
Enhancing IoT Security: A Novel Feature
Engineering Approach for ML-Based Intrusion

Detection Systems
Afsaneh Mahanipour

Department of Computer Science
University of Kentucky
Lexington, KY, USA

ama654@uky.edu

Hana Khamfroush
Department of Computer Science

University of Kentucky
Lexington, KY, USA

khamfroush@cs.uky.edu

Abstract—The integration of Internet of Things (IoT) applica-
tions in our daily lives has led to a surge in data traffic, posing
significant security challenges. IoT applications using cloud and
edge computing are at higher risk of cyberattacks because of the ex-
panded attack surface from distributed edge and cloud services, the
vulnerability of IoT devices, and challenges in managing security
across interconnected systems leading to oversights. This led to the
rise of ML-based solutions for intrusion detection systems (IDSs),
which have proven effective in enhancing network security and
defending against diverse threats. However, ML-based IDS in IoT
systems encounters challenges, particularly from noisy, redundant,
and irrelevant features in varied IoT datasets, potentially impacting
its performance. Therefore, reducing such features becomes crucial
to enhance system performance and minimize computational costs.
This paper focuses on improving the effectiveness of ML-based
IDS at the edge level by introducing a novel method to find a
balanced trade-off between cost and accuracy through the creation
of informative features in a two-tier edge-user IoT environment. A
hybrid Binary Quantum-inspired Artificial Bee Colony and Genetic
Programming algorithm is utilized for this purpose. Three IoT
intrusion detection datasets, namely NSL-KDD, UNSW-NB15, and
BoT-IoT, are used for the evaluation of the proposed approach.
Performance analysis is conducted using various evaluation met-
rics such as accuracy, sensitivity, specificity, and False Positive
Rate (FPR) are employed, while the cost of the IDS system is
assessed based on computational time. The results are compared
with existing methods in the literature, revealing that the IDS
performance can be enhanced with fewer features, consequently
reducing computational time, through the proposed method. This
offers a better performance-cost trade-off for the IDS system.

Index Terms—Binary Quantum-inspired Artificial Bee Colony
Algorithm, Feature Construction, Feature Selection, Genetic Pro-
gramming, Intrusion Detection Systems

I. INTRODUCTION

In the era of Internet of Things (IoT) applications and
widespread internet usage, security has become a major and
growing concern. The interconnected nature of IoT devices has
expanded the attack surface, providing numerous entry points for
malicious actors. The increasing volume of data exchanged be-
tween these devices poses a significant target for cybercriminals,
raising the potential impact of security breaches across various
aspects of daily life, from smart homes to industrial systems.
By the end of 2024, it is anticipated that there will be 83 billion

IoT devices, utilized across various domains such as intelligent
transportation, smart healthcare, and others, contributing to the
development of smart cities [1].

This surge in IoT adoption has also led to challenges in
data management and processing. The data collected by IoT
devices has been transmitted to a distant cloud server for further
processing. However, this setup poses challenges due to the
significant distance between the devices and the server, resulting
in delays that are not conducive to the time-sensitive nature of
IoT applications. Therefore, with the introduction of an edge
computing framework, data is sent to edge servers located closer
to the IoT devices in most applications. This reduces latency, but
it’s important to note that these edge servers still face limitations
in terms of storage and computational power compared to cloud
servers [2].

Moreover, within IoT frameworks, numerous devices interact
through web application interfaces, necessitating robust authenti-
cation and encryption methods to ensure secure communication.
In this context, intrusion detection systems (IDSs) play a crucial
role in monitoring and identifying attacks. IDSs are broadly
categorized into two types based on their discovery methods:
signature-based IDS and anomaly-based IDS. The signature-
based method relies on pre-stored rules that represent specific
attack types. Consequently, any attack not included in the pre-
stored rules will go undetected. Conversely, anomaly-based IDS
exhibits proficiency in efficiently detecting zero-day (unknown)
attacks [3].

Lately, the application of machine learning (ML) techniques
has become increasingly prevalent in the field of intrusion
detection within IoT IDSs. However, IoT devices exhibit differ-
ences in their hardware attributes, functions, and computational
capabilities to generate features. When IoT devices transmit
their data to an edge server, some features may be noisy,
irrelevant or redundant. These characteristics significantly affect
the performance of IDSs [1]. Selecting informative features is
pivotal in ML-based methods for enhancing IDS accuracy by
eliminating non-informative features and reducing complexity
costs through dataset size reduction. While some studies, such as
[4, 5], have employed feature selection (FS) techniques for this

ar
X

iv
:2

40
4.

