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Abstract. We develop a fast and scalable numerical approach to solve Wasserstein gradient flows (WGFs), which is par-
ticularly suitable for high-dimensional cases. Our approach is to use general reduced-order models, like deep neural networks,
to parameterize the push-forward maps such that they can push a simple reference density to the one solving the given WGF.
The new dynamical system is called parameterized WGF (PWGF), and it is defined on the finite-dimensional parameter space
equipped with a pullback Wasserstein metric. Our numerical scheme can approximate the solutions of WGFs for general en-
ergy functionals effectively, without requiring spatial discretization or nonconvex optimization procedures, thus avoiding some
limitations of classical numerical methods and more recent deep-learning based approaches. A comprehensive analysis of the
approximation errors measured by Wasserstein distance is also provided in this work. Numerical experiments show promising
computational efficiency and verified accuracy on a variety of WGF examples using our approach.

Key words. Wasserstein gradient flow; Fokker-Planck equation; Porous medium equation; Deep neural networks; Numerical
analysis.

1. Introduction. Wasserstein gradient flow (WGF) is a powerful tool for understanding and analyz-
ing density evolution processes. In the seminal work [20] by Jordan, Kinderlehrer and Otto, they showed
that Fokker-Planck equation (FPE) is essentially the gradient flow of the relative entropy functional under
the Wasserstein metric. Since then, WGFs have shown extensive applications in optimal transport theory,
optimization problems, Fokker-Planck equation, porous medium equation, and more [11, 29, 32]. However,
numerical computation of general WGFs remains a challenging problem, especially when the state space is of
high dimension. Furthermore, it is often desirable to find a sampler that generates samples following the solu-
tion of WGF rather than the actual density function solving WGF in many real-world statistics and machine
learning applications.

In this paper, we focus on the numerical computation of WGF to address the aforementioned issues. Let
M be a smooth manifold without boundary. For simplicity, we assume M = Rd throughout the present work,
while generalization to general manifolds is straightforward. We also omit subscript M for all integrals unless
otherwise noted. Denote the density function space defined on M as

(1.1) P(M) =
{
ρ : M → R :

∫
ρ(x)dx = 1, ρ(x) ⩾ 0,

∫
|x|2ρ(x) dx <∞

}
.

Suppose P(M) is equipped with the Wasserstein-2 distance [23, 32]:

(1.2) W (ρ1, ρ2) =
(

inf
π∈Π(ρ1,ρ2)

∫∫
|x− y|2dπ(x, y)

)1/2

for any ρ1, ρ2 ∈ P(M), where Π(ρ1, ρ2) is the joint density space with ρ1 and ρ2 as marginals. Then P(M)
becomes an infinite-dimensional Riemannian manifold with W inducing its Riemannian metric, and a WGF
can be written in the following general form:

∂ρ

∂t
= −gradWF(ρ), ρ(0, x) = ρ0(x),(1.3)

where x ∈ M, ρ0 is a given initial probability density, F : P(M) → R is some energy functional defined on
P(M), and gradW stands for the gradient of functionals on P(M) with respect to the Wasserstein metric.
Many well-known probability evolution equations, such as the Fokker-Planck equation and porous medium
equation, are essentially WGF (1.3) with specific choices of F .

In recent years, there has been a surge of interest to compute WGF (1.3) numerically. In [20], a proximal
point algorithm is used to solve the Fokker-Planck equation as a special case of WGF. Later, various numerical
methods have been developed to solve the WGF; see [9, 14, 30, 31, 33]. Among them, some use classical
methods such as finite difference [25] and finite element method [6]. They are applicable to solving WGF with
low dimension d. This limitation is due to their spatial discretization and hence they suffer the issue known
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as “curse-of-dimensionality” as the number of unknowns increases exponentially fast in terms of problem
dimension d. Sampling-based approaches [14, 30] can be used to solve WGF in high dimension, however,
the computation for the minimization and energy functional evaluation used in those algorithms may become
time-consuming.

The goal of this work is to develop a fast computational scheme of (1.3) in high-dimensional settings.
Similar to [14, 29, 30], we seek for a time-dependent push-forward map to generate samples whose density
function solves (1.3). However, compared to these existing methods, our approach features several notable
differences: (i) We use a new pullback Wasserstein metric that can be computed efficiently while still main-
taining the accuracy up to the same order as the results obtained in [29]; (ii) Our algorithm can be used to
compute general WGF with a large class of (possibly nonlinear) F ; (iii) We parameterize the push-forward
map using neural ordinary differential equation [10] and show that it is computationally convenient to handle
functional of probability densities in our case. As a result, we obtain an approximate solution to the WGF
as well as a sample generator of the solution distribution; and (iv) Our numerical scheme does not need any
spatial discretization and thus is scalable for problems defined on high-dimensional spaces (e.g., d ⩾ 15).
Moreover, our method does not need to solve any nonconvex optimization problem as in typical deep neural
network training. Instead, it only requires fast matrix-vector products where the vector size is determined by
the number of parameters in the selected push-forward map.

2. Related work. The Fokker-Planck equation is first interpreted as a special case of WGF in [20]. It
is shown that the Fokker-Planck equation can be viewed as the gradient flow on the Wasserstein manifold
of a special energy functional, which consists of a linear potential energy and a relative entropy. For general
(possibly nonlinear) energy functionals, one can apply similar derivations to obtain their corresponding WGFs.
As WGFs are essentially time-evolution partial differential equations (PDEs), classical numerical methods
such as finite difference and finite element methods can be applied with proper modifications [3, 8, 9, 27, 33].
However, the application of these classical methods is limited to low-dimensional cases due to the curse of
dimensionality.

