
Workload Intelligence: Punching Holes Through the Cloud Abstraction

Lexiang Huang1,3, Anjaly Parayil3, Jue Zhang3, Xiaoting Qin3, Chetan Bansal3,

Jovan Stojkovic2,3, Pantea Zardoshti3, Pulkit Misra3, Eli Cortez3, Raphael Ghelman3, Íñigo Goiri3,

Saravan Rajmohan3, Jim Kleewein3, Rodrigo Fonseca3, Timothy Zhu1, Ricardo Bianchini3

1The Pennsylvania State University 2University of Illinois at Urbana Champaign 3Microsoft

Abstract
Today, cloud workloads are essentially opaque to the cloud
platform. Typically, the only information the platform re-
ceives is the virtual machine (VM) type and possibly a deco-
ration to the type (e.g., the VM is evictable). Similarly, work-
loads receive little to no information from the platform; gen-
erally, workloads might receive telemetry from their VMs
or exceptional signals (e.g., shortly before a VM is evicted).
The narrow interface between workloads and platforms has
several drawbacks: (1) a surge in VM types and decorations
in public cloud platforms complicates customer selection;
(2) essential workload characteristics (e.g., low availability
requirements, high latency tolerance) are often unspecified,
hindering platform customization for optimized resource us-
age and cost savings; and (3) workloads may be unaware
of potential optimizations or lack sufficient time to react to
platform events.

In this paper, we propose a framework, called Workload
Intelligence (WI), for dynamic bi-directional communication
between cloud workloads and cloud platform. Via WI, work-
loads can programmatically adjust their key characteristics,
requirements, and even dynamically adapt behaviors like VM
priorities. In the other direction, WI allows the platform to
programmatically inform workloads about upcoming events,
opportunities for optimization, among other scenarios. Be-
cause of WI, the cloud platform can drastically simplify its of-
ferings, reduce its costs without fear of violating any workload
requirements, and reduce prices to its customers on average
by 48.8%.

1 Introduction
From its inception with a simple interface of offering virtual
machines to users, today’s cloud has grown incredibly com-
plex for both cloud providers and workload owners. Cloud
providers constantly seek to improve their efficiency, which
gives rise to many optimizations. Some of these are exposed
to workload owners via VM types (e.g., Spot VMs [4, 13, 17],

1Lexiang Huang was an intern at Microsoft.
2Jovan Stojkovic was an intern at Microsoft.

Harvest VMs [6], Burstable VMs [11, 15, 55]) and dedicated
interfaces (e.g., auto-scaling [34]), whereas other optimiza-
tions are internal to the cloud (e.g., oversubscription [26], pre-
provisioning [60]). These can reduce costs, and/or improve ef-
ficiency, performance, sustainability, or reliability. Even with
these interfaces, cloud workloads are essentially opaque since
cloud platforms lack visibility into the desires and expecta-
tions of workload owners. Hence, the platforms are limited
to inferring workload characteristics, adding/extending inter-
faces, or being overly conservative. This results in undesirable
performance effects, increased complexity, and higher costs,
negatively impacting both workload owners and providers.

On the other hand, workload owners lack visibility and
control over the impact of the provider’s optimizations on their
workloads. Typically, they only receive telemetry from their
VMs and any exceptional signals (e.g., shortly before a VM is
evicted). As a result, performance-conscious workload owners
need to develop workarounds to cope with the variability and
unknowns (e.g., spawning multiple VMs to find ones without
noisy neighbors [33]).

Revisiting the cloud interface. The narrow communication
interface between workloads and platform has multiple neg-
ative effects: (1) the number of VM types and decorations
has exploded in public cloud platforms, making it difficult for
workload owners to select the ideal ones; (2) many important
workload characteristics (e.g., low availability requirements,
high tolerance to latency) are never made explicit, so the
platform is unable to customize its service to them (e.g., by
optimizing their resource usage and passing any dollar savings
to workload owners); and (3) workloads often are unaware
of optimizations that they could make or do not have enough
time to react to platform events.

Our work. In this paper, we study how internal workloads
use cloud platform optimizations and identify the fundamental
characteristics that cloud platform optimizations require to op-
erate. Based on this characterization, we propose a framework,
called Workload Intelligence (WI), for dynamic bi-directional
communication between cloud workloads and cloud platform.

1

ar
X

iv
:2

40
4.

19
14

3v
1 

 [
cs

.D
C

] 
 2

9 
A

pr
 2

02
4



Category Workload characteristics Core usage

Scalability
Stateless nature

Stateless Partially stateless Stateful

45.5% 17.4% 37.1%

Deployment time requirements
Strict Not strict

28.5% 71.5%

Reliability
Availability

Five Nines Four Nines Three Nines Two Nines One Nine None

2.4% 34.5% 58.0% 3.9% 0.5% 0.4%

Preemptibility
0% 0-20% 20-40% 40-60% 60-80% 80-100% 100%

39.3% 41.1% 4.8% 6.5% 0.3% 1.8% 6.1%

Performance Delay tolerance
Delay tolerant Delay sensitive

24.5% 75.5%

Geographical Region independence
Region-agnostic Partially region-agnostic Not region-agnostic

47.5% 13.9% 38.6%

Table 1: Overview of cloud workload characteristics and their core usage based on an internal survey.

WI enables workloads to programmatically communicate
their key characteristics, requirements, dynamic changes, and
shifting behaviors.

In the other direction, WI allows the platform to program-
matically notify workloads about upcoming events, optimiza-
tion opportunities, and other useful scenarios. With WI, the
cloud platform can drastically simplify its offerings, reduce
costs without fear of violating any workload requirements,
and lower prices for workload owners.

In building WI, we address three key challenges: (1) cre-
ating a general, extensible, and incrementally adoptable in-
terface for workloads to express their main characteristics,
requirements, and dynamic behaviors; (2) developing a dy-
namic framework for the platform to seamlessly interact with
workloads, even at a potentially high rate, while preventing
potential attacks or bugs that could harm it or other workloads;
and (3) enabling the platform to process received informa-
tion intelligently, maximizing optimization opportunities, and
maintaining quality of service.

We start by exploring the characteristics and require-
ments of 188 real cloud workloads at a major cloud provider
(ProviderX for blind review). Next, we discuss optimizations
that the platform can perform by knowing these characteristics
and requirements, enabled by its bi-directional communica-
tion capability with workloads. Afterward, we introduce the
design and implementation of WI, focusing mainly on how
WI effectively tackles the four challenges. To evaluate WI,
we explore various workload and optimization scenarios.

We conclude that it is possible to build a frameworks for
bi-directional communication between workloads and the
platform in a safe and effective manner. By punching holes in
the cloud abstraction for this communication, WI can simplify
cloud offerings and make platforms more efficient and cost-
effective, while providing excellent service to workloads.

Summary. We make the following contributions:

• We identify the fundamental workload characteristics that
cloud platform optimizations require to operate and show
their savings potential.

• We develop Workload Intelligence (WI), a novel and exten-
sible framework that enables bidirectional communication
between workloads and the cloud provider for improving
cloud efficiency.

• We evaluate the applicability and potential of WI across ten
cloud optimizations at ProviderX and demonstrate that WI
can on average save workload costs by 48.8%.

2 Characterizing workloads in the cloud
We answer 2 research questions: (1) What are the characteris-
tics and requirements of cloud workloads? (2) What workload
characteristics are required to enable cloud optimizations?

2.1 Workloads

Methodology. We study the characteristics of a diverse set of
cloud workloads running at ProviderX. We surveyed all the
990 internal workloads and got responses from 188 of them.
This represents 19% of the workloads and 1.4 million cores
across over 400K VMs. These include web search, collabo-
ration and productivity suites, and real-time communication
workloads. They are deployed across 48 regions worldwide
and used by hundreds of millions of users.

Results. We divide the results by workload characteristics,
weighted by core usage. Table 1 shows the core usage for
each characteristic. We group these into four main categories:
scalability, reliability, performance, and geography sensitivity.

First, under scalability, we characterize workloads by their
statelessness (i.e., feasibility to scale in/out without persisting
states) and deployment time requirements (i.e., whether VMs
have strict deployment latencies). According to the survey,
62.9% of the workloads are partially to fully stateless and the
majority does not have strict deployment time requirements.