19
11

4v
1 

 [
cs

.C
R

] 
 2

9 
A

pr
 2

02
4



purpose, the exploration of constructing new high-level features
for IDSs remains unaddressed in existing literature. This paper
proposes a novel method to find a balanced trade-off between
costs and accuracy by constructing new informative features for
ML-based IDSs within the diverse IoT environment.

The search space for feature construction is extensive, as
informative features must be combined with appropriate op-
erators to create distinctive new features. Therefore, selecting
prominent features for this purpose can be beneficial. To achieve
this, the binary quantum-inspired artificial bee colony (BQABC)
algorithm [6] is used for selecting informative features. BQABC
has better convergence rate and exploration capability to prevent
trapping in a local optima compared to other binary optimization
algorithms such as binary quantum-inspired particle swarm op-
timization (BQIPSO) and binary quantum-inspired evolutionary
algorithm (BQIEAo). Subsequently, genetic programming (GP)
[7], a domain-independent problem-solving approach, is utilized
to construct high-level features for more accurate intrusion
detection with less computation cost. The main contributions
of the proposed method can be summarized in the following
manner:

• Utilizing feature construction method for ML-based IDSs
for the first time

• Proposing a novel feature engineering method by integrat-
ing FS based on BQABC algorithm for the identification
of important features and FC based on GP for constructing
new feature to create a new dataset

• Evaluating the performance of the proposed method in
terms of accuracy, sensitivity, specificity, False Positive
Rate (FPR), number of features, and computational time

• Comparing the proposed method with seven other methods
in the literature by employing various evaluation metrics
and obtaining better results such as improving accuracy by
approximately 8% and reducing computational time by an
average of 2948 s across all three datasets

II. BACKGROUND AND RELATED WORKS

A. Related Works

Supervised ML classification algorithms use training data to
establish a functional relationship between input features and
class values. The trained classifier then predicts class values for
query instances. However, the dataset may contain redundant,
noisy, or irrelevant features, which can harm classification
performance. To address this, feature engineering techniques
like feature selection (FS), and feature construction (FC) are
employed to enhance feature quality and boost classifier accu-
racy. FC creates new features through functional expressions
to improve performance and reveal hidden relationships, while
FS selects informative features and reduces the total number by
eliminating non-informative ones [8].

While FS methods have been used in ML-based IDSs, FC
techniques have not been applied. Consequently, this section
investigates previous research studies that have employed var-
ious FS methods to enhance the performance of ML-based
IDSs. FS methods can be mainly categorized into filter and
wrapper methods. Filter methods operate independently of the

learning algorithms and rank features based on their inherent
characteristics like information theory, mutual information, or
correlation criteria [3]. For example, in [9], the features were
ranked by combining their statistical importance through Stan-
dard Deviation and the Difference of Mean and Median. In
another study [10], information gain was used as FS method.

In contrast, wrapper methods employ learning algorithms to
assess the quality of selected features, making them more accu-
rate than filter methods. For instance, in [11], Genetic algorithm
with Random Forest-based fitness function was used to select
informative features. Similarly, in [4], differential evaluation
algorithm was used to select the most suitable features and
subsequently assessed the selected features using the extreme
learning machine classifier. In the paper by Kareem et al. [5],
they employed Gorilla Troops Optimizer as a FS algorithm and
augmented its exploitation capability by integrating the bird
swarms algorithm. In another study [12], the authors employed
the Tabu Search algorithm in conjunction with a random forest
classifier to identify the optimal subset of features for IDSs.

Reviews indicate the need for more optimal solutions due
to low classification accuracy in existing methods. Additionally,
FC methods have not been employed as a pre-processing step in
IDSs. Therefore, this paper proposes a hybrid feature engineer-
ing method to find a balanced trade-off between computational
cost and accuracy.

B. Binary Quantum-inspired Artificial Bee Colony

Binary Quantum-inspired Artificial Bee Colony (BQABC)
is proposed by Barani and Nezamabadi-pour in 2017 [6]. It
combines Artificial Bee Colony (ABC)’s main structure with
quantum computing principles, offering high exploration capa-
bility and robustness for binary optimization problems.

In the BQABC, some concepts of quantum computing like
quantum bits and quantum gates are applied in the main structure
of ABC algorithm to define the position of food sources and their
updating process. The pseudocode of the BQABC algorithm is
given in Algorithm 1. You can read more details about this
algorithm in [6].

