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Abstract— Accurate and timely detection of 
cyber threats is critical to keeping our online 
economy and data safe. A key technique in early 
detection is the classification of unusual patterns 
of network behaviour, often hidden as low-
frequency events within complex time-series 
packet flows. One of the ways in which such 
anomalies can be detected is to analyse the 
information entropy of the payload within 
individual packets, since changes in entropy can 
often indicate suspicious activity - such as whether 
session encryption has been compromised, or 
whether a plaintext channel has been co-opted as a 
covert channel. To decide whether activity is 
anomalous we need to compare real-time entropy 
values with baseline values, and while the analysis 
of entropy in packet data is not particularly new, to 
the best of our knowledge there are no published 
baselines for payload entropy across common 
network services. We offer two contributions: 1) 
We analyse several large packet datasets to 
establish baseline payload information entropy 
values for common network services, 2) We 
describe an efficient method for engineering 
entropy metrics when performing flow recovery 
from live or offline packet data, which can be 
expressed within feature subsets for subsequent 
analysis and machine learning applications. 
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I. INTRODUCTION 
Packet level information entropy can reveal 

useful insights into the types of content being 
transported across data networks, and whether that 
content type is consistent with the communication 
channels and service types being used. By 
comparing payload entropy with baseline values, 
we can ascertain - for example - whether security 
policy is being violated (e.g., an encrypted channel 

is being used covertly). To the best of our 
knowledge there are no published baseline 
information entropy values for common network 
services, and therefore no way to easily compare 
deviations from 'normal'. In this paper we analyse 
several large packet datasets to establish baseline 
entropy for a broad range of network services. We 
also describe an efficient method for recovering 
entropy during flow analysis on live or offline 
packet data, the results of which can be included 
as part of a broader feature subset, for subsequent 
analysis and machine learning applications. 

 
Fig. 1. Simplified illustration of information entropy for a fixed set of 
eight symbols. Lowest entropy is achieved with a monotonic set of 
repeating symbols (each with probability 1 of being predicted). Highest 
entropy is achieved when the full symbol set is used, with each symbol 
appearing randomly with equal probability. 

A. Background 
Broadly, entropy is a measure of the state of 

disorder, randomness, or uncertainty in a system.1 
In the context of information theory, entropy was 

 
1 Definitions span multiple scientific fields, and the concept of 'order' can 
be somewhat subjective, however, for the purpose of this work we are 
concerned with information entropy. In terms of physics for example the 
configuration of the primordial universe has lowest overall entropy, since it 
is the most ordered and least likely state over a longer timeframe. We can 
consider entropy as the number of configurations of a system. It may also 
be viewed as a measure of the lack of information in a system.  



first described by Shannon in his seminal 1948 
paper [SHAN48], which provides a mathematical 
framework to understand, measure, and optimise 
the transmission of information. Shannon 
formalised the concept of information entropy as a 
measure of the uncertainty associated with a set of 
possible outcomes: the higher the entropy, the 
more uncertain the outcomes. 

Practically, if we consider entropy in data, we 
are interested in the frequency distribution of 
symbols, taken from a finite symbol set. The higher 
the entropy, the greater the diversity in symbols. 
Maximum entropy occurs when the symbolic 
content of data is unpredictable, so for example. if 
a file or network byte stream has high entropy, it 
follows that any symbol2 is almost equally likely 
to appear next (i.e., the data sequence is 
unpredictable, close to random), see Fig. 1. 

Shannon’s entropy [SHAN48, SHAN15] - 
sometimes referred to as information density, is a 
measurement of the optimal average length of a 
message, given a finite symbol set (an alphabet). 
The use of entropy to measure uncertainty in a 
series of events or data is a widely accepted 
statistical practice in information theory 
[SHAN48, SHAN15].  

We can compute the entropy of a discrete 
random event x using the following formula: 

 

 
 

Where H(x) is information entropy of a random 
variable X, with a finite set of n symbols. This 
formula is effectively the weighted average 
uncertainty for each outcome xi, where each 
weight is the probability p(xi). P(xi) is the 
probability [0,1] of the occurrence of the ith 
outcome. Log base 2 is convenient to use since we 
are measuring entropy in bits (i.e., x Î{0,1}). The 
negative sign ensures non-negative entropy. In 
Section III we describe how we normalise entropy 
values to lie within the range 0 to 8 for the purpose 
of our packet analysis. 

 
2 Here we typically equate a byte to a symbol. 

B. Network packet and flow datasets 
Machine learning is a powerful tool in 

cybersecurity, and particularly in its ability to 
detect anomalies, and cybersecurity researchers in 
network threat identification and intrusion 
detection are particularly interested in the analysis 
of large network packet and flow datasets. A 
survey of the composition of publicly available 
intrusion datasets is provided in [KEN20]. 

Packet datasets are typically large3 high-
dimensional, time-series data, often containing 
tens of millions of discrete packet events. Due to 
memory constraints and temporal complexity, it is 
common to abstract packet data into lower-
dimensional containers called flows. Flows capture 
the essential details of packet streams in a compact 
extensible format, without the inherent complexity 
of raw packets [KEN20]. Packet flows offer a 
convenient lower dimension sample set with 
which to do cyber research.  