In recent years, sampling-based approaches have been proposed as a promising alternative solution method
[14, 19, 24, 29, 30]. Many of these methods start from the numerical scheme used in [20] known as the Jordan-
Kinderlehrer-Otto (JKO) scheme, which is a proximal algorithm in the optimization context. By utilizing
the Benamou-Brenier formula, we know that for any time step, the optimal push-forward map in the JKO
scheme can be expressed as the gradient of some convex function. Motivated by this fact, several recent works
are devoted to solving the WGF by approximating the optimal push-forward map by neural networks Tθ.
However, there are two main challenges in this approach: one is the evaluation of potential energy F , especially
when F involves the density function ρ explicitly. As mentioned in [26], this problem can be addressed by
introducing an extra optimization procedure. However, such a computation is generally expensive; the other
is the computational challenge for solving the JKO scheme, which is an optimization problem on the density
manifold.

In contrast to those existing methods, our method is mostly motivated by [29], in which the authors
develop the parameterization to solve FPE. This approach exploits WGFs in the parameter space, in which
the parametric functions, such as deep neural networks, are used to parameterize the push-forward maps.
We design a numerical scheme for the parameter dynamics. The main challenge in our formulation is the
computation of the Wasserstein gradient on the parameter manifold. We show that it can be effectively
approximated once introducing the new pullback Wasserstein metric as discussed in (3.17). Furthermore,
we employ several powerful neural networks, such as the normalizing flow [21] and continuous normalizing
flow [10], which are both convenient and efficient in evaluating the energy functionals involving push-forward
densities and their gradients.

In addition to the aforementioned literatures, it is worth mentioning that the study on the Wasserstein
information matrix as the metric tensor defined on the parameter manifold has been introduced in [28]; Some
numerical analysis results on 1-dimensional neural projected WGFs have been reported in [41]; Studies on
WGFs on the manifold of Gaussian distributions have been conducted in [11, 40] and the references therein.

Furthermore, a series of deep-learning methods [1, 7, 13, 16] have been composed to compute general time-
evolution PDEs. Compared with these references which directly approximate the PDE solutions via neural
networks, our algorithm is developed on the space of push-forward maps and utilizes the geometric principle of
the WGFs. Our treatment respects the essential properties of WGFs such as positivity, conservation of mass,
and energy dissipation: the first two properties are naturally preserved on push-forward models; the energy
dissipation property is justified via our numerical experiments demonstrated in Section 4.
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3. Parameterization of Wasserstein gradient flow. In this section, we briefly review the derivation
of WGF and several examples of WGF including Fokker-Planck and porous media equations, as well as the
pullback Wasserstein metric in parameter space. Then we present our approach to solve WGF numerically
and provide a comprehensive analysis of the proposed scheme.

3.1. Background on Wasserstein gradient flow. We denote the tangent space of P(M) at ρ by

TρP(M) =
{
σ ∈ C∞(M) :

∫
σ(x) dx = 0

}
.

For any specific ρ ∈ P(M), the Wasserstein metric tensor gW is a positive definite bilinear form on the tangent
bundle T P(M) = {(ρ, σ) : ρ ∈ P(M), σ ∈ TρP(M)} defined by:

gW (ρ)(σ1, σ2) =

∫
∇Φ1(x) · ∇Φ2(x)ρ(x) dx, ∀σi ∈ TρP(M), i = 1, 2

where σi = −∇ · (ρ∇Φi) for i = 1, 2. Suppose F : P(M) → R is a smooth functional defined on P(M), its
Riemannian gradient over (P(M), gW ) is given as follows:

(3.1) gradWF(ρ) = gW (ρ)
−1

(
δF
δρ

)
(x) = −∇ ·

(
ρ(x)∇δF

δρ
(x)

)
,

where δF
δρ is the first variation of F in the L2 sense. The Wasserstein gradient flow (WGF) of F is given by

∂ρ

∂t
= −gradWF(ρ).(3.2)

Many well-known equations can be formulated as WGF with selected energy functionals. Here are three
examples.

Example 3.1 (Fokker-Planck equation). Let V ∈ C2(M) be a given potential function and ρ∗(x) =
1

ZD
e−V (x)/D be the corresponding Gibbs distribution, where D > 0 is a fixed constant and ZD =

∫
e−

V (x)
D dx

is the normalization constant. Suppose F(ρ) is the relative entropy with respect to ρ∗ scaled by D, i.e.,

F(ρ) = DHKL(ρ∥ρ∗) where HKL(ρ∥ρ∗) :=

(∫
1

D
V (x)ρ(x) + ρ(x) log ρ(x) dx

)
+ logZD.(3.3)

Then the WGF (3.2) with F defined in (3.3) becomes the Fokker-Planck equation:

∂ρ

∂t
= −gradWF(ρ) = ∇ · (ρ∇V ) +D∇ · (ρ∇ log ρ) = ∇ · (ρ∇V ) +D∆ρ.(3.4)

The relative entropy HKL(ρ∥ρ∗) is closely related to the Fisher information defined as

I(ρ|ρ∗) =

∫ ∥∥∥∥∇ log

(
ρ(x)

ρ∗(x)

)∥∥∥∥2 ρ(x) dx.(3.5)

It provides an upper bound to HKL and further guarantees the uniform convergence of the dynamics (3.4) as
shown in the following theorem, which will be used in our error estimation later.