2



Cloud Cloud User Benefit Min Max Platform Benefit
Optimization Resources (Average) Pricing Pricing Model

Auto-scaling Compute 19% less cost, ↓ Carbon Average number of regular VMs Compute allocation
Spot VMs Spare compute 85% less cost 15% regular VM Compute allocation

Harvest VMs Spare compute 91% less cost Spot VM Spot VM+Harvested Compute allocation
Overclocking CPU frequency 11% less cost, ↑ Perf Regular VM Regular VM+OC time Reliability, power/energy

Underclocking CPU frequency 1% less cost, ↓ Carbon 99% Regular VM Regular VM Power, energy
Non pre-provision Spare compute 2% less cost 98% Regular VM Regular VM Compute allocation
Region agnostic Compute 22% less cost, ↓ Carbon Region price Efficient region

VM oversubscription Compute 15% less cost, ↓ Carbon 85% Regular VM Compute allocation
VM rightsizing Compute 50% less cost, ↓ Carbon Rightsized VM Compute allocation
MA datacenters CPU frequency 40% less cost 60% Regular VM Infrastructure cost

Table 2: Benefits and incentives of the cloud platform optimizations for the users.

Second, under reliability, we look at availability (i.e., cloud
downtime tolerance) and preemptibility (i.e., ability to pause
and resume progress if X% of the VMs are still alive). The
survey responses show that 62.8% of the cloud workloads
require three nines of availability or less, which translates
to 8.76 hours to 36.5 days system downtime tolerance per
year [14]. Besides, 60.6% of the cloud workloads are at least
partially preemptible. These provides flexibility for cloud to
manage resources more efficiently. Workloads with 100%
preemptibility or 0% availability requirement are generally
test and dev environments.

Third, delay tolerance shows the workload flexibility
within a specified deadline. For example, a workload serving
requests may have a tail latency service level objective (SLO)
of 100 ms while most requests complete within 20 ms. The
specific target metric depends on the workload. Our data indi-
cates that around a quarter of the cloud workloads are tolerant
to delays and they have a less strict performance requirement
for the cloud platform.

Lastly, region independence shows the workloads’ ability to
migrate among geographical regions without restrictions such
as workload dependencies and security policies, and 61.4% of
the workloads are partly to fully available to migrate without
negative impact on their operation.

2.2 Cloud optimization mechanisms
Cloud platforms implement many optimizations to improve
their efficiency. To make our discussion concrete, we now
look at ten common cloud optimizations among public cloud
providers. Table 2 summarizes the resources, workload owner
benefits (i.e., how much workload owners can save), pric-
ing (based on public cloud pricing), and the platform benefit
model (i.e., how does the platform benefit) for each cloud
platform optimization. The rest of this section explains the
mechanism, interface, and required workload characteristics
for each optimization.

Auto-scaling. To allow workload owners to not always provi-
sion VMs for the peak load, providers offer auto-scaling to
dynamically adjust the number of VMs based on load [34].

This allows owners to save money by running fewer VMs
when not needed and providers to monetize this free capacity.

Auto-scaling is usually offered as a separate service [9,41].
Workload owners define their own policy defining a time
schedule (e.g., scale out from 1 to 4 PM) or a load threshold
(e.g., scale out if the CPU utilization is higher than 40%) and
it is suitable for workloads that allow scaling in and out, which
is characterized by their stateless and delay tolerant nature.
Owners also need to specify deployment time requirement, if
the workload requires a VM to be immediately available.
Spot VMs. To monetize unallocated capacity, providers offer
VMs with relaxed SLOs. These VMs are evicted if their re-
sources are needed by on-demand VMs. Spot VMs are offered
at discounted prices which allows owners saving money to run
their workloads. Providers usually offer Spot VMs [4, 13, 17]
as a VM type or deployment flag and may offer dynamic pric-
ing to decide which Spot VMs to evict first. Spot VMs are
ideal for workloads that tolerate evictions [5, 12]. These are
workloads that support preemptions (i.e., 20% or higher).
Harvest VMs. To use unallocated resources, cloud platforms
can place more Spot VMs. However, it’s inefficient to cre-
ate/remove VMs to use all the resources in a server. Harvest
VMs build on top of Spot VMs and can dynamically grow
and shrink to utilize spare CPU [6,57], memory [21], and stor-
age [40] in the server. This is similar to Burstable VMs [11,15]
but without the credit abstraction. Providers offer harvesting
as a new VM type or a deployment flag specifying the amount
of resources to harvest [6]. In addition to the characteristics
from Spot VMs (i.e., high preemptibility), Harvest VMs are
ideal for workloads that can scale up/down and thus they need
to tolerate delays.
Overclocking. To improve workload performance, cloud plat-
forms can increase component-level (e.g., CPU cores) fre-
quency for VMs [28]. To provide the benefit, the platform
needs to determine the bottleneck resource to overclock and
factor the impact of overclocking on component reliability
and power draw in its decision-making. The capability is pro-
vided to workload owners via dedicated VM types. Workloads
can also use an interface similar to auto-scaling to define a

3



time schedule or a load threshold as signals to the platform
for their overclocking requirements. This optimization targets
workloads with high CPU utilization periods [28] (i.e., 95th

percentile of max CPU utilization greater than 40%), that can
scale up/down, and are tolerant to delays. Overall, owners can
provision fewer VMs to serve their peaks using overclocking.

Underclocking. Platforms can reduce their energy usage and
carbon footprint by decreasing the frequency of VMs during
periods of low activity. This optimization is available through
certain VM types offered by providers, similar to overclock-
ing. Workloads that are delay-tolerant, support scaling down,
or have no persistent state and can handle delays are well-
suited for this optimization.

VM pre-provisioning. To reduce the time to create a VM,
providers may provision VMs ahead of the time being in-
stantiated when requested by workloads, hence, reducing the
time to deployment [60]. This is a good complement to auto-
scaling as it allows adding VMs quickly when needed (e.g.,
a load spike). But cloud providers currently provision VMs
without considering their utility to the workload they serve.
Disabling VM pre-provisioning (i.e., Non pre-provisioning)
for workloads without strict deployment time requirements
can reduce costs with minimal impact on performance.

Region-agnostic placement. Running workloads on VMs
in cheaper and greener regions (i.e., regions with lower CO2
emissions) can help reduce costs and carbon footprints, es-
pecially for workloads that do not have strict latency or
data-locality requirements. Currently, cloud providers require
workload owners to specify the region for VM deployment.
Although there have been proposals for semi-automatic re-
gion selection [2, 48], no commercial solutions are available
yet. Providers can place/migrate workloads to cheaper and
greener regions (e.g. utilizing solar energy) when needed if
the workloads are region-agnostic.

VM oversubscription. To increase server utilization, cloud
platforms may oversubscribe servers by deploying more VMs
on them than the available resources, relying on statistical
multiplexing to manage resource allocation. However, if all
VMs spike at the same time, the platform will throttle the
least critical VMs to ensure stability. Currently, platforms
heuristically determine which VMs can be oversubscribed
and to what degree [19] or offer oversubscribed VM types
explicitly [7]. Further knowledge of the workload characteris-
tics can help identify good candidates for oversubscription. If
the 95th percentile CPU utilization of a workload is less than
65% and the workload is delay-tolerant or non-user-facing,
then it is suitable for oversubscription [19].

VM rightsizing. To enhance efficiency and minimize ex-
penses for workload owners, the platform provides smart VM
selection by identifying VM miss-utilization and recommend
transitions to more suitable types/sizes. Automated adjust-
ments apply to preemptible workloads with relaxed availabil-
ity requirements. This is advantageous for workloads capable

of scaling down less utilized components (e.g., below 50%),
facilitating a move to a smaller VM, typically half the original
size. Conversely, if a single resource encounters high usage,
the VM type can be upgraded. Overall, optimal VM selection
considers factors like workload resource needs, performance
requirements, and budget constraints.

Multi-availability datacenters (MA DCs). Cloud providers
can reduce infrastructure redundancy (e.g., power delivery
and cooling) to decrease costs. However, this may lead to
infrastructure failures or maintenance events that require the
platform to throttle or selectively turn off servers. Tradition-
ally, platforms have inferred which VMs are less critical and
throttled them down or evicted them. MA DCs take further
advantage of workloads that explicitly require low availability,
providing resources and charging users accordingly.

3 Revisiting the cloud abstraction
From the descriptions of the optimizations above, we observe
that each one relies on a different subsets of workload charac-
teristics, and has particular interfaces to gather inputs from
workload owners. Table 3 summarizes the required workload
characteristics and interfaces for each optimization.

