ [a]α|t− s|
α
2

for every (x, y) ∈ Ω and (t, s) ∈ (0, T ).
Next, we recall the definition of a weak solution to (1.1)

Definition 2.1. A measurable function u : ΩT −→ R with

u ∈ C(0, T ;L2(Ω)) ∩ Lq(0, T ;W 1,q(Ω))

is a weak solution to (1.1) if

¨

ΩT

(−u∂tϕ+A(x, t, u,∇u) · ∇ϕ) dxdt = 0

for every ϕ ∈ C∞
0 (ΩT ).

In particular, this paper considers a weak solution to (1.1) with the boundedness
assumption, that is,

‖u‖∞ = ‖u‖L∞(ΩT ) <∞.

For simplicity, we denote the constant dependency c(data) if a constant c > 0
depends (at most) on

n, p, q, α, C0, C1, [a]α, ‖u‖∞.

Furthermore, instead of ess inf, ess sup and ess osc we simply write inf, sup and osc.
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2.2. Auxiliary results. In this section we state some standard results that are
useful in the proof. First, we state a lemma on fast geometric convergence and
DeGiorgi’s isoperimetric inequality [14, Chapter I, Lemma 4.1 & Lemma 2.2].

Lemma 2.2. Suppose that {Yi}i∈N0 is a sequence of positive real numbers that
satisfy

Yi+1 ≤ CBiY 1+σ
i for all i ≥ 0,

with constants C, σ > 0 and B > 1. Then Yi → 0 as i→ ∞ whenever

Y0 ≤ C− 1
σB− 1

σ2 .

Lemma 2.3. Let k < l be real numbers and B̺(xo) ⊂ R
n. Then for every v ∈

W 1,1(B̺(xo)) there exists a constant c(n) > 0 such that

(l − k) |B̺(xo) ∩ {v > l}| ≤
c̺n+1

|B̺(xo) ∩ {v < k}|

ˆ

B̺(xo)∩{k<v<l}

|∇v| dx.

We will also exploit the following embedding, see e.g. [14, Chapter I, Corollary
3.1].

Lemma 2.4. For 1 < p <∞, let V p(ΩT ) be the function space

V p(ΩT ) = L∞(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω))

with the norm

‖v‖V p(ΩT ) =

(
sup

0<t<T

ˆ

Ω

|v(x, t)|p dx+

¨

ΩT

|∇v|p dxdt

) 1
p

.

Then for any v ∈ V p(ΩT ), there exists c(n, p) such that

‖v‖pLp(ΩT ) ≤ c|{ΩT : |v| 6= 0}|
p

n+p ‖v‖pV p(ΩT ).

3. Energy bounds

In this section we provide two energy estimates. The first estimate is the Cac-
cioppoli type inequality.

Lemma 3.1. Let u be a weak solution to (1.1). Suppose Qr,s(zo) = Br(xo)× (to −

s, to) ⊂ ΩT with r, s > 0 and s < r2. Let ϕ be a Lipschitz continuous function
vanishing on ∂Br × (to − s, to) with 0 ≤ ϕ ≤ 1. Then for k ∈ R with |k| ≤ ‖u‖∞,
there exists a constant c(data) such that

sup
t∈(to−s,to)

ˆ

Br(xo)

(u− k)2±ϕ
q dx

+

¨

Qr,s(zo)

(|∇((u − k)±ϕ
q
p )|p + a(z)|∇((u− k)±ϕ)|

q) dxdt

≤ c

¨

Qr,s(zo)

((u − k)p±(|∇ϕ|
p + rα|∇ϕ|q) + a(z0)(u − k)q±|∇ϕ|

q) dxdt

+ c

¨

Qr,s(zo)

(u− k)2±|∂tϕ
q| dxdt+ c

ˆ

Br(xo)×{to−s}

(u− k)2±ϕ
q dx.
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Proof. The mollified weak formulation can be written as

¨

ΩT

∂tuεϕ+ (A(x, t, u,∇u))ε · ∇ϕdxdt = 0.

Suppose that ϕ is given as in the assumptions and let η(t) = ηh(t) be a piecewise
affine approximation of the characteristic function χ(t1,t2) with parameter h, in
which to− s < t1 < t2 < to. Then, by testing with ϕq(x, t)ηh(t)(uε −k)+ we obtain
for the parabolic part

¨

ΩT

∂tuεϕ
qη(uε − k)+ dxdt = −

1

2

¨

ΩT

(η∂tϕ
q + ∂tηϕ

q)(uε − k)2+ dxdt.

Consequently, we get

¨

ΩT

∂tuεϕ
qη(uε − k)+ dxdt

ε→0
−−−→ −

1

2

¨

ΩT

η∂tϕ
q(u− k)2+ dxdt−

1

2

¨

ΩT

∂tηϕ
q(u − k)2+ dxdt = I + II.

Recalling η is a approximation of χ(t1,t2), there holds

II
h→0
−−−→ −

1

2

ˆ

Ω×{t1}

ϕq(u− k)2+ dx+
1

2

ˆ

Ω×{t2}

ϕq(u − k)2+ dx.

For the divergence part we obtain

¨

ΩT

η(A(x, t, u,∇u))ε · ∇(ϕq(uε − k)+) dxdt

ε→0
−−−→

¨

ΩT

ηA(x, t, u,∇u) · ((u − k)+∇ϕ
q + ϕq∇(u− k)+) dxdt.

It follows from (2.1) that

¨

ΩT

ηA(x, t, u,∇u) · ((u − k)+∇ϕ
q + ϕq∇(u− k)+) dxdt

≥ C0

¨

ΩT

ηϕq(|∇(u − k)+|
p + a(z)|∇(u − k)+|

q) dxdt

− C1q

¨

ΩT

ηϕq−1|∇ϕ|(u − k)+

× (|∇(u − k)+|
p−1 + a(z)|∇(u − k)+|

q−1) dxdt

= III− IV.

Furthermore, by Young’s inequality and the fact 0 ≤ ϕ ≤ 1, we have

IV ≤
C0

2

¨

ΩT

ηϕq(|∇(u − k)+|
p + a(z)|∇(u− k)+|

q) dxdt

+ c

¨

ΩT

η((u − k)p+|∇ϕ|
p + a(z)(u− k)q+|∇ϕ|

q) dxdt
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for some c(p, q, C0, C1). On the other hand, since we have by (2.2) that a(z) ≤
a(z0) + [a]αr

α, and (u− k)q+ ≤ (3‖u‖∞)q−p(u− k)p+, there holds
¨

Qr,s(z0)

a(z)(u− k)q+|∇ϕ|
q dxdt

≤ c

¨

Qr,s(z0)

((u − k)p+r
α|∇ϕ|q + a(z0)(u − k)q+|∇ϕ|

q) dxdt.

Combining the estimates and passing h→ 0 yields
ˆ

Br×{t2}

ϕq(u − k)2+ dx

+

¨

Br×(t1,t2)

ϕq(|∇(u − k)+|
p + a(z)|∇(u− k)+|

q) dxdt

≤ c

¨

Qr,s(z0)

(u− k)p+(|∇ϕ|
p + rα|∇ϕ|q) + a(z0)(u − k)q+|∇ϕ|

q dxdt

+ c

¨

Qr,s(z0)

|∂tϕ
q|(u− k)2+ dxdt + c

ˆ

Br×{t1}

ϕq(u − k)2+ dx.

Now we may pass to the limit t1 → to − s. By considering separately the terms
on the left hand side, we may take the supremum of t2 over (to − s, to) in the first
term and pass to the limit t2 → to in the second to conclude the claim.

The analogous calculations work if we take −ϕq(x, t)ηh(t)(uε − k)− as a test
function. �

The second estimate we introduce is the logarithmic estimate. For constants
s, k, ϑ with 0 < ϑ < s, we denote the non-negative function

ψ±
s,k,ϑ(τ) =

(
log

{
s

(s+ ϑ)− (τ − k)±

})

+

=




log

{
s

(s+ ϑ)± (k − τ)

}
if k ± ϑ ≶ τ ≶ k ± (s+ ϑ),

0 if τ T k ± ϑ.