Theorem 3.2 (Holley–Stroock perturbation [18]). Suppose the potential V can be decomposed as V =
U+ϕ where ∇2U ⪰ KI for some K > 0 and ϕ ∈ L∞. Denote osc(ϕ) := supϕ− inf ϕ <∞. Then the following
logarithmic Sobolev inequality holds

HKL(ρ∥ρ∗) ⩽
eosc(ϕ)

K
I(ρ|ρ∗)(3.6)

for any ρ ∈ P(M). Assume ρ solves equation (3.4) with initial value ρ(0, ·) = ρ0(x), then

HKL(ρt∥ρ∗) ⩽ HKL(ρ0∥ρ∗)e−
DK

osc(ϕ)
t, ∀ t > 0.(3.7)
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Example 3.3 (Porous medium equation). Consider the energy functional F defined by

F(ρ) =
1

m− 1

∫
ρm(x) dx.(3.8)

for an integer m > 1. The corresponding WGF becomes the porous medium equation (PME), which is a
nonlinear heat equation given by

(3.9)
∂ρ

∂t
= ∆(ρm).

There are many applications of PME in physical problems, for example, heat transfer or diffusion, gas flow
[36], and flow of reactive fluids in porous media [22].

Example 3.4 (Aggregation model). Consider the interaction energy functional

(3.10) F(ρ) =
1

2

∫∫
J(|x− y|)ρ(x)ρ(y) dx dy

which is used to model the interactive behavior of swarm of particles [15]. Here J is an interaction kernel
consisting of repulsive and attractive parts. A typical choice for J is

J(x) =
|x|a

a
− |x|b

b
, x ∈ M.(3.11)

where a > b > 0 are positive constants. Its corresponding WGF is

(3.12)
∂ρ

∂t
= ∇ · (ρ∇(J ∗ ρ)).

We note that Keller-Siegel system is a special case of aggregation model [5]. We remark that the WGF (3.2)
can be associated with a particle-level dynamic, as given in the following proposition.

Proposition 3.5. [29] Assume X ∈ M is a random process and solves the following equation,

Ẋ = −∇X
δ

δρ
F(ρ(X),X)(3.13)

where ρ is the density of X. Then ρ solves the WGF (3.2).

The particle-level dynamic (3.13) provides a physical interpretation of WGF. More importantly, we will use it
to establish the error bound of our approximation using parameterized WGF below.

3.2. Push-forward maps and parameterized Fokker-Planck equation. In [29], the authors devel-
oped a method to parameterize push-forward maps in order to approximately solve the FPE (3.4).

Fix any reference probability distribution λ that is absolutely continuous with respect to the standard
Lebesgue measure µ on M, we use ϱ = dλ/dµ, the Radon-Nikodym derivative of λ with respect to µ, to
denote the reference density determined by λ. Then a push-forward map T : Rd → Rd induces a new
probability density T♯ϱ on Rd:∫

E

T♯ϱ(x) dµ(x) =

∫
T−1(E)

ϱ(z) dµ(z) =

∫
T−1(E)

dλ(z) = λ(T−1(E)) for all measurable E ⊂ Rd,

where T−1(E) is the pre-image of E. Hereafter we use dx instead of dµ(x) to reduce notation complexity.
Let us take T as parameterized map, namely for any θ ∈ Θ, Tθ : Rd → Rd is a parametric function with

parameter θ. Here Θ, as a subset of Rn, is called the parameter space, where n is the number of parameters of
Tθ (i.e., the dimension of θ). Typical examples of Tθ include Fourier expansion, finite element approximation,
and (deep) neural networks.

The map T·♯ : Θ → P given by θ 7→ Tθ♯ϱ naturally defines an immersion from Θ to the probability manifold
P. Collecting all parameterized distributions together, i.e.,

PΘ = {ρθ = Tθ♯ϱ : θ ∈ Θ} ,

This manuscript is for review purposes only.
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we obtain a finite-dimensional submanifold PΘ of P. We can define the tangent space of PΘ at each θ =
(θ1, . . . , θn) ∈ Θ ⊂ Rn as Tρθ

PΘ = span{∂ρθ

∂θ1
, · · · , ∂ρθ

∂θn
}. The tangent bundle is then T PΘ = ∪θ∈Θ{ρθ}×Tρθ

PΘ.
On the other hand, the cotangent space T ∗

ρθ
PΘ is the dual space of Tρθ

PΘ, and the cotangent bundle is
T ∗PΘ = ∪θ∈Θ{ρθ} × T ∗

ρθ
PΘ.

Note that PΘ is a finite-dimensional subset of P, hence we can pull back the Wasserstein metric gW to
PΘ. It is shown in [29] that the pullback Wasserstein metric G(θ) = T ∗

θ♯g
W on P is given by

G(θ) =

∫
∇Ψ ◦ Tθ(z)∇Ψ ◦ Tθ(z)⊤dλ(z).(3.14)

where Ψθ = (ψ1, · · · , ψn)⊤, and ψj is solved from the following elliptic equation,

∇ · (ρθ∇ψj(x)) = ∇ ·
(
ρθ
∂Tθ
∂θj

◦ T−1
θ (x)

)
.(3.15)

The parameterized version of FPE on parameter manifold Θ can be expressed as

θ̇ = −G(θ)−1∇θF (θ),(3.16)

where F (θ) := F(ρθ) and F is the scaled relative entropy defined in (3.3).
If directly computing the parameterized FPE (3.16), the cost is intractable in higher dimensions because

it requires solving n elliptic equations (3.15) to obtain G(θ). To alleviate this difficulty, authors in [29] derived
a minimax formulation that can advance the dynamics without solving the elliptic equations. Although the
cost becomes manageable, it can still be high if the spatial dimension d is not small. In this work, we advocate
a new, yet naturally derived pullback metric Ĝ to replace G, and develop a computational framework to solve
general WGF. Details shall be provided in the next subsection.

3.3. Parameterized WGF with a new pullback Wasserstein metric. Following the study in [39],
we replace G(θ) by a new pullback Wasserstein metric defined as

Ĝ(θ) =

∫
∂θTθ(z)⊤∂θTθ(z) dλ(z).(3.17)

For any energy functional F with smooth variation δF
δρ , the corresponding parameterized WGF is given

by

θ̇ = −Ĝ(θ)†∇θF (θ),(3.18)

where Ĝ(θ)† is the Penrose-Moore pseudo inverse of Ĝ(θ).