A flow can be created using a simple tuple, to 
create a unique fingerprint with which to 
aggregate associated packets over time, based on 
the following attributes:  
• Source and Destination IP Address 
• Source and Destination Port identifier 
• Protocol ID 

Flows can be stateful4, with additional logic 
and timeouts required to capture the full lifecycle 
of a flow. Flows may also be directional (i.e., 
unidirectional, or bidirectional), and flows may be 
unicast, multicast, or broadcast (one-to-one, one-
to-group, one-to-all). While flows are essentially 
unique at any instant, they may not be unique 
across time - based solely on the tuple - since 
some attributes are likely to be reused in the 
distant future5.  

Modern public datasets used in network threat 
research often include high level flow summaries 
and metadata, but rarely include payload content 

 
3 Tens to hundreds of Gigabytes 
4 For example, TCP flows have a definite lifecycle, controlled by state flags 
5 For example, port numbers will eventually 'wrap around' once they reach 
a maximum bound - so large packet trace could contain two identical flows, 
but these are likely to be separated by a substantial time interval - unless 
there is a bug in the port allocation procedure. 



in these summaries.6 Since packet payload 
typically represents the largest contributor to 
packet size7, it tends to be removed during the 
creation of flow datasets. Payload also adds 
complexity, in that it requires reassembly and in-
memory state handling, across the lifecycle of a 
flow. Payload is often encrypted (see Fig 2), which 
means that many potentially useful featu.res are 
not accessible. There are also potential privacy and 
legal concerns, given that payload may contain 
confidential, sensitive, or personal information 
[KEN20]. For these reasons, we rarely see much 
information on packet payload within flow 
datasets and metadata summaries, other than 
simple volumetric metrics. As such, we have very 
few insights of what the actual content of the data 
being transferred looks like, at any point in time, 
and this lack of visibility can impair the detection 
of anomalous and suspicious activity that might 
exploit this feature. Specifically. the omission of 
such metrics in flow and packet data may inhibit 
detection of certain types of attack, and as 
discussed in Section II.  

C. What kind of entropy metrics are useful 
network packet data 
In the context of network packet data, a variety 

of entropy measurements can be taken, and 
applied in the classification of network anomalies; 
based on the premise that deviation in entropy 
values from expected baselines can be indicators 
of specific threat vectors. For example, where 
synthetic attacks rely on simple script-based 
malware, features such as timing or address 
allocation may exhibit lower entropy (e.g., we 
might observe predictable packet intervals, 
payload sizes, port number allocations etc.)8. 
Naturally, skilled malware creators will attempt to 
mask such characteristics by reducing 
predictability (for example, by introducing 
randomised timing, more sophisticated address 
and port allocation techniques, perturbations in 
content etc.).  

 
6 Notably the UNB 2012 intrusion dataset did include some payload 
information encoded in Base 64,, however subsequent updates did not, due 
to the size implications. 
7 Typically, an order of magnitude larger than the protocol headers. 
8 This might be the case where malware contains simple data generating 
loops, and where events and data are allocated incrementally, at predictable 
intervals. 

In practice, we can calculate entropy against 
several network features, including packet payload 
content, packet arrival times, IP addresses and 
service or port identifiers, as well as changes in 
entropy across time. Cybersecurity researchers 
have extended these concepts to a range of use 
cases in malware detection and content 
classification. For instance, techniques have been 
developed to identify anomalies in binary files, as 
well as encrypted network traffic, to indicate the 
presence of malicious code. We discuss several 
implementations of entropy in anomaly detection 
described in the literature in Section II. 

Importantly, even where payload content is 
removed during flow creation, it is possible to 
extract useful information about payload 
composition, based on symbolic predictability. 
Metrics such as information entropy [SHAN48, 
SHAN15] can provide insights into the nature of 
encapsulated payload data and may be used as an 
indicator for security threats from covert channels, 
data exfiltration, and protocol compromise. 

There is a subtle distinction here worth pointing 
out regarding the use of packet and flow-level 
entropy metrics:  
• At the discrete packet level, individual packets 

arrive at typically random intervals9, 
intermingled with many other packets, denoting 
different services and conversations. At a 
packet level the information entropy is 
effectively atomic, and we do not get a view of 
cumulative entropy over time, nor any changes 
in entropy over time.  

• At a flow level, packets that are closely related 
over time are analysed statefully, and as a 
discrete group. For example, if a user sends an 
email there will typically be several related 
packets involved in the exchange, in two 
directions, and this collection of packets is 
termed a packet flow. Information entropy at 
this level can be useful in providing an overall 
perspective of the content of payload, and a 
per-packet perspective on any changes in 
entropy throughout the flow, by direction. 

 
9 On a large busy multi-protocol network with many active nodes we can 
reasonably assume this at least appears to be the case in practice. 



Whilst there are times when individual packet 
entropy may be useful10, ideally, we want to 
understand the cumulative entropy within packet 
payload, by direction, with the ability to identify 
any significant changes in entropy during the flow 
lifecycle.  