Observe that the derivative function is also non-negative and defined as

(ψ±
s,k,ϑ)

′(τ) =





1

k − τ ± (s+ ϑ)
if k ± ϑ ≶ τ ≶ k ± (s+ ϑ),

0 if τ ≶ k ± ϑ.

Moreover, we also have

(ψ±
s,k,ϑ)

′′(τ) =
(
(ψ±

s,k,ϑ)
′(τ)

)2
.(3.1)

To simplify the notation, we write

s± = s±(k) = sup
Qr,s(z0)

(u − k)±.

and

ψ±(u) = ψ±
s±,k,ϑ ◦ u.(3.2)
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Lemma 3.2. Let u be a weak solution to (1.1). Suppose Qr,s(zo) = Br(xo) ×

(to − s, to) ⊂ ΩT with r, s > 0 and s < r2. Let ϕ be a Lipschitz continuous spatial
function vanishing on ∂Br with 0 ≤ ϕ ≤ 1. Then for k ∈ R with |k| ≤ ‖u‖∞, there
exists a constant c(data) such that

sup
t∈(to−s,to)

ˆ

Br(xo)

ϕq|ψ±(u)|2 dx

≤ c

¨

Qr,s(zo)

ψ±(u)
(
(ψ±)′(u)

)2−p
(|∇ϕ|p + rα|∇ϕ|q) dxdt

+ c

¨

Qr,s(zo)

a(z0)ψ
±(u)

(
(ψ±)′(u)

)2−q
|∇ϕ|q dxdt

+

ˆ

Br(xo)×{to−s}

ϕq|ψ±(u)|2 dx.

Proof. As in the proof of Lemma 3.1, we take 2ηhϕ
qψ±(uǫ)(ψ

±)′(uǫ) as a test
function to the mollified weak formulation. Then applying integration by parts to
the time derivative part, we get

¨

ΩT

∂tuǫ2ηϕ
qψ±(uǫ)(ψ

±)′(uǫ) dxdt

=

¨

ΩT

ϕqη∂t|ψ
±(uǫ)|

2 dxdt = −

¨

Qr.s(z0)

∂tηϕ
q|ψ±(uǫ)|

2 dxdt

By passing ǫ and h to 0, the time derivative part converges to

ˆ

Br(x0)×{t2}

ϕq|ψ±(u)|2 dx−

ˆ

Br(x0)×{t1}

ϕq|ψ±(u)|2 dx.

On the other hand, in order to estimate the spatial derivative part we first estimate
the p-Laplace part of the double-phase operator

¨

ΩT

|∇u|p−2∇u · ∇
(
2ηϕqψ±(u)(ψ±)′(u)

)
dxdt

=

¨

ΩT

η|∇u|p−2∇u · ∇u
(
2
(
(ψ±)′(u)

)2
+ 2ψ±(u)(ψ±)

′′

(u)
)
ϕq dxdt

+

¨

ΩT

η|∇u|p−2∇u · ∇ϕ
(
2qϕq−1ψ±(u)(ψ±)′(u)

)
dxdt

= I + II.

Applying (3.1), we have

I =

¨

ΩT

2η|∇u|p
(
1 + ψ±(u)

)(
(ψ±)′(u)

)2
ϕq dxdt.
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To estimate II, we use Young’s inequality to have

II ≥ −

¨

ΩT

2
(
η|∇u|pψ±(u)

(
(ψ±)′(u)

)2
ϕq
) p−1

p

× qη
1
p (ψ±(u))

1
p
(
(ψ±)′(u)

)1− 2(p−1)
p |∇ϕ|ϕ

q−p
p dxdt

≥ −

¨

ΩT

2η|∇u|pψ±(u)
(
(ψ±)′(u)

)2
ϕq dxdt

− c

¨

ΩT

ηψ±(u)
(
(ψ±)′(u)

)2−p
|∇ϕ|pϕq−p dxdt

for some c(p, q). Since the first term on the right hand side cancels the term in I,
we obtain

¨

ΩT

|∇u|p−2∇u · ∇
(
2ηϕqψ±(u)(ψ±)′(u)

)
dxdt

≥

¨

ΩT

2η|∇u|p
(
(ψ±)′(u)

)2
ϕq dxdt

− c

¨

ΩT

ηψ±(u)
(
(ψ±)′(u)

)2−p
|∇ϕ|p dxdt.

Similarly, we have the following estimate for the q-Laplace part of the double-
phase equation:

¨

ΩT

a|∇u|q−2∇u · ∇
(
2ηϕqψ±(u)(ψ±)′(u)

)
dxdt

≥

¨

ΩT

2ηa|∇u|q
(
(ψ±)′(u)

)2
ϕq dxdt

− c

¨

ΩT

ηaψ±(u)
(
(ψ±)′(u)

)2−q
|∇ϕ|q dxdt.

Moreover, since ϕ is supported in Qr,s(z0) with s < r2, it follows from (2.2) that
in the last term we may replace a(z) by a(z0) + [a]αr

α. On the other hand, since

|k| ≤ ‖u‖∞ gives ϑ < s± ≤ 3‖u‖∞, we get
(
(ψ±)′(u)

)p−q
≤ c‖u‖q−p

∞ and
¨

ΩT

ηaψ±(u)
(
(ψ±)′(u)

)2−q
|∇ϕ|q dxdt

≤ c

¨

ΩT

ηa(z0)ψ
±(u)

(
(ψ±)′(u)

)2−q
|∇ϕ|q dxdt

+ c

¨

ΩT

ηψ±(u)
(
(ψ±)′(u)

)2−p
rα|∇ϕ|q dxdt.

Combining all the estimates and passing t1 → to − s while taking t2 be arbitrary,
the conclusion follows. �

4. Reduction of oscillation

For simplicity, we denote (xo, to) = (0, 0) and let ̺ ∈ (0, 1) such that Q̺,̺2 ⊂ ΩT

and ω ∈ (0, 2‖u‖∞]. For A ≥ 4 to be determined later in Lemma 4.11, we further
assume

A
1

p−2 ̺ < ω.(4.1)
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By denoting a0 = a(0, 0), we write the scaling factor of the double-phase equation
at (0, 0) as

θr = θ(ω,r) =
(
ω

r

)2((ω
r

)p
+ a0

(
ω

r

)q)−1

.

Note that Aθ̺ ≤ 1 since Aθ̺ ≤ A
(
ω

̺

)2−p
and (4.1) hold. We suppose that Q is a

cylinder such that Q̺,Aθ(ω,̺)̺2 ⊂ Q ⊂ Q̺,̺2 ⊂ ΩT , let

µ
+ = sup

Q
u and µ

− = inf
Q
u

and suppose that µ+ − µ
− ≤ ω is satisfied together with

(4.2) µ
+ − µ

− > 1
2ω.

In this section we will analyze the phase of (1.1) by comparing
(
ω

̺

)p
with a0

(
ω

̺

)q
.

In fact, these two will appear in our arguments by estimating the right-hand side
of the Caccioppoli inequality in Lemma 3.1 further and the phase analysis will play
a role in determining an intrinsic geometry so that the embedding in Lemma 2.4
can be utilized. In the following lemma, we consider when the term with exponent
q is larger than the term with exponent p which corresponds to the (p, q)-phase in
[18, 20].

Lemma 4.1. Let K = max{1, 4[a]α‖u‖
q−p
∞ }. If K

(
ω

̺

)p
< a0

(
ω

̺

)q
holds, then we

have
a0
2

≤ a(z) ≤ 2a0 for all z ∈ Q̺,̺2 .

Proof. We claim that

inf
z∈Q̺,̺2

a(z) ≥ [a]α̺
α.

Otherwise, it follows from the assumption that

K
(
ω

̺

)p
< 2[a]α̺

α
(
ω

̺

)q
.

Here we used (2.2) to have

a0 ≤ inf
z∈Q̺,̺2

a(z) + [a]α̺
α < 2[a]α̺

α.