The motivation of introducing Ĝ(θ) is three-folded:

• The definition is directly inspired by (3.14) and (3.15). In the 1-dimensional case, the new metric Ĝ
coincides with the exact matrix G, and the proof is shown in [29].

• A deeper motivation is influenced by [32]. The geometry of (Θ, Ĝ(θ)) is an isometric embedding into
the flat Riemannian space (O, gO) introduced in [32]. Specifically, let ϱ ∈ P (M) be a fixed density
function and O the set of diffeomorphisms T : M → M, and define the Riemannian metric gO on
O at T by gO(T )(v1, v2) :=

∫
v1v2ϱ dx for any v1, v2 ∈ TTO. Here TTO is the tangent space of O

at T , which is set to be the space of all vector fields on M for every T in [32]. Then it is shown
that the mapping Π : θ 7→ ρθ yields an isometric submersion from (O, gO) to (P (M), g), where g is
the 2-Wasserstein metric. Consider a (deep) neural network structure Tθ with parameter θ such that
Tθ : M → M is a diffeomorphism for every θ ∈ Θ and T·(·) ∈ C1(Θ × M;R). Consider the map
T : Θ → O defined by θ 7→ T (θ) := Tθ, we define the pullback metric on Θ as

(3.19) Ĝ(θ) = T ∗gO(Tθ)

where T ∗ is the pullback operation induced by T . To obtain Ĝ(θ), consider any curve {θ(t)}−ϵ⩽t⩽ϵ

for some ϵ > 0 passing through θ(0) at t = 0 and denote θ̇(0) = d
dtθ(t)|t=0. By the definitions of the

This manuscript is for review purposes only.
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pullback operation and the metric gO above, we have

Ĝ(θ(0))(θ̇(0), θ̇(0)) = gO(Tθ)

(
d

dt
Tθ(t)|t=0,

d

dt
Tθ(t)|t=0

)
=

∫ (
θ̇(0)⊤∂θTθ(0)(z)⊤∂θTθ(0)(z)θ̇(0)

)
ϱ(z) dz

= θ̇(0)⊤
(∫

∂θTθ(0)(z)⊤∂θTθ(0)(z) dλ(z)

)
θ̇(0),

which implies (3.17) since θ(0) and θ̇(0) are arbitrary. The matrix Ĝ(θ) = (Ĝ(θ)ij)1⩽i,j⩽m has
components

(3.20) Ĝ(θ)ij =

d∑
k=1

∫
∂θiT

(k)
θ (z) · ∂θjT

(k)
θ (z) dλ(z)

where T
(k)
θ : M → R is the k-th component of Tθ : M → M. This is also discussed in [38].

• Compared with (3.14), the new metric is more computationally efficient. Directly evaluating the
metric tensor G requires solving n different elliptic PDEs where n is the number of the parameters
in the push-forward map Tθ, and m can be large if we choose Tθ to be a deep neural network. To
circumvent the computation complexity challenge, a bi-level minimization scheme was proposed in [29].
However, it may still be computationally expensive to solve such optimization problems in general.
We demonstrate the difference in the computation time in the experiment for computing the solution
of the Fokker-Planck equation in Section 5.1.

The gradient ∇θF (θ) can be evaluated through the following formulation as derived in [39],

∇θF (θ) =

∫
∂θTθ(z)⊤∇X

δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z) dλ(z).(3.21)

Following [39], the formula (3.21) suggests that ∇θF (θ) is in the range of Ĝ(θ) even when Ĝ is not
invertible. Therefore, the right hand side of (3.18) is always well defined. For convenience, we still call (3.18)
the parameterized WGF, or again PWGF for short.

It is interesting to consider the particle level dynamics corresponding to (3.18). For a fix z0 ∈ M,
Y = Tθ(z0) is the push-forward point in M. When θ varies as a function of t according to (3.18), Y (t) forms
a curve in M, and it satisfies

Ẏ = ∂θTθ(z0)θ̇ = −∂θTθ(z0)Ĝ(θ)†∇θF (θ), Y 0 = Tθ(0)(z0).(3.22)

To further investigate the properties of parameterized particle dynamics (3.22), we introduce the kernel
operator K: for any f ∈ L2(M;M, λ), Kθ[f ] ∈ L2(M;M, λ) is defined as

Kθ[f ](·) = ∂θTθ(·)Ĝ(θ)†
∫
∂θTθ(z)⊤f(z) dλ(z) =

∫
Kθ(·, z)f(z) dλ(z),(3.23)

where the kernel matrix Kθ(z′, z) ∈ Rd×d is defined by

(3.24) Kθ(z′, z) := ∂θTθ(z′)Ĝ(θ)†∂θTθ(z)⊤.

It is shown that Kθ[f ] is the orthogonal projection of f onto the tangent space spanned by ∂θTθ [39]. Combining
(3.21), (3.22) and (3.23), we obtain

Ẏ = −∂θTθ(z0)Ĝ(θ)†
∫
∂θTθ(z)⊤∇X

δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z) dλ(z)

= −Kθ[∇X
δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ](z0)(3.25)

= −Kθ[∇X
δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ](T−1

θ (Y )).

The particle-level dynamics (3.25) is determined by the time-evolving push-forward map Tθ. We will use it to
derive an upper bound on the error of PWGF (3.18) in the next section.