D. Information entropy baselines for network 
services 
Each packet traversing a network typically 

contains identifiers that associate that packet with 
a network service - for example, the File Transfer 
Protocol (FTP), where the payload of each packet 
usually represents a fragment of the content being 
transferred. Packet payload represents a rich 
source of high dimensional data, and techniques 
that examine this low-level information are termed 
Deep Packet Inspection (DPI). In the past we 
enjoyed almost complete visibility of this content 
since older network services (such as HTTP) 
encoded content in plaintext (i.e. unencrypted). 
Today, networks are dominated by encrypted 
services, such as HTTPS, where payload is 
effectively treated as a 'black-box'11, although, 
there remain some important legacy services that 
do not encrypt data, as shown in Fig. 2.  

 
Fig. 2. Common well-known TCP and UDP 'well-known' ports for 
plaintext and cryptographic services. Here y=yes, n=no, and p=partial. 
Client applications that wish to use encrypted services typically start by 
exchanging cryptographic keys so that the rest of the conversation is 
secure. Note that some protocols use partially encrypted messaging, where 
typically the initial exchange is in plantext. These variations in use will be 
clearly reflected in payload entropy values. 

 
10 For example, where real-time intervention is critical. 
11 Without resorting to technologies that can unpack the data in transit 
(such as SSL intercept) 

We know that network services exhibit 
markedly different entropy profiles, since some 
are known to be plaintext, some partially or fully 
encrypted - as illustrated in Fig. 2. This gives us 
some intuition on what level of information 
entropy to expect when analysing the content of 
network traffic. However, since there are no 
published baselines for service level information 
entropy, even if we dynamically compute payload 
entropy (e.g., within an active flow) there are no 
'ground truth' values with which to compare. 
Baseline data can prove very useful in determining 
whether the characteristics of flow content are 
deviating significantly from expected bounds, and 
this may be a strong indicator of anomalous 
activity, such as a covert channel, compromised 
protocol, or even data theft - as discussed in 
Section II.  

E. Information entropy expression in feature 
subsets 
Cybersecurity researchers using machine 

learning typically rely on small feature subsets 
with high predicted power to identify malicious 
behaviour. These features may be provided with a 
dataset or may be engineered from the dataset by 
the researcher. The composition and correlation 
strengths across these feature sets often vary, 
depending on the type of threat and the 
deployment context; hence the engineering of new 
features is an important area of research.  

We described earlier that packet and flow 
datasets (particularly those publicly available 
[KEN20]) typically lack entropy metrics for 
payload content in their associated metadata12. In 
Section III we describe a methodology to enhance 
dataset flow metadata with information entropy 
features, and how we subsequently use that to 
calculate service level baseline information 
entropy values for various payload content types. 

In the following section we describe related 
work in characterising various entropy metrics, 
and discuss examples where entropy has been used 
in anomaly detection and content classification to 
assist in network analysis and cybersecurity 
research. 

 
12 For several reasons, though chiefly due payload being mainly encrypted 
nowadays, and the scale and resource challenges in decomposing and 
reassembling high dimensional content types. 



II. RELATED WORK 
In the research it has been shown that 

information gain metrics using techniques such as 
entropy, can be useful in detecting anomalous 
activity. Encrypted traffic tends to exhibit a very 
different entropy profile to unencrypted traffic13, 
specifically it tends to have much higher entropy 
values due to the induced unpredictability 
(randomness) of the data. Entropy has been widely 
used as a method to detect anomalous activity, and 
so is of interest in research such as intrusion 
detection, DDoS detection, and data exfiltration.  

Early work by [GOUB06] characterises the 
entropy of several common network activities, as 
shown in Fig. 3. As discussed in [GOUB06], with 
standard cryptographic protocols (such as SSH, 
SSL, HTTPS) it is feasible to characterise which 
parts of traffic should have high entropy, after key 
exchange has taken place. Therefore, significant 
changes in entropy during a session may indicate 
malicious activity. During an OpenSSL or 
OpenSSH attack, entropy within an encrypted 
channel is likely to drop below expected levels as 
the session is perturbed; [GOUB06] suggests 
entropy scores would dip to approximately 6 bits 
per byte during such a compromise (i.e., entropy 
values of around 6, where we would normally 
expect it to by closer to 8).  

 

 
Fig. 3. Early analysis of entropy values from several content types, 
derived from [GOUB06]. As a point of reference Fig 4 and 5 provide more 
recent analysis of similar content types, where for example email has an 
average entropy ranging at between 5.40 (POP3) and 5.92 (SMTP). 

 
13 Unencrypted but compressed data may also show high entropy, 
depending on the compression algorithm and underlying data. 

In [LYD07] the authors use static analysis 
across large sample collections to detect 
compressed and encrypted malware, using entropy 
analysis to determine statistical variations in 
malware executables. In [GILB18] the authors use 
methods that exploit structural file entropy 
variations to classify malware content. in 
[HAN15] the authors use visual entropy graphs to 
identify distinct malware types. In [WANG11] the 
authors propose a classifier to differentiate traffic 
content types (including text, image, audio, video, 
compressed, encrypted, and Base64-encoded 
content) using Support Vector Machine (SVM) on 
byte sequence entropy values. 