It follows that K < 2[a]α̺
p+α−q

ω
q−p. As 4[a]α‖u‖

q−p
∞ ≤ K, ̺ ∈ (0, 1) and

ω ≤ 2‖u‖∞, we have 4[a]α‖u‖
q−p
∞ < 21+q−p[a]α‖u‖

q−p
∞ which is a contradiction.

Therefore, the claim is true and from it we deduce that

sup
z∈Q̺,̺2

a(z) ≤ inf
z∈Q̺,̺2

a(z) + [a]α̺
α ≤ 2 inf

z∈Q̺,̺2

a(z).

The conclusion of the lemma follows from the above inequality. �

In the rest of the paper we suppose that

(4.3) K = max{1, 4[a]α‖u‖
q−p
∞ }.
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4.1. First Alternative. Let ν0 ∈ (0, 1). We say that the first alternative holds if
there exists some t∗ ∈ (−(A− 1)θ̺̺

2, 0) such that

(4.4)
∣∣Q̺,θ̺̺2(0, t∗) ∩

{
u ≤ µ

− + ω

4

}∣∣ ≤ ν0
∣∣Q̺,θ̺̺2

∣∣ .

Next, we state the DeGiorgi type lemma.

Lemma 4.2. There exists ν0(data) ∈ (0, 1) such that if (4.4) holds,

u > µ
− +

ω

8
a.e. in Q̺/(4K),θ̺/(4K)(̺/(4K))2(0, t

∗).

Proof. For the proof we consider the following cases:

(1) a0
(
ω

̺

)q
> K

(
ω

̺

)p
holds.

(2) a0
(
ω

̺

)q
≤ K

(
ω

̺

)p
holds.

Case (1). In this case, we observe that the term with exponent q dominates the
scaling factor and the time interval is estimated as in

(
ω

̺

)2(
a0

(
ω

̺

)q)−1

̺2 > θ̺̺
2 >

(
ω

̺/2

)2(
a0

(
ω

̺/2

)q)−1

(̺/2)
2
.

Using the above estimate, (4.4) becomes
∣∣Q̺/2,a−1

0 ω2−q(̺/2)q (0, t
∗) ∩

{
u ≤ µ

− + ω

4

}∣∣ ≤ 2n+qν0
∣∣Q̺/2,a−1

0 ω2−q(̺/2)q

∣∣.(4.5)

For each j ∈ N, define

(4.6)
̺j =

̺

4
+

̺

2j+2
,

Qj = Bj × Ij ,

Bj = B̺j ,

Ij = (t∗ − a−1
0 ω

2−q̺qj , t
∗).

Let 0 ≤ ϕj ≤ 1 be a Lipschitz function such that ϕj = 1 in Qj+1 and ϕj vanishes
on the parabolic boundary of Qj and

|∇ϕj | ≤ c
2j

̺
and |∂tϕj | ≤ c

2qja0ω
q−2

̺q
.(4.7)

Finally, let

kj = µ
− +

ω

8
+

ω

2j+3
.(4.8)

Since Q0 ⊂ Q̺,̺2 , it follows from Lemma 3.1 and Lemma 4.1 that

sup
t∈I0

ˆ

B0

(u− kj)
2
−ϕ

q
j dx+

¨

Q0

a0|∇((u− kj)−ϕj)|
q dxdt

≤ c

¨

Q0

(u − kj)
p
−(|∇ϕj |

p + ̺α|∇ϕj |
q) + a0(u− kj)

q
−|∇ϕj |

q dxdt

+ c

¨

Q0

(u− kj)
2
−|∂tϕ

q
j | dxdt

(4.9)

for some c(data). Note that the definitions of kj and µ
− imply

(u− kj)− ≤
ω

4
,
(
ω

4

)2−q

(u− kj)
q
− ≤ (u− kj)

2
− in Q.(4.10)
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Using (4.7), (4.10) and (1), the Caccioppoli inequality in (4.9) becomes

a−1
0

(
ω

4

)2−q

sup
t∈I0

ˆ

B0

((u− kj)−ϕj)
q dx+

¨

Q0

|∇((u − kj)−ϕj)|
q dxdt

≤ c
2qj

̺q

(
ω

4

)q¨

Q0

χ{Qj :u<kj} dxdt.

(4.11)

Next, we do a change of variables with ū(·, t∗ + t̄) = u(·, t∗ + t) and ϕ̄j(·, t
∗ + t̄) =

ϕj(·, t
∗ + t), where t̄ = t/(a−1

0 ω
2−q), and denote Q̄j = Bj × (t∗ − ̺qj , t

∗) and

Aj = Q̄j ∩ {ū < kj}. Then (4.11) becomes

sup
t̄∈(t∗−̺q

j ,t
∗)

ˆ

Bj

((ū − kj)−ϕ̄j)
q dx+

¨

Q̄j

|∇((ū − k)−ϕ̄j)|
q dxdt

≤ c
2qj

̺q

(
ω

4

)q¨

Q̄j

χAj dxdt,

(4.12)

where we replaced Q̄0 by Q̄j since ϕ̄j is supported there. As kj − kj+1 = ω

2j+4 , we
have

2−q(j+4)
ω

q|Aj+1| =

¨

Q̄j+1

(kj − kj+1)
qχ{ū<kj+1} dxdt

≤

¨

Q̄j+1

(kj − ū)qχ{ū<kj} dxdt

= ‖(ū− kj)−ϕ̄j‖
q
Lq(Q̄j)

.

Therefore, applying Lemma 2.4 and (4.12) gives

2−q(j+4)
ω

q|Aj+1| ≤ ‖(ū− kj)−ϕ̄j‖
q
Lq(Q̄j)

≤ c‖(ū− kj)−ϕ̄j‖
q
V q(Q̄j)

|Aj |
q

n+q

≤ c
2qj

̺q

(
ω

4

)q
|Aj |

1+ q
n+q .

(4.13)

By dividing the inequality above by |Q̄j+1| and denoting Yj = |Aj |/|Q̄j|, we have

Yj+1 ≤ c22qjY
1+ q

n+q

j .

Recall that Y0 ≤ 2n+qν0 holds by (4.5). By choosing C = c, B = 22q and σ = q
n+q

in Lemma 2.2, we have

u(x, t) > µ
− +

ω

8
a.e. in Q̺/4,a−1

0 ω2−q(̺/4)q (0, t
∗),

provided that

2n+qν0 ≤ c−
n+q
q 2

−2q (n+q)2

q2 .(4.14)

Case (2). The proof is analogous to the previous case. The only difference is
that we do the estimates in p-intrinsic cylinders. Indeed, by (2) we have

(
ω

̺

)2−p

̺2 > θ̺̺
2 >

(
ω

̺/(2K)

)2−p

(̺/(2K))
2
,
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and (4.4) can be written as
∣∣Q̺/(2K),ω2−p(̺/(2K))p(0, t

∗) ∩
{
u ≤ µ

− + ω

4

}∣∣

≤ (2K)n+pν0
∣∣Q̺/(2K),ω2−p(̺/(2K))p

∣∣ .

For the index j ∈ N, we replace (4.6) by

̺j =
̺

4K
+

̺

2j+2K
, Bj = B̺j , Ij = (t∗ − ω

2−p̺pj , t
∗), Qj = Bj × Ij

and take a Lipschitz function 0 ≤ ϕj ≤ 1 such that ϕj = 1 in Qj+1 and ϕ = 0 on
∂pϕj , with

|∇ϕj | ≤ c
2j

̺
and |∂tϕj | ≤ c

2pjωp−2

̺p
,(4.15)

where c(data). Again, for kj defined in (4.8) we have

sup
t∈I0

ˆ

B0

(u− kj)
2
−ϕ

q
j dx+

¨

Q0

|∇((u − kj)−ϕ
q
p

j )|
p dxdt

≤ c

¨

Q0

(u− kj)
p
−(|∇ϕj |

p + ̺α|∇ϕj |
q) + a0(u− kj)

q
−|∇ϕj |

q dxdt

+ c

¨

Q0

(u− kj)
2
−|∂tϕ

q
j | dxdt

for some c(data). Moreover, using

(u− kj)− ≤
ω

4
,
(
ω

4

)2−p

(u− kj)
p
− ≤ (u − kj)

2
−

along with (2) and (4.15), we get

(
ω

4

)2−p

sup
t∈I0

ˆ

B0

((u − kj)−ϕ
q
p

j )
p dx+

¨

Q0

|∇((u − kj)−ϕ
q
p

j )|
p dxdt

≤ c
2qj

̺p

(
ω

4

)p¨

Q0

χ{Qj :u<kj} dxdt.