C. Genetic Programming (GP)

Genetic Programming (GP) was introduced for the first time
by John Koza [7]. This algorithm used genetic algorithm as
a process to evolve mathematical functions, but chromosomes
are encoded with tree structure. The leaves of trees can be
selected from the variables of the problem, and internal nodes
can be selected from predefined mathematical operators. GP is
a population-based evolutionary algorithm that tries to find an
optimum function for the desired problem. For this purpose, it
generates a number of chromosomes with different sizes, and
then selects the best one based on their fitness values. The GP
search procedure can be narrated by several main steps:

1) Initializing a random population of individual chromo-
somes using variables and operators.

2) Iterating the following sub-steps until reaching a stopping
criterion:



Algorithm 1 Pseudocode of the BQABC algorithm

Input: The number of population and Maximum iterations
(termination condition)

Output: Best food source

1: Initialize quantum food sources (Q(t)) randomly, a set of
best food sources FB(t) = {}, a set of current food sources
FW (t) = {}, and t = 0

2: while not termination condition do
3: Observe Q(t) and make FW (t)
4: Calculate fitness values of Fi(t) ∈ FW (t), by a desired

fitness function (fit(Fi))
5: Update FB(t)
6: for each employed bee i do
7: Generate a new quantum food source q′i in the

neighborhood of qi using Equations (12,13,14) in [6].
8: Observe q′i and make F ′

i

9: Calculate fitness value of F ′
i

10: if fit(F ′
i ) > fit(Fi) then

11: qi = q′i
12: Fi = F ′

i

13: end if
14: end for
15: for each onlooker bee j do
16: Calculate the probability of food sources using Eq.

4 in [6].
17: Select a quantum food source qj based on probability

values
18: Generate a new quantum food source q′j in the

neighborhood of qj using Equations (12,13,14) in [6].
19: Observe q′j and make F ′

j

20: Calculate fitness value of F ′
j

21: if fit(F ′
j) > fit(Fj) then

22: qj = q′j
23: Fj = F ′

j

24: end if
25: end for
26: Determine abandoned food source and replace it with a

new quantum food source for the scout bee
27: Memorize the best food source found so far
28: t = t+ 1
29: end while

a) Evaluation: calculating fitness value of each chromo-
some by an appropriate fitness function.

b) Selection: choosing one or more chromosomes of the
population by a selection approach to participate in
the next sub-step.

c) Evolution: generating new chromosomes and devel-
oping a new population by applying genetic opera-
tors including: reproduction, crossover, and mutation
on the selected chromosomes.

3) Returning the best chromosome with the maximum fitness
value as the optimum solution.

III. PROPOSED METHOD

In this section, the proposed feature engineering method for
intrusion detection is explained. This method utilizes both FS
and FC techniques to provide informative features for precise
classification of network attacks, while also finding the trade-
off between accuracy and computational cost. To achieve this,
the BQABC nature-inspired algorithm is employed to evaluate
dataset features and eliminate non-informative ones, thereby
reducing the search space and improving the quality of the
feature set. For example, consider a dataset D = {X,Y } :=
{(xn, yn)}Nn=1, consisting of N samples and a feature set
F = {f1, f2, ..., fm}. Here, xn = (xn1, xn2, ..., xnm) represents
a sample vector, and Y = (y1, y2, ..., yN ) denotes the class label
vector of N samples, where yn ∈ {1, ..., ClassLabel}. F =
{f1, f2, ..., fm} refers the original feature set used by BQABC
to select informative features Selected − F = {f1, f2, ..., fs}.
Subsequently, the selected features are inputted into the GP
algorithm, a type of FC algorithm, to generate a new, higher-
level, and more distinctive feature {fc}. This newly constructed
feature is then added to the selected feature subset, resulting in
an augmented feature set Augmented−F = {f1, f2, ..., fs, fc}.
Finally, this augmented feature set is fed into a Machine Learn-
ing (ML) classifier to detect security attacks.

System Architecture: In this paper, intrusion attack detection
is performed at the edge level. Data collected by the IoT devices
are sent to their closest edge server for further processing
including intrusion detection. As previously stated, the distance
(D) between IoT devices and the cloud server is significantly
greater than the distance (d) between IoT devices and the nearest
edge server. Therefore, by transmitting data to the edge server,
latency is reduced, making it more suitable for time-sensitive IoT
applications. However, edge servers have inherent limitations in
terms of storage and computational power compared to cloud
servers. As illustrated in Fig. 1, our focus is solely on detecting
attacks on a single edge server, assuming that each edge server
is tasked to perform intrusion detection for its assigned set of
IoT devices.