This manuscript is for review purposes only.
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3.4. Error bounds in Wasserstein metric. We provide an error analysis of the proposed PWGF
formulation. Specifically, we establish an upper bound on the difference, measured by Wasserstein distance,
between the approximation ρθ(t)(·) = Tθ(t)♯ϱ(·) where θ(t) solves PWGF and the true solution ρ(t, ·) to the

original WGF. We consider the error analysis in two scenarios: the first variation δF
δρ is Lipschitz continuous

and the case of Fokker-Planck equation where δF
δρ is not Lipschitz continuous.

3.4.1. Error analysis with Lipschitz continuity assumption. In this subsection, we assume the
following condition on F holds.

Assumption 1. There exists a constant CF > 0 such that for any two push-forward maps T and T̃ there
is ∫ ∣∣∣∣∇X

δ

δρ
F(T♯ϱ(·), ·) ◦ T (z) −∇X

δ

δρ
F(T̃♯ϱ(·), ·) ◦ T̃ (z)

∣∣∣∣2 dλ(z) ⩽ CF

∫
|T (z) − T̃ (z)|2 dλ(z).(3.26)

The accuracy of our approach depends on the representation power of the parameterized push-forward map
Tθ. We use δ0 to characterize the representation error as below.

Definition 3.6. Define the projection error as

δ0 = sup
θ∈Θ

min
ξ∈T ∗

θ Θ

{∫ ∣∣∣∣∇ δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z) − ∂θTθ(z) ξ

∣∣∣∣2 dλ(z)

}

= sup
θ∈Θ

{∫ ∣∣∣∣∇ δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z) −Kθ[∇ δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ](z)

∣∣∣∣2 dλ(z)

}
.(3.27)

This error is essentially the difference between δF(ρθ)
δρ and its orthogonal projection onto the tangent space

Tρθ
P(M). In the definition, we use the fact that the operator Kθ is the orthogonal projection. Under

Assumption 1, we can show that the density ρθ approximates the true solution with guaranteed Wasserstein-2
error stated in the next theorem.

Theorem 3.7. Suppose Assumption 1 holds for F , θ is solved from (3.18) with initial value θ(0), and ρ
is solved from (1.3). Then the Wasserstein-2 distance between the push-forward density ρθ(t)(·) obtained by
PWGF and the true density ρ(t, ·) satisfies

W 2
2 (ρθ(t)(·), ρ(t, ·)) ⩽ e(1+2CF )tϵρ(0) +

2δ0
1 + 2CF

(
e(1+2CF )t − 1

)
.(3.28)

where ϵρ(0) = W 2
2 (ρθ(0), ρ0) is the initial approximation error.

Proof. Assume X is solved from (3.13) and Y is solved from (3.22). Suppose the Monge map from ρθ(0)
to ρ0 is given by ω and we assume the random variables X,Y are coupled via X(0) = ω(Y (0)). We continue
from the calculation in (3.25),

Ẏ = −Kθ

[
δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ

]
(z)

= − δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z) +

(
δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z) −Kθ

[
δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ

]
(z)

)
.

Denote E(t) = E∥X − Y ∥2, we compute,

d

dt
E(t) = 2E

[
(X − Y ) · (Ẋ − Ẏ )

]
⩽ 2

√
E∥X − Y ∥2

√
E∥Ẋ − Ẏ ∥2 ⩽ E∥X − Y ∥2 + E∥Ẋ − Ẏ ∥2.(3.29)

Notice that X is a push-forward of X(0) through the dynamics (3.13), we have

E∥Ẋ − Ẏ ∥2 =

∫ ∣∣∣− (
δ

δρ
F(ρ(x), x) − δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z)

)
−
(
δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z) −Kθ

[
δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ

]
(z)

) ∣∣∣2 dλ(z)

⩽ 2δ0 + 2CF E∥X − Y ∥2.(3.30)
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Plugging (3.30) into (3.29), we obtain

d

dt
E(t) ⩽ 2δ0 + (1 + 2CF )E(t).(3.31)

By Grönwall’s inequality, we have

E(t) ⩽ e(1+2CF )tE(0) +
2δ0

1 + 2CF

(
e(1+2CF )t − 1

)
.(3.32)

On the other hand, we have

W 2
2 (Tθ♯ϱ, ρ) = W 2

2 (Law(Y ),Law(X)) ⩽ E∥Y −X∥2 = E(t).(3.33)

Combining (3.32) and (3.33) yields (3.28).

3.4.2. Asymptotic Analysis for Parametrized Wasserstein Gradient Flow. For many examples,
finding CF could be a challenging task. However, if there exists a Gibbs solution ρ∗ to the WGF satisfying
Polyak- Lojasiewicz inequality, then we can show uniform convergence of ρθ to the target density ρ∗, as stated
in the following theorem:

Theorem 3.8. Assume that ρ∗ is the Gibbs distribution, and the functional F(ρ) satisfies certain Polyak-
 Lojasiewicz inequality as follows

(3.34)
1

ζ

∫
Rd

∣∣∣∣∇X
δF
δρ

(ρ, x)

∣∣∣∣2 ρ(x) dx ⩾ F(ρ) −F(ρ∗),

where ζ is a positive constant. Then

(3.35) F(ρθ(t)) −F(ρ∗) ⩽
δ0
ζ

(1 − e−ζt) + F(ρθ(0))e
−ζt.

where δ0 is defined in (3.27).