After a change of variables with ū(·, t∗+t̄) = u(·, t∗+t) and ϕ̄j(·, t
∗+t̄) = ϕj(·, t

∗+t),

where t̄ = t/ω2−p, and denoting Q̄j = Bj × (t∗ − ̺pj , t
∗) and Aj = Q̄j ∩ {ū < kj},

we obtain

sup
t̄∈(t∗−̺p

j ,t
∗)

ˆ

Bj

((ū − kj)−ϕ̄
q
p

j )
p dx+

¨

Q̄j

|∇((ū− k)−ϕ̄
q
p

j )|
p dxdt

≤ c
2qj

̺p

(
ω

4

)p¨

Q̄j

χAj dxdt.

Again, by using the embedding theorem in Lemma 2.4 we get

2−p(j+4)
ω

p|Aj+1| ≤ ‖(ū− kj)−ϕ̄
q
p

j ‖
p
Lp(Q̄j)

≤ c‖(ū− kj)−ϕ̄
q
p

j ‖
p
V p(Q̄j)

|Aj |
p

n+p

≤ c
2qj

̺p

(
ω

4

)p
|Aj |

1+ p
n+p .
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Therefore, Yj+1 ≤ c22qjY
1+ p

n+p

j holds with Yj = |Aj |/|Q̄j|. Recall Y0 ≤ (2K)n+pν0.

By choosing C = c, B = 22q and σ = p
n+p in Lemma 2.2, we have

u(x, t) > µ
− +

ω

8
a.e. in Q̺/(4K),ω2−p(̺/(4K))p(0, t

∗),

provided that

(2K)n+pν0 ≤ c−
n+p
p 2

−2q (n+p)2

p2 .

Taking ν0 to satisfy the above inequality and (4.14), the conclusion follows. �
Remark 4.3. We remark on the relation between the phase criterion and the Cac-
cioppoli inequality in the proof of the previous lemma. In case (1), we have con-
sidered the Caccioppoli inequality in q-intrinsic cylinders. This and the choice of
truncation level in (4.8) leads

(
ω

4

)q
to appear in the first and last terms of (4.13) so

that ω is canceled. The case (2) is treated similarly by taking p-intrinsic cylinders.

In the next lemma we use the logarithmic estimate and the result of Lemma 4.2
to obtain from (4.4) a measure density condition slice-wise up to t = 0. We point
out that the phase analysis is not necessary for it.

Lemma 4.4. Suppose (4.4) holds with ν0(data) ∈ (0, 1) chosen in Lemma 4.2. For
any ν1 ∈ (0, 1), there exists B∗(data , A, ν1) ∈ N such that for ωB∗ = ω/B∗∣∣B̺/(8K) ∩

{
u(·, t) < µ

− + ωB∗

}∣∣ ≤ ν1|B̺/(8K)| a.e. t ∈ (−ℓ, 0),

where
−ℓ = t∗ − θ̺/(4K)(̺/(4K))2.

Proof. For an integer j ≥ 2 to be determined later, we let

k = µ
− +

ω

8
, s− = sup

Q̺/(4K),ℓ

(u− k)−, ϑ =
ω

2j+3

for the logarithmic function (3.2) in the cylinder Q̺/(4K),ℓ. Note that

k − u(x, t) ≤ s− ≤
ω

8
in Q̺/(4K),ℓ(4.16)

and therefore

ψ−(u) =






log

{
s−

s− + ω

2j+3 − (k − u)

}
if k −

ω

2j+3
> u,

0 if k −
ω

2j+3
≤ u.

(4.17)

Moreover, we also have

ψ−(u)(x, t) ≤ j log 2, |(ψ−)′(u)(x, t)|−1 ≤ s− in Q̺/(4K),ℓ.(4.18)

Take a Lipschitz function 0 ≤ ϕ ≤ 1 on the spatial space such that ϕ = 1 in
B̺/(8K), ϕ = 0 on ∂B̺/(4K) and |∇ϕ| ≤ 8K/̺. As Q̺/(4K),ℓ ⊂ Q̺,̺2 , it follows
from Lemma 3.2 that there exists c(data) such that

sup
t∈(−ℓ,0)

ˆ

B̺/(4K)

ϕq|ψ−(u)|2 dx

≤ c

¨

Q̺/(4K),ℓ

ψ−(u)
(
(ψ−)′(u)

)2−p
(|∇ϕ|p + ̺α|∇ϕ|q) dxdt

+ c

¨

Q̺/(4K),ℓ

a0ψ
−(u)

(
(ψ−)′(u)

)2−q
|∇ϕ|q dxdt,
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where we used the fact that by Lemma 4.2 and (4.17) we have

ψ−(u)(x,−ℓ) = 0 a.e. in B̺/(4K).

Applying |∇ϕ| ≤ 8K/̺, (4.16) and (4.18), we get

sup
t∈(−ℓ,0)

ˆ

B̺/(4K)

ϕq|ψ−(u)|2 dx

≤ cj

¨

Q̺/(4K),ℓ

((
ω

̺

)p
+ a0

(
ω

̺

)q) 1

ω2
dxdt

= cj|B̺/(4K)|ℓ(θ̺̺
2)−1 ≤ cjA|B̺/(4K)|,

(4.19)

where the last inequality follows from the fact that ℓ ≤ Aθ̺̺
2 by (4.1).

To estimate the left hand side, observe that when k − ω

2j+3 > u, we have that
s−

s−+ ω

2j+3 −(k−u) is a decreasing function with respect to the variable s− ≥ k − u.

Thus, there holds

s−

s− + ω

2j+3 − (k − u)
≥

ω

8
ω

8 + ω

2j+3 − (k − u)

=
ω

8

u− µ− + ω

2j+3

≥ 2j−1,

provided that u < µ
− + ω

2j+3 . Therefore, (4.19) becomes

((j − 1) log 2)2 sup
t∈(−ℓ,0)

ˆ

B̺/(8K)

χ{
u(x,t)<µ−+

ω

2j+3

} dx ≤ cjA|B̺/(8K)|.

The proof is completed by taking sufficiently large j ≥ 2, so that cjA
((j−1) log 2)2 ≤ ν1,

and choosing B∗ = 2j+3. �

At this stage, we are ready to show that a reduction of oscillation is obtained in
case the first alternative (4.4) holds. The proof is based on DeGiorgi type iteration
and using Lemma 4.4, when choosing the coefficient 1

B of ω small enough. In order
to be able to combine Caccioppoli inequality, Lemma 3.1, and the embedding in
Lemma 2.4 with the aforementioned coefficient, in the q-phase we consider two
subcases where the phase criterion for ω is replaced by ω/B.

Lemma 4.5. Suppose (4.4) holds with ν0(data) ∈ (0, 1) chosen in Lemma 4.2.
Then there exists B(data , A) ∈ N such that for ωB = ω/B

u > µ
− +

ωB

8
a.e. in Q̺/(16K),ℓ.

Proof. For each j ∈ N, define

̺j =
̺

16K
+

̺

2j+4K
, Bj = B̺j , Qj = Bj × (−ℓ, 0).(4.20)

Let 0 ≤ ϕj ≤ 1 be a Lipschitz function on the spatial variables such that ϕj = 1 in
Bj+1 and ϕ = 0 on ∂Bj with

|∇ϕj | ≤ c
2j

̺
,(4.21)

where c(data). Also, for B ≥ 2 chosen later, consider

kj = µ
− +

ωB

8
+

ωB

2j+3
.
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Note that it follows from Lemma 4.2 that

(u− kj)−(x,−ℓ) = 0 in B̺/(4K).