FS phase: The BQABC is a population-based method, and
its procedure begins by initializing a random population. Each
agent in this population is represented by a binary string, with
a length exactly matching the number of original features in
a dataset. The ith binary solution at the tth iteration of this
algorithm can be represented as Zi(t) = [z1i (t), z

2
i (t), ..., z

m
i (t)],

where zji (t) ∈ {0, 1}. In these strings, “1” indicates that
the corresponding feature is selected, while “0” indicates it
is not selected. Subsequently, these agents (primary solutions)
are displaced, combined and evolved during the iterations. To
achieve this, at each iteration, a learning algorithm’s feedback
is utilized to evaluate and score the agents. In other words, the
learning algorithm serves as a fitness function, with its accuracy
considered as a fitness value for the agents. Ultimately, the best-
performing agent is identified as the optimal feature subset.

FC phase: In this step, the GP algorithm is employed to gen-
erate a new informative feature. Unlike most other population-
based methods, the GP algorithm represents individuals as
trees, which serves as a robust representation for mathematical



Fig. 1: System Architecture.

expressions. The process begins by initializing the population,
wherein the selected features obtained from the previous phase
Selected − F = {f1, f2, ..., fs} (FS phase) are combined
with mathematical operations such as +, −, ×, sin, and cos.
Each tree, or newly created feature, is then evaluated using a
classifier, and the accuracy of that classifier is assigned to the
corresponding constructed feature as a fitness value. The process
continues until the maximum number of allowed generation is
reached, during which trees are reproduced using crossover and
mutation operators to update the population. Upon reaching the
termination condition, the best individual is selected as the high-
level constructed feature.

After these two steps, the best constructed feature from the
FC step {fc} is added to the best selected features that are
obtained in the FS step (Selected− F = {f1, f2, ..., fs}). This
augmented feature set (Augmented − F = {f1, f2, ..., fs, fc})
is used for training a classifier to detect network attacks and
calculate its accuracy as a measure of the IDS’s performance.
The pseudocode of the proposed method is given in Algorithm
2, and this process is illustrated in Fig. 2.

IV. EXPERIMENTS AND RESULTS

A. Dataset

The proposed method is tested on three benchmark datasets:
NSL-KDD [13], UNSW-NB 15 [14], and Bot-IoT [15]. The
NSL-KDD dataset, an improved version of KDD99, comprises
41 features with 125,973 instances in the training set and 22,544
instances in the test set. The UNSW-NB 15 dataset includes 49
features created using the Argus tool. It is divided into a training
set containing 175,341 samples and a testing set comprising
82,332 samples, covering various attack types and standard
records. The Bot-IoT dataset is created to mimic a real-world
scenario. This paper utilizes 5% of the complete dataset, which
comprises over 3.6 million instances [5]. The characteristics of
these datasets are indicated in Table I.

Algorithm 2 Pseudocode of the proposed method

Input: The population size for BQABC (S), Number of orig-
inal features (m), The population size for GP (S′), The
maximum number of iterations, Predefined mathematical
operations

Output: The best agent representing the best selected features
and the best program representing the best constructed
feature

1: Initialize the population of BQABC randomly
2: while reaching the stopping criteria or maximum iteration

do
3: Evaluate agents by a fitness function
4: Generate new quantum food sources and update agents’

positions based on BQABC algorithm (Algorithm 1)
5: end while
6: Save the best agent representing the best selected features
7: Extract the best selected features from the best agent
8: Initialize the population of GP randomly by using the best

selected features as variables and predefined mathematical
operations

9: while reaching the stopping criteria or maximum iteration
do

10: Evaluate programs/constructed features by a fitness
function

11: Select one or two programs by a selection approach
12: Apply genetic operators including: reproduction,

crossover, and mutation on the selected chromosomes
13: end while
14: Save the best program representing the best constructed

feature
15: Add the best constructed feature to the best selected ones



Data Set 

Training Set 

Test Set 

BQABC 

Selected and 

Constructed 

Features 

Data Set 

(Feature 
Reduced) 

Classification 

GP 

Fig. 2: Overview of the proposed method.