Problems with these interfaces are four-fold: (1) They are
ad-hoc: some are specific to a service, some rely on VM
type and deployment flags, some rely on inference, or are just
based on recommendations. As cloud platforms introduce
new optimization mechanisms, the overall cloud interface
becomes complex and untenable. For example, Spot VMs,
Harvest VMs, Overclocking, and Underclocking each require
an additional dimension in the already-complicated VM type
interface, which limits their usage. (2) These interfaces are
tied to the corresponding optimizations and require exper-
tise with the corresponding optimization. For instance, work-
load owners need to know Harvest VMs can shrink/expand
core counts and are applicable if their workloads can scale
up/down. (3) They are mostly static, as they tend to be speci-
fied at deployment time. (4), Many of these interfaces rely on
inferred characteristics with questionable accuracy and lack
of explicit user contracts. As a result, the provider in many
cases has to be conservative, and not utilize optimizations
to their fullest extent. For example, in the absence of extra
information, the provider has to assume that a VM requires
maximum reliability, and cannot move to other regions.

To address these challenges, we observe that ideally the
cloud interface should decouple workload characteristics –
which are known to workload owners – from the cloud opti-
mizations they enable – best understood by the cloud provider.
This creates a proper separation of concerns, can reduce in-
terface complexity and changes as optimizations evolve, and
can enable the effective utilization of cloud optimizations.
In this paper we propose an extension to the cloud interface
that enables this separation. Before describing our proposal in
Section 4, we first discuss some challenges and requirements
that such an extension should meet.

4



Cloud
Optimization

Cores
(%)

Existing
Ad-hoc Interface

Required Workload Characteristics
Scale Scale Deploy Delay Region

up/down out/in time Availability Preemptibility tolerance independence

Auto-scaling 33.1 Dedicated service ✓ ✓ ✓

Spot VMs 21.6 VM type, deployment flags,
dynamic pricing ✓

Harvest VMs 6.4 VM type, deployment flags ✓ ✓ ✓

Overclocking 41.3 VM type (✓) ✓

Underclocking 36.0 VM type (✓) ✓ ✓

Non pre-provision 68.8 Inferred ✓

Region-agnostic 43.0 Explicit region selection ✓

VM oversub 7.6 VM type, inferred (✓) ✓

VM rightsizing 2.1 Inferred, recommendation (✓) ✓ (✓)
MA datacenters 59.6 Inferred ✓

Table 3: Overview of popular cloud optimizations, with percentages of applicable cores in the cloud platform, existing cloud
interfaces, and required workload characteristics. To calculate the core percentages, we sum up the percentage of cores from
workloads in the internal survey that has a specific workload characteristic. (✓) indicates optional characteristic.

3.1 Challenges

Generality. We need to support a wide range of workloads
and cloud platform optimizations. The interface needs to be
general for any workload to express their main characteristics
and requirements. These characteristics can also be dynamic
and change over time. In addition to the interface at deploy-
ment time, we need to expose an interface to allow updating
the characteristics and requirements at runtime.

Based on the survey results and our internal discussions
with cloud optimization teams, Table 3 summarizes the essen-
tial workload characteristics that cloud optimizations need to
operate. Note that many of these characteristics benefit multi-
ple cloud optimizations. We target these ten cloud platform
optimizations but this number may grow. In addition, some
workloads may introduce new characteristics.The interface
needs to be extensible.

Critical optimizations (e.g., MA DCs) require to push up-
dates to the platform in real-time, while other optimizations
(e.g., Spot VMs) may pull information only when needed (e.g.,
to create room for on-demand VMs). The same applies to
workloads. For example, for Spot VMs, we need to push prior-
ity updates and receive future eviction events. Therefore, we
need to provide both pull and push interfaces.

Incentives. Workload owners must be incentivized to use any
interface extensions. It is clear from Table 2 that the opti-
mizations have the potential to reduce cost and/or improve
performance, sustainability for workloads. The interface im-
plementation should guarantee that VMs are no worse off
by using the interface, and possibly better. Any extension
should also be incrementally adoptable, meaning that perfor-
mance/cost/sustainability should not degrade by not adopting
the interface, after its introduction.

Safety. As public cloud platforms, safety must be ensured. We
need to prevent workloads from providing wrong information
(e.g., due to bugs) and ensure its public interfaces are resilient

to attacks (e.g., denial of service). The interface should not
enable workloads to abuse the system.

For workload owners, we must protect against leaks of sen-
sitive information from workloads by using interface isolation
and encryption to prevent side-channel attacks. At the same
time, we need to ensure the correctness of the information to
prevent performance degradation or unnecessary cost.

Coordination. The goal of our extension is to enable the
cloud platform to reason about the information it receives and
optimize accordingly, while maintaining quality of service.
To achieve this, any implementation must aggregate data at
different levels for various optimizations. For example, Auto-
scaling considers all the VMs for a workload, Overclocking
considers physical domains (i.e., servers and racks), and Spot
VMs considers all the VMs that can be evicted.

We must also enable coordination between multiple cloud
platform optimizations that may want to take actions on the
same resources. This coordination is necessary to resolve con-
flicts that may arise when, for example, both Overclocking
and MA DCs are attempting to adjust CPU frequencies simul-
taneously. At the same time, we need to ensure the resources
are shared fairly among multiple workloads.

3.2 Requirements
Besides addressing the above challenges, any implementation
of a cloud interface extension must address:

Scalability. It must be scalable and handle a high rate of
dynamic bi-directional communication between many work-
loads and multiple cloud optimizations. Potentially, it needs
to support exchanging information from/to all VMs in the
cloud platform.

Availability. The use of any new interface must maintain high
availability and tolerate failures. The new information pro-
vided must be persisted even if cloud optimizations or work-
loads are restarted.

5



Efficiency. The extension needs to be low-overhead and avoid
imposing unnecessary burdens and overheads on the system.

Maintainability. Maintaining a new service requires effort for
development, operation, bug fixing, and others. We need to
build a simple service with minimal maintenance overhead
and rely on existing infrastructure as much as possible.

4 Workload Intelligence
Considering these challenges and requirements, we propose
Workload Intelligence (WI) as an extension to the cloud inter-
face: a framework for dynamic bi-directional communication
between cloud workloads and the cloud. WI allows workloads
to explicitly specify their characteristics and requirements
through hints and to dynamically change them. WI makes
hints available to the cloud platform to optimize its operation.

Hints. They are best-effort: there is no guarantee that they will
be fulfilled, but they may (only) improve some dimension of
quality: price, performance, sustainability, etc. They are also
incentive-compatible: in their absence, the provider assumes
the most conservative version of a workload characteristic.

With WI in place, the cloud platform can significantly sim-
plify its offerings, reduce costs without fear of violating work-
load requirements, and lower prices for workload owners.
Figure 1 shows an overview of WI enabling communication
between multiple workloads and optimizations.

Workload hints. We define seven hints based on the work-
load characteristics needed by cloud optimizations identified
in Table 3: (1) scale up/down (boolean), (2) scale out/in
(boolean), (3) deploy time (milliseconds), (4) availability
(number of 9s), (5) preemptibility (percentage), (6) delay tol-
erance (milliseconds), and (7) region independence (boolean).

Hints define if that particular characteristic is relaxed (e.g.,
the workload has low availability requirements). If unspeci-
fied, we assume the most conservative setting (e.g., the work-
load wants fast deployment times for its VMs). Common
workload targets and goals (e.g., cost and CO2) are not hints.

Platform hints. In the other direction, WI allows the plat-
form to programmatically inform workloads about upcoming
events and opportunities for optimization, among other use-
ful scenarios. Example hints include VM evictions for Spot
VMs and higher CPU frequency available for overclocking.
Workloads can then react to these hints by specifying a VM
with the lowest penalty upon eviction for graceful shutdown
or a VM with the highest benefit for overclocking.

4.1 Architecture
Figure 2 shows the WI architecture with an example for three
cloud optimizations: Spot VMs, Overclocking, and MA DCs.

Local managers. For scalability, each server in the cloud
provider runs a local WI manager as shown in the left of
Figure 2. This local manager collects the runtime hints from
the workloads running in the VMs in the server and passes
them to the global manager. This local manager also collects

Workload
Intelligence

Workloads

ML
Training

ML
Serving

Data
Analytics

Search
Index

Web
Server

Cloud platform optimizations

App
Server

Video
Conference

Spot
VMs

Harvest
VMs

Over
Clocking

Under
Clocking

MA
DCs

Auto
Scaling

Over
Subscription

Pre
Provision

Right
Sizing

Region
Agnostic

Figure 1: Workload Intelligence overview.

the notifications coming from the cloud optimizations and
exposes them to the VMs running the workloads.

Global manager. For every region, we have a global WI man-
ager that is logically centralized but physically distributed.
This is shown in the in the center of Figure 2. This component
stores the hints, aggregates them, and enables coordination
across multiple cloud optimizations and multiple workloads.
It acts as a broker that exchanges information and hints be-
tween the cloud optimization and the workloads running in
VMs. It provides multiple interfaces to retrieve this informa-
tion at scale in near real-time and aggregate it at multiple
granularities (e.g., per server and per rack).