Analysis of the DARPA2000 dataset in [ZI10] 
lists the top 5 most important features as TCP 
SYN flag, destination port entropy, entropy of 
source port, UDP protocol occurrence and packet 
volume. [GOM12] describes how peer-to-peer 
Voice over IP (VOIP) sessions can be identified 
using entropy and speech codec properties with 
packet flows, based on payload lengths. In 
[ZEMP13] the authors use graphical methods for 
detecting anomalous traffic, based on entropy 
estimators.  

In [GU05] the authors propose a propose an 
efficient behavioural-based anomaly detection 
technique, by comparing the maximum entropy of 
network traffic against a baseline distribution, 
using a sliding window technique with fixed time 
slots. The method is applied generically across 
TCP and UDP traffic and is limited to only three 
features (based on protocol information and 
destination port number). They are able detect fast 
or slow deviations in entropy, for example an 
increase in entropy during a SYN Flood. In 
[ROMAN08] the authors analyse entropy changes 
over time in PTR RR14 DNS traffic to detect spam 
bot activity. In [ALTH15] the authors build on the 
concepts outlined in [GU05], capturing network 
packets and applying relative entropy with an 
adaptive filter to dynamically assess whether a 
change in traffic entropy is normal or contains 
anomaly. Here the authors employ several 
features, including source and destination IP 
address, source and destination port, and number 
of bytes and packets sent and received. [MAM16] 
describes an entropy based encrypted traffic 

 
14 Resource Records (RR) used to link IP addresses with domain names 



classifier based on Shannon's entropy, and 
weighted entropy [CROLL13] and use of a 
Support Vector Machine (SVM).  

In [ZHIY09] the authors propose a taxonomy 
for network covert channels based on entropy and 
channel properties, as well as suggesting 
prevention techniques. More recently, in 
[CHOW17] the authors focus on the detection of 
Covert Storage Channels (CSC) in TCP/IP traffic 
based on relative entropy of the TCP flags (i.e., 
deviation in entropy from baseline flag behaviour). 
In [HOM17] the authors describe entropy-based 
methods to predict the use of covert DNS tunnels, 
focussing on the detection of embedded protocols 
such as FTP and HTTP.  

Cyber physical systems present a broad attack 
surface for adversaries [KEN18], and there there 
can be many active communication streams at any 
point in time. These channels can be blended into 
the victim's environment and used for 
reconnaissance activities and data exfiltration. In 
[LI22] the authors use of TCP payload entropy to 
detect real-time covert channels attacks on Cyber-
Physical Systems (CPS). In [OZD22] the authors 
describe a flow analysis tool that provides 
application classification and intrusion detection, 
based on payload features that characterise 
network flows, including deriving probability 
distributions of packet payloads generated by N–
gram analysis [DAM95]. 

Computing entropy in packet flows can be 
implemented by maintaining counters to keep 
track of the symbol distributions - however, this 
requires flow state to be maintained over time (we 
describe this further in Section III). This can be 
both computationally and memory intensive - 
particularly in large network backbones with many 
active endpoints. since flows may need to reside in 
memory for several minutes, possibly longer). For 
example, in [GU05] the authors state that their 
method requires constant memory and a 
computation time proportional to the traffic rate.  

Where entropy is to be calculated in real time a 
different approach may be required. In [ARAC10], 
the authors offer a distributed approach to 
efficiently calculate conditional entropy to assist in 
detect anomalies in wireless network streams, by 
taking packet traces whilst an active threat in 

progress. They propose a model based on the 
Hierarchical Sample Sketching (HSS) algorithm, 
looking at three features of the IEEE 802.11 
header: frame length, duration/ID, source MAC 
address (final 2-bytes) to compute conditional 
entropy.  

III. METHODOLOGY 
In this section we discuss the methodology 

used to calculate both baseline values and the 
individual flow level entropy feature values. 

 
Fig. 4. Two phase analysis for calculating service baseline metrics for 
payload entropy. Packets are first grouped into logical flows to ensure that 
we are tracking entropy changes for each discrete flow duration. All flow 
entropy values are then grouped by service types and overall basleine 
entropy metrics calculated. Note that the contribution of each dataset is 
weighted by sample size (to avoid the case where a smaller anomalous 
dataset distort the overall metrics)15. 

A. Baseline data processing methods 
The methodology we used to analysis 

information entropy in packet traces and calculate 
service level baselines can be summarised in two 

 
15 We also ignore samples that are clearly labelled as anomalous in datasets 
such as those used in intrusion detection, since these samples may include 
values outside the expected baseline range. 



phases, as illustrated in Fig. 4. The first phase 
analyses a set of raw packet datasets (listed in Fig. 
5), calculating payload entropy per packet, 
grouping packets into flows, and calculating the 
final payload entropy per flow. The second phase 
takes the resulting flow datasets, grouping all 
flows by service type (i.e., based on TCP or UDP 
destination port), and calculates the service level 
baseline entropy features, for all datasets. 