TABLE I: Characteristics of the datasets

Criteria (↓)/Dataset name (→) NSL-KDD UNSW-NB15 BoT-IoT
Number of features 41 49 43
Number of attack categories 4 9 4
Number of classes 5 10 5
Number of total instances 148517 257673 3668522
Number of instances in training set 125973 175341 2934817
Number of instances in test set 22544 82332 733705

B. Evaluation Measure

In wrapper-based FS and FC methods, performance of a
classifier is used to evaluate and score selected feature subsets
or constructed features. In this paper, K-nearest neighbor (KNN)
classifier is used as a fitness function in BQABC and GP algo-
rithm. The performance metrics extracted from the confusion
matrix and employed in this study are accuracy, sensitivity
(recall), specificity, and the False Positive Rate (FPR). These
evaluation metrics are calculated using equations (1) to (4).

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Sensitivity(recall) =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

FPR =
FP

FP + TN
(4)

where TP , TN , FP, and FN denote true positive, true nega-
tive, false positive, and false negative, respectively.

C. Parameter Setting

The KNN Learning algorithm is employed as the classifier.
Compared to more complex learning algorithms such as neural
networks, KNN is straightforward yet performs well, often
competing with other complex classifiers. Given the limitations
of edge servers previously discussed, a simple classifier like

KNN is used in this work. According to [5], the value of K in
the KNN classifier, denoting the number of nearest neighbors,
is set to 5 for result comparison. In BQABC, the minimum
and maximum values of the rotation angle which is indicated
by θ are 0.001π and 0.05π respectively. The total number of
agents in BQABC and GP is set to 50, and maximum number
of iterations is 100. Each of these methods is executed 30 times,
and the average evaluation values are computed based on these
30 runs. It should be mentioned that all these values are chosen
based on trial and error. All these parameters are demonstrated
in Table II.

TABLE II: Parameters of the proposed method

Parameter Parameter value
Population size of BQABC 50

Population size of GP 50
Maximum number of iterations 100

Number of runs 30
Number of neighbors in KNN K = 5

Maximum value of the rotation angle θ = 0.05π
Minimum value of the rotation angle θ = 0.001π

Internal node’s functions +, −, ×, sin, cos

Data pre-processing: Also, the data is initially pre-processed
to ensure uniform formatting. This involves a two-step process:
first, non-numeric values are converted to numeric values, re-
ferred to as numericalization. Following this, a normalization
process is applied to bring all numerical columns onto a common
scale range. Some variables, when measured on different scales,
can introduce bias into the model. Given that we are working
with NSL-KDD, UNSW-NB15, and BoT-IoT as benchmark
datasets, it has been observed that each feature exhibits dis-
tinct ranges. Therefore, min-max normalization is chosen for
consistency. This approach involves normalizing the features by
subtracting the mean from each feature and then dividing it by
its standard deviation. Min-max normalization scales the values
to fall within the range of [0, 1].

D. Results and Analysis

In this section, we evaluate the effectiveness of the proposed
hybrid feature selection and construction method in identifying
the optimal feature subset and constructed feature by comparing
it to various other metaheuristic feature selection algorithms,
such as CS-PSO [16], HHO [17], MVO [18], HGS [19], BSA
[20], GTO [21], and GTO-BSA [5] which are described below.
The experiments make use of three intrusion detection datasets:
NSL-KDD, UNSW-NB15, and BoT-IoT, representing a good
combination of zero-day security threats.

• Cuckoo search-Particle swarm optimization (CS-PSO): It
combines two algorithms, cuckoo search and particle
swarm optimization, while integrating the concepts of local
best and global best. Then informative features are chosen
based on their fitness values to classify all the attacks
accurately .

• Harris Hawks Optimize (HHO): It is a nature-inspired
algorithm that mimics the cooperative behavior and hunting
style of Harris’s hawks in the wild, known as the ’surprise



pounce’. It is used to remove irrelevant features to improve
the performance of IDSs.

• Multi-Verse Optimizer (MVO): This algorithm is rooted in
three cosmological principles: white holes, black holes, and
wormholes.

• Hunger Games Search (HGS): It is crafted to align with the
hunger-driven behaviors and choices observed in animals.

• Bird Swarm Algorithm (BSA): It is derived from swarm
intelligence observed in bird swarms, encompassing three
primary behaviors in birds: foraging, vigilance, and flight.

• Gorilla Troops Optimizer (GTO): This algorithm mathe-
matically models the collective life of gorillas and intro-
duces novel mechanisms for both exploration and exploita-
tion.

• Gorilla Troops Optimizer based on Bird Swarm Algorithm
(GTO-BSA): This algorithm utilizes BSA to enhance the
exploitation performance of GTO due to its strong capa-
bility in locating feasible regions with optimal solutions.
Consequently, this contributes to an improved final output
quality and enhances the performance of IDSs.