Cloud optimization managers. Each optimization can leverage
a basic WI optimization manager. This manager gets the hints
from the global manager. It also uses the global manager to
pass hints to the workloads through the local manager. The
right of Figure 2 shows the example for three optimizations.

4.2 Communicating and storing hints
To provide scalability, high availability, maintainability, and
fault tolerance, WI uses a combination of a PubSub and a dis-
tributed database to communicate and store the hints. For the
PubSub, WI uses Kafka [56] which synchronously delivers
the hints at large scale. For the database, it uses CloudDB1

which provides fault tolerance and durability. These are also
mature services that are easy to maintain.

Depending on the use case, hints need to be sent syn-
chronously or asynchronously. For example, in the Spot VM
case, workloads can specify their evictions preference asyn-
chronously and the cloud platform gathers this information
whenever it needs the capacity for regular VMs. On the other
hand, when the cloud platform decides to evict VMs, it needs
to immediately notify the VM.

Deployment hints. When deploying a VM (or a set of VMs),
the workload owner can specify the attributes for the workload
that they will run (e.g., tag a set of VMs as highly preemptible).
Workload owners can specify these hints through the common
deployment interfaces [10, 16, 42]. The cloud platform inter-
nally uses the WI global manager REST interface to store
these hints. The global manager stores the deployments hints
in CloudDB and publishes them using Kafka. Cloud platform

1Fictitious name for a cloud database, for anonymity.

6



WI Global
Manager

Coordina�on

WI Opt
Manager

WI Local
Manager

Spot VM

Overclock

MA DC

WI Opt
Manager

WI Opt
Manager

WI Local
Manager

WI Local
Manager

VM

VM

VM

VM

VM

VM

VM

VM

Workloads Workload Intelligence Cloud op�miza�ons

Hint
Storage

Figure 2: Workload Intelligence architecture showing three
example cloud optimizations.

Priority Cloud optimization

0 On-demand
1 MA datacenters
2 Rightsizing
3 Oversubscription
4 Auto-scaling
5 Non pre-provision
6 Region agnostic
7 Underclocking
8 Overclocking
9 Spot VMs
10 Harvest VMs

Table 4: Priorities across our ten cloud optimizations.

optimizations can leverage the optimization manager to (1) re-
trieve this hints asynchronously when needed or (2) subscribe
to the hints of a particular type. These two actions offer a gen-
eral interface that can be used by a wide variety of workloads.
Workloads can also update their hints after deployment while
the VMs are running.

Runtime hints: workload → platform. The workloads run-
ning in the VMs can also provide hints. For example, a VM
that it is currently not running critical jobs can specify it is
more tolerant to evictions. These runtime hints can be speci-
fied within the VM or from a logically centralized manager.

For a workload running inside of a VM to set a runtime
hint, it uses local interfaces (e.g., Hyper-V KVP [37] or Xen-
Store [59]). The local WI manager in each server polls for
these runtime hints and uses Kafka to publish them. The
global manager is subscribed to these events and stores them
in CloudDB. The optimization manager can also subscribe to
these events or asynchronously check through CloudDB.

In addition to the local hints that VMs can specify, a global
workload manager can use the global manager REST inter-
face to specify hints. For example, the Resource Manager
in a Hadoop YARN [53] deployment can set preference for
evictions for a set of VMs.

Multiple entities can be publishing hints for the same re-
source. To provide correctness, if the cloud platform optimiza-

tion identifies that the hints are not consistent, it can notify
the workload that it is ignoring them.

Runtime hints: platform → workload. To let workloads
adapt to the cloud platform actions, such as evictions of Spot
VMs, WI provides a mechanism to send hints (e.g. early noti-
fications) from the cloud optimizations to the workload via
Kafka. The global manager is subscribed to these events and
stores these hints in CloudDB. The local manager also sub-
scribes to these events and exposes them to the VM through
the local interfaces. Cloud platforms already offer interfaces
for VMs to locally check their attributes. An example is the
metadata service [18, 35, 45] which offers data like the VM
identifier or the type of VM. Scheduled events [38, 46] is
another communication channel which notifies about events
that will happen soon (e.g., reboot, maintenance, evictions).

The cloud platform can also inform the workload that a
planned maintenance event will take place. With this info, the
workload can shut down gracefully.

4.3 Providing hints safely
WI ensures safety for both workload owners and the cloud
platform. To protect the interface against DoS attacks, we
enforce maximum rates per optimization and workload when
setting deployment and runtime hints for all interfaces sepa-
rately. As hints are best-effort, DoS mitigations are simpler.

To protect the cloud platform from abusive usage of a sin-
gle resource, the cloud enforces fair-share among VMs and
between workload owners. Also, the cloud platform has the
right to provide alternative optimizations (e.g., Spot VM vs.
VM Pre-provisioning) to suit workloads’ need.

To protect workload owners from side-channel attacks, we
encrypt the hint communication. Besides, the cloud platform
does not provide details on its resource management decisions
after applying (or ignoring) hints to prevent information leaks
(e.g., VM placement). For example, in the case of a Harvest
VM expansion, the cloud platform does not give reasons on
their decisions and only the target VM is directly informed.

To protect the owners from sending wrong information, the
cloud platform ignores any inconsistent/incompatible hints
based on history. In addition, from the incentives point of
view, workloads can only hurt their own performance and
cost by providing wrong information.

4.4 Coordinating optimizations
WI enables the cloud platform to reason about the information
it receives to maximize its opportunities for optimization
while protecting quality of service. This includes handling
conflicts that may arise when multiple cloud optimizations
target the same resources. For example, both Spot VMs and
Pre-provisioning try to use the unallocated capacity in servers.
Another example, Overclocking may try to increase the CPU
frequency [28] and MA may try to reduce it [28, 61].

To address potential conflicts, we implement an algorithm
based on cloud optimization priorities. Table 4 shows our pri-

7



Same
Priority

Highest
Priority

Fair
Share

Lowest
Timestamp

No Yes

Rigid Compressible

Resource
Type

Figure 3: Conflict resolution for competing resources.

orities for the ten discussed optimizations (on-demand VMs
have the highest priority). This ranking reflects their signif-
icance for the provider, with Harvest VMs being the most
opportunistic. Note, most optimizations do not compete for
the same resources and many of them (e.g. VM rightsizing)
are designed to release unnecessary resource (Table 2).

Figure 3 illustrates this algorithm. In cases where the opti-
mizations have the same priority but the resource is compress-
ible (e.g., CPU), we employ fair share allocation. Otherwise,
we allocate the resource to the VM with the earliest request
time. In the rare event of requests submitted simultaneously,
we pick randomly. Moreover, the WI ensures the fair sharing
of resources among multiple VMs, guaranteeing equitable
distribution between workloads.

4.5 Alternative designs
We discuss trade-offs between several design choices with a
focus on coordination policy and interface.

Coordination. To resolve conflicts when the cloud platform
attempts to apply multiple optimizations on the same re-
sources, one can envision three approaches.

Pricing. The cloud platform specifies a price for each of the
optimizations. It can then use this pricing to resolve conflicts.
However, each optimization has different magnitudes, making
it challenging to unify prices into the same unit. Additionally,
the price can change over time and may not always reflect the
intrinsic value of the resources. (e.g., special discounts).

Bidding. Workload owners can define a price they are willing
to pay for their VMs. The cloud platform can then use this
information to resolve conflicts and assign resources to the
highest paying workload owners. This is similar to bidding
pricing strategy for Spot VMs, which has been either dropped
or unsupported by major cloud providers [13, 17, 20]. Funda-
mentally, this approach is challenging for workload owners
to understand and could introduce a gaming aspect.

Our approach. When building a new cloud optimization, we
define a priority for each optimization and apply a set of rules
depending on the resource in conflict. This approach allows
for easy unification and is simple for workload owners to
understand and reason about. At the same time, it makes it
easy for the platform to operate and maintain.

Interface. To offer cloud optimizations to workload owners,
one can envision three major interface designs.

Reduced. To reduce the complexity of the cloud systems and
increase the generality of the interface, one can simplify the
interface to take no workload owner inputs. For example, in-
stead of letting owners to specify the VM types and required
resources, the platform can infer the workload characteristics
from the owners’ past history and provide a VM type based
on its best guesses. This approach works well with predictable
workloads (e.g., scheduled events), however, it does not sup-
port optimizations to react to workload changes in time (e.g.,
delayed auto-scaling, sub-optimal Spot VM evictions).

Discrete. The current design maintains discrete interfaces for
each individual optimization. This preserves the most flexi-
bility for individual systems, which could potentially lead to
well-optimized cloud operations. However, the predominant
drawback is its sheer complexity, since each interface is cus-
tomized. Besides, this design is not extensible, as the number
of interfaces explodes as new cloud optimizations emerge.