Sample size is included in the analysis, since 
some services are more widely represented in the 
packet distributions than others (for example in a 
typical enterprise network packet trace we would 
expect to see a high percentage of web traffic, and 
much less SSH traffic [KEN20]). 

B. Data sources 
As part of this research detailed analysis was 

performed to characterise payload entropy values, 
for a range of well-known and registered services, 
averaged across a range of environments, as 
shown in Fig. 4. Raw packet data were sourced 
from several widely used public sources 
(described in [KEN20]) as well as recent live 
capture traces. Raw PCAP files were converted 
into flow records, with payload entropy 
reconstructed for common TCP and UDP 
protocols.  

 
Fig. 5. Datasets used in entropy calculations. The majority of samples 
were taken from the full UNB 2017 dataset (containing over 56 million 
packets), although several other datasets were tested to assess consisttency. 
These datasets are documented in [KEN20]. The original flow summaries 
provided with some of these sources were not used, since they lacked 
essential payload features, and in some issues with the original floe 
recovery. Therefore we reconstruct all flows and exposed aditional entropy 
metadata. In the table 'samples' indicates observations that matched a 
specific service type. Note that by 'sample' we mean the number of actual 
packets used in the analysis, given that network packet traces may contain 
packets that are either in error or not relevant to analysis. 

In total over 54 million packets were sampled. 
Datasets were selected to avoid sources with 
known large distortions to ensure that values were 
statistically consistent across datasets (and where 
possible, labelled anomalies are excluded). Results 
are also weighted, per service type, with respect to 
sample size, so that the contribution of each packet 
trace is proportionate (i.e., small dataset samples 
containing outliers do not distort overall results). 
Where anomalies are labelled, we exclude these 
labelled events from the calculations - therefore 
the estimates are for known 'normal' traffic.  

C. Flow information entropy calculation methods 
In our implementation16 we provide measures 

for characterising mean payload entropy in both 
flow directions (inbounds and outbound), as part 
of the feature engineering process. Since payload 
is typically fragmented over multiple packets, 
entropy may vary during the lifespan of the flow, 
and will be summarised from multiple consecutive 
samples17. Our implementation is based on a 
modified Krichevsky-Trofimov (KT) estimator 
[KRICH81], which estimates the probability of 
each symbol in a particular symbol alphabet. 
• A KT class is implemented as a bi-directional 

in-memory cache (a hash table of symbol 
frequencies, of capacity 256 - since we are 
dealing with a byte encoded stream18) and holds 
symbolic frequency data for the two payloads. 

• The flow tuple is used to index the cache. Each 
flow effectively has a single cache entry, with 
statistics and state tracked for both flow 
directions. 

• Cache entries are updated when each new 
packet is encountered. The updates are assigned 
to the associated flow record in the cache, or a 
new flow record is created, and those updates 
applied. 

• Cumulative flow entropy values are 
recalibrated per packet, per direction, based on 
the current payload symbol frequencies and the 
running payload length.  

 
16 These features have been implemented in the GSYNX analysis suite, 
which will be made available at [GIT]. 
17 For TCP these content 'fragments' may represent encapsulated data 
and/or other protocol plus data. 
18 Each symbol is 8 bits wide, corresponding to 0-255 



• Once a flow is finalised, the final payload 
information entropy values are calculated using 
the total length of the payload, against the 
cumulative symbol frequencies, per direction. 
Even if a flow is not terminated correctly, a 

cumulative entropy value is maintained and 
exported during flow dataset creation. The final 
entropy value will be in the range 0 to 8, for 
reasons described below.  

D. Applying Shannon's entropy to byte content 
When we apply Shannon's method (described 

in Section I) to text content, we assume that 
symbols may be encoded in 8-bit bytes19. Since 
each bit has two possible values (0 or 1), the total 
number of possible combinations for a byte is 28, 
or 256. This gives us a range of entropy values 
between 0 (low) and 8 (high). 
• Where only one symbol is repeated, the symbol 

has a probability of 1, and hence the formula is 
resolved to: 
 
H = - log2(1) = 0 
 

• Where all symbols are used, each symbol has a 
probability of 1/256, and hence the formula is 
resolved to: 
 

 

 

 
  = 8 

 

 
19 For example, with the ASCII character set. Unicode text may be encoded 
in 8, 16 or 32-bit blocks. 

Giving a low to high range of entropy values 
from 0 to 8, which is the range we apply in our 
analysis. 

E. Flow recovery methods 
Our analysis required the use of specially 

developed software called GSX [KEN23] to 
perform flow recovery from large packet traces in 
pcap [PCAP] format. GSX performs advanced 
flow recovery, including stateful reconstruction of 
TCP sessions, with additional feature engineering 
to calculate a broad variety of metrics, including 
features characterising payload20. Payload entropy 
was calculated in both directions (outbound and 
inbound, with respect to the packet flow source21). 

Flow collection is also possible in real-time, 
using common network tools and hardware 
[HOFS14, PATTS12], using industry standard and 
extensible schemas, as provided with network 
flow standards such as IPFIX [RFC7011], and 
later versions of NetFlow. Depending on available 
resources, in-flight capture may differ, for 
example by employing sampling and sliding 
window methods [CHEN14]. 