In order to prove the lemma, we will follow the analogous argument in the proof
of Lemma 4.2. Again, it follows from the definitions of kj and µ

− that

(u− kj)− ≤
ωB

4
in Q.(4.22)

After using the above estimate, terms involving ω
p
B and a0ω

q
B will appear on the

right hand side of the Caccioppoli inequality. Thus, we consider the following cases:

(a) a0
(
ω

̺

)q
> K

(
ω

̺

)p
and a0

(
ωB

̺

)q
> K

(
ωB

̺

)p
hold.

(b) a0
(
ω

̺

)q
> K

(
ω

̺

)p
and a0

(
ωB

̺

)q
≤ K

(
ωB

̺

)p
hold.

(c) a0
(
ω

̺

)q
≤ K

(
ω

̺

)p
holds.

Case (a). In this case, we apply Lemma 3.1 with (4.20)-(4.22), Lemma 4.1 and (a),
to obtain

sup
t∈(−ℓ,0)

ˆ

B0

(u− kj)
2
−ϕ

q
j dx+

¨

Q0

a0|∇((u− kj)−ϕj)|
q dxdt

≤ ca0
2qj

̺q

(
ωB

4

)q¨

Q0

χ{Qj :u<kj} dxdt

for a constant c(data). To estimate the left hand side, note that as ℓ ≤ Aθ̺̺
2 ≤

Aω2
(
a0
(
ω

̺

)q)−1
, we have

ω
2−q
B ≥

Bq−2a0ℓ

A̺q
.(4.23)

For B be large enough so that Bq−2 ≥ A, we get from (4.22) and (4.23) that

(u− kj)
2
− ≥

(
ωB

4

)2−q

(u− kj)
q
− ≥

Bq−2

A

ℓ

̺q
a0(u − kj)

q
− ≥

ℓ

̺q
a0(u− kj)

q
−.

Therefore, we have

ℓ

̺q
sup

t∈(−ℓ,0)

ˆ

B0

(u − kj)
q
−ϕ

q
j dx+

¨

Q0

|∇((u − kj)−ϕj)|
q dxdt

≤ c
2qj

̺q

(
ωB

4

)q¨

Q0

χ{Qj :u<kj} dxdt.

Define Yj = |Aj |/|Q̄j|, where Q̄j = Bj × (−̺q, 0) and Aj = Q̄j ∩ {ū < kj}, for
ū(·, t̄) = u(·, t) with t̄ = t/(ℓ/̺q). As in the proof of Lemma 4.2, we obtain via an
embedding argument that

Yj+1 ≤ c22qjY
1+ q

n+q

j .

By choosing C = c, B = 22q and σ = q
n+q in Lemma 2.2, we have

u(x, t) > µ
− +

ωB

8
a.e. in Q̺/(16K),ℓ,

provided that

Y0 ≤ c−
n+q
q 2

−2q (n+q)2

q2 .

Furthermore, this condition is satisfied by using Lemma 4.4 with

ν1 ≤ c−
n+q
q 2

−2q (n+q)2

q2(4.24)
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and choosing 4B ≥ B∗, where B∗(data, A) comes from Lemma 4.4. This finishes
the proof in the first case.

Case (b)-(c). Note that (c) implies the second condition of (b). Therefore, in
both cases Lemma 3.1 with (4.21)-(4.22) and the second condition of (b) gives

sup
t∈(−ℓ,0)

ˆ

B0

(u− kj)
2
−ϕ

q
j dx+

¨

Q0

|∇((u − kj)−ϕ
q
p

j )|
p dxdt

≤ c
2qj

̺p

(
ωB

4

)p¨

Q0

χ{Qj :u<kj} dxdt

for some c(data). Using (4.22) and ℓ ≤ Aω2
(
ω

̺

)−p
, we get

ℓ

̺p
sup

t∈(−ℓ,0)

ˆ

B0

(u − kj)
p
−ϕ

q
j dx+

¨

Q0

|∇((u − kj)−ϕ
q
p

j )|
p dxdt

≤ c
2qj

̺p

(
ωB

4

)p¨

Q0

χ{Qj :u<kj} dxdt

if B satisfies Bp−2 ≥ A. Again defining Q̄j = Bj × (−̺p, 0), Aj = Q̄j ∩ {ū < kj}
and ū(·, t̄) = u(·, t) for t̄ = t/(ℓ/̺p), we obtain

Yj+1 ≤ c22qjY
1+ p

n+p

j .

As in the previous case, it follows from Lemma 2.2 that

u(x, t) > µ
− +

ωB

8
a.e. in Q̺/(16K),ℓ,

after using Lemma 4.4 with

ν1 ≤ c−
n+p
p 2

−2q (n+p)2

p2(4.25)

and taking 4B ≥ B∗, where B∗(data , A) comes from Lemma 4.4.
The proof is finished after choosing B to satisfy Bp−2 ≥ A and 4B ≥ B∗, where

B∗ determined by Lemma 4.4 with (4.24) and (4.25). �

By combining the results of this subsection, we arrive at the reduction of oscil-
lation when the first alternative holds.

Corollary 4.6. Suppose (4.4) holds with ν0(data) ∈ (0, 1) chosen in Lemma 4.2.
Then there exists B(data , A) ∈ N such that

osc
Qλ̺,θλ̺(λ̺)2

u ≤

(
1−

1

8B

)
ω,

where λ = 1
16K .

4.2. Second Alternative. Note that (4.2) implies µ
+ − ω

4 > µ
− + ω

4 . Thus, if

the first alternative (4.4) fails, we have for any t∗ ∈ (−(A− 1)θ̺̺
2, 0) that

(4.26)
∣∣Q̺,θ̺̺2(0, t∗) ∩

{
u ≥ µ

+ − ω

4

}∣∣ < (1− ν0)
∣∣Q̺,θ̺̺2

∣∣ .

Lemma 4.7. For each t∗ ∈ (−(A−1)θ̺̺
2, 0), there exists h ∈ (t∗−θ̺̺

2, t∗− ν0
2 θ̺̺

2)
such that

∣∣{B̺ : u(x, h) ≥ µ
+ − ω

4

}∣∣ ≤
(

1− ν0
1− ν0/2

)
|B̺|.(4.27)
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Proof. For a contradiction, assume that the opposite holds, in which case
ˆ t∗−

ν0
2 θ̺̺

2

t∗−θ̺̺2

(
1− ν0

1− ν0/2

)
|B̺| dt

<

ˆ t∗−
ν0
2 θ̺̺

2

t∗−θ̺̺2

|{B̺ : u(x, t) ≥ µ
+ − ω

4 }| dt

≤

ˆ t∗

t∗−θ̺̺2

|{B̺ : u(x, t) ≥ µ
+ − ω

4 }| dt.

Applying (4.26) to the last term, we have

(1− ν0)|Q̺,θ̺̺2 | < (1− ν0)|Q̺,θ̺,̺2 |,

which is a contradiction and the proof is completed. �

In the following lemma we show that the measure information in (4.27) can
be propagated to the whole interval (−(A − 1)θ̺̺

2, 0) by using the logarithmic
estimate, Lemma 3.2 and shrinking the coefficient of ω appropriately. Observe
that no phase analysis is required at this stage.

Lemma 4.8. Suppose that (4.26) holds true. Then there exists D(data) ∈ N such
that for ωD = ω/D

∣∣B̺ ∩
{
u(x, t) ≥ µ

+ − ωD

}∣∣ ≤
(
1−

(ν0
2

)2)
|B̺| for a.e. t ∈

(
−(A− 1)θ̺̺

2, 0
)
.