Centralized. A key observation from the discrete design is
that many of the existing interfaces require similar workload
characteristics from the workload owners either directly or
implicitly. Instead of letting owners indirectly or repetitively
submit their requirements, we can create a centralized inter-
face that aggregates the minimum set of workload information
needed and store them at one place. This design has lower
complexity, but the communication overhead is potentially
high, since all workloads and optimizations need to commu-
nicate via the centralized storage.

Our approach. To combine the benefits of both the discrete
and the centralized design, we propose a hybrid interface. In
our design, the hints are physically distributed among work-
loads and optimizations (i.e., WI Local Managers and WI Opt
Managers), to provide flexibility to update their runtime status
at desired frequency. The WI Global Manager aggregates and
distribute hints at one place (i.e., logically centralized). This
allows optimizations and workloads to exchange hints on de-
mand. In addition, the workload characteristics utilized by WI
are shared among multiple cloud optimizations and multiple
workloads. To onboard future workloads/optimizations, the
WI interface only needs to be updated for the delta, if any.

4.6 Other resources
While current cloud optimizations primarily focus on compute
resources, WI has the potential to benefit other resources (e.g.,
storage and networking). For storage, delay tolerance hints
enable opportunities for co-locating storage and compute for
workloads with I/O bottlenecks or using cheaper storage for
lower costs in delay-tolerant workloads. Region independence
hints can indicate data locality requirements and security
concerns (e.g., GDPR), which can help enforce the desired
data replication configurations.

For networking, cloud Load Balancer services can benefit

8



from scalability and availability hints to make better task
placement decisions. Also, delay tolerance hints can be used
in future optimizations to adjust cloud Content Delivery Net-
work (CDN) service levels to reduce costs for delay-tolerant
workloads or improve performance for delay-sensitive work-
loads. It can be used in conjunction with region-independence
hints to optimize which regions to cache the data.

5 Implementation
5.1 Extending workloads beyond VMs
Many workloads leverage frameworks and orchestrators like
Kubernetes [31] and Functions-as-a-Service (FaaS) [47] for
their deployment. Cloud providers offer these managed frame-
works [8, 36, 43, 44] and they are usually deployed on top of
VMs [3, 36, 44, 47].

These frameworks can leverage WI to orchestrate the work-
loads running on top or directly expose WI. This enables
workloads running on these frameworks to take advantage of
cloud optimizations with minor extensions. In this section,
we describe how to extend three common frameworks.

Big data analytics: Hadoop. To support WI, we extend Har-
vest Hadoop [6, 21]. The management components (e.g., Re-
source Manager and Name Node) run on VMs with high
requirements while the workers run in a mix of VMs with low
and high requirements.

We use the WI interface to retrieve notifications for evic-
tions and change of resources (e.g., more CPU or memory
available). Then we pass this information to Harvest Hadoop
which already handles evictions and changes in the number
of resources (e.g., CPU and memory).

We also add a new component to the workers that uses the
local WI interface to specify the VM priority depending on:
the criticality, the amount of containers running, elapsed job
processing time, and whether containing master nodes. For
example, a VM that is running many critical containers will
have a “High” priority while an empty node will have “Low”.
This will make “High” priority VMs less likely to be evicted
and to get more resources (e.g., harvesting or overclocking).

Microservices: Kubernetes. The Kubernetes control plane
components run in VMs with high requirements (e.g., high-
availability, low preemptibility). When provisioning the
worker nodes, we leverage Karpenter [30], a node provision-
ing manager for Kubernetes clusters. We extend Karpenter
to provide hints based on the pod requested by the appli-
cations. The worker nodes can be a mix of Regular, Spot,
Harvest, Overclocking, Underclocking, and Oversubscribed
VMs. These workers are grouped into different pools based
on their characteristics. We also add a new component to each
VM which runs next to the Kubelet and uses the WI interface
to provide and receive hints. For example, if a VM is to be
evicted, the WI component uses graceful shutdown to stop
the pods in that VM and migrate the load to other pods.

Workloads running on Kubernetes use the node pool ab-

straction through tolerations and node affinities [32]. For ex-
ample, if we want to run the Social Network from the Death-
StarBench [22] on Kubernetes [39], we specify the frontend
pods to run in the node pool with high-preemptibility. In addi-
tion, the logic microservices (e.g., compose post, social graph,
write timeline) can specify when their latency is too high and
trigger optimizations like overclocking.

FaaS: OpenWhisk. We use the OpenWhisk implementa-
tion from FaaS on Harvest VMs [62] as a base. Similarly,
to Hadoop and Kubernetes, we run the logically centralized
control plane components (e.g., Nginx, Controller, Kafka) on
VMs with high requirements (e.g., low fault tolerance and
high-availability). For the worker components, we use VMs
with heterogeneous requirements based on the workload. We
add a component to track the running functions and adjust the
characteristics of the VMs that are running worker nodes. For
example, if we have many long running functions, we deploy
more regular VMs while if the functions are mostly short, we
deploy them on VMs with lower requirements.

In the worker node, we extend the Resource Monitor that
runs next to the Invoker to interact with the local WI interface.
Depending on the number of functions running on the worker
and their duration, the Resource Monitor sets a higher or lower
priority for the VM.

Other workloads. The extensions for these three frameworks
can be implemented for workloads that do not leverage orches-
trators. Even without the runtime extensions, some workloads
can leverage deployment hints by tuning the way they are
deployed. For example, the workload owner could specify
that specific VMs can leverage scaling up and WI can apply
corresponding optimizations such as overclocking.

5.2 Extending cloud platform optimizations
For cloud platform to onboard an optimization, we need to
define (1) managed resources and the (2) priority compared to
other optimizations. In addition, to track the benefits we also
need to define the (3) workload owners benefit, (4) pricing,
and (5) cost model. This is not difficult for new optimizations
to get onboard, because all these features should have been
defined by the optimizations themselves.

For existing cloud optimizations, Table 2 defines the re-
sources and the pricing for each optimization, Table 4 speci-
fies the priorities for each optimization, and Table 5 describes
the hints that they need to consume and publish from and
into WI. When applying the changes to the resources, the
cloud optimizations leverage the coordination described in
Section 4.4 which leverages priorities.

6 Evaluation
To evaluate WI, we first describe three use cases that demon-
strate how three workloads can leverage multiple cloud plat-
form optimizations. We choose these three workloads because
they fall into the categories of big data analytics, web applica-
tions and real-time communication respectively, and together,

9



Optimization Modifications for WI
Auto-scaling Consume deployment scale in/out hints.

Spot VMs Consume deployment preemptible hints.
Consume runtime preemption priority.
Publish runtime preemption notification.

Harvest VMs Same as Spot VMs.
Consume runtime scale up/down priority.
Publish runtime scale up/down notification.

Overclocking Consume deployment scale up/down hints.
Consume runtime scale up priority.
Publish runtime scale up notification.

Underclocking Consume deployment scale up/down hints.
Consume runtime scale down priority.
Publish runtime scale down notification.

Pre-provision Consume deployment deployment time hints.

RA placement Consume deployment locality hints.

Oversubscription Consume deployment scale up/down hints.
Consume deployment delay tolerance hints.
Consume runtime scale down priority.

VM rightsizing Consume deployment scale up/down hints.
Consume deployment delay tolerance hints.

MA DCs Consume deployment scale up/down hints.
Consume deployment preemptible hints.
Publish runtime scale down notification.
Publish runtime preemption notification.

Table 5: Extensions to existing cloud platform optimization.

these workload classes comprise 84% of the cloud cores usage
at ProviderX. In addition, Table 6 shows that the workloads
for our evaluation provide both good coverage and high di-
versity of hints. We then evaluate the potential for cost and
carbon savings at a cloud provider scale.

6.1 Case study: Big data analytics

Methodology. We deploy our WI-aware Hadoop (§5.1) on
a 20-node cluster composed of 5 VMs for the management
components (i.e., Resource Manager and NameNode) each
with 4 vCPUs and 16 GB of memory and 15 VMs for the
workers each with 8 vCPUs and 64 GB of memory. Table 6
summarizes the hints for deploying the worker node VMs.

We use a 5-day MapReduce workload trace from a produc-
tion cluster at ProviderX in June 2020. For reproducibility,
we scale the trace down to fit into a 20-node cluster by ran-
domly down-sampling at a 2% rate. This scaled down trace
comprises 100 jobs and lasts 5 hours. To emulate the charac-
teristics of the original jobs, we assign the same job priorities
to our synthetic MapReduce jobs as in the original trace.