F. Implementation challenges 
This section highlights a number of challenges 

in efficient entropy calculation within the flow 
recovery process: 

Language Sensitivity: Large packet traces may 
hold millions of packet events (see Fig. 5), 
resulting in hundreds and thousands of flows 
[KEN20]. Flow recovery is both memory and 
computationally expensive, and the time to 
produce an accurate flow dataset with a broad list 
of useful feature set (e.g., 100 features) may take 
hours, depending on the implementation language, 
and efficiency of the design. For example, an 
interpreted language such as python is likely to be 
an order of magnitude slower when compared with 
languages like Go, C, C++ or Rust. 

Cache Size: Large packet traces may hold 
millions of packet events (see Fig. 5), resulting in 
hundreds and thousands of flows [KEN20]. Flow 
recovery is both memory and computationally 

 
20 In this analysis we focus primarily on TCP and UDP protocols 
21 Outbound meaning that the initiator of the flow is sending data to a 
remote entity. Here source can be thought of as the end-point IP address. 



expensive and is sensitive to the composition of 
the packet data and length of the trace. For 
example, with a short duration trace from a busy 
Internet backbone there may be tens of thousands 
of flows that never terminate within the lifetime of 
the trace - in which case all these flows will need 
to be maintained in cache memory until the last 
packet is processed. Conversely, a longer packet 
trace from a typical enterprise network may 
contain many thousands of flows that terminate 
across the lifetime of the packet trace, and so the 
cache size will tend to grow to reach a steady state 
and then gradually shrink.  

Entropy Calculation: to avoid multiple 
processing passes on the entire packet data, flow 
level information entropy analysis can be 
implemented within the flow recovery logic. As 
described earlier, by using the flow tuple as an 
index to a bidirectional hash table, symbol counts 
can be updated efficiently on a per packet basis. 
Each symbol type acts as a unique key to a current 
counter value. Changes in entropy are therefore 
detectable within the lifespan of the flow, by 
direction. We include additional measures of 
entropy variance, by flow direction, which can be 
another useful indicator for major entropy 
deviations from baselines. 

Real-time flow recovery: Flows can be 
recovered from offline packet datasets and 
archives. They can also be assembled in real time, 
using industry standards such as NetFlow 
[KERR01, RFC3954] and IPFIX [RFC6313, 
RFC7011, RFC7012]. Since our primary interest is 
in recovering these features from well-known 
research datasets, we do not implement real-time 
recovery of payload entropy from live packet 
captures. Prototyping however suggests that using 
our implementation in a compiled language with 
controlled memory management (such as Rust or 
C++) is practical22. It is also possible to avoid 
some of the time and memory complexity of flow 
recovery if we only want to record flow level 
payload entropy from live packet data, by using 
simpler data structures, although protocol state 
handling is still required [KEN23]. 

 
 

22 Real-time performance (without packet drop) will depend to some extent 
on how many other features are to be calculated alongside entropy, and the 
complexity of those calculations. 

IV. ANALYSIS 
In this section we present our analysis on 

expected baseline entropy values across a broad 
range of common network services, together with 
our findings and some notes on applications. 

A. Baseline payload information entropy 
The results of our analysis are shown in Fig. 6. 

This table shows average entropy values for a 
common network services, together with their 
overall mean, together with directional mean and 
standard deviations23. Note that the service list has 
been derived dynamically from the datasets cited 
in Section III.B. For further information on 
specific port allocations and service definitions see 
[WIKIP23]. 

The table forms a consistent view of expected 
'ground truth' across a range of deployment 
contexts. As might be expected, services that are 
encrypted (such as SSH) tend to exhibit high 
entropy (close to 8.0), whereas plaintext services 
(such as DNS) tend have low to mid-range entropy 
values. It is worth noting that entropy values close 
to zero are unlikely to be observed in real-world 
network traffic, since this would equate to 
embedding symbol sequences with very little 
variety24, and even plaintext messages are likely to 
have entropy values in the range 3-4.  This may 
not be immediately obvious and so in Fig. 8 we 
show how low entropy values (close to zero) 
might be achieved by severely restricting the 
symbolic content artificially. 

As noted earlier, the sample count indicates the 
number of packet level observations found in the 
data, and here we see wide variation in the 
distribution frequency across services represented. 
For example, web based flows (HTTPS and 
HTTP) dominate the dataset composition, whereas 
older protocols such as TFTP) are less well 
represented. Whilst sample size can be used as a 
rough analogue for confidence in these baseline 
estimates, we have excluded services that had 
extremely low representation. 

We observed strong consistency across many of 
the packet traces, however it is worth noting that 

 
23 In a small number of cases only one flow direction is recorded, typically 
because such protocols are unidirectional or broadcast in nature. 
24 For example, by sending a block of text containing only repetitions of the 
symbol 'x'. 



in practice some services may exhibit deviation in 
entropy from baselines during normal activities, 
and this may depend on the context. For example, 
some services are specifically designed to 
encapsulate different types of file and media 
content that could vary markedly in composition 
and encoding (e.g., compressed video and audio 
content will tend to exhibit high entropy, whereas 
uncompressed files may exhibit medium-range 
entropy).  