Proof. Fix t∗ ∈ (−(A − 1)θ̺̺
2, 0). It is enough to prove that for a.e. t ∈(

t∗ − ν0
2 θ̺̺

2, t∗
)
there holds

∣∣B̺ ∩
{
u(x, t) ≥ µ

+ − ωD

}∣∣ ≤
(
1−

(ν0
2

)2)
|B̺|.(4.28)

We set

k = µ
+ −

ω

4
, s+ = sup

Q
(u− k)+, ϑ =

ω

2j+2
,(4.29)

where Q = B̺ × (h, t∗) with h ∈ [t∗ − θ̺̺
2, t∗ − ν0

2 θ̺̺
2] as in Lemma 4.7 and j is

a non-negative integer that will be determined later. Observe that

u(x, t)− k ≤ s+ ≤
ω

4
in Q.(4.30)

We consider the logarithmic function (3.2) with (4.29)

ψ+(u) =






log

{
s+

s+ + ω

2j+2 − u+ k

}
if k +

ω

2j+2
< u,

0 if k +
ω

2j+2
≥ u.

It follows from (4.30) that

ψ+(u)(x, t) ≤ j log 2, |(ψ+)′(u)(x, t)|−1 ≤ s+ in Q.(4.31)

For σ ∈ (0, 1) determined later, let 0 ≤ ϕ ≤ 1 be a Lipschitz function on the spatial
variables such that ϕ = 1 in B(1−σ)̺, ϕ = 0 on ∂B̺ and

|∇ϕ| ≤
1

σ̺
.(4.32)
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Applying Lemma 3.2 with the above ϕ, we get

sup
t∈(h,t∗)

ˆ

B̺

ϕq|ψ+(u)|2 dx ≤

ˆ

B̺×{h}

ϕq|ψ+(u)|2 dx

+ c

¨

Q

ψ+(u)
(
(ψ+)′(u)

)2−p
(|∇ϕ|p + ̺α|∇ϕ|q) dxdt

+ c

¨

Q

a0ψ
+(u)

(
(ψ+)′(u)

)2−q
|∇ϕ|q dxdt,

where c(data). With Lemma 4.7, (4.31) and (4.32), the above inequality becomes

sup
t∈(h,t∗)

ˆ

B̺

ϕq|ψ+(u)|2 dx ≤ j2(log 2)2
(

1− ν0
1− ν0/2

)
|B̺|

+ cj
1

σq̺2

((
ω

̺

)p−2

+ a0

(
ω

̺

)q−2)
|h− t∗||B̺|.

Recalling h ∈ (t∗ − θ̺̺
2, t∗ − ν0

2 θ̺̺
2), we obtain

sup
t∈(h,t∗)

ˆ

B(1−σ)̺

|ψ+(u)|2 dx ≤

(
j2(log 2)2

(
1− ν0

1− ν0/2

)
+
cj

σq

)
|B̺|.

In order to estimate the left hand side, we use fact that ψ+(u) is decreasing
function with respect to s+ variable and (4.30) to have

ψ+(u) ≥ log

{
ω

4
ω

4 + ω

2j+2 − u+ k

}
≥ (j − 1) log 2

provided that ω

4 − u+ k = µ
+ − u ≤ ω

2j+2 . Thus, it follows that

sup
t∈(h,t∗)

(j − 1)2
∣∣{B(1−σ)̺ : u(x, t) ≥ µ

+ − ω

2j+2

}∣∣

≤

(
j2
(

1− ν0
1− ν0/2

)
+
cj

σq

)
|B̺|.

As |B̺ \ B(1−σ)̺| ≤ nσ|B̺|, it follows from the above inequality that for a.e.
t ∈ (h, t∗)

∣∣{B̺ : u(x, t) ≥ µ
+ − ω

2j+2

}∣∣

≤

(
j2(1 − ν0)

(j − 1)2(1− ν0/2)
+

cj

(j − 1)2σq
+ nσ

)
|B̺|.

Fix σ small enough such that nσ ≤ 3
8ν

2
0 . Since 1 < (1−ν0/2)(1+ν0), we may choose

j large enough such that j2(1−ν0)
(j−1)2(1−ν0/2)

< 1 − ν20 and cj
(j−1)2σq ≤ 3

8ν
2
0 . Selecting

D = 2j+2 completes the proof of (4.28). �

In the next two lemmas we show that measure theoretic information can be
transferred into pointwise information in the sense that if a solution is close to
its supremum in a cylinder in a measure theoretic sense, then it is close to the
supremum pointwise in a subcylinder. For 2D ≤ F and ωF defined to be F q−2 = A
and ωF = ω/F , we consider the following cases:

(e) a0
(
ω

̺

)q
> K

(
ω

̺

)p
and a0

(
ωF

̺

)q
> K

(
ωF

̺

)p
hold.

(f) a0
(
ω

̺

)q
> K

(
ω

̺

)p
and a0

(
ωF

̺

)q
≤ K

(
ωF

̺

)p
hold.

(g) a0
(
ω

̺

)q
≤ K

(
ω

̺

)p
holds.
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Lemma 4.9. Suppose (e) holds. There exists ν2(data) ∈ (0, 1) such that if
∣∣{u ≥ µ

+ − ωF

}
∩Q̺/2,(A/2)θ̺/2(̺/2)2

∣∣ ≤ ν2
∣∣Q̺/2,(A/2)θ̺/2(̺/2)2

∣∣(4.33)

holds true, then

u < µ
+ −

ωF

2
a.e. in Q̺/4,(A/4)θ̺/4(̺/4)2 .

Proof. For each j ∈ N, we take

kj = µ
+ −

ωF

2
−

ωF

2j+1
.

Note that

(u− kj)+ ≤ ωF ,(4.34)

and let

̺j =
̺

4
+

̺

2j+2
, Bj = B̺j , Ij =

(
−(4a0)

−1
ω

2−q
F ̺qj , 0

)
, Qj = Bj × Ij .

As we have

(A/4)θ̺/2(̺/2)
2 ≤ (A/2)(2a0)

−1
ω

2−q(̺/2)q

= (4a0)
−1

ω
2−q
F (̺/2)q

≤ (A/2)θ̺/2(̺/2)
2,

(4.35)

applying the above inequality to (4.33) gives
∣∣{u ≥ µ

+ − ωF

}
∩Q0

∣∣ ≤ 2ν2
∣∣Q0

∣∣.(4.36)

Also the fact Qj ⊂ Q̺/2,(A/2)θ(̺/2)(̺/2)2 for every j ∈ N is immediate.
Let 0 ≤ ϕj ≤ 1 be a Lipschitz function such that ϕj = 1 in Qj+1 and ϕj = 0 on

∂pQj with

|∇ϕj | ≤ c
2j

̺
, |∂tϕj | ≤ c

2qja0ω
q−2
F

̺q
.

We follow the argument in the case (1) of the proof of Lemma 4.2. As (4.34) holds,
we have

(4a0)
−1

ω
2−q
F sup

t∈I0

ˆ

B0

(u− kj)
q
+ϕ

q
j dx+

¨

Q0

|∇((u − kj)+ϕj)|
q dxdt

≤ c
2qj

̺q
ω

q
F

¨

Q0

χ{Qj :u>kj} dxdt

where c(data). Moreover, by using the change of variables with Q̄j = Bj×(−̺qj , 0),

Yj = |Aj |/|Q̄j|, Aj = Q̄j ∩ {ū > kj} and ū(·, t̄) = u(·, t) for t̄ = t/((4a0)
−1

ω
2−q
F ),

we arrive at

Yj+1 ≤ c22qjY
1+ q

n+q

j ,

while Y0 ≤ 2ν2 holds by (4.36). The proof of this case is completed owing to
Lemma 2.2, provided that

2ν2 ≤ c−
n+q
q 2

−2q (n+q)2

q2 .(4.37)

�
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Note that in the proof of the previous lemma, the scaling factor of the time
interval Ij is chosen with respect to the first conditions of (e) while the Caccioppoli
inequality is estimated by using the second condition of (e). Thus, in this case, we
use the q-phase for both the scaling factor and the Caccioppoli inequality. On the
other hand, the first condition in (f) is the q-phase criterion, while the second is of
p-phase type. Since we have set F q−2 = A, it follows from (f) that

(A/2)θ̺/2(̺/2)
2 = (A/2)

((
ω

̺/2

)p
+ a0

(
ω

̺/2

)q)−1

ω
2

≥ (A/2)

(
2a0

(
ω

̺/2

)q)−1

ω
2

= (1/2)

(
2q+1a0

(
ωF

̺

)q)−1

ω
2
F

≥ (1/2)

(
22pK

(
ωF

̺

)p)−1

ω
2
F

≥
(

ωF

̺/(8K)

)−p

ω
2
F ,

and therefore

Q̺/(8K),ω2−p
F (̺/(8K))p ⊂ Q̺/2,(A/2)θ̺/2(̺/2)2 .

