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Abstract

We study a particular deformation of the potential KdV model (pKdV) and construct the quasi-

conservation laws by a direct method. The charge densities, differing from their integrable counter-

part with homogeneous degree terms, exhibit mixed scale dimension terms. The modifications of the

charges around the soliton interaction regions are examined by numerically simulating some represen-

tative anomalies. We show numerically the elastic scattering of two kinks for a wide range of values

of the deformation parameters. It is discussed an anomaly cancellation mechanism to define an exact

conservation law of the usual pKdV model, and a renormalization procedure is introduced for some di-

vergent charges by subtructing the continuous linear background contribution. The KdV-type equations

are quite ubiquitous in several areas of non-linear science, such as the study of General Relativity in

AdS3, Bose-Einstein condensates, superconductivity and fluid dynamics.

http://arxiv.org/abs/2404.19147v1


1 Introduction

Integrable models are characterized by soliton solutions and an infinite number of conserved charges, making

them mathematically elegant and physically insightful [1, 2, 3]. However, many important physical systems

with solitary wave solutions do not fall under the integrable framework. In this context, it has been put

forward the quasi-integrability concept through the anomalous Lax equation [4, 5] and pseudo-potential

approaches [6, 7, 8], to tackle the properties of modifications of integrable models.

The developments follow by the construction of an infinite number of asymptotically conserved charges

and the examination of the space-time inversion symmetry property of the anomalies. These charges are

asymptotically conserved as long as the space-time integral of the corresponding anomaly densities vanishes.

The vanishing of the anomalies, in general, have been verified numerically, except for some sub-models with

particular set of deformation parameters. Moreover, in the anomalous Lax and pseudo-potential approaches

the charge densities maintain a similar form to those of the corresponding undeformed theories, i.e. they

exhibit terms with homogeneous scale dimensions as the integrable counterparts.

Recent research has uncovered several new towers of infinite number of asymptotically conserved charges

within deformed sine-Gordon, NLS and KdV models [6, 9, 10, 8]. These new charges differ in form from

those of the undeformed model, as they exhibit terms with mixed scale dimensions. It is noted that a subset

of these new charges are anomalous even for the standard integrable counterparts.

In this work we consider a deformation of the potential KdV model (pKdV) and examine the type of

charges, local and non-local, which depend explicitly on the deformation parameters and exhibit mixed

scale dimension terms. The pKdV is one of the non-relativistic scalar field models which exhibit kink-type

topological solitons supported by non-vanishing boundary conditions (nvbc). Regarding topological solitons

it has been considered the deformations of the relativistic SG and Bullough-Dodd models with kink solitons

in [4] and [11], respectively. So, it is interesting to consider the quasi-integrability properties of a scalar

field supporting non-relativistic topological solitons, since such theories also appear in many areas of non-

linear science, condensed matter physics, plasma physics, Bose-Einstein condensates and, in particular, fluid

dynamics. In this context, our aim is to predict the results of solitary wave collisions and test the quasi-

integrability concept in deformed pKdV models with nvbc. However, the nvbc inherent to the kink solitons,

which may change when the deformations are present, introduces new features when applying the techniques

developed for deformed KdV bright solitons. For example, some quasi-conserved charges would require a

renormalization procedure by subtructing the contribution of the continuous linear background, since the

solution incorporates this vacuum solution plus the kink soliton itself.

The space-time reflection symmetric P analytical N-kink solutions will be obtained for the undeformed

pKdV model, and the P symmetric 2-kink analytical solution for a sub-model, the so-called non-integrable

potential modified regularized long wave model (pmRLW). Using the vanishing integrated anomaly for the

2-kink solutions we will show analytically the quasi-integrability of the pmRLW model.
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We perform the construction of the quasi-conservation laws by a direct approach starting from the

equation of motion. The numerical simulation of two-soliton interactions in the deformed model sheds light

on the dynamics of the system. The observed elastic collisions, where solitons maintain their shapes and

velocities without significant radiation loss, hint at the robustness and coherence of soliton behavior even

in non-integrable systems. Overall, this research contributes to our understanding of soliton dynamics in

non-integrable systems with non-relativistic kink solitons; so, highlighting the persistence and interesting

phenomena that emerge even in the absence of strict integrability.

The paper is organized as follows. The next section presents a particular deformation of the pKdV model.

In sec. 3 some local and non-local quasi-conservation laws are constructed through a direct approach. In

sec. 4, using the tau function method, we provide the pKdV analytical N-kink solitons, as well as the 1-kink

soliton for the deformed pKdV. A direct method allows as to find a general 1-kink solution of the deformed

pKdV. The 1-kink and 2-kink solitons of the pmRLW theory are also uncovered. In sec. 5 it is discussed

the analytical quasi-integrability of the pmRLW theory for the 2-kink solutions. In sec. 6 we numerically

simulate the vanishing of some representative anomalies of the deformed pKdV model, and in sec. 7 we

discuss the results and present the conclusions.

2 A particular deformation of the pKdV model

We will consider a deformation of the pKdV model. It involves the real scalar field v and the auxiliary field

w with equation of motion

vt + vx +
α

2
v2x + vxxx = X, (2.1)

X ≡ −ǫ2
α

4
wxvt + ǫ1(vxxt + vxxx), (2.2)

such that the auxiliary field satisfies

vx = wt. (2.3)

The real numbers ǫ1 and ǫ2 are the deformation parameters away from the usual pKdV and α is an arbitrary

real parameter defining the nonlinear term of the model. The model (2.1) embraces a variety of sub-models;

e.g. for ǫ1 = ǫ2 = 0 one has the integrable pKdV model, and for ǫ1 = ǫ2 = 1 the non-integrable potential

modified regularized long wave model (pmRLW).

Note that defining u ≡ ∂xv one can write the x−derivative of the eq. (2.1) as

ut + ux + αuux + uxxx = ∂xX, (2.4)

u = vx = wt.

This is the so-called modified KdVmodel which has been studied in [12, 8] in the context of quasi-integrability.

However, the model (2.1) deserves to be studied separately in order to examine the quasi-integrability
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properties and its kink-type solitons. In fact, the undeformed pKdV model (X = 0) exhibits a kink-type

soliton corresponding to a non-relativistic scalar model. So, it is interesting to uncover its quasi-integrability

properties, such as the quasi-conservation laws and the kink collisions for deformed models (X 6= 0).

A suitable parametrization of the model (2.1) is available in order to construct analytical or numerical

soliton solutions of the model. So, let us consider

w = −
8

α
qx and v = −

8

α
qt. (2.5)

So, substituting the expressions of w and v from (2.5), respectively, into (2.1) one gets

qtt + qxt − 4q2xt − 2ǫ2qxxqtt + qxxxt − ǫ1(qxxtt + qxxxt) = 0. (2.6)

Notice that this equation exhibits as the vacuum solution a continuous linear background of the form

qclb = Kx− Ω t+ co. (2.7)

So, a general 1-soliton solution will incorporate this vacuum solution plus the ‘kink’ soliton itself. In fact,

the kink-type soliton for the field v (v ∼ ‘kink′ + ∂tqclb) will interpolate two vacua of the form (2.7).

Next, let us discuss some space-time symmetries related to soliton-type solutions of the model. So,

consider the space-time reflection around a given fixed point (x∆, t∆)

P : (x̃, t̃) → (−x̃,−t̃); x̃ = x− x∆, t̃ = t− t∆. (2.8)

In fact, the transformation P defines a shifted parity Ps for the spatial variable and the delayed time reversal

Td for the time variable. When x∆ = 0 (t∆ = 0), Ps (Td) is reduced back to the pure parity P (pure time

reversal T ).

Following the quasi-integrability approach [8] let us assume that the v−field solution of the deformed

pKdV model evaluated on the N-soliton solution, viz. vN
−
sol, under (2.8) transforms as

P(vN−sol) = −vN−sol + const. (2.9)

This implies, according to (2.3) and (2.5), that

P(wN−sol) = −wN−sol + const.; P(qN−sol) = qN−sol + const. (2.10)

Therefore, one has

P(X) = X, (2.11)

with X defined in (2.2). Moreover, below we will assume the following boundary conditions

v(x = ±∞) → v±; vx(x = ±∞) → 0. (2.12)

w(x = ±∞) → w±; wx(x = ±∞) → 0, (2.13)

with v± and w± being some constant numbers.
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3 Quasi-conservation laws: A direct approach

In order to find the quasi-conservation laws one can resort to either the anomalous zero-curvature [12] or to

the Ricatti-type pseudo-potential [8] approaches. In these approaches the relevant quasi-conserved charges

are composed by the sum of homogeneous terms defined by a suitable scaling symmetry which was quite

useful in the past in classifying the various conserved quantities of the undeformed systems. In fact, for the

pKdV model one can define the scaling

v → λv, w → λ−1w (3.1)

t → λ−3t, x → λ−1t. (3.2)

So, the deformed pKdV model (2.1) under the scaling transformation (3.1)-(3.2) can be written as

vt +
α

2
v2x + vxxx = −λ−2vx − ǫ2

α

4
wxvt + ǫ1(λ

2vxxt + vxxx). (3.3)

Since the term vx in (2.1) can be removed by the transformation x → x − t, one can conclude that the

undeformed pKdV model (ǫ1 = ǫ2 = 0) is invariant under the scaling symmetry (3.1)-(3.2), and the rele-

vant conserved charges will inherit this property. Let us emphasize that in the developments of the quasi-

integrability concept applied to deformations of the integrable models such as SG, NLS, and KdV [4, 5, 6, 8],

the quasi-conserved charge densities resemble to the ones of the relevant integrable counterparts, such that

their homogeneous terms do not contain explicitly the corresponding deformation parameters. So, one can

argue that the constant asymptotic behavior of the charges is due to the quasi-integrable deformations.

Therefore, the search for quasi-conserved charge densities which depend explicitly on the deformation pa-

rameters and terms with mixed scale dimensions deserve to be analyzed carefully in each case. In the case

of deformations of the NLS and KdV this construction has been performed in [9, 10] and [8], respectively.

So, here we pursue the quasi-conservation laws following a direct approach starting from the deformed

pKdV eqs. of motion (2.1)-(2.3), which allows one to uncover the charges with mixed scaling dimension

terms. So, taking the x−derivative of (2.1) one can write

∂t(vx) + ∂x[vx +
α

2
v2x + vxxx −X ] = 0. (3.4)

This defines a first exact conservation law of the model (2.1) with conserved charge

q
(1)
X =

∫
dx vx (3.5)

= v+ − v−, (3.6)

where the b.c. (2.12) has been considered. One has that q
(1)
X defines a topological charge. Notice that this

charge is conserved even for the X−deformed pKdV model (2.1). By direct construction starting from the
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eq. (3.4) one can write the next quasi-conservation laws

∂t(v
2
x) + ∂x[v

2
x +

2α

3
v3x + 2vxvxxx − v2xx] = 2vxXx, (3.7)

∂t(v
2
x +

1

2
ǫ1v

2
xx) + ∂x[v

2
x +

2α

3
v3x + 2vxvxxx − (1 − ǫ1)v

2
xx − 2vxX ] =

1

2
αǫ2vxxwxvt, (3.8)

∂t(
α

3
v3x) + ∂x[

α

3
v3x +

α2

4
v4x] = −αv2xv4x + αv2xXx, (3.9)

∂t(
α

3
v3x + ǫ1αvxv

2
xx) + ∂x[

α

3
v3x +

α2

4
v4x] = (ǫ1 − 1)αv2xv4x + αvxx ×

(
α

2
ǫ2vxwxvt + ǫ1vxtvxx),(3.10)

∂t(v
2
xx) + ∂x[v

2
xx + αvxx(v

2
x)x − αvxxxv

2
x + 2vxxv4x − v2xxx] = −αv2xv4x + 2vxxXxx, (3.11)

∂t(v
2
xx + ǫ1v

2
xxx) + ∂x[v

2
xx + αvxx(v

2
x)x − αvxxxv

2
x + 2vxxv4x − v2xxx −

2vxxXx + 2vxxxX − 2ǫ1vxxxvxxt − ǫ1v
2
xxx] = −αv2xv4x +

α

2
ǫ2v4xwxvt. (3.12)

The r.h.s. expressions in (3.7)-(3.12) define the relevant anomalies and they exhibit odd parities under

the symmetry transformations (2.9)-(2.11). From the above identities one can define the following quasi-

conservation laws

d

dt
q
(a)
j,X ≡

∫ +∞

−∞

dxα
(a)
j,X , a = 3, 5; j = 1, 2, ...4. (3.13)

with

q
(3)
1,X =

∫ +∞

−∞

dx v2x, (3.14)

q
(3)
2,X =

∫ +∞

−∞

dx [v2x +
1

2
ǫ1(vxx)

2], (3.15)

q
(5)
1,X =

∫ +∞

−∞

dx
α

3
v3x, (3.16)

q
(5)
2,X =

∫ +∞

−∞

dx [
α

3
v3x + ǫ1αvxv

2
xx], (3.17)

q
(5)
3,X =

∫ +∞

−∞

dx (vxx)
2, (3.18)

q
(5)
4,X =

∫ +∞

−∞

dx [v2xx + ǫ1v
2
xxx]. (3.19)

and

α
(3)
1 = 2vxXx, (3.20)

α
(3)
2 =

α

2
ǫ2vxxwxvt, (3.21)

α
(5)
1 = [−αv2xv4x + αv2xXx], (3.22)

α
(5)
2 = (ǫ1 − 1)αv2xv4x + αvxx(

α

2
ǫ2vxwxvt + ǫ1vxtvxx) (3.23)

α
(5)
3 = [−αv2xv4x + 2vxxXxx]. (3.24)

α
(5)
4 = [−αv2xv4x +

α

2
ǫ2v4xwxvt]. (3.25)
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Notice that in general the charges and anomalies defined above do not exhibit homogeneous terms under the

scaling symmetry (3.1)-(3.2). The charge q
(3)
1 in (3.14) becomes an exact conserved charge for undeformed

pKdV (X = 0), whereas the charges q
(5)
1 (3.16) and q

(5)
3 (3.18) define the first quasi-conserved charges

even for X = 0. Notice that q
(3)
2 becomes an exact conserved charge for ǫ2 = 0. Remarkably, any linear

combination of the above charges define another quasi-conserved charge. In particular, one can write the

next linear combination

q
(5),γ
X ≡ q

(5)
1,X − γ q

(5)
3,X (3.26)

=

∫ +∞

−∞

dx [
α

3
v3x − γ v2xx], (3.27)

such that

d

dt
q
(5),γ
X =

∫ +∞

−∞

dx [−α(1− γ)v2xv4x + αv2xXx − 2γvxxXxx], (3.28)

with γ being an arbitrary real parameter. So, q
(5),γ
X becomes a quasi-conserved charge of the deformed pKdV

model. From (3.26)-(3.28) one can see that even for undeformed pKdV (X = 0) one has a one-parameter

family of quasi-conserved charges q
(5),γ
X=0 parametrized by γ. However, for X = 0 and γ = 1, one gets

q
(5),γ=1
pKdV =

∫ +∞

−∞

dx [
α

3
v3x − v2xx], (3.29)

which is an exact conserved charge of the pKdV model.

Let us write the quasi-conserved charge q
(5),γ
X=0 of the undeformed pKdV model and its relevant anomaly

from (3.28) as

d

dt
q
(5),γ
X=0 ≡ −α(1− γ)

∫ +∞

−∞

dxα(5), α(5) ≡ v2xv4x. (3.30)

Notice that for γ = 1 one has an exact conservation law, whereas for γ 6= 1 this charge behaves as an

asymptotically conserved charge, i.e.

q
(5),γ
X=0(t = +∞) = q

(5),γ
X=0(t = −∞), (3.31)

provided that

∫ t=+∞

t=−∞

dt

∫ +∞

−∞

dxα(5) = 0. (3.32)

Note that X in the the r.h.s. of (2.1) contains a non-local term wx, since this can be defined from (2.3)

in terms of the pKdV field v as wx =
∫
dt vx. It is interesting to search for quasi-conservation laws with

charges incorporating this type of non-local terms. So, from (2.1) one can write

∂t

[
vxX − v2x −

α

3
v3x + v2xx − vxvt

]
− ∂x

[
vxvxxt −X(vx +

α

2
v2x + vxxx) +

X2 − v2t − vtvx − vtvxxx + vxtvxx

]
= −

α

2
vt(v

2
x)x (3.33)
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with non-local charge

q̂ ≡

∫
dx [vxX − v2x −

α

3
v3x + v2xx − vxvt] (3.34)

and anomaly density

α̂ ≡ −
α

2
vt(v

2
x)x. (3.35)

Below we will perform numerical simulations of some of the above anomalies for the collision of 2-kink

solitons of the (deformed) pKdV model. We will numerically verify the quasi-conservation law (3.12) and

the relevant anomaly density α
(5)
4 (x, t) in (3.25) in the Fig. 1. Likewise, we will examine the behavior of the

anomaly (3.35) in the Fig. 2.

Next, let us consider the equivalent equation of the model (2.1) in the q−field parametrization (2.6) and

write the following quasi-conservation law

∂t[
1

2
q2t − ǫ2qxxq

2
t +

1

2
ǫ1q

2
xt] + ∂x[

1

2
q2t − 4qxtq

2
t + qxxtqt −

1

2
(1− ǫ1)q

2
xt − ǫ1qxttqt − ǫ1qxxtqt]

= −2(2 + ǫ2)qxxtq
2
t − 4q2xtqt. (3.36)

Then, one can define the charge and anomaly, respectively, as

Q1 =

∫
dx[

1

2
q2t − ǫ2qxxq

2
t +

1

2
ǫ1q

2
xt], (3.37)

A1 =

∫
dx[−2(2 + ǫ2)qxxtq

2
t − 4q2xtqt]. (3.38)

Note that the chargeQ1 diverges when evaluated on the vacuum solution qclb (2.7), due to the contribution of

the term 1
2q

2
t . Therefore, the charge Q1 (3.37) for the composite field q ∼ ‘kink′+ qclb must be renormalized

by subtructing the contribution (which is infinite) of the continuous linear background qclb in (2.7), i.e. the

kink charge Q1 kink must be renormalized. This is reminiscent of the procedure performed in the defocusing

NLS model in which the momentum associated to the dark soliton itself has been renormalized [13].

4 Tau function and direct methods to construct solitons

Next we use the tau function method in order to obtain the 1-soliton and 2-soliton solutions of the model

(2.1) for some particular cases of the deformations parameters {ǫ1, ǫ2}.

Let us consider

qs(x, t) = β log τ(x, t), (4.1)
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where τ defines a tau function. Next, replacing (4.1) into (2.6) one gets the next equation

βτ3 [−ǫ1τxxtt + (1 − ǫ1)τxxxt + τtt + τxt]

− βτ2
[
(2βǫ2 − ǫ1)τttτxx + 2(2β − ǫ1)τ

2
xt + τt (−2ǫ1τxxt + (1− ǫ1)τxxx + τx)

− 2 ǫ1τxτxtt + 3(1− ǫ1)τxtτxx + 3(1− ǫ1)τxτxxt + τ2t + 3(1− ǫ)τxτxxt
]

+ 2βτ
[
(βǫ2 − ǫ1)τxxτ

2
t + (βǫ2 − ǫ1)τttτ

2
x

+ τxτt (4(β − ǫ1)τxt − 3(ǫ1 − 1)τxx)− 3(ǫ1 − 1)τ2xτxt
]

− 2τtτ
2
x [(β(ǫ2 + 2)− 3ǫ1)τt − 3(ǫ1 − 1)τx] = 0. (4.2)

1-soliton solution of deformed pKdV

The tau function method furnishes the first type of kink solution of (2.6) for arbitrary values of the set

{ǫ1, ǫ2}. So, substituting the tau function τ = 1 + eΓ1 into (4.2), and taking into account (4.1), one has

q1 =
3

(2 + ǫ2) (1 + (1 − ǫ1)k2)
log [1 + eΓ1 ] (4.3)

=
3

(2 + ǫ