Proof. Denote f(z) = ∇X
δ
δρF(Tθ♯ϱ(·), ·) ◦ Tθ(z). Then by the property of orthogonal projection operator

Kθ we have
∫

(I −Kθ) [f ](z)⊤Kθ[f ](z) dλ(z) = 0. Furthermore,∫
f(z)⊤Kθ[f ](z) dλ(z) =

∫
Kθ[f ](z)⊤Kθ[f ](z) dλ(z) +

∫
(I −Kθ)[f ](z)⊤Kθ[f ](z) dλ(z)(3.36)

=

∫
Kθ[f ](z)⊤Kθ[f ](z) dλ(z)

=

∫
|f(z)|2 dλ(z) −

∫
|(I −Kθ) [f ](z)|2 dλ(z).

where the last equality is due to the Pythagoras theorem. Following the definition of δ0 in (3.27), we have∫
|(I −Kθ) [f ](z)|2 dλ(z) ⩽ δ0.(3.37)

By inequality (3.34), we have ∫
|f(z)|2 dλ(z) ⩾ ζF(ρ).(3.38)

We deduce that

d

dt
F(ρθ) = ∇θF (θ) · θ̇

= −∇θF (θ)⊤Ĝ(θ)†∇θF (θ)

= −
∫

∇X
δ

δρ
F(Tθ♯ϱ(·), ·) ◦ Tθ(z)⊤∂θTθ(z)Ĝ(θ)†∇θF (θ) dλ(z)

= −
∫

∇X
δ

δρ
F(Tθ♯λ(·), ·) ◦ Tθ(z)⊤Kθ[∇X

δ

δρ
F(Tθ♯λ(·), ·) ◦ Tθ](z) dλ(z)

= −
∫
f(z)⊤Kθ[f ](z) dλ(z),(3.39)
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where the first equality is due to F (θ) := F(ρθ), the second equality is obtained by the formulation of PWGF
in (3.18), the third equality uses the substitution of first ∇θF (θ) using (3.21), the fourth equality is because
of the definition of Kθ in (3.23), and the fifth equality is by the definition of f at the beginning of this proof.

We also observe that

−
∫
f(z)⊤Kθ[f ](z) dλ(z) ⩽ δ0 −

∫
|f(z)|2 dλ(z) ⩽ δ0 − ζF(ρθ),(3.40)

where the first inequality is obtained by combining (3.36) and (3.37), the second equality is due to (3.38).
Combining (3.39) and (3.40) yields

(3.41)
d

dt
F (θ) ⩽ δ0 − ζF (θ).

Applying the Grönwall inequality to (3.41) yields the claimed estimate (3.35).

We would like to mention that the bound obtained in Theorem 3.8 is similar to the results reported in
[29] except that they use different pullback metrics, namely we use Ĝ(θ) while G(θ) is considered in [29].

4. Numerical method. The PWGF (3.18) can be solved based on standard numerical integrators. We
showcase how to implement this using the forward Euler scheme, whereas the idea can be easily generated to
other methods such as Runge-Kutta 4th-order method, predictor-corrector method, and those with variable
step sizes. In forward Euler scheme, we can disretize the time t as {hl : l = 0, 1, . . . }. Let θl be the
approximation of θ(hl) of PWGF (3.18), then we can compute θl+1 given θl by solving

θl+1 − θl

h
= −Ĝ(θl)†∇θF (θl),(4.1)

for l = 0, 1, . . . . The key to solving (4.1) is finding the minimum norm solution to the linear system Ĝ(θl)η =
∇θF (θl) for η. Minimum norm solutions of a linear system can be done by numerous existing methods, such
as MINRES [35]. In these methods, it is instrumental to implement the matrix-vector product with the matrix

Ĝ(θl).
In our experiments, we use deep neural networks as the push-forward map Tθ. There are several choices

of the neural network architecture. We can use the invertible neural networks (e.g., normalizing flow [34],
Real NVP [12] and neural ODE [10]) or non-invertible neural networks (e.g., the multi-layer perceptron or
ResNet [17]), both has its own advantages. Normalizing flow and continuous normalizing flow simplify the
computation of log determinant of Jacobian matrix of the map, so we can easily compute the density function.
For the experiment of the Fokker-Planck equation, we use a 60-layer normalizing flow as the push-forward
map Tθ. For the experiments of the Porous-medium equation and the aggregation model, we pick the residual
neural network as push-forward map:

Tθ = Id+Rθ

where Id is the identity map and Rθ : Rd → Rd is a standard multilayer perceptron. We take the hyperbolic
tangent function as the activation function since we require the second-order derivative in the computation
of numerical integrals. The bias for the output layer in fθ is set to be None. To solve the linear system
Ĝ(θ)θ̇ = −∇θF (θ), we utilized MINRES with tolerance 3 · 10−4 in our experiments.

To initialize θ0 := θ(0), it depends on the given information of the initial distribution. If the initial
probability density function is given and easy to generate samples from, such as Gaussian distribution or
Gaussian mixture distribution, then one can initialize the θ(0) such that Tθ(0) is an identity map. If the initial
samples are given but the initial probability density function is unknown, one can still initialize the θ(0) to
make Tθ(0) an identity map. If the given initial density function is hard to sample from, one may use Gaussian
distribution as a reference distribution and utilize methods such as MCMC [4] and Wasserstein GAN [2] to
enforce the initial distribution.

If the probability density function is desired, one can consult with density estimation methods, such as
kernel density estimation, while it’s not the focus of this paper. In our experiments, we’re given the initial
density functions that are easy to sample, hence we initialize the push-forward map as an identity map, i.e.,
ρθ(0) dx = d(Tθ(0)♯λ)(·) = dλ(·) = ρ(0, ·) dx.

The numerical scheme is summarized in Algorithm 4.1.
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Fig. 1: Sample plots of computed ρθ at different time t for Fokker-Planck equation with the Styblinski-Tang
function as the potential function V (x)

Algorithm 4.1 Parameterized Wasserstein gradient flow solver

Initialize the neural network Tθ
for l = 0, · · · ,K − 1 do

Sample {X1, · · · , XN}, evaluate ∇θF (θl)

Solve η as the minimum norm solution to the linear system Ĝ(θl)η = −∇θF (θl)
Set θl+1 = θl + hη

end for
return θK , TθK

5. Numerical examples. In this section, we test the proposed PWGF method, Algorithm 4.1, on three
WGFs. Depending on the energy functional F , we choose push-forward maps as ResNet [17], or normalizing
flow [21]. Details are shown below.