On the other hand, the above inclusion also holds for the case (g) as we have

(A/2)θ̺/2(̺/2)
2 = (A/2)

((
ω

̺/2

)p
+ a0

(
ω

̺/2

)q)−1

ω
2

≥ (A/2)

(
2q+1K

(
ω

̺

)p)−1

ω
2

≥ F p−2

(
23pK

(
ω

̺

)p)−1

ω
2

≥
(

ωF

̺/(8K)

)−p

ω
2
F .

Lemma 4.10. Suppose either (f) or (g) holds. There exists ν2(data) ∈ (0, 1) such
that if

∣∣{u ≥ µ
+ − ωF

}
∩Q̺/(8K),ω2−p

F (̺/(8K))p

∣∣ ≤ ν2
∣∣Q̺/(8K),ω2−p

F (̺/(8K))p

∣∣,(4.38)

holds true, then

u < µ
+ −

ωF

2
a.e. in Q̺/(16K),ω2−p

F (̺/(16K))p .

Proof. For each j ∈ N, we set

kj = µ
+ −

ωF

2
−

ωF

2j+1
,

and then we have

(u− kj)+ ≤ ωF .

We denote

̺j =
̺

16K
+

̺

2j+4K
, Bj = B̺j , Ij =

(
−ω

2−p
F ̺pj , 0

)
, Qj = Bj × Ij ,
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when (4.38) can be written as
∣∣{u ≥ µ

+ − ωF

}
∩Q0

∣∣ ≤ ν2|Q0|.(4.39)

Let 0 ≤ ϕj ≤ 1 be a Lipschitz function such that ϕj = 1 in Qj+1 and ϕj = 0 on
∂pQj with

|∇ϕj | ≤ c
2j

̺
, |∂tϕj | ≤ c

2pjωp−2
F

̺p
.

Arguing as in case (2) of the proof of Lemma 4.2, we get

ω
2−p
F sup

t∈I0

ˆ

B0

(u − kj)
p
+ϕ

q
j dx+

¨

Q0

|∇((u − kj)+ϕ
q
p

j )|
p dxdt

≤ c
2qjωp

F

̺p

¨

Q0

χ{Qj :u>kj} dxdt,

where c(data). As in the proof of Lemma 4.2, using the change of variables ū(·, t̄) =

u(·, t) for t̄ = t/ω2−p
F and denoting Q̄j = Bj × (−̺pj , 0), Aj = Q̄j ∩ {ū > kj} and

Yj = |Aj |/|Q̄j|, we obtain from the embedding theorem that

Yj+1 ≤ c22qjY
1+ p

n+p

j .

Since Y0 ≤ ν2 holds by (4.39), taking

ν2 ≤ c−
n+p
p 2

−2q (n+p)2

p2

the proof is completed. �

Lemma 4.11. Suppose that (4.26) holds with ν0(data) ∈ (0, 1) determined in

Lemma 4.2. There exists sufficiently large A(data) ≥ 4, satisfying 4 ≤ A
1

q−2 ∈ N,
such that if (e) holds, then (4.33) is satisfied and if either (f) or (g) holds, then
(4.38) is satisfied.

Proof. Case (e). LetD = D(data) be the constant from Lemma 4.8, fix E satisfying
D ≤ E ≤ F/2 and consider ωE = ω/E and k = µ

+ − ωE . Also, we denote

Q̃ = Q̺,(A/2)θ̺̺2 , Q = Q̺/2,(A/2)θ̺/2(̺/2)2

and let 0 ≤ ϕ ≤ 1 be a Lipschitz function such that ϕ = 1 in Q and ϕ = 0 on ∂pQ̃
with

|∇ϕ| ≤
2

̺
, |∂tϕ| ≤

c

Aθ̺̺2
,(4.40)

where we used the fact that θ̺/2(̺/2)
2 ≤ θ̺̺

2 ≤ 2qθ̺/2(̺/2)
2. Applying Lemma 3.1

and Lemma 4.1, we get
¨

Q

a0|∇(u− k)+|
q dxdt

≤ c

¨

Q̃

(u− k)p+(|∇ϕ|
p + ̺α|∇ϕ|q) + a0(u− k)q+|∇ϕ|

q dxdt

+ c

¨

Q̃

(u − k)2+|∂tϕ
q| dxdt
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for some c(data). Using (4.40), (u− k)+ ≤ ωE and (e), we get
¨

Q

|∇(u − k)+|
q dxdt ≤ c

(
ωE

̺

)q
|Q|,(4.41)

where we used (4.35) and E ≤ F to estimate the last term of the Caccioppoli
inequality. Moreover, applying Hölder’s inequality, the above inequality becomes

¨

Q

|∇(u − k)+|
p dxdt ≤ c

(
ωE

̺

)p
|Q| = c

(
ω

E̺

)p
|Q|.(4.42)

On the other hand, as we have set D ≤ E it follows from Lemma 4.8 that

|B̺ ∩ {u < µ
+ − ω

E }| ≥
ν20
4
|B̺| for a.e. t ∈ (−(A− 1)θ̺̺

2, 0).

Thus, Lemma 2.3 with k = µ
+ − ω

E and l = µ
+ − ω

2E , along with the above
inequality, gives

ω

2E
|B̺ ∩ {u > µ

+ − ω

F }| ≤
c̺

ν20

ˆ

B̺∩
{
−

ω

E<u−µ+<−
ω

2E

} |∇u| dx.

Integrating over the time interval (−(A/2)θ̺/2(̺/2)
2, 0) and applying Hölder’s in-

equality, we get

ω

2E
|Q ∩ {u > µ

+ − ω

F }|

≤
c̺

ν20

(
¨

Q∩
{
µ+−

ω

E<u
} |∇u|p dxdt

) 1
p

|Q ∩
{
−ω

E < u− µ
+ < − ω

2E

}
|
p−1
p .

We estimate the above integral using (4.42) to have

|Q ∩ {u > µ
+ − ω

F }|
p

p−1 ≤ cν
− 2p

p−1

0 |Q|
1

p−1 |Q ∩
{
−ω

E < u− µ
+ < − ω

2E

}
|.

As the above inequality holds for D ≤ E ≤ F/2, we sum over D, 2D, ..., F/2 to get

(F/2−D)
p−1
p |Q ∩ {u > µ

+ − ω

F }| ≤ cν−2
0 |Q|.

Therefore, (4.33) holds provided that

c

ν20 (F/2−D)
p−1
p

≤ ν2.

Recalling (4.37), the proof is completed in this case by taking F large enough to
satisfy the above inequality.

Case (f) or (g). Let E and k = µ
+ − ωE be as in the previous case and set

Q̃ = Q̺/(4K),ω2−p
F (̺/(4K))p , Q = Q̺/(8K),ω2−p

F (̺/(8K))p .

Moreover, let 0 ≤ ϕ ≤ 1 be a Lipschitz function such that ϕ = 1 in Q and ϕ = 0

on ∂pQ̃ with

|∇ϕ| ≤
2

̺
, |∂tϕ| ≤ c

ω
p−2
F

̺p
.(4.43)

In order to estimate the Caccioppoli inequality, we consider the following subcases:

(h) a0
(
ωE

̺

)q
≤ K

(
ωE

̺

)p
holds.