Comparison with state of the art methods: Tables III, IV,
and V present the experimental results for NSL-KDD, UNSW-
NB15, and BoT-IoT, respectively. The results indicate that,
in nearly all evaluation metrics, the proposed hybrid feature
selection and feature construction technique outperforms recent
wrapper-based feature selection techniques with KNN-based
IDS for all three intrusion detection datasets. In the case of the
NSL-KDD dataset, the proposed approach attained an accuracy
of 0.9889 with a reduced dataset containing 11 features. This
reflects an approximate increase in accuracy of 0.033 to 0.0449
with the proposed hybrid method when applied to a KNN-based
IDS using the NSL-KDD dataset. Meanwhile, on the UNSW-
NB15 dataset, the proposed approach achieved an accuracy of
0.9022 while reducing the feature set by approximately 78.36%.
As a result, an estimated increase in accuracy of approximately
0.1921 to 0.2696 is observed with the proposed method. Moving
on to the BoT-IoT dataset, the proposed method achieved an
accuracy of 0.9849 using a reduced feature subset consisting
of about 10 features out of the original 43. This resulted in
an estimated accuracy increase of around 0.0317 to 0.0525.
However, the proposed method selects and constructs more
features for this dataset compared to the other FS methods being
compared.

A high False Positive Rate (FPR) can trigger false alarms,
potentially causing the intrusion detection system to misclassify
normal network traffic as malicious. With the proposed ap-
proach, it achieves promising scores for sensitivity (True Positive
Rate), specificity (True Negative Rate), and FPR evaluation
metrics across all three datasets. This method concurrently
enhances both the True Positive Rate and True Negative Rate
while reducing the FPR. Compared to other methods, the NSL-
KDD dataset exhibits an increase in sensitivity of approximately
0.0561 to 0.0809 and an increase in specificity of around 0.0121
to 0.0169. These improvements result in a sensitivity of 0.9703
and a specificity of 0.9876 when applying the proposed hybrid
technique. Similarly, for the UNSW-NB15 dataset, there is an

increase in sensitivity ranging from about 0.133 to 0.2656 and an
improvement in specificity ranging from approximately 0.0023
to 0.0779, culminating in a sensitivity of 0.9483 and a specificity
of 0.8806. Nonetheless, in the case of the BoT-IoT dataset, the
HHO method achieved a higher sensitivity of 0.9992, while the
sensitivity of the proposed method was 0.9979. On the other
hand, the proposed method obtained the highest specificity of
0.9927, whereas HHO’s specificity was 0.5111. Furthermore,
the proposed method has demonstrated superior performance in
terms of achieving the lowest FPR across all three datasets.

Computational time analysis: Table VI illustrates the aver-
age computational time (s) across 30 repetitions for the com-
pared methods. Given our focus on the performance-cost trade-
off, it is essential to simultaneously consider Table VI alongside
Tables III, IV, and V for a comprehensive understanding. By
comparing table VI and table III, it is clear that the pro-
posed method outperforms the overall best-performing algorithm
(GTO-BSA) in terms of speed by a factor of 7 while also
enhancing accuracy from 0.9559 to 0.9889. This comparison
highlights that the proposed method offers a balanced trade-
off between computational cost and other performance metrics
for almost all datasets. For example, by considering Table VI
and Table V, it becomes apparent that the proposed method
outperforms the HHO method in computational cost by a factor
of 1.5. Furthermore, the sensitivity remains nearly identical
(0.9979), while other performance metrics exhibit improvement.

TABLE III: Comparison of the proposed method with existing
methods in the literature on the NSL-KDD dataset.

Method (#) Features Accuracy Sensitivity Specificity FPR
CS-PSO 14.875 0.9501 0.8894 0.9755 0.0245
HHO 19.625 0.9544 0.9059 0.9733 0.0267
MVO 16.5 0.9531 0.8981 0.9749 0.0251
HGS 18.625 0.9479 0.8945 0.9743 0.0257
BSA 21.125 0.9440 0.9003 0.9707 0.0293
GTO 18.5 0.9543 0.9032 0.9738 0.0262
GTO-BSA 14.75 0.9559 0.9142 0.9736 0.0264
Proposed method 11 0.9889 0.9703 0.9876 0.0124

TABLE IV: Comparison of the proposed method with existing
methods in the literature on the UNSW-NB15 dataset.