5.1. Fokker-Planck equation. We first test Algorithm 4.1 on a 30-dimensional Fokker-Planck equation.
We set the coefficient D = 1 and choose the potential function V to be the Styblinski-Tang function in (3.4):

V (x) =
3

50

( d∑
i=1

x4i − 16x2i + 5xi

)
.(5.1)

The initial condition is set to be a Gaussian distribution with mean µ0 = 0 and variance σ0 = 1. We use an
M -layer normalizing flow (M = 40) as the push-forward map Tθ:

Tθ = fM ◦ fM−1 ◦ · · · ◦ f2 ◦ f1,(5.2)

where fj (1 ⩽ j ⩽M) is:

fj(x) = x+ tanh(w⊤
j x+ bj)uj

Here wj , uj ∈ Rd and bj ∈ R, and θ = {wj , bj , uj : 1 ⩽ j ⩽M}.
We run Algorithm 4.1 with time step size h = 0.005. 2, 000 samples are generated from ρθ and their

projection of these samples onto the 2-dimensional subspace of (x1, x2) are plotted. Notice that V (x) has 4
centers, and the push-forward samples follow a density that captures this structure as shown in Figure 1. The
KL divergence (3.3) is evaluated empirically with all samples by

HKL(ρ∥ρ∗) =

∫
1

D
V (x)ρ(x) + ρ(x) log ρ(x) dx+ logZD

≈ 1

N

N∑
i=1

1

D
V (x(i)) + log ρ(x(i)) + logZD, where {x(i)}Ni=1 ∼ ρ.(5.3)

We plot the KL divergence curve following the solution of PWGF in Figure 2, which shows a clear decreasing
trend.

To evaluate the improvement in its computation efficiency with the new metric ˆG(θ), we compare the
running time of PWGF Algorithm 4.1 with the PFPE algorithm proposed in [29]. We take the 2-dimensional
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Fig. 2: The decay of KL divergence along the solution of PWGF for the Fokker-Planck equation with Styblinski-
Tang potential in the 30-dimensional example.

FPE with V (x) defined in (5.1). For both algorithms, we use the same neural network structure (40-layer
normalizing flow) and the same sample size (12000) to evaluate the KL divergence. The ψ neural network
in PFPE, as well as the training parameters, are set as its default values as reported in [29]. We run both
algorithms with the same step size. It takes 14.26 seconds for PWGF to finish 10 time steps, while 6093.58
seconds for PFPE to finish 10 time steps, indicating a more than 400 times speed up. Both codes are run on
an NVIDIA RTX-3070 GPU with CUDA enabled.

5.2. Porous medium equation. We apply Algorithm 4.1 to solve the porous medium equation (3.9). In
recent years, the porous medium equation has been solved by several other methods, such as physics-informed
neural networks (PINN) [37] which computes the density function directly in high dimensions. For all three
examples of porous-medium equation, we use a neural network with residual structure as the push-forward
map

Tθ = Id+Rθ(5.4)

where Rθ is a multi-layer perceptron with 3 hidden layers and 100 neurons in each hidden layer.
An example with exact weak solution: Suppose the initial condition ρ(x, 0) = δ(x) is the Dirac delta

function.

∂ρ(x, t)

∂t
= ∆ρm, x ∈ Rd(5.5)

ρ(x, 0) = δ(x)(5.6)

The exact weak solution to (5.5) is

(5.7) ρ(x, t) = t−αF
( x
tβ

)
, where F (ξ) = (C − kξ2)

1
m−1

+ ,

and (s)+ = max{s, 0}. The constants are

α =
d

d(m− 1) + 2
, β =

α

d
, k =

(m− 1)α

2md

The constant C > 0 in (5.7) can be uniquely determined by normalizing the mass as∫
ρ dx = 1,

which gives

C =

 (
k
π

) d
2 Γ(d

2 )

d ·B(d
2 ,

m
m−1 )

 1
γ

,
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Fig. 3: Sample plots of computed ρθ at different time t for Porous Medium equation with Dirac Delta function
as the initial condition for d = 2 and l = 2.4. The figures are plotted with 5000 samples. In the level curves,
darker colors correspond to smaller values to emphasize the support.

where B(·, ·) and Γ(·) are beta and gamma functions respectively and γ = d
2(m−1)α [36].

For the experiments of d = 2, the parameter m is set to 2.4, for the experiment of d = 5, the parameter m
is set to 3, and for the experiment of d = 15, the parameter m is set to 2. Since the initial condition is a Dirac
delta mass which is impossible to be represented by deep neural networks, we set the initial time to a positive
value. More precisely, we compute the dynamics of the samples generated from the probability density ρ from
t = 0.1 to t = 0.6 for d = 2 and from t = 1 to t = 1.5 for both d = 5 and d = 15. In all experiments, the step
size h = 10−4, and the number of time steps is T = 5000. The sample size to evaluate Ĝ(θ) and F (θ) are both
30, 000. The graph of the samples with d = 2, d = 5 and d = 15 are shown in Figure 3, Figure 4 and Figure 5
respectively. In the plots, the blue points are the computed samples and the colored curves are the level sets
of the exact solutions. We select darker colors representing smaller values when plotting the level curves to
clearly show the boundary of the finite support of the exact solution. In the example with d = 2, though the
computed samples run a bit more quickly than the exact solution, the numerical solution still behaves the
same as the exact solution in the sense that they are compactly supported. In the example with d = 15, all
samples are still within the compact support, despite that sampling from a density function in high dimensions
remains as a challenging problem. All experiments run on an NVIDIA A100 GPU with 40GB GPU memory.