(i) a0
(
ωE

̺

)q
> K

(
ωE

̺

)p
holds.
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Note that (g) always implies (h).
Subcase (h). Applying Lemma 3.1, we get

¨

Q

|∇(u− k)+|
p dxdt

≤ c

¨

Q̃

(u− k)p+(|∇ϕ|
p + ̺α|∇ϕ|q) + a0(u− k)q+|∇ϕ|

q dxdt

+ c

¨

Q̃

(u − k)2+|∂tϕ
q| dxdt

for some c = c(data) > 0. Using (4.43), E ≤ F , (u− k)+ ≤ ω

E and (h), we get
¨

Q

|∇(u − k)+|
p dxdt ≤ c

(
ω

E̺

)p
|Q|,

which is the same as (4.42). Thus, the conclusion in this case follows as in the
case (e).

Subcase (i). Applying Lemma 3.1 and Lemma 4.1, we get
¨

Q

a0|∇(u− k)+|
q dxdt

≤ c

¨

Q̃

(u− k)p+(|∇ϕ|
p + ̺α|∇ϕ|q) + a0(u− k)q+|∇ϕ|

q dxdt

+ c

¨

Q̃

(u − k)2+|∂tϕ
q| dxdt

for some c = c(data) > 0. As (u − k)+ ≤ ω

E holds, it follows from (4.43) and (i)
that

¨

Q

a0|∇(u − k)+|
q dxdt ≤ ca0

(
ω

E̺

)q
|Q|,

where to estimate |∂tϕ
q|, we used the fact that by E ≤ F and (i) there holds
(
ω

F̺

)p−2

≤
(
ω

E̺

)p−2

< a0

(
ω

E̺

)q−2

.

Therefore, we obtained (4.41) and the rest of the proof is the same.
As we have covered all cases, the proof is completed. �

Finally, we conclude this subsection by the reduction of oscillation when the
second alternative (4.26) holds.

Corollary 4.12. Suppose that (4.26) holds with ν0 = ν0(data) ∈ (0, 1) determined
in Lemma 4.2 and let A = A(data) ≥ 4 be as in Lemma 4.11. Then there holds

osc
Qλ̺,θλ̺(λ̺)2

u ≤

(
1−

1

2F

)
ω,

where λ = 1
16K .

Proof. Since A ≥ 4 holds, for the case (e) it follows from Lemmas 4.11 and 4.9 that

osc
Qλ̺,θλ̺(λ̺)2

u <

(
1−

1

2F

)
ω.
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On the other hand, we apply Lemmas 4.11 and 4.10 to deal with cases (f) and (g).

Since A
p−2
q−2 = F p−2 ≥ 1 and

ω
2−p
F (λ̺)p = F p−2

ω
2−p(λ̺)p ≥ θλ̺(λ̺)

2,

we have the conclusion. �

4.3. Recursive argument. In the following corollary we have combined the con-
clusions in Corollary 4.6 and Corollary 4.12. Note that the estimate below holds
also when (4.2) is false.

Corollary 4.13. Let A(data) ≥ 4 be as in Lemma 4.11. If (4.1) holds, then there
exists ε(data) ∈ [ 12 , 1) satisfying

osc
Qλ̺,θλ̺(λ̺)2

u ≤ εω,

where λ = 1
16K with K = max{1, 4[a]α‖u‖

q−p
∞ }.

Corollary 4.14. Let A(data) ≥ 4 be as in Lemma 4.11 and 0 < ̺ <

min{1, 2A− 1
p−2 ‖u‖∞}. Then there exist c(data) and β(data) ∈ (0, 1) such that

for r ∈ (0, ̺)

osc
Qr,θ(2‖u‖∞,r)r

2

u ≤ c‖u‖∞

( r
̺

)β
,

where

θ(κ,r) =
((κ

r

)p
+ a0

(κ
r

)q)−1 (κ
r

)2
.

Proof. We set ω0 = 2‖u‖∞ and θr = θ(ω0,r). By using induction, we claim that for
every j ∈ N there holds

A
1

p−2 ̺j < ωj and osc
Qj

u ≤ ωj ,(4.44)

where ωj = εjω0 with ε ∈ [ 12 , 1) defined in Corollary 4.13 and

̺j = δj̺, δ = (16KA
1
p )−1ε1−

2
p , Qj = Q̺j ,θ(ωj ,̺j)

̺2
j
.

We define µ
+
0 = sup

Q̺,̺2

u and µ
−
0 = inf

Q̺,̺2

u. Clearly assumptions in the beginning

of Section 4 are satisfied and (4.44) holds in case j = 0. For j ∈ N≥1, we define

µ
+
j = sup

Q
̺,Aθ(ωj ,̺j)

̺2
j

u and µ
−
j = inf

Q
̺,Aθ(ωj ,̺j )̺

2
j

u.

Then suppose that (4.44) holds for some j ∈ N. Now

̺j+1 = δ̺j < δA− 1
p−2ωj ≤

2

16KA
1
p

A− 1
p−2 εωj ≤

ωj+1

A
1

p−2

,

since ε ≥ 1
2 . Thus, (4.44)1 holds for index j + 1 and by Corollary 4.13 we obtain

osc
Qλ̺j,θ(ωj ,λ̺j)

(λ̺j)
2

u ≤ εωj = ωj+1,
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where λ = 1
16K . Observe that we have θ(κ,λr)(λr)

2 ≥ Aθ(εκ,δr)(δr)
2, since Aε2 ≥ 1

implies
((

(Aε2)−
1
p εκ

(Aε2)−
1
p ελr

)p

+ a0

(
(Aε2)−

1
p εκ

(Aε2)−
1
p ελr

)q
)−1

κ2

≥ A

((
εκ

(Aε2)−
1
p ελr

)p

+ a0

(
εκ

(Aε2)−
1
p ελr

)q
)−1

(ǫκ)2.

Thus, Q̺j+1,Aθ(ωj+1,̺j+1)̺
2
j+1

⊂ Qλ̺j ,θ(ωj ,λ̺j)
(λ̺j)2 and

osc
Q

̺j+1 ,Aθ(ωj+1,̺j+1)̺
2
j+1

u ≤ ωj+1,

which implies that (4.44) holds for all j ∈ N by induction.
Observe that θ(εκ,r)r

2 > θ(κ,r)r
2 holds since we have

((εκ
r

)p
+ a0

(εκ
r

)q)−1

(εκ)2

=

(
1

ε2

(εκ
r

)p
+ a0

1

ε2

(εκ
r

)q)−1

κ2

≥
((κ

r

)p
+ a0

(κ
r

)q)−1

κ2.

Therefore, by (4.44) we have

osc
Q̃j

u ≤ ωj ,

where

Q̃j = Qδj̺,θ(ω0,δj̺)(δ
j̺)2 = Qδj̺,θδj̺(δ

j̺)2 .

By setting β = log ε
log δ ∈ (0, 1), there exists c(data) such that

osc
Qr,θ(ω0,r)r

2

u ≤ cω0

(
r

̺

)β

.

This completes the proof. �

Finally, we are ready to prove our main theorem.

Proof of Theorem 1.1. We replace the pointwise scaling factor with a uniform scal-
ing factor. For any r ∈ (0, 2‖u‖∞), there holds

(
2‖u‖∞
r

)p

+ a(x, t)

(
2‖u‖∞
r

)q

< (1 + ‖a‖∞)

(
2‖u‖∞
r

)q

.

Therefore, by applying Corollary 4.14 we get

osc
Qr,Θrq (x0,t0)

u ≤ c‖u‖∞

( r
̺

)β

for 0 < r < ̺ < min{1, 2A− 1
p−2 ‖u‖∞} with Q̺,Θ̺q (x0, t0) ⊂ ΩT where Θ =

(1 + ‖a‖∞)−1(2‖u‖∞)2−q. Moreover, as distq(·, ·) is comparable with this metric
by replacing ‖u‖∞ with 2‖u‖∞, the proof is completed.

�
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Acknowledgement

K. Moring has been supported by the Magnus Ehrnrooth Foundation. L.
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