Method (#) Features Accuracy Sensitivity Specificity FPR
CS-PSO 18.125 0.6692 0.7730 0.8663 0.1337
HHO 12 0.7064 0.7865 0.8222 0.1778
MVO 16.5 0.6979 0.7807 0.8783 0.1217
HGS 18.75 0.6326 0.6827 0.8401 0.1599
BSA 14.875 0.6543 0.7519 0.8675 0.1325
GTO 12.625 0.7072 0.7788 0.8027 0.1973
GTO-BSA 16.625 0.7101 0.8153 0.8770 0.1230
Proposed method 10.6 0.9022 0.9483 0.8806 0.1194

Non-parametric statistical analysis: The proposed approach
enhances IDS performance in most cases by carefully choosing
and creating informative features from the original feature set.
To statistically validate the achieved results, the nonparametric
Wilcoxon signed-rank test is utilized for all the performance
measures. In Table VII, the exact p-values are presented, con-
firming significant differences between the proposed hybrid



TABLE V: Comparison of the proposed method with existing
methods in the literature on the BoT-IoT dataset.

Method (#) Features Accuracy Sensitivity Specificity FPR
CS-PSO 3.2 0.9370 0.9648 0.9284 0.0716
HHO 2.133 0.9532 0.9992 0.5111 0.4889
MVO 2.8 0.9393 0.9670 0.8584 0.1416
HGS 3.6 0.9351 0.9620 0.9277 0.0723
BSA 3.4 0.9324 0.9512 0.6504 0.3496
GTO 2.4666 0.9479 0.9885 0.6500 0.3500
GTO-BSA 2.5333 0.9485 0.9928 0.9622 0.0378
Proposed method 10.33 0.9849 0.9979 0.9927 0.0073

TABLE VI: Comparison of the proposed method with existing
methods in the literature in terms of computational time (s)

Method (↓)/Dataset name (→) NSL-KDD UNSW-NB15 BoT-IoT
CS-PSO 4604.31 80.89 71.09
HHO 12,476.16 146.24 144.71
MVO 5441.159 77.87 70.17
HGS 661.72 12.57 10.74
BSA 6515.84 74.88 68.97
GTO 9719.66 113.36 108.63
GTO-BSA 10,205.83 161.23 145.74
Proposed method 1441.02 133.55 92.50

method and the other compared algorithms. According to this
test, any methods with p-values less than 0.05 are rejected.
Notably, the proposed method rejects all of the comparative
algorithms.

V. CONCLUSION AND FUTURE WORKS

In this paper, we introduce a novel feature engineering method
to find a balance trade-off between cost and accuracy to enhance
intrusion detection system (IDS) performance. This approach
focuses on increasing detection accuracy while concurrently
reducing false positive rates by identifying the most informative
features that positively impact IDS performance. We evaluate
the performance of the proposed feature engineering method
using three IoT intrusion detection datasets: NSL-KDD, UNSW-
NB15, and BoT-IoT, and compare it with other competitive
algorithms. The results indicate achieved accuracies of 0.9889,
0.9022, and 0.9849 for the NSL-KDD, UNSW-NB15, and
BoT-IoT datasets, respectively. As this study marks the initial
exploration of feature construction in the context of intrusion
detection, future research endeavors may extend this approach
to construct multiple features, potentially replacing the total
number of original features with the newly created ones. Fur-
thermore, in future endeavors, our focus may shift towards
detecting attacks within a distributed IoT environment, rather
than concentrating solely on a single edge server.

ACKNOWLEDGEMENT

This work is funded by research grant provided by the
National Science Foundation (NSF) under the grant number
1948387.

REFERENCES

[1] K. Albulayhi, Q. Abu Al-Haija, S. A. Alsuhibany, A. A.
Jillepalli, M. Ashrafuzzaman, and F. T. Sheldon, “Iot in-

TABLE VII: Results of the Wilcoxon signed-rank test for the
proposed method

Proposed method VS. Exact P-value
CS-PSO 0.003906
HHO 0.007812
MVO 0.003906
HGS 0.003906
BSA 0.003906
GTO 0.003906
GTO-BSA 0.003906

trusion detection using machine learning with a novel high
performing feature selection method,” Applied Sciences,
vol. 12, no. 10, p. 5015, 2022.

[2] A. Mahanipour and H. Khamfroush, “Wrapper-based fed-
erated feature selection for iot environments,” in 2023
International Conference on Computing, Networking and
Communications (ICNC). IEEE, 2023, pp. 214–219.

[3] A. K. Mishra and S. Paliwal, “Mitigating cyber threats
through integration of feature selection and stacking en-
semble learning: the lgbm and random forest intrusion
detection perspective,” Cluster Computing, vol. 26, no. 4,
pp. 2339–2350, 2023.