Also note that peer-to-peer protocols may also 
be encapsulated within protocols such as HTTP 
and HTTPS, and this can make it harder to 
characterise the true underlying properties of the 
content (without deeper payload inspection) as 
highlighted in [WANG11]25. It is therefore 
important to use appropriate domain expertise 
when performing analysis, with an understanding 
of the communication context. 

 

 
25 It is also worth noting that system administrators sometimes change the 
port allocations to mask service usage or conform to strict firewall rules 
(this is not uncommon practice with protocols such as FTP and OpenVPN 
for example). 

 

 

 
Fig. 6. Mean and standard deviation for payload entropy values averaged 
over multiple traffic sources, by flow direction (outbound and inbound, 
with respect to session initiation). Note that encrypted services such as 
SSH, SSL and HTTPS have average entropy values closer to 8.0, whereas 
unencrypted services such as Telnet, LDAP and NetBios have low entropy 
values, indicating that the payload has a larger proportion of plaintext data. 
This data was aggregated across mutiple deployment conexts (enterprise, 
network backbone, industrial etc.). To account for the wide variations in 
sample sizes for specific protocols between packet traces, we weight the 
means by sample size, so that potential outliers in small packet traces do 
not influence the overall  mean results disproportionately. 



Note that the standard deviation metrics are 
also presented in Fig. 6, on a per service, per flow 
direction basis. For most of services we analysed 
the standard deviation sits typically below 2.0. 
Higher variance is more likely to be found in 
services that are used to encapsulate and transport 
a variety of content types, particularly where a 
service is normally unencrypted (e.g., web-based 
protocols such as HTTP, and file transfer protocols 
such as CIFS). This higher variance is likely to be 
attributable to the wide variety of content types 
encapsulated (some of which might be encrypted 
or compressed at source).  

B. Interpreting entropy variations 
Since baseline information entropy values are 

generally consistent across a range of deployment 
contexts, a deviation in entropy may be useful to 
indicate the type of content being transferred. and 
whether this is normal or anomalous behaviour. 
For example, if a user is uploading an encrypted 
file using FTP we would anticipate a higher 
entropy value than the expected baseline (around 
4.1) for a particular flow.  If this transfer were to 
an unknown external destination, then this might 
raise suspicion about the possibility of data 
exfiltration. Here again some domain expertise can 
be valuable, coupled with local knowledge on user 
behaviour and the type of data being moved.26 

Embedded malware and executable files, often 
compressed, may also be an indicator of unusual 
content. For reference, several common types of 
file content have been analysed and their respected 
entropy values given in Fig. 7, together with their 
post-encrypted entropies. Note that compressed 
content27 exhibits entropy close to 8, as we might 
expect, due to symbol repetition compaction. In 
these tests AES encryption was used with 256-
byte keys, although other key sizes yielded similar 
entropy results). Domain expertise may be useful 
in determining whether a flow with very high 
entropy is likely to be encrypted or compressed - 
for example by examining a flow to establish 
whether entropy is consistent throughout its 
lifespan. 

 
26 For example, moving encrypted data over a plaintext channel such as 
FTP to an external competitor could be suspicious. 
27 Here we tested ZIP compression, although other comparable 
compression methods will present similar entropy results. The more 
efficient the compression method the higher the entropy. 

 
Fig. 7. Common file types and entropy values. 'Plaintext' here means 
unencrypted. On the right we also see corresponding entropies for AES 256 
encrypted files. We use just the 256 block size as illustrative, since larger 
block size does not significantly improve the results - given these are close 
to 8.0 already. Note that zip compressed files and encrypted files tend to 
have entropy close to 8. 

To illustrate the relationship between entropy 
and symbolic variety more clearly, Fig. 7 
illustrates entropy values for three test files, plus 
an example of a well-known English text.  

 
Fig. 8. Illustrates the effects of symbolic content on entropy values using 
four raw text files. The three special 'symbol_test' files have limited 
symbolic alphabets. symbol_test_mono comprises only 1 repeated symbol, 
with corresponding entropy close to zero. symbol_test_duo contains two 
repeated symbols, with corresponding entropy close to 1. symbol_test_full 
contains a richer alphabet of 96 symbols (A-Z, a-z, plus punctiation etc.), 
with corresponding entropy rising above 6. The final example is a text 
representation of a book, which has lower entropy than symbol_test_full 
because of the frequent symbol repetitions typical in written language 
(some letters and sequeqnces are far more common than others). Encrypted 
versions of these files also exibit wide entropy variations. lower values due 
to the lack of symbol variety in the source data. 



The test files were constructed with increasing 
levels of symbolic variety, and we can clearly see 
corresponding changes in entropy. From this, and 
the examples in Fig. 7, we can reasonably infer 
that typical written messages and content would be 
expected to have entropy in the mid-range 
(between 3 and 5). 