For reproducibility, we will open-source the setup to emu-
late this experiment in ProviderX. This includes a “user-space”
implementation of WI.

Operation. Using the WI deployment hints, the platform de-
cides to enable Auto-Scaling, Spot VMs, and Harvest VMs
for the VMs running the Hadoop workers. At runtime, each
Hadoop worker posts hints to the local WI server with the
runtime “preemptibility“ hint for that VM every second (same

1.0x

1.5x

2.0x

2.5x

3.0x

Regular VMs with Auto-
scaling

Deployment-time hints
enabled

Runtime & Deployment-
time hints enabled

Sl
ow
do
w
n

0%

20%

40%

60%

80%

100%

Regular VMs with Auto-
scaling

Deployment-time hints
enabled

Runtime & Deployment-
time hints enabled

C
os
t

Figure 4: Slowdown and cost running the Big Data workload.
The baseline (i.e., 1×, 100%) is the median for Regular VMs.

as the default Apache YARN heartbeat interval [53]). To cal-
culate this hint, the workload consider the number of contain-
ers, their uptimes, user-specified job priorities, and whether
it hosts Application Masters. For example, if the worker VM
has been running many critical jobs for a long time (e.g., >30
seconds based on the typical cloud eviction notice time), it un-
marks the runtime “preemptibility“ hint to reduce the eviction
probability and maximize the amount of resources assigned.
WI uses these hints to determine which VMs to shrink and
evict when reclaiming resources.

Results. Figure 4 compares the baseline setup, which is Reg-
ular VMs, to WI with deployment hints and WI using both
deployment and runtime hints. We also include Regular VMs
with auto-scaling for comparison. Regular VMs achieves the
best performance because it constantly has access to all the
resources. But they are also the most expensive option. We
normalize our results based on the Regular VMs performance.

WI with deployment hints shows a median slowdown of
2.1× as it enables Auto-scaling and Harvest VMs. However,
it significantly reduces the median cost by 92.6%. When
enabling runtime hints, the median slowdown is reduced by
21.0%. Based on the pricing listed in Table 2, the cost is
further reduced by 13.5% compared to only deployment hints.

The full WI setup achieves the lowest cost (93.5% cost
reduction) while maintaining reasonable performance (1.7×
slowdown for delay-tolerant workloads). This is because in ad-
dition to leveraging Spot and Harvest VMs, the platform com-
municates with the workload owner to minimize the penalty of
evictions and to maximize the utility of harvested resources.

10



Case study
Workload characteristics of required hints

Scale up/down Scale out/in Deploy time Availability Preemptibility Delay tolerance Region independence

Big data analytics (§6.1) ✓ ✓ ✓ ✓

Microservices (management nodes) (§6.2) ✓ ✓

Microservices (worker nodes) (§6.2) ✓ ✓ ✓ ✓ ✓ ✓

Video conference (media-service VMs) (§6.3) (✓) ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Overview of workload specified hints utilized by WI for our case studies. “✓" indicates hint required.

6.2 Case study: Microservices

Methodology. We deploy the social network workload from
the DeathStarBench [22] on a Kubernetes [31, 39] cluster
that runs our WI extensions (§5.1). Both control plane and
worker VMs have 8 vCPUs and 32 GB of memory. We use
two management VMs and a minimum of four worker VMs.

We extend the social network [22] to mark Load Balancer,
Media Frontend, Memcached, MongoDB, and Redis to run in
node pools with “management” requirements. The rest of the
components (i.e., Nginx and the logic like post composing,
timeline management, etc.) run in the node pool with “worker”
requirements. These worker components are load-balanced
and replicated into multiple pods. Table 6 shows the hints
specified for the VMs in each node pool.

We emulate the load using a scaled-down trace from a
production cluster. We run this traffic generation from a sep-
arate set of VMs in the same virtual network. We will also
open-source this setup.

Operation. Based on the WI hints, the platform enables over-
subscription for the control VMs. Given the load, the platform
oversubscribes CPU by 50% and memory by 20%.

For the workers, WI enables Auto-scaling, Harvest VMs,
Overclocking, and MA DCs. At runtime, the workload sets
the runtime “preemptibility” hint for all the VMs except one
to reduce its probability of eviction. The workload also sets
the runtime “scale up/down” hint to prefer harvesting and
overclocking. As Kubernetes places more containers in a
worker node, it removes the “preemptibility” hint. The pods
with higher requirements (e.g., Redis) are deployed in a node
pool that cannot be evicted.

In addition, MA [61] tracks the first set for early throttling
and the second one for eviction. In case of a power event,
most components will be throttled and some workers evicted.

Results. The tail latency when running the workload in Regu-
lar VMs with autoscaling is 376 ms. In a setup with WI where
we leverage overclocking and Harvest VMs, we lower the
latency down to 332 ms, which is 13.3% improvement. Note
that we do not observe latency spikes even during evictions.

The cost for the workload owner is reduced by 44% com-
pared to the baseline with plain autoscaling. Most of the
savings come from running with overclocking while the rest
comes from running on Harvest VMs.

6.3 Case study: Video conference

Methodology. We setup a Video Conference workload on a
WI-enabled cloud platform. We extend the existing deploy-
ment scripts to provide the hints in Table 6. This includes
deploying VMs dedicated to media processing, responsible
for voice and video handling. The load is balanced across
VMs to efficiently manage calls. The client generator is de-
ployed separately and replicates conference traces from a
production environment involving approximately 50 to 100
audio calls with 4 to 50 users, along with 2 to 75 video calls
that accommodate user counts ranging from 4 to 250. The
load follows a daily pattern, with more calls during business
hours. Additionally, there are load spikes at the beginning of
the hour and the half-hour mark, aligning with the start of
most meetings. For confidentiality requirements, we cannot
open-source the code to run this experiment.

Operation. The cloud platform enables various optimizations
for the media-service VMs: Auto-scaling, Overclocking, Pre-
provisioning, VM rightsizing, and Region-agnostic.

The local WI manager monitors the hints, while each media-
service VM tracks its usage and elevates its priority dur-
ing high loads. The local overclocking controller determines
whether to increase or decrease the CPU frequency of the
VM based on this priority, while also factoring in the power
budget and processor lifetime [28]. Moreover, the right-sizing
manager uses utilization data to set the right VM type for the
media-service VMs.

Results. We compare a default setup using regular VMs with
the one with WI enabled. The WI-enabled setup is 26.3%
more cost-effective by reducing the necessary VMs for off-
peak periods. In addition, it reduces the carbon footprint by
51% by running VMs in a greener region.

Throughout the experiment, the workload sustains the re-
quired service level, and the conference processing rate (i.e.,
the number of conference calls it can handle per second) is
35.4% higher with WI. This extra headroom indicates our
conservatism, suggesting that we could have further reduced
the number of VMs even further.

WI utilizes pre-provisioned VMs during peak time to
achieve two primary objectives: firstly, it effectively reduces
the latency associated with adding new media-service VMs,
and secondly, it enhances overall performance. This improve-
ment is marked by a 22% increase in conference process

11



0

10

20

30

40

50

Co
st

 sa
vi

ng
s (

%
)

Underclocking
Non pre-prov
Overclocking
VM oversub
Auto-scaling
Region-agnostic
MA datacenters
VM rightsizing
Spot VMs
Harvest VMs

Figure 5: Cost savings breakdown by optimizations.

rates, coupled with a complete elimination of instances where
conference processing encounters significant delays.

Furthermore, the WI Rightsizing Manager recommends a
new VM size by monitoring utilization information from the
WI Global Manager. This rightsizing reduces costs by 13.4%.

6.4 Benefits at provider scale
Based on the workload core usage from our survey (Table 1),
the core percentage among optimizations (Table 3), data from
the literature [4,6,13,17], internal statistics for optimizations,
and our case study experimental results (Table 2), we compute
the savings for workload owners when using WI. To calculate
the cost/carbon benefits, we need the joint probability distribu-
tion of core percentages among 10 optimizations. Given the
complexity to compute these distributions precisely, we esti-
mate it based on the joint distribution of up to 2 optimizations
and significant (i.e., >5%) multiple-optimization scenarios
via Linear Programming [23]. We derive the cost savings for
each optimization and summarize them in Table 2. We com-
bine the results to compute the user benefit of enabling WI.
As described in Section 4.4, we set priorities for the optimiza-
tions that cannot be enabled simultaneously due to operational
conflicts based on discount values. Specifically, Spot VMs,
Harvest VMs and Pre-provisioning do not simply provide
multiplicative cost benefits when enabled at the same time
due to their contention for spare compute resources. Similarly,
Overclocking, Underclocking, and MA are not compatible
with each other due to CPU frequency adjustments.

Cost impact. Figure 5 shows the cost savings breakdown
from each optimization. We follow the decreasing order of
the owner benefits which mimics the workload owners’ pref-
erences when choosing their optimizations manually.

WI reduces workload owner costs by 48.8% on average.
MA DCs and Spot VMs offer substantial savings by 18.3%
and 13.0% respectively. Region agnostic, Harvest VMs, Auto-
scaling and Overclocking also provide considerable cost re-
ductions by 6.0%, 5.8%, 2.8% and 1.3% individually at cloud
scale. Note that actual savings vary based on owners’ indi-
vidual workloads, and other optimizations may play a more
important role. For example, web proxy workloads benefit
from Auto-scaling, Non pre-provisioning, Overclocking, Un-

derclocking and VM rightsizing predominantly due to its high
availability requirement and the dynamic nature of web traffic.

Paradoxically, Figure 5 shows that a higher discount from
an optimization does not necessarily translate to higher cost
savings. For example, Harvest VMs have higher discounts
than Spot VMs (91% vs. 85%) but contribute less to the
overall savings. This is because Harvest VMs have more strict
requirements for workloads and thus result in fewer applicable
scenarios. Given workload characteristics, WI assist workload
owners by automatically enabling the best set of optimizations
that maximize their cost savings.

Carbon impact. We also account for the carbon generated.
Region-agnostic sends some workloads to low-carbon regions
(e.g., the low 10th percentile) and reduce carbon footprint
by 51% (i.e., from 546 g/kWh to 267 g/kWh). Since VM
rightsizing, Auto-scaling and VM oversubscription reduce
the number of VMs required to run a workload, they also
reduce carbon by 50%, 19% and 15% respectively. Overall,
WI can reduce carbon at provider scale by 27.6%.

7 Related Work

User-provided information. Mesos [25] presents a manage-
ment layer that enables fine-grained resource sharing across
diverse cluster computing frameworks and lets the organi-
zations specify their policies for resource sharing. In high-
performance computing, many works propose users giving
job characteristics, such as expected job run times, which
are often found to be inaccurate [52]. We propose to design
incentives that motivate users to provide better hints.

Attribute inference. The literature on inferring attributes
relevant to cloud services broadly falls into ad-hoc resource
management frameworks [24,27,29] and general frameworks
that combine multiple resource managers [19, 49–51, 54, 58].
Borg [51, 54] estimates job characteristics (e.g., resources
needed, job priorities) to find suitable machines. Twine [50]
is a framework that collaborates with applications to manage
their lifecycle. Resource Central [19] collects VM teleme-
try, learns these behaviors online, and provides predictions
to various resource managers. SOL [58] proposes a general
on-node framework that considers fine-grained workload dy-
namics, resource utilization, and provides informed decisions
using ML-based agents. To optimize carbon-efficiency, Ecov-
isor [49] virtualizes the energy system to applications.

These works infer the attributes for various resource man-
agers via APIs or client-side libraries. However, all the work-
load hints may not be amenable for inference and these works
also miss out on the relevant information from workload
owners. There still exists a gap in safe and efficient ways to
leverage the resource managers as well as the inputs from
workload owners for optimizing cloud efficiency.

Other cloud interfaces. Container orchestration systems such
as Kubernetes [31] and Docker Swarm [1] automate software
deployment, scaling, and management, but they are unaware

12



of the workload characteristics running inside containers and
rely on users to manually specify resource management poli-
cies. Serverless computing [47] provides more flexibility for
the cloud platform to manage resources by allowing workload
owners to upload code as tasks. However, the lack of explicit
workload characteristics may lead to incorrect usage such as
submitting tasks that are long-running or of low parallelism,
which may result in even higher cost than using regular VMs.

8 Conclusion
In this paper, we have proposed Workload Intelligence (WI),
a novel framework for dynamic bi-directional communication
between cloud workloads and cloud platform. By punching
holes through the current cloud abstraction, the platform can
drastically simplify its offerings, reduce its costs without vi-
olating any workload requirements, and pass the savings to
workload owners. We have evaluated the applicability and
potential of WI across 10 cloud optimizations at a major
cloud provider and demonstrated significant benefits for both
providers and workload owners.

References
[1] Docker swarm mode overview, Aug 2023. https://

docs.docker.com/engine/swarm/.

[2] Muhammad Abdullah Adnan, Ryo Sugihara, and Ra-
jesh K Gupta. Energy efficient geographical load bal-
ancing via dynamic deferral of workload. In CLOUD,
2012.

[3] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtualiza-
tion for serverless applications. In NSDI 20, 2020.

[4] Amazon Elastic Compute Cloud. Amazon EC2 Spot
Instances, 2019. https://aws.amazon.com/ec2/
spot/.

[5] Amazon Elastic Compute Cloud. Running
batch jobs at scale for less, 2020. https:
//aws.amazon.com/getting-started/hands-on/
run-batch-jobs-at-scale-with-ec2-spot/.

[6] Pradeep Ambati, Íñigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, et al. Providing
SLOs for Resource-Harvesting VMs in Cloud Platforms.
In OSDI 20, 2020.

[7] Ari Liberman and Tyler Sanderson. Performance-
driven dynamic resource management
in E2 VMs, 2019. https://cloud.
google.com/blog/products/compute/
understanding-dynamic-resource-management-in-e2-vms.

[8] Microsoft Azure. Azure Functions. https://azure.
microsoft.com/en-us/services/functions/.

[9] Microsoft Azure. Overview of autoscale in
Microsoft Azure. https://docs.microsoft.
com/en-us/azure/azure-monitor/autoscale/
autoscale-overview.

[10] Microsoft Azure. What are ARM templates?
https://learn.microsoft.com/en-us/azure/
azure-resource-manager/templates/overview.

[11] Microsoft Azure. Introducing B-Series, Our
New Burstable VM Size, 2019. https:
//azure.microsoft.com/en-us/blog/
introducing-b-series-our-new-burstable-vm-size/.

[12] Microsoft Azure. Use low-priority VMs with
Batch, 2019. https://docs.microsoft.com/en-us/
azure/batch/batch-low-pri-vms.

[13] Microsoft Azure. Azure Spot Virtual Machines,
2020. https://azure.microsoft.com/en-us/
pricing/spot.

[14] B. Beyer, C. Jones, J. Petoff, and N.R. Murphy. Site
Reliability Engineering: How Google Runs Production
Systems. O’Reilly Media, 2016.

[15] Amazon Elastic Compute Cloud. Burstable
Performance Instances, 2019. https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/
burstable-performance-instances.html.

[16] Google Cloud. Google Cloud Deployment Man-
ager documentation. https://cloud.google.com/
deployment-manager/docs.

[17] Google Cloud. Preemptible VM Instances, 2020.
https://cloud.google.com/compute/docs/
instances/preemptible.

[18] Google Cloud. About VM metadata, 2022.
https://cloud.google.com/compute/docs/
metadata/overview.

[19] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In SOSP, 2017.

[20] Sylvia Engdahl. New amazon ec2 spot pricing model:
Simplified purchasing without bidding and fewer in-
terruptions, 2008. https://aws.amazon.com/blogs/
compute/new-amazon-ec2-spot-pricing/.

13

https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/getting-started/hands-on/run-batch-jobs-at-scale-with-ec2-spot/
https://aws.amazon.com/getting-started/hands-on/run-batch-jobs-at-scale-with-ec2-spot/
https://aws.amazon.com/getting-started/hands-on/run-batch-jobs-at-scale-with-ec2-spot/
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms
https://cloud.google.com/blog/products/compute/understanding-dynamic-resource-management-in-e2-vms
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://azure.microsoft.com/en-us/blog/introducing-b-series-our-new-burstable-vm-size/
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://docs.microsoft.com/en-us/azure/batch/batch-low-pri-vms
https://azure.microsoft.com/en-us/pricing/spot
https://azure.microsoft.com/en-us/pricing/spot
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://cloud.google.com/deployment-manager/docs
https://cloud.google.com/deployment-manager/docs
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/instances/preemptible
https://cloud.google.com/compute/docs/metadata/overview
https://cloud.google.com/compute/docs/metadata/overview
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/


[21] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Go-
har Irfan Chaudhry, Prateek Sharma, Kapil Arya, Kevin
Broas, Eugene Bak, Mehmet Iyigun, and Ricardo Bian-
chini. Memory-harvesting VMs in Cloud Platforms. In
ASPLOS, 2022.

[22] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In
ASPLOS, 2019.

[23] S.I. Gass. Linear Programming: Methods and Applica-
tions. Dover Books on Computer Science Series. Dover
Publications, 2003.

[24] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
Esaias E Greeff, David Dion, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, et al. Protean: Vm
allocation service at scale. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and
Implementation, pages 845–861, 2020.

[25] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[26] Rachel Householder, Scott Arnold, and Robert Green.
On Cloud-based Oversubscription. IJETT, 2014.

[27] Syed M Iqbal, Haley Li, Shane Bergsma, Ivan Beschast-
nikh, and Alan J Hu. Cospot: a cooperative vm allo-
cation framework for increased revenue from spot in-
stances. In Proceedings of the 13th Symposium on Cloud
Computing, pages 540–556, 2022.

[28] Majid Jalili, Ioannis Manousakis, Íñigo Goiri, Pulkit A
Misra, Ashish Raniwala, Husam Alissa, Bharath Ra-
makrishnan, Phillip Tuma, Christian Belady, Marcus
Fontoura, et al. Cost-efficient overclocking in
immersion-cooled datacenters. In ISCA, 2021.

[29] Seyyed Ahmad Javadi, Amoghavarsha Suresh, Muham-
mad Wajahat, and Anshul Gandhi. Scavenger: A black-
box batch workload resource manager for improving
utilization in cloud environments. In Proceedings of the
ACM symposium on cloud computing, pages 272–285,
2019.

[30] Karpenter. Karpenter, 2023. https://karpenter.sh/
docs/.

[31] Kubernetes. Production-Grade Container Orchestration,
2020. https://kubernetes.io/.

[32] Kubernetes. Scheduling, Preemption and Eviction,
2023. https://kubernetes.io/docs/concepts/
scheduling-eviction/.

[33] Wes Lloyd, Shrideep Pallickara, Olaf David, Mazdak
Arabi, and Ken Rojas. Mitigating Resource Contention
and Heterogeneity in Public Clouds for Scientific Mod-
eling Services. In IC2E, 2017.

[34] Ming Mao and Marty Humphrey. Auto-scaling to mini-
mize cost and meet application deadlines in cloud work-
flows. In SC. IEEE, 2011.

[35] Microsoft. Azure Instance Metadata Service, 2022.
https://aka.ms/azureimds.

[36] Microsoft. Azure Kubernetes Service (AKS), 2022.
https://docs.microsoft.com/en-us/azure/
aks/.

[37] Microsoft. Hyper-V Integration Services,
2022. https://docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/
reference/integration-services.

[38] Microsoft. Monitor scheduled events for your
Azure VMs, 2022. https://docs.microsoft.
com/en-us/azure/virtual-machines/windows/
scheduled-event-service.

[39] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T
Kalbarczyk, and Ravishankar K Iyer. FIRM: An intelli-
gent fine-grained resource management framework for
SLO-Oriented microservices. In OSDI, 2020.

[40] Benjamin Reidys, Jinghan Sun, Anirudh Badam, Shadi
Noghabi, and Jian Huang. BlockFlex: Enabling Stor-
age Harvesting with Software-Defined Flash in Modern
Cloud Platforms. In OSDI, 2022.

[41] Amazon Web Services. Amazon EC2 Auto Scaling.
https://aws.amazon.com/ec2/autoscaling/.

[42] Amazon Web Services. AWS CloudForma-
tion Templates. https://aws.amazon.com/
cloudformation/resources/templates/.

[43] Amazon Web Services. AWS Lambda. https://aws.
amazon.com/lambda/.

[44] Amazon Web Services. Amazon Elastic Kubernetes Ser-
vice (EKS), 2022. https://aws.amazon.com/eks/.

[45] Amazon Web Services. Instance metadata and user data,
2022. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ec2-instance-metadata.
html.

14

https://karpenter.sh/docs/
https://karpenter.sh/docs/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://aka.ms/azureimds
https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/scheduled-event-service
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/scheduled-event-service
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/scheduled-event-service
https://aws.amazon.com/ec2/autoscaling/
https://aws.amazon.com/cloudformation/resources/templates/
https://aws.amazon.com/cloudformation/resources/templates/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html


[46] Amazon Web Services. Scheduled events for
your instances, 2022. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/
monitoring-instances-status-check_sched.
html.

[47] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the Wild: Characterizing and
Optimizing the Serverless Workload at a Large Cloud
Provider. In ATC, 2020.

[48] Jiuchen Shi, Kaihua Fu, Quan Chen, Changpeng Yang,
Pengfei Huang, Mosong Zhou, Jieru Zhao, Chen Chen,
and Minyi Guo. Characterizing and orchestrating VM
reservation in geo-distributed clouds to improve the re-
source efficiency. In SoCC, 2022.

[49] Abel Souza, Noman Bashir, Jorge Murillo, Walid
Hanafy, Qianlin Liang, David Irwin, and Prashant
Shenoy. Ecovisor: A virtual energy system for carbon-
efficient applications. In ASPLOS, 2023.

[50] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan,
Jonathan Kaldor, Scott Michelson, Thawan Kooburat,
Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long
Cheng, et al. Twine: A unified cluster management
system for shared infrastructure. In Proceedings of the
14th USENIX Conference on Operating Systems Design
and Implementation, pages 787–803, 2020.

[51] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the next generation. In
Proceedings of the fifteenth European conference on
computer systems, pages 1–14, 2020.

[52] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. Back-
filling using system-generated predictions rather than
user runtime estimates. IEEE Trans. Parallel Distrib.
Syst., 18(6):789–803, jun 2007.

[53] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.

Apache Hadoop YARN: Yet Another Resource Negotia-
tor. In SoCC, 2013.

[54] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the Tenth European Conference on Com-
puter Systems, pages 1–17, 2015.

[55] Cheng Wang, Bhuvan Urgaonkar, Neda Nasiriani, and
George Kesidis. Using Burstable Instances in the Public
Cloud: Why, When, and How? 2017.

[56] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kar-
tik Paramasivam, Mammad Zadeh, Neha Narkhede, Jun
Rao, Jay Kreps, and Joe Stein. Building a replicated
logging system with Apache Kafka. VLDB, 2015.

[57] Yawen Wang, Kapil Arya, Marios Kogias, Manohar
Vanga, Aditya Bhandari, Neeraja J Yadwadkar, Sid-
dhartha Sen, Sameh Elnikety, Christos Kozyrakis, and
Ricardo Bianchini. SmartHarvest: Harvesting idle CPUs
safely and efficiently in the cloud. In EuroSys, 2021.

[58] Yawen Wang, Daniel Crankshaw, Neeraja J Yadwadkar,
Daniel Berger, Christos Kozyrakis, and Ricardo Bian-
chini. SOL: Safe On-Node Learning in Cloud Platforms.
In ASPLOS, 2022.

[59] Xen. XenStore, 2022. https://wiki.xenproject.
org/wiki/XenStore.

[60] Randolph Yao, Chuan Luo, Bo Qiao, Qingwei Lin, Tri
Tran, Gil Lapid Shafriri, Yingnong Dang, Raphael Ghel-
man, Pulak Goyal, Eli Cortez, Daud Howlader, Sushant
Rewaskar, Murali Chintalapati, and Dongmei Zhang.
Infusing ML into VM Provisioning in Cloud. In Cloud-
Intelligence, 2021.

[61] Chaojie Zhang, Alok Gautam Kumbhare, Ioannis
Manousakis, Deli Zhang, Pulkit A Misra, Rod Assis,
Kyle Woolcock, Nithish Mahalingam, Brijesh Warrier,
David Gauthier, et al. Flex: High-availability datacenters
with zero reserved power. In ISCA, 2021.

[62] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Ro-
drigo Fonseca, Sameh Elnikety, Christina Delimitrou,
and Ricardo Bianchini. Faster and Cheaper Serverless
Computing on Harvested Resources. In SOSP, 2021.

15

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-instances-status-check_sched.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-instances-status-check_sched.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-instances-status-check_sched.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-instances-status-check_sched.html
https://wiki.xenproject.org/wiki/XenStore
https://wiki.xenproject.org/wiki/XenStore

	1 Introduction
	2 Characterizing workloads in the cloud
	2.1 Workloads
	2.2 Cloud optimization mechanisms

	3 Revisiting the cloud abstraction
	3.1 Challenges
	3.2 Requirements

	4 Workload Intelligence
	4.1 Architecture
	4.2 Communicating and storing hints
	4.3 Providing hints safely
	4.4 Coordinating optimizations
	4.5 Alternative designs
	4.6 Other resources

	5 Implementation
	5.1 Extending workloads beyond VMs
	5.2 Extending cloud platform optimizations

	6 Evaluation
	6.1 Case study: Big data analytics
	6.2 Case study: Microservices
	6.3 Case study: Video conference
	6.4 Benefits at provider scale

	7 Related Work
	8 Conclusion