[4] W. L. Al-Yaseen, A. K. Idrees, and F. H. Almasoudy,
“Wrapper feature selection method based differential evo-
lution and extreme learning machine for intrusion detection
system,” Pattern Recognition, vol. 132, p. 108912, 2022.

[5] S. S. Kareem, R. R. Mostafa, F. A. Hashim, and H. M.
El-Bakry, “An effective feature selection model using hy-
brid metaheuristic algorithms for iot intrusion detection,”
Sensors, vol. 22, no. 4, p. 1396, 2022.

[6] F. Barani and H. Nezamabadi-pour, “Bqiabc: a new
quantum-inspired artificial bee colony algorithm for binary
optimization problems,” Journal of AI and Data Mining,
vol. 6, no. 1, pp. 133–143, 2018.

[7] J. R. Koza, “Genetic programming as a means for pro-
gramming computers by natural selection,” Statistics and
computing, vol. 4, pp. 87–112, 1994.

[8] A. Mahanipour and H. Nezamabadi-Pour, “A multiple
feature construction method based on gravitational search
algorithm,” Expert Systems with Applications, vol. 127, pp.
199–209, 2019.

[9] A. Thakkar and R. Lohiya, “Fusion of statistical impor-
tance for feature selection in deep neural network-based
intrusion detection system,” Information Fusion, vol. 90,
pp. 353–363, 2023.

[10] V. Kumar, D. Sinha, A. K. Das, S. C. Pandey, and R. T.
Goswami, “An integrated rule based intrusion detection
system: analysis on unsw-nb15 data set and the real time
online dataset,” Cluster Computing, vol. 23, pp. 1397–
1418, 2020.

[11] Z. Liu and Y. Shi, “A hybrid ids using ga-based feature
selection method and random forest,” Int. J. Mach. Learn.
Comput, vol. 12, no. 02, pp. 43–50, 2022.

[12] A. Nazir and R. A. Khan, “A novel combinatorial optimiza-
tion based feature selection method for network intrusion



detection,” Computers & Security, vol. 102, p. 102164,
2021.

[13] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the kdd cup 99 data set,” in 2009 IEEE
symposium on computational intelligence for security and
defense applications. Ieee, 2009, pp. 1–6.

[14] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive
data set for network intrusion detection systems (unsw-
nb15 network data set),” in 2015 military communications
and information systems conference (MilCIS). IEEE,
2015, pp. 1–6.

[15] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull,
“Towards the development of realistic botnet dataset in the
internet of things for network forensic analytics: Bot-iot
dataset,” Future Generation Computer Systems, vol. 100,
pp. 779–796, 2019.

[16] P. Ghosh, A. Karmakar, J. Sharma, and S. Phadikar, “Cs-
pso based intrusion detection system in cloud environ-
ment,” in Emerging Technologies in Data Mining and
Information Security: Proceedings of IEMIS 2018, Volume
1. Springer, 2019, pp. 261–269.

[17] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja,
and H. Chen, “Harris hawks optimization: Algorithm and
applications,” Future generation computer systems, vol. 97,
pp. 849–872, 2019.

[18] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-verse
optimizer: a nature-inspired algorithm for global optimiza-
tion,” Neural Computing and Applications, vol. 27, pp.
495–513, 2016.

[19] Y. Yang, H. Chen, A. A. Heidari, and A. H. Gandomi,
“Hunger games search: Visions, conception, implementa-
tion, deep analysis, perspectives, and towards performance
shifts,” Expert Systems with Applications, vol. 177, p.
114864, 2021.

[20] X.-B. Meng, X. Z. Gao, L. Lu, Y. Liu, and H. Zhang, “A
new bio-inspired optimisation algorithm: Bird swarm al-
gorithm,” Journal of Experimental & Theoretical Artificial
Intelligence, vol. 28, no. 4, pp. 673–687, 2016.

[21] B. Abdollahzadeh, F. Soleimanian Gharehchopogh, and
S. Mirjalili, “Artificial gorilla troops optimizer: a new
nature-inspired metaheuristic algorithm for global opti-
mization problems,” International Journal of Intelligent
Systems, vol. 36, no. 10, pp. 5887–5958, 2021.


	Introduction
	BACKGROUND AND RELATED WORKS
	Related Works
	Binary Quantum-inspired Artificial Bee Colony
	Genetic Programming (GP)

	Proposed Method
	Experiments and Results
	Dataset
	Evaluation Measure
	Parameter Setting
	Results and Analysis

	Conclusion and Future Works