C. Applications 
As mentioned earlier, it is possible to detect 

threats, even with encrypted traffic streams, where 
entropy deviates significantly from expected 
ranges, or changes during the lifespan of the 
session. Where content is being passed over a 
network, high entropy tends to indicate that data is 
either encrypted or compressed28. Knowing this 
we can analyse payload entropy dynamically and 
use this as an indicator for encrypted data streams, 
potentially identifying covert channels [LAMP73, 
ZAND07] and encapsulated malware. For 
example: 
• For example, where a particular service is 

expected to encode content as plaintext (such as 
DNS), the detection of high entropy may 
indicate the presence of a covert channel, which 
could be used for data exfiltration.  

• Unexpected plaintext on an encrypted channel 
may indicate a misconfiguration of the 
SSL/TLS encryption settings, or a security 
vulnerability in the system. For example, the 
Heartbleed vulnerability found in OpenSSL in 
2014 is triggered when malicious heartbeat 
message causes the SSL server to dump 
plaintext memory contents across the channel 
[HBCVE]. 

• On an encrypted channel (such as an SSH 
tunnel or an HTTPS session), after a connection 
is established (i.e., after key exchange) we 
would expect the entropy to sit close to 8 bits 
per byte, once encrypted. Shifts in this value 
might indicate some form of compromise. 

• Many legacy protocols still use ASCII encoded 
plain text encodings. If we detect higher 
entropy than expected on a known plaintext 
channel, this may indicate an encrypted channel 

 
28 In general encryption tends to produce the highest entropy values 
compared with compression. Further, naive compression techniques may 
not achieve high entropy 

is being used to send covert messages or 
exfiltrate sensitive data (e.g., by using 
encrypted email, or DNS tunnels [HOM17]).  

D. Other Potential Uses of Entropy in Anomaly 
Detection 
In the literature there are studies citing the use 

of entropy in anomaly detection, and these 
methods might also be used to characterise and 
fingerprint a particular infrastructure. For example, 
entropy can be used to characterise use of IP 
address, TCP and UDP Port ranges. This may give 
valuable insights. 

For example, we can use the same technique to 
that describes in Section III to estimate entropy for 
features such as: 
• Packet attributes over time 
• IP Addresses and IP Address Pairs 
• Port ID and Port ID Pairs 
• Timing intervals 
• Packet classification 
• Flow composition changes across time 

The entropy of a set number of attributes with 
packets can be tracked to assess changes in 
entropy over time, as described in [ALTH15]. 

Address and port number entropy (calculated 
individually or as flow pairs) may give some 
insights on whether the allocation process for such 
values appears to be synthetic (or has bugs in the 
implementation). Entropy in these identifiers may 
also be used to draw conclusions about the variety 
of endpoints and services within a packet trace or 
live network.  

Timing (such as packet intervals) can also be a 
strong indicator of synthetic behaviour. For 
example, in a denial of service (DOS) attack or 
brute force password attack, regular packet 
intervals may be an indicator that the attack is 
scripted. Even where some randomness has been 
introduced by the adversary it may be possible to 
infer higher predictability that expected (for 
example where a weak random number generator 
has been used). 

Packets may be classified as encrypted on 
unencrypted using entropy estimates, for example 



as described in [DORF11]. This may be 
problematic if only the first packet payload is used 
(as in [DORF11]), since early-stage protocol 
interactions (such as key exchange) may not 
reflect subsequent higher entropy values. 

As discussed earlier, by measuring entropy 
deviations across the lifecycle of a flow, by flow 
direction, we may be able to indicate that a flow 
has been compromised (for example during a 
masquerade attack, or where a particular 
encryption method has been subverted 
[GOUB06]).  

Finally, we should keep in mind that skilled 
malware authors may attempt and hinder entropy-
based detection by building synthetic randomness 
into malware, although it seems promising that 
weighted or conditional entropy could be deployed 
across several features to identify outliers. 

V. CONCLUSIONS 
In this paper we provided baseline payload 

information entropy metrics across a broad range 
of common network services, by analysing several 
widely used datasets in cybersecurity research. To 
the best of our knowledge this data has not been 
published previously - at least not 
comprehensively. From our analysis, mean 
information entropy values for packet payload are 
generally consistent across a range of packet 
capture environments and illustrate the varying 
degrees of data protection provided by Internet 
and enterprise services, with subtle differences in 
inbound and outbound directions. These metrics 
may be used to approximate ground truth for 
efficiently characterising encapsulated content, 
from which it should be feasible to help identify 
certain types of anomalous behaviour. Whilst 
payload information entropy alone is insufficient 
to detect broader classes of suspicious behaviour, 
it can be useful to help identify unusual network 
behaviour, particularly when correlated with other 
features, such as flow direction, source and 
destination network addresses, destination port, 
timing, state flags, and complementary volumetric 
features such as payload size and transfer rate.  

VI. FURTHER WORK 
Since entropy features are rarely published in 

flow datasets this represents an interesting area 

from which to perform additional intrusion and 
outlier detection research, particularly when 
combined with other features used to classify 
cyber threats. In future analysis we intend to 
provide additional fine-grained metrics that further 
characterise entropy variance deviation and timing 
changes, by flow direction, during a flow lifecycle, 
to assist in detecting subtle compromises and man-
in-the-middle (MIM) attacks. We also intend to 
extend the number of datasets analysed. 
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