An Example with Gaussian Mixture Distribution as the Initial Condition: In this example, we apply
Algorithm 4.1 to the porous medium equation with d = 10, m = 3 and a Gaussian mixture distribution as the
initial condition. The equations are

∂ρ

∂t
= ∆(ρm)(5.8)

ρ(0, ·) = 0.2 · N (µ1, σ1) + 0.8 · N (µ2, σ2)(5.9)

where µ1 = (0, 0, · · · , 0)T ∈ R10, µ2(2, 2, · · · , 2)T ∈ R10, σ1 = diag(0.1, · · · , 0.1)T and σ2 = diag(0.2, · · · , 0.2)T .
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Fig. 4: Sample plots of computed ρθ at different time t for the porous medium equation with Dirac Delta
function as the initial condition for d = 5 and l = 3. The figures are plotted with 5000 samples. In the level
curves, darker colors correspond to smaller values to emphasize the support.

The sample size to evaluate Ĝ(θ) and F (θ) are both 15, 000. The computed samples are shown in Figure 6
plotted with 5000 samples. The exact solution to this initial value problem remains open but our method can
provide a simulated sample dynamics.

An Example with Mixed Gaussian Distribution and Uniform Distribution as the Initial Condition: In this
example, we apply Algorithm 4.1 to the porous medium equation with d = 5, m = 3 and a mixture of Gaussian
and uniform distributions as the initial condition. The equations are

∂ρ

∂t
= ∆(ρm)(5.10)

ρ(0, ·) = 0.2 · N (µ, σ) + 0.8 · U5([−1, 1]5)(5.11)

where µ = (2, 2, · · · , 2)T ∈ R5, σ = (0.1, 0.1, · · · , 0.1)T ∈ R5 and U5([−1, 1]5) is a uniform distribution in
[−1, 1]5. Note that this equation doesn’t have a closed-form solution and it’s not tractable in high dimensions.

The sample size to evaluate Ĝ(θ) and F (θ) are both 20, 000. The computed samples are shown in Figure 7
plotted with 5000 samples.

5.3. Aggregation model as a Wasserstein gradient flow. In this example, we apply Algorithm 4.1
to the aggregation problem with d = 2 and a = 4, b = 2, i.e., the energy functional F is set as in (3.10) with
J(x) given by

J(x) =
|x|4

4
− |x|2

2
.(5.12)
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Fig. 5: Sample plots of computed ρθ at different time t for porous medium equation with Dirac Delta function
as the initial condition for d = 15. The figures are plotted with 5000 samples. In the level curves, darker colors
correspond to smaller values to emphasize the support.
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Fig. 6: Sample plots of computed ρθ at different time t for porous medium equation with Gaussian mixture
distribution as the initial condition. The figures are plotted with 5000 samples.

We set the initial condition to be Gaussian distribution with mean µ0 = (1.25, 1.25)⊤ and variance γI where
γ = 0.6.

ρ0(x) =
1√
2πγ

e
− |x−µ0|2

2γ2(5.13)
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Fig. 7: Sample plots of computed ρθ at different time t for porous medium equation with the mixture of
Gaussian distribution and uniform distribution as the initial condition. The graphs are plotted with 5000
samples.
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Fig. 8: Sample plots of computed ρθ at different time t for aggregation problem

We use a neural network with residual structure as the push-forward map in this example:

Tθ = Id+Rθ(5.14)

where Rθ is multi-layer perceptron with 2 hidden layers and 50 neurons in each hidden layer. The sample size
to evaluate Ĝ(θ) and F (θ) are both 10, 000.

The steady solution ρ∗ is a Dirac distribution uniformly concentrated on the ring with radius 0.5 centered
at µ0. ρ converges to ρ∗ when t → ∞. This evolution is captured as shown in Figure 8, which shows the
distribution ρθ(t) of samples from at different times t. Note that, despite of the strong singularity of ρ∗, the
samples generated by Algorithm 4.1 can approximate this distribution well.

6. Discussion. We proposed a new numerical approach to solve Wasserstein gradient flows (WGFs),
which is particularly scalable for high-dimensional cases. Our approach used general reduced-order models,
like deep neural networks, to parameterize the push-forward maps such that they can push a simple reference
density to the density solving the given WGF. Essentially, the gradient flow defined on the infinite-dimensional
Wasserstein manifold is reduced to a finite-dimensional dynamical system, the PWGF, for the parameters used
in the reduced-order model. At the core of our design is the pullback Wasserstein metric on the parameter
space. It facilitates the derivation, simplifies the numerical computation, and plays a pivotal role in the
error-bound estimates that offer theoretical assurance for PWGF to the original WGF.

Though the parametrization of the WGF provides a fast algorithm, the accuracy and speed of the algorithm
largely rely on the linear system solver for the neural network parameter θ. Since the metric matrix Ĝ(θ) is
semi-positive definite and can be degenerate in some scenarios, the minimal residual method is utilized to find
the least square solution.

This manuscript is for review purposes only.



16 YIJIE JIN, SHU LIU, HAO WU, XIAOJING YE, HAOMIN ZHOU

Our method is sample-based and provides the value of the density function at sampled points, it has the
potential to adapt to tasks such as developing a fast sampler of target distribution by evolving samples from
the initial probability density following the gradient flow or image generation following certain dynamics of
probability densities. In these scenarios, as the task is more complex, the deep neural network for parametrizing
the push-forward map could be large or have sophisticated architecture. One may consider dimension reduction
techniques to reduce the dimension of the parameter space. In addition, other improvements such as more
efficient linear system solvers or preconditioning techniques may also be considered to boost the accuracy and
speed. Meanwhile, better understanding on δ0 in the error analysis needs to be analyzed regarding various
neural network structures.
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