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Abstract— Accurate and timely detection of
cyber threats is critical to keeping our online
economy and data safe. A key technique in early
detection is the classification of unusual patterns
of network behaviour, often hidden as low-
frequency events within complex time-series
packet flows. One of the ways in which such
anomalies can be detected is to analyse the
information entropy of the payload within
individual packets, since changes in entropy can
often indicate suspicious activity - such as whether
session encryption has been compromised, or
whether a plaintext channel has been co-opted as a
covert channel. To decide whether activity is
anomalous we need to compare real-time entropy
values with baseline values, and while the analysis
of entropy in packet data is not particularly new, to
the best of our knowledge there are no published
baselines for payload entropy across common
network services. We offer two contributions: 1)
We analyse several large packet datasets to
establish baseline payload information entropy
values for common network services, 2) We
describe an efficient method for engineering
entropy metrics when performing flow recovery
from live or offline packet data, which can be
expressed within feature subsets for subsequent
analysis and machine learning applications.
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I.  INTRODUCTION

Packet level information entropy can reveal
useful insights into the types of content being
transported across data networks, and whether that
content type is consistent with the communication
channels and service types being used. By
comparing payload entropy with baseline values,
we can ascertain - for example - whether security
policy is being violated (e.g., an encrypted channel

is being used covertly). To the best of our
knowledge there are no published baseline
information entropy values for common network
services, and therefore no way to easily compare
deviations from mormal'. In this paper we analyse
several large packet datasets to establish baseline
entropy for a broad range of network services. We
also describe an efficient method for recovering
entropy during flow analysis on live or offline
packet data, the results of which can be included
as part of a broader feature subset, for subsequent
analysis and machine learning applications.
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Fig. 1. Simplified illustration of information entropy for a fixed set of
eight symbols. Lowest entropy is achieved with a monotonic set of
repeating symbols (each with probability 1 of being predicted). Highest
entropy is achieved when the full symbol set is used, with each symbol
appearing randomly with equal probability.

A. Background

Broadly, entropy is a measure of the state of
disorder, randomness, or uncertainty in a system.!
In the context of information theory, entropy was

! Definitions span multiple scientific fields, and the concept of 'order' can
be somewhat subjective, however, for the purpose of this work we are
concerned with information entropy. In terms of physics for example the
configuration of the primordial universe has lowest overall entropy, since it
is the most ordered and least likely state over a longer timeframe. We can
consider entropy as the number of configurations of a system. It may also
be viewed as a measure of the lack of information in a system.



first described by Shannon in his seminal 1948
paper [SHAN48], which provides a mathematical
framework to understand, measure, and optimise
the transmission of information. Shannon
formalised the concept of information entropy as a
measure of the uncertainty associated with a set of
possible outcomes: the higher the entropy, the
more uncertain the outcomes.

Practically, if we consider entropy in data, we
are interested in the frequency distribution of
symbols, taken from a finite symbol set. The higher
the entropy, the greater the diversity in symbols.
Maximum entropy occurs when the symbolic
content of data is unpredictable, so for example. if
a file or network byte stream has high entropy, it
follows that any symbol? is almost equally likely
to appear next (i.e., the data sequence is
unpredictable, close to random), see Fig. 1.

Shannon’s entropy [SHAN48, SHANI1S5] -
sometimes referred to as information density, is a
measurement of the optimal average length of a
message, given a finite symbol set (an alphabet).
The use of entropy to measure uncertainty in a
series of events or data is a widely accepted
statistical ~ practice in information theory
[SHAN4S, SHAN15].

We can compute the entropy of a discrete
random event x using the following formula:

H(X)=- Zp(wz') log, (p(x:))

Where H(x) is information entropy of a random
variable X, with a finite set of n symbols. This
formula is effectively the weighted average
uncertainty for each outcome xj, where each
weight is the probability p(xi). P(x;) is the
probability [0,1] of the occurrence of the i
outcome. Log base 2 is convenient to use since we
are measuring entropy in bits (i.e., x €{0,1}). The
negative sign ensures non-negative entropy. In
Section III we describe how we normalise entropy
values to lie within the range 0 to 8 for the purpose
of our packet analysis.

2 Here we typically equate a byte to a symbol.

B. Network packet and flow datasets

Machine learning is a powerful tool in
cybersecurity, and particularly in its ability to
detect anomalies, and cybersecurity researchers in
network threat identification and intrusion
detection are particularly interested in the analysis
of large network packet and flow datasets. A
survey of the composition of publicly available
intrusion datasets is provided in [KEN20].

Packet datasets are typically large® high-
dimensional, time-series data, often containing
tens of millions of discrete packet events. Due to
memory constraints and temporal complexity, it is
common to abstract packet data into lower-
dimensional containers called flows. Flows capture
the essential details of packet streams in a compact
extensible format, without the inherent complexity
of raw packets [KEN20]. Packet flows offer a
convenient lower dimension sample set with
which to do cyber research.

A flow can be created using a simple tuple, to
create a unique fingerprint with which to
aggregate associated packets over time, based on
the following attributes:

. Source and Destination IP Address
. Source and Destination Port identifier
. Protocol ID

Flows can be stateful*, with additional logic
and timeouts required to capture the full lifecycle
of a flow. Flows may also be directional (i.e.,
unidirectional, or bidirectional), and flows may be
unicast, multicast, or broadcast (one-to-one, one-
to-group, one-to-all). While flows are essentially
unique at any instant, they may not be unique
across time - based solely on the tuple - since
some attributes are likely to be reused in the
distant future’.

Modern public datasets used in network threat
research often include high level flow summaries
and metadata, but rarely include payload content

? Tens to hundreds of Gigabytes

* For example, TCP flows have a definite lifecycle, controlled by state flags
5 For example, port numbers will eventually 'wrap around' once they reach
a maximum bound - so large packet trace could contain two identical flows,
but these are likely to be separated by a substantial time interval - unless
there is a bug in the port allocation procedure.



in these summaries.® Since packet payload
typically represents the largest contributor to
packet size’, it tends to be removed during the
creation of flow datasets. Payload also adds
complexity, in that it requires reassembly and in-
memory state handling, across the lifecycle of a
flow. Payload is often encrypted (see Fig 2), which
means that many potentially useful featu.res are
not accessible. There are also potential privacy and
legal concerns, given that payload may contain
confidential, sensitive, or personal information
[KEN20]. For these reasons, we rarely see much
information on packet payload within flow
datasets and metadata summaries, other than
simple volumetric metrics. As such, we have very
few insights of what the actual content of the data
being transferred looks like, at any point in time,
and this lack of visibility can impair the detection
of anomalous and suspicious activity that might
exploit this feature. Specifically. the omission of
such metrics in flow and packet data may inhibit
detection of certain types of attack, and as
discussed in Section II.

C. What kind of entropy metrics are useful
network packet data

In the context of network packet data, a variety
of entropy measurements can be taken, and
applied in the classification of network anomalies;
based on the premise that deviation in entropy
values from expected baselines can be indicators
of specific threat vectors. For example, where
synthetic attacks rely on simple script-based
malware, features such as timing or address
allocation may exhibit lower entropy (e.g., we
might observe predictable packet intervals,
payload sizes, port number allocations etc.)s.
Naturally, skilled malware creators will attempt to
mask  such  characteristics by  reducing
predictability (for example, by introducing
randomised timing, more sophisticated address
and port allocation techniques, perturbations in
content etc.).

¢ Notably the UNB 2012 intrusion dataset did include some payload
information encoded in Base 64,, however subsequent updates did not, due
to the size implications.

7 Typically, an order of magnitude larger than the protocol headers.

8 This might be the case where malware contains simple data generating
loops, and where events and data are allocated incrementally, at predictable
intervals.

In practice, we can calculate entropy against
several network features, including packet payload
content, packet arrival times, IP addresses and
service or port identifiers, as well as changes in
entropy across time. Cybersecurity researchers
have extended these concepts to a range of use
cases in malware detection and content
classification. For instance, techniques have been
developed to identify anomalies in binary files, as
well as encrypted network traffic, to indicate the
presence of malicious code. We discuss several
implementations of entropy in anomaly detection
described in the literature in Section II.

Importantly, even where payload content is
removed during flow creation, it is possible to
extract useful information about payload
composition, based on symbolic predictability.
Metrics such as information entropy [SHAN4S,
SHANI15] can provide insights into the nature of
encapsulated payload data and may be used as an
indicator for security threats from covert channels,
data exfiltration, and protocol compromise.

There is a subtle distinction here worth pointing
out regarding the use of packet and flow-level
entropy metrics:

. At the discrete packet level, individual packets
arrive  at  typically random intervals’,
intermingled with many other packets, denoting
different services and conversations. At a
packet level the information entropy is
effectively atomic, and we do not get a view of
cumulative entropy over time, nor any changes
in entropy over time.

. At a flow level, packets that are closely related
over time are analysed statefully, and as a
discrete group. For example, if a user sends an
email there will typically be several related
packets involved in the exchange, in two
directions, and this collection of packets is
termed a packet flow. Information entropy at
this level can be useful in providing an overall
perspective of the content of payload, and a
per-packet perspective on any changes in
entropy throughout the flow, by direction.

® On a large busy multi-protocol network with many active nodes we can
reasonably assume this at least appears to be the case in practice.



Whilst there are times when individual packet
entropy may be useful'?, ideally, we want to
understand the cumulative entropy within packet
payload, by direction, with the ability to identify
any significant changes in entropy during the flow
lifecycle.

D. Information entropy baselines for network
services

Each packet traversing a network typically
contains identifiers that associate that packet with
a network service - for example, the File Transfer
Protocol (FTP), where the payload of each packet
usually represents a fragment of the content being
transferred. Packet payload represents a rich
source of high dimensional data, and techniques
that examine this low-level information are termed
Deep Packet Inspection (DPI). In the past we
enjoyed almost complete visibility of this content
since older network services (such as HTTP)
encoded content in plaintext (i.e. unencrypted).
Today, networks are dominated by encrypted
services, such as HTTPS, where payload is
effectively treated as a 'black-box™!, although,
there remain some important legacy services that
do not encrypt data, as shown in Fig. 2.

Service Port  Encrypted Service Port  Encrypted
ftp 20,21 n ssh 22 y
telnet 23 n kerberos 88 p
smtp 25 n Idap 389 n
dns 53 n ssl, https 443 y
bootp | dhcp 67,68 n smtps 465 y
tftp 69 n nntps 563 y
http 80 n Idaps 636 y
sftp 115 n telnets 992 y
ntp 123 n imaps 993 y
imap 143 n ircs 994 y
netbios 137-139 n pop3s 995 y
snmp 161,162 n

Fig. 2. Common well-known TCP and UDP ‘'well-known' ports for
plaintext and cryptographic services. Here y=yes, n=no, and p=partial.
Client applications that wish to use encrypted services typically start by
exchanging cryptographic keys so that the rest of the conversation is
secure. Note that some protocols use partially encrypted messaging, where
typically the initial exchange is in plantext. These variations in use will be
clearly reflected in payload entropy values.

19 For example, where real-time intervention is critical.
' Without resorting to technologies that can unpack the data in transit
(such as SSL intercept)

We know that network services exhibit
markedly different entropy profiles, since some
are known to be plaintext, some partially or fully
encrypted - as illustrated in Fig. 2. This gives us
some intuition on what level of information
entropy to expect when analysing the content of
network traffic. However, since there are no
published baselines for service level information
entropy, even if we dynamically compute payload
entropy (e.g., within an active flow) there are no
'‘ground truth' values with which to compare.
Baseline data can prove very useful in determining
whether the characteristics of flow content are
deviating significantly from expected bounds, and
this may be a strong indicator of anomalous
activity, such as a covert channel, compromised
protocol, or even data theft - as discussed in
Section II.

E. Information entropy expression in feature
subsets

Cybersecurity researchers using machine
learning typically rely on small feature subsets
with high predicted power to identify malicious
behaviour. These features may be provided with a
dataset or may be engineered from the dataset by
the researcher. The composition and correlation
strengths across these feature sets often vary,
depending on the type of threat and the
deployment context; hence the engineering of new
features is an important area of research.

We described earlier that packet and flow
datasets (particularly those publicly available
[KEN20]) typically lack entropy metrics for
payload content in their associated metadata'?. In
Section III we describe a methodology to enhance
dataset flow metadata with information entropy
features, and how we subsequently use that to
calculate service level baseline information
entropy values for various payload content types.

In the following section we describe related
work in characterising various entropy metrics,
and discuss examples where entropy has been used
in anomaly detection and content classification to
assist in network analysis and cybersecurity
research.

12 For several reasons, though chiefly due payload being mainly encrypted
nowadays, and the scale and resource challenges in decomposing and
reassembling high dimensional content types.



1. RELATED WORK

In the research it has been shown that
information gain metrics using techniques such as
entropy, can be useful in detecting anomalous
activity. Encrypted traffic tends to exhibit a very
different entropy profile to unencrypted traffic!s,
specifically it tends to have much higher entropy
values due to the induced unpredictability
(randomness) of the data. Entropy has been widely
used as a method to detect anomalous activity, and
so is of interest in research such as intrusion
detection, DDoS detection, and data exfiltration.

Early work by [GOUBO06] characterises the
entropy of several common network activities, as
shown in Fig. 3. As discussed in [GOUBO6], with
standard cryptographic protocols (such as SSH,
SSL, HTTPS) it is feasible to characterise which
parts of traffic should have high entropy, after key
exchange has taken place. Therefore, significant
changes in entropy during a session may indicate
malicious activity. During an OpenSSL or
OpenSSH attack, entropy within an encrypted
channel is likely to drop below expected levels as
the session is perturbed; [GOUBO06] suggests
entropy scores would dip to approximately 6 bits
per byte during such a compromise (i.e., entropy
values of around 6, where we would normally
expect it to by closer to 8).

Entropy (bits/byte)

Data Source HAMLE N HN

Binary executable (elf-i386) 6.35 8.00

Shell scripts 5.54 8.00
Terminal activity 4.98 8.00

1 Gbyte e-mail 6.12 8.00

1Kb X.5009 certificate (PEM) 5.81 7.80+0.061
700b X.509 certificate (DER) 6.89 7.70+0.089
130b bind shellcode 5.07 6.56+0.24
38b standard shellcode 4.78 5.10+0.28
73b polymorphic shellcode 5.69 5.92+0.27
Random 1 byte NOPs (i386) 5.71 7.99

Fig. 3. Early analysis of entropy values from several content types,
derived from [GOUBO06]. As a point of reference Fig 4 and 5 provide more
recent analysis of similar content types, where for example email has an
average entropy ranging at between 5.40 (POP3) and 5.92 (SMTP).

'3 Unencrypted but compressed data may also show high entropy,
depending on the compression algorithm and underlying data.

In [LYDO7] the authors use static analysis
across large sample collections to detect
compressed and encrypted malware, using entropy
analysis to determine statistical variations in
malware executables. In [GILB18] the authors use
methods that exploit structural file entropy
variations to classify malware content. in
[HANT1S5] the authors use visual entropy graphs to
identify distinct malware types. In [WANGI11] the
authors propose a classifier to differentiate traffic
content types (including text, image, audio, video,
compressed, encrypted, and Base64-encoded
content) using Support Vector Machine (SVM) on
byte sequence entropy values.

Analysis of the DARPA2000 dataset in [Z110]
lists the top 5 most important features as TCP
SYN flag, destination port entropy, entropy of
source port, UDP protocol occurrence and packet
volume. [GOMI12] describes how peer-to-peer
Voice over IP (VOIP) sessions can be identified
using entropy and speech codec properties with
packet flows, based on payload lengths. In
[ZEMP13] the authors use graphical methods for
detecting anomalous traffic, based on entropy
estimators.

In [GUOS5] the authors propose a propose an
efficient behavioural-based anomaly detection
technique, by comparing the maximum entropy of
network traffic against a baseline distribution,
using a sliding window technique with fixed time
slots. The method is applied generically across
TCP and UDP traffic and is limited to only three
features (based on protocol information and
destination port number). They are able detect fast
or slow deviations in entropy, for example an
increase in entropy during a SYN Flood. In
[ROMANOS8] the authors analyse entropy changes
over time in PTR RR!* DNS traffic to detect spam
bot activity. In [ALTH15] the authors build on the
concepts outlined in [GUOS], capturing network
packets and applying relative entropy with an
adaptive filter to dynamically assess whether a
change in traffic entropy is normal or contains
anomaly. Here the authors employ several
features, including source and destination IP
address, source and destination port, and number
of bytes and packets sent and received. [MAM16]
describes an entropy based encrypted traffic

!4 Resource Records (RR) used to link IP addresses with domain names



classifier based on Shannon's entropy, and
weighted entropy [CROLL13] and use of a
Support Vector Machine (SVM).

In [ZHIYO09] the authors propose a taxonomy
for network covert channels based on entropy and
channel properties, as well as suggesting
prevention techniques. More recently, in
[CHOW17] the authors focus on the detection of
Covert Storage Channels (CSC) in TCP/IP traffic
based on relative entropy of the TCP flags (i.e.,
deviation in entropy from baseline flag behaviour).
In [HOM17] the authors describe entropy-based
methods to predict the use of covert DNS tunnels,
focussing on the detection of embedded protocols
such as FTP and HTTP.

Cyber physical systems present a broad attack
surface for adversaries [KEN18], and there there
can be many active communication streams at any
point in time. These channels can be blended into
the victim's environment and used for
reconnaissance activities and data exfiltration. In
[LI22] the authors use of TCP payload entropy to
detect real-time covert channels attacks on Cyber-
Physical Systems (CPS). In [OZD22] the authors
describe a flow analysis tool that provides
application classification and intrusion detection,
based on payload features that characterise
network flows, including deriving probability
distributions of packet payloads generated by N—
gram analysis [DAMO9S5].

Computing entropy in packet flows can be
implemented by maintaining counters to keep
track of the symbol distributions - however, this
requires flow state to be maintained over time (we
describe this further in Section III). This can be
both computationally and memory intensive -
particularly in large network backbones with many
active endpoints. since flows may need to reside in
memory for several minutes, possibly longer). For
example, in [GUOS] the authors state that their
method requires constant memory and a
computation time proportional to the traffic rate.

Where entropy is to be calculated in real time a
different approach may be required. In [ARAC10],
the authors offer a distributed approach to
efficiently calculate conditional entropy to assist in
detect anomalies in wireless network streams, by
taking packet traces whilst an active threat in

progress. They propose a model based on the
Hierarchical Sample Sketching (HSS) algorithm,
looking at three features of the IEEE 802.11
header: frame length, duration/ID, source MAC
address (final 2-bytes) to compute conditional
entropy.

III. METHODOLOGY

In this section we discuss the methodology
used to calculate both baseline values and the
individual flow level entropy feature values.

raw packet
datasets

next packet

.

<- group flows by service type

deep packet inspection and
analysis

A 4

calculate packet payload update service table if new
entropy, by direction service

update flow
v features

\ 4

calculate overall mean, std,
etc., by direction, by service

calculate flow payload
entropy, by direction

end of flow

\ 4 v

export flow feature set export service entropy data

flow datasets - service I;I’E
(per flow payload information

entropy features) entropy dataset

Fig. 4. Two phase analysis for calculating service baseline metrics for
payload entropy. Packets are first grouped into logical flows to ensure that
we are tracking entropy changes for each discrete flow duration. All flow
entropy values are then grouped by service types and overall basleine
entropy metrics calculated. Note that the contribution of each dataset is
weighted by sample size (to avoid the case where a smaller anomalous
dataset distort the overall metrics)'>.

A. Baseline data processing methods

The methodology we wused to analysis
information entropy in packet traces and calculate
service level baselines can be summarised in two

15 We also ignore samples that are clearly labelled as anomalous in datasets
such as those used in intrusion detection, since these samples may include
values outside the expected baseline range.



phases, as illustrated in Fig. 4. The first phase
analyses a set of raw packet datasets (listed in Fig.
5), calculating payload entropy per packet,
grouping packets into flows, and calculating the
final payload entropy per flow. The second phase
takes the resulting flow datasets, grouping all
flows by service type (i.e., based on TCP or UDP
destination port), and calculates the service level
baseline entropy features, for all datasets.

Sample size is included in the analysis, since
some services are more widely represented in the
packet distributions than others (for example in a
typical enterprise network packet trace we would
expect to see a high percentage of web traffic, and
much less SSH traffic [KEN20]).

B. Data sources

As part of this research detailed analysis was
performed to characterise payload entropy values,
for a range of well-known and registered services,
averaged across a range of environments, as
shown in Fig. 4. Raw packet data were sourced
from several widely wused public sources
(described in [KEN20]) as well as recent live
capture traces. Raw PCAP files were converted
into flow records, with payload entropy
reconstructed for common TCP and UDP
protocols.

Dataset Year Packets Samples Publisher

UNB2017 2017 56,370,702 51,842,003 UNB
File: UNB 2017 Monday-Friday workinghours (5 files))

UNSW-NB15 2015 4,592,899 1,834,238 UNSW
Files: 17-2-15/1, 17-2-15/27 (2 files)

NETRESEC 2017 2,274,747 216,925 NETRESEC
File: 4SI1CS-GeekLounge-151022

CSE-CIC-1DS2018 2018 473,278 205,950 UNB
File: capEC2AMAZ-O4EL3NG-172.31.69.19

LIVE_TRACE 2023 355,818 127,026 Live
File: LT-2023-06-16-browser-vid

UNB2012 2012 8,177 6,357 UNB
File: 582 flows extracted

TOW-IDS 2020 791,611 100 |EEE
File: Automotive_Ethemet_with_Attack_original_10_17_20_04_test

TOTAL 64,867,232 54,232,599

Fig. 5. Datasets used in entropy calculations. The majority of samples
were taken from the full UNB 2017 dataset (containing over 56 million
packets), although several other datasets were tested to assess consisttency.
These datasets are documented in [KEN20]. The original flow summaries
provided with some of these sources were not used, since they lacked
essential payload features, and in some issues with the original floe
recovery. Therefore we reconstruct all flows and exposed aditional entropy
metadata. In the table 'samples' indicates observations that matched a
specific service type. Note that by 'sample’ we mean the number of actual
packets used in the analysis, given that network packet traces may contain
packets that are either in error or not relevant to analysis.

In total over 54 million packets were sampled.
Datasets were selected to avoid sources with
known large distortions to ensure that values were
statistically consistent across datasets (and where
possible, labelled anomalies are excluded). Results
are also weighted, per service type, with respect to
sample size, so that the contribution of each packet
trace is proportionate (i.e., small dataset samples
containing outliers do not distort overall results).
Where anomalies are labelled, we exclude these
labelled events from the calculations - therefore
the estimates are for known 'normal' traffic.

C. Flow information entropy calculation methods

In our implementation!® we provide measures
for characterising mean payload entropy in both
flow directions (inbounds and outbound), as part
of the feature engineering process. Since payload
is typically fragmented over multiple packets,
entropy may vary during the lifespan of the flow,
and will be summarised from multiple consecutive
samples!”. Our implementation is based on a
modified Krichevsky-Trofimov (KT) estimator
[KRICHS81], which estimates the probability of
each symbol in a particular symbol alphabet.

. A KT class is implemented as a bi-directional
in-memory cache (a hash table of symbol
frequencies, of capacity 256 - since we are
dealing with a byte encoded stream!®) and holds
symbolic frequency data for the two payloads.

. The flow tuple is used to index the cache. Each
flow effectively has a single cache entry, with
statistics and state tracked for both flow
directions.

. Cache entries are updated when each new
packet is encountered. The updates are assigned
to the associated flow record in the cache, or a
new flow record is created, and those updates
applied.

. Cumulative flow entropy values are
recalibrated per packet, per direction, based on
the current payload symbol frequencies and the
running payload length.

'6 These features have been implemented in the GSYNX analysis suite,
which will be made available at [GIT].

'7 For TCP these content 'fragments' may represent encapsulated data
and/or other protocol plus data.

'3 Each symbol is 8 bits wide, corresponding to 0-255



. Once a flow is finalised, the final payload
information entropy values are calculated using
the total length of the payload, against the
cumulative symbol frequencies, per direction.

Even if a flow is not terminated correctly, a
cumulative entropy value is maintained and
exported during flow dataset creation. The final
entropy value will be in the range 0 to 8, for
reasons described below.

D. Applying Shannon's entropy to byte content

When we apply Shannon's method (described
in Section I) to text content, we assume that
symbols may be encoded in 8-bit bytes!®. Since
each bit has two possible values (0 or 1), the total
number of possible combinations for a byte is 28,
or 256. This gives us a range of entropy values
between 0 (low) and 8 (high).

. Where only one symbol is repeated, the symbol
has a probability of 1, and hence the formula is
resolved to:

H=-log(1)=0

. Where all symbols are used, each symbol has a
probability of 1/256, and hence the formula is
resolved to:

256 1 1
1= (555) Yo (555

1 1
=256 — )1 o
56 (256) 082 (256)

' For example, with the ASCII character set. Unicode text may be encoded
in 8, 16 or 32-bit blocks.

Giving a low to high range of entropy values
from 0 to 8, which is the range we apply in our
analysis.

E. Flow recovery methods

Our analysis required the use of specially
developed software called GSX [KEN23] to
perform flow recovery from large packet traces in
pcap [PCAP] format. GSX performs advanced
flow recovery, including stateful reconstruction of
TCP sessions, with additional feature engineering
to calculate a broad variety of metrics, including
features characterising payload?’. Payload entropy
was calculated in both directions (outbound and
inbound, with respect to the packet flow source?!).

Flow collection is also possible in real-time,
using common network tools and hardware
[HOFS14, PATTS12], using industry standard and
extensible schemas, as provided with network
flow standards such as IPFIX [RFC7011], and
later versions of NetFlow. Depending on available
resources, in-flight capture may differ, for
example by employing sampling and sliding
window methods [CHEN14].

F. Implementation challenges

This section highlights a number of challenges
in efficient entropy calculation within the flow
reCOVery process:

Language Sensitivity: Large packet traces may
hold millions of packet events (see Fig. 5),
resulting in hundreds and thousands of flows
[KEN20]. Flow recovery is both memory and
computationally expensive, and the time to
produce an accurate flow dataset with a broad list
of useful feature set (e.g., 100 features) may take
hours, depending on the implementation language,
and efficiency of the design. For example, an
interpreted language such as python is likely to be
an order of magnitude slower when compared with
languages like Go, C, C++ or Rust.

Cache Size: Large packet traces may hold
millions of packet events (see Fig. 5), resulting in
hundreds and thousands of flows [KEN20]. Flow
recovery is both memory and computationally

20 In this analysis we focus primarily on TCP and UDP protocols
2! Outbound meaning that the initiator of the flow is sending data to a
remote entity. Here source can be thought of as the end-point IP address.



expensive and is sensitive to the composition of
the packet data and length of the trace. For
example, with a short duration trace from a busy
Internet backbone there may be tens of thousands
of flows that never terminate within the lifetime of
the trace - in which case all these flows will need
to be maintained in cache memory until the last
packet is processed. Conversely, a longer packet
trace from a typical enterprise network may
contain many thousands of flows that terminate
across the lifetime of the packet trace, and so the
cache size will tend to grow to reach a steady state
and then gradually shrink.

Entropy Calculation: to avoid multiple
processing passes on the entire packet data, flow
level information entropy analysis can be
implemented within the flow recovery logic. As
described earlier, by using the flow tuple as an
index to a bidirectional hash table, symbol counts
can be updated efficiently on a per packet basis.
Each symbol type acts as a unique key to a current
counter value. Changes in entropy are therefore
detectable within the lifespan of the flow, by
direction. We include additional measures of
entropy variance, by flow direction, which can be
another wuseful indicator for major entropy
deviations from baselines.

Real-time flow recovery: Flows can be
recovered from offline packet datasets and
archives. They can also be assembled in real time,
using industry standards such as NetFlow
[KERRO1, RFC3954] and IPFIX [RFC6313,
RFC7011, RFC7012]. Since our primary interest is
in recovering these features from well-known
research datasets, we do not implement real-time
recovery of payload entropy from live packet
captures. Prototyping however suggests that using
our implementation in a compiled language with
controlled memory management (such as Rust or
C++) is practical®?. It is also possible to avoid
some of the time and memory complexity of flow
recovery if we only want to record flow level
payload entropy from live packet data, by using
simpler data structures, although protocol state
handling is still required [KEN23].

22 Real-time performance (without packet drop) will depend to some extent
on how many other features are to be calculated alongside entropy, and the
complexity of those calculations.

IV. ANALYSIS

In this section we present our analysis on
expected baseline entropy values across a broad
range of common network services, together with
our findings and some notes on applications.

A. Baseline payload information entropy

The results of our analysis are shown in Fig. 6.
This table shows average entropy values for a
common network services, together with their
overall mean, together with directional mean and
standard deviations?’. Note that the service list has
been derived dynamically from the datasets cited
in Section IIL.B. For further information on
specific port allocations and service definitions see
[WIKIP23].

The table forms a consistent view of expected
'‘sround truth' across a range of deployment
contexts. As might be expected, services that are
encrypted (such as SSH) tend to exhibit high
entropy (close to 8.0), whereas plaintext services
(such as DNS) tend have low to mid-range entropy
values. It is worth noting that entropy values close
to zero are unlikely to be observed in real-world
network traffic, since this would equate to
embedding symbol sequences with very little
variety?*, and even plaintext messages are likely to
have entropy values in the range 3-4. This may
not be immediately obvious and so in Fig. 8§ we
show how low entropy values (close to zero)
might be achieved by severely restricting the
symbolic content artificially.

As noted earlier, the sample count indicates the
number of packet level observations found in the
data, and here we see wide variation in the
distribution frequency across services represented.
For example, web based flows (HTTPS and
HTTP) dominate the dataset composition, whereas
older protocols such as TFTP) are less well
represented. Whilst sample size can be used as a
rough analogue for confidence in these baseline
estimates, we have excluded services that had
extremely low representation.

We observed strong consistency across many of
the packet traces, however it is worth noting that

3 In a small number of cases only one flow direction is recorded, typically
because such protocols are unidirectional or broadcast in nature.

24 For example, by sending a block of text containing only repetitions of the
symbol 'x'.



in practice some services may exhibit deviation in
entropy from baselines during normal activities,
and this may depend on the context. For example,
some services are specifically designed to
encapsulate different types of file and media
content that could vary markedly in composition
and encoding (e.g., compressed video and audio
content will tend to exhibit high entropy, whereas
uncompressed files may exhibit medium-range
entropy).

Also note that peer-to-peer protocols may also
be encapsulated within protocols such as HTTP
and HTTPS, and this can make it harder to
characterise the true underlying properties of the
content (without deeper payload inspection) as
highlighted in [WANGI11]*. It is therefore
important to use appropriate domain expertise
when performing analysis, with an understanding
of the communication context.

service samples

ssh 22 7.631 0.650 7.568 7.695 0.605 0.694 678,138
cisco.ssm 465 7.587 0.731 7.555 7.617 0.643 0.815 80,032
openflow 6653 7.576 0374 7544 7.607 0.363 0.385 370
https 443 7517 1314 7426 7.608 1233 1396 19,723,054
mftp 5402 7.189 1589 7.208 7.170 1.825 1.353 193
kerberos 88 7.067 1.112 6987 7.145 1.070 1.148 40,505
radius.coa 3799 7.000 1360 6.235 7.765 2.183 0.537 357
stun 5349 6.952 2590 6.800 7.104 2.601 2.579 492
radius.acc 1813 6.885 0.390 6.558 7.189 0.627 0.153 329
bitcoin.rpc 8332 6.626 1.883 5902 7.351 1.919 1.847 235
openvpn 1194 6.599 1.084 53811 7.385 1406 0.762 1,465
rtcp 5005 6.584 1.720 6.356 6.812 2.011 1.430 195
cms 5318 6.523 1.790 5.867 7.179 2.099 1.467 285
radsec 2083 6.497 1.230 6.550 6.444 1.154 1.306 179
netconf.tls 6513 6.414 2088 6.027 6.800 2166 2011 1,151
Idap 389 6.308 1.665 6.467 6.148 1.458 1.870 138,068
nessus 1241 6.230 1.091 5.836 6.625 0.886 1.296 724
activedir 445 6.227 1609 6312 6.140 1514 1.700 115,371
ipfix 4739 5974 1928 6.710 5.237 1.547 2.309 254
smtp 25 5913 0.096 6.056 5769 0.090 0.101 235,267
imap 143 5.893 0.231 5.697 6.090 0.249 0.212 304,522
12f 1701 5.888 1.484 5688 5885 1533 1435 419
vxlan 4789 5.805 1726 5.737 2173 1.943 1.509 320
netbios.ds 138 5.775 0.181 5.775 0.000 0.180 0.001 25,544
afp 548 5.771 0.782 5.761 0.009 0.000 0.782 9,791
diameter 3868 5.685 1.783 5.354 6.016 1.794 1.771 235
ident.reg 4604 5.545 1672 5.137 5952 1.822 1.523 226
mswins 1512 5332 1967 5.008 5657 1.867 2.066 262
pop3 110 5.246 0.417 4666 5.814 0.511 0.290 29,013
ntp 123 5.088 0458 5.166 5.009 0.318 0.598 73,868
ftp.data 21 4908 0410 5110 4706 0.414 0.406 255,303
http 80 4.899 23813 4.441 5358 2.601 3.024 28,573,190
kubernetes.apisvi 6443 4.785 2.885 4.515 5.056 2.812 2.958 143
dns 53 4738 0.399 4.295 5.180 0.364 0435 3,637,086

% 1t is also worth noting that system administrators sometimes change the
port allocations to mask service usage or conform to strict firewall rules
(this is not uncommon practice with protocols such as FTP and OpenVPN
for example).

ms.kms 1688 4.697 0.613 3991 5403 0.614 0611 1,921
cifs 1293 4.552 4.199 4319 4772 4.085 4312 559
tftp 69 4262 1311 4.262 0.000 1.311 0.000 62
bootp.server 67 3.942 0.722 4.030 1.629 0.875 0.282 144
bootp.client 68 3.868 0.710 3.953 1.623 0.864 0.284 144
socks.proxy 1080 3.849 2.124 3.865 3.834 1.016 3.231 1,865
rip 520 3.836 0.287 3.836 0.000 0.287 0.000 1,258
rtp 5004 3.370 1.030 4.045 2694 0.862 1.198 1,338
hsrp 1985 3.243 1398 3.169 3.316 1574 1222 521
netbios.ss 139 3.151 2882 2913 3388 3.009 2751 70,994
http.2 8080 3.129 0977 3.092 3.158 0.851 1.082 14,828
trpwire 9898 3.060 1.412 2755 3.207 0.590 1.648 631
bgp 179 3.039 1208 5.842 0.232 1464 0943 27,887
ipsec.nattrv 4500 3.003 4.115 3.000 3.000 4.113 4.117 16,501
kerberos.rsh 514 2621 0.736 2540 0.346 0.662 0.731 999
telnet 23 2518 2138 2.094 2943 1882 2395 17,114
https.proxy.1 4444 2473 1463 2509 2335 0.557 2.065 897
ms.dcom 1029 2340 1396 2244 2340 1219 1304 1,032
pptp 1723 2315 1671 3535 1.095 1468 1.873 2,724
https.proxy.2 4445 2302 1.105 2023 2477 0.784 1.077 782
ms.sql.svr 1433 2253 0.907 2.268 2.238 0.894 0.905 905
ms.mq 1801 2.233 1505 1.861 2604 1796 1214 875
netbios.ns 137 2225 1475 3.583 0.856 1.188 1.762 114,395
citrix 1494 2,078 1.015 2.039 2117 1.077 0.952 854
radius.auth 1812 2.008 1505 2412 1.589 0.984 2.027 963
sip.tls 5061 1.829 1675 1.817 1.750 1.003 2.072 863
ms.sql.mon 1434 1796 1.235 1.743 1.842 1.207 1.262 896
mysql 3306 1.761 1.204 1.830 1595 0.821 1.273 1,047
postgresql 5432 1604 1.086 1411 1552 0.731 1.071 702
sip 5060 1.587 1.195 2.348 0.709 0.863 1.502 1,270
Ipd 515 1251 0.688 1.046 0.206 0.094 0.593 413
rtmp 1935 1197 1.187 1209 1184 1016 1358 734
nfs 2049 1121 1322 1018 1.051 0.875 1421 763
ms.mms 1755 1117 1271 1104 1.064 1071 1.291 1,414
torpark 81 00921 1549 0.873 0968 1.658 1.440 1,071
http.1 8008 0914 1.269 0.751 0.955 0.852 1.315 663
bitcoin 8333 0.896 1.282 0.742 0931 0913 1.297 691
irc 194 0.891 1815 1.279 0503 2299 1331 23
imaps 993 0.454 1340 0629 0.278 1906 0.774 527
rlogin 513 0331 0.501 0.211 0.258 0.250 0.752 347
isakmp 500 0317 0.767 0.182 0.308 0.582 0.902 401
ftps.ctrl 990 0.303 0.792 0.000 0.303 0.000 0.792 316
Idaps 636 0.297 0.786 0.000 0.297 0.000 0.786 360
bgmp 264 0.282 0.770 0.000 0.282 0.000 0.770 335
kerberos.adm 749 0270 0.754 0.000 0.270 0.000 0.754 321
msxchange.rout 691 0.270 0.755 0.000 0.270 0.000 0.755 384
kerberos.login 543 0.269 0.756 0.000 0.269 0.000 0.756 312
pop3s 995 0.267 0.754 0.000 0.267 0.000 0.754 417
nntps 563 0.266 0.751 0.000 0.266 0.000 0.751 350
smux 199 0.264 0.746 0.000 0.264 0.000 0.746 449
kerberos.pwd 464 0.263 0.748 0.000 0.263 0.000 0.748 317
doom 666 0.261 0.744 0.000 0.261 0.000 0.744 359
smtp.ms 587 0.259 0.745 0.000 0.259 0.000 0.745 408
snmp 161 0.257 0.709 0.125 0.314 0.513 0.901 919
auth 113 0.254 0.726 0.000 0.254 0.000 0.726 424
whois 43 0243 0.724 0.000 0.243 0.000 0.724 326
cisco.tdp 711 0.241 0.718 0.000 0.241 0.000 0.718 336
ftp.comd 20 0.238 0.713 0.000 0.238 0.000 0.713 376
macos.server 106 0.232 0.707 0.000 0.232 0.000 0.707 377
ripng 521 0.215 0.730 0.000 0.215 0.000 0.730 41
TOTAL 54,225,733

Fig. 6. Mean and standard deviation for payload entropy values averaged
over multiple traffic sources, by flow direction (outbound and inbound,
with respect to session initiation). Note that encrypted services such as
SSH, SSL and HTTPS have average entropy values closer to 8.0, whereas
unencrypted services such as Telnet, LDAP and NetBios have low entropy
values, indicating that the payload has a larger proportion of plaintext data.
This data was aggregated across mutiple deployment conexts (enterprise,
network backbone, industrial etc.). To account for the wide variations in
sample sizes for specific protocols between packet traces, we weight the
means by sample size, so that potential outliers in small packet traces do
not influence the overall mean results disproportionately.



Note that the standard deviation metrics are
also presented in Fig. 6, on a per service, per flow
direction basis. For most of services we analysed
the standard deviation sits typically below 2.0.
Higher variance is more likely to be found in
services that are used to encapsulate and transport
a variety of content types, particularly where a
service is normally unencrypted (e.g., web-based
protocols such as HTTP, and file transfer protocols
such as CIFS). This higher variance is likely to be
attributable to the wide variety of content types
encapsulated (some of which might be encrypted
or compressed at source).

B. Interpreting entropy variations

Since baseline information entropy values are
generally consistent across a range of deployment
contexts, a deviation in entropy may be useful to
indicate the type of content being transferred. and
whether this is normal or anomalous behaviour.
For example, if a user is uploading an encrypted
file using FTP we would anticipate a higher
entropy value than the expected baseline (around
4.1) for a particular flow. If this transfer were to
an unknown external destination, then this might
raise suspicion about the possibility of data
exfiltration. Here again some domain expertise can
be valuable, coupled with local knowledge on user
behaviour and the type of data being moved.?®

Embedded malware and executable files, often
compressed, may also be an indicator of unusual
content. For reference, several common types of
file content have been analysed and their respected
entropy values given in Fig. 7, together with their
post-encrypted entropies. Note that compressed
content?” exhibits entropy close to 8, as we might
expect, due to symbol repetition compaction. In
these tests AES encryption was used with 256-
byte keys, although other key sizes yielded similar
entropy results). Domain expertise may be useful
in determining whether a flow with very high
entropy is likely to be encrypted or compressed -
for example by examining a flow to establish
whether entropy is consistent throughout its
lifespan.

26 For example, moving encrypted data over a plaintext channel such as
FTP to an external competitor could be suspicious.

%" Here we tested ZIP compression, although other comparable
compression methods will present similar entropy results. The more
efficient the compression method the higher the entropy.

Description Plaintext File Size AES 256

entropy bytes  entropy
wins executable EXE 5.8091 10842680 7.9950
packet trace PCAP 7.9581 26073074 7.9999
code repo python ZIP 7.9991 1253078 7.9999
book - the illiad homer ZIP 7.9976 198358 7.9991
audio_recoding.wav ZIP 7.9975 2440233 7.9999
book: the illiad homer PDF 7.9963 33688009 8.0000
research paper PDF 7.9578 303396 7.9993
tuitorial PDF 6.4578 832414 7.7096
wiki page PDF 5.7842 5869349 7.9955
book: the illiad homer T 4.6104 525670 7.9996
text file summary table TXT 2.9057 3308 7.7000
spreadsheet XLSX 3.4905 1028 7.8237
AirQualityucl csv 3.4489 629862 7.9995
hires image new york colour PNG 7.9934 11921184 8.0000
hires image new york bw PNG 7.9013 5701586 8.0000
hires image new york colour JPEG 7.9895 3959743 7.9999
table image bw JPEG 7.8975 651932 7.9994
cheat sheet colour JPEG 7.8364 1261687 7.9998
web asset icon grey PNG 7.1974 565 7.6674

hires image new york colour TIFF 6.6273 21575314 7.9998

audio_recoding.wav WAV 7.2539 2828586 7.9995

Fig. 7. Common file types and entropy values. 'Plaintext' here means
unencrypted. On the right we also see corresponding entropies for AES 256
encrypted files. We use just the 256 block size as illustrative, since larger
block size does not significantly improve the results - given these are close
to 8.0 already. Note that zip compressed files and encrypted files tend to
have entropy close to 8.

To illustrate the relationship between entropy
and symbolic variety more clearly, Fig. 7
illustrates entropy values for three test files, plus
an example of a well-known English text.

Description Type  Plaintext File Size AES 256
entropy bytes  entropy

book: a midsummer nights dream TXT 4.8417 120868 7.9987

symbol_test_full TXT 6.5850 96 6.3542
symbol_test_duo TXT 1.0358 1623 5.6022
symbol_test_mono TXT 0.0075 1617 4.0235

Fig. 8. Tllustrates the effects of symbolic content on entropy values using
four raw text files. The three special 'symbol test' files have limited
symbolic alphabets. symbol_test_mono comprises only 1 repeated symbol,
with corresponding entropy close to zero. symbol_test_duo contains two
repeated symbols, with corresponding entropy close to 1. symbol_test_full
contains a richer alphabet of 96 symbols (A-Z, a-z, plus punctiation etc.),
with corresponding entropy rising above 6. The final example is a text
representation of a book, which has lower entropy than symbol_test_full
because of the frequent symbol repetitions typical in written language
(some letters and sequeqnces are far more common than others). Encrypted
versions of these files also exibit wide entropy variations. lower values due
to the lack of symbol variety in the source data.



The test files were constructed with increasing
levels of symbolic variety, and we can clearly see
corresponding changes in entropy. From this, and
the examples in Fig. 7, we can reasonably infer
that typical written messages and content would be
expected to have entropy in the mid-range
(between 3 and 5).

C. Applications

As mentioned earlier, it is possible to detect
threats, even with encrypted traffic streams, where
entropy deviates significantly from expected
ranges, or changes during the lifespan of the
session. Where content is being passed over a
network, high entropy tends to indicate that data is
either encrypted or compressed®®. Knowing this
we can analyse payload entropy dynamically and
use this as an indicator for encrypted data streams,
potentially identifying covert channels [LAMP73,
ZANDO7] and encapsulated malware. For
example:

. For example, where a particular service is
expected to encode content as plaintext (such as
DNS), the detection of high entropy may
indicate the presence of a covert channel, which
could be used for data exfiltration.

. Unexpected plaintext on an encrypted channel
may indicate a misconfiguration of the
SSL/TLS encryption settings, or a security
vulnerability in the system. For example, the
Heartbleed vulnerability found in OpenSSL in
2014 is triggered when malicious heartbeat
message causes the SSL server to dump
plaintext memory contents across the channel
[HBCVE].

. On an encrypted channel (such as an SSH
tunnel or an HTTPS session), after a connection
is established (i.e., after key exchange) we
would expect the entropy to sit close to 8 bits
per byte, once encrypted. Shifts in this value
might indicate some form of compromise.

. Many legacy protocols still use ASCII encoded
plain text encodings. If we detect higher
entropy than expected on a known plaintext
channel, this may indicate an encrypted channel

28 In general encryption tends to produce the highest entropy values
compared with compression. Further, naive compression techniques may
not achieve high entropy

is being used to send covert messages or
exfiltrate sensitive data (e.g., by using
encrypted email, or DNS tunnels [HOM17]).

D. Other Potential Uses of Entropy in Anomaly
Detection

In the literature there are studies citing the use
of entropy in anomaly detection, and these
methods might also be used to characterise and
fingerprint a particular infrastructure. For example,
entropy can be used to characterise use of IP
address, TCP and UDP Port ranges. This may give
valuable insights.

For example, we can use the same technique to
that describes in Section III to estimate entropy for
features such as:

. Packet attributes over time

. [P Addresses and IP Address Pairs

. Port ID and Port ID Pairs

. Timing intervals

. Packet classification

. Flow composition changes across time

The entropy of a set number of attributes with
packets can be tracked to assess changes in
entropy over time, as described in [ALTH15].

Address and port number entropy (calculated
individually or as flow pairs) may give some
insights on whether the allocation process for such
values appears to be synthetic (or has bugs in the
implementation). Entropy in these identifiers may
also be used to draw conclusions about the variety
of endpoints and services within a packet trace or
live network.

Timing (such as packet intervals) can also be a
strong indicator of synthetic behaviour. For
example, in a denial of service (DOS) attack or
brute force password attack, regular packet
intervals may be an indicator that the attack is
scripted. Even where some randomness has been
introduced by the adversary it may be possible to
infer higher predictability that expected (for
example where a weak random number generator
has been used).

Packets may be classified as encrypted on
unencrypted using entropy estimates, for example



as described in [DORF11]. This may be
problematic if only the first packet payload is used
(as in [DORFI11]), since early-stage protocol
interactions (such as key exchange) may not
reflect subsequent higher entropy values.

As discussed earlier, by measuring entropy
deviations across the lifecycle of a flow, by flow
direction, we may be able to indicate that a flow
has been compromised (for example during a
masquerade attack, or where a particular
encryption method has been  subverted
[GOUBO06)).

Finally, we should keep in mind that skilled
malware authors may attempt and hinder entropy-
based detection by building synthetic randomness
into malware, although it seems promising that
weighted or conditional entropy could be deployed
across several features to identify outliers.

V. CONCLUSIONS

In this paper we provided baseline payload
information entropy metrics across a broad range
of common network services, by analysing several
widely used datasets in cybersecurity research. To
the best of our knowledge this data has not been
published  previously - at least not
comprehensively. From our analysis, mean
information entropy values for packet payload are
generally consistent across a range of packet
capture environments and illustrate the varying
degrees of data protection provided by Internet
and enterprise services, with subtle differences in
inbound and outbound directions. These metrics
may be used to approximate ground truth for
efficiently characterising encapsulated content,
from which it should be feasible to help identify
certain types of anomalous behaviour. Whilst
payload information entropy alone is insufficient
to detect broader classes of suspicious behaviour,
it can be useful to help identify unusual network
behaviour, particularly when correlated with other
features, such as flow direction, source and
destination network addresses, destination port,
timing, state flags, and complementary volumetric
features such as payload size and transfer rate.

V1. FURTHER WORK

Since entropy features are rarely published in
flow datasets this represents an interesting area

from which to perform additional intrusion and
outlier detection research, particularly when
combined with other features used to classify
cyber threats. In future analysis we intend to
provide additional fine-grained metrics that further
characterise entropy variance deviation and timing
changes, by flow direction, during a flow lifecycle,
to assist in detecting subtle compromises and man-
in-the-middle (MIM) attacks. We also intend to
extend the number of datasets analysed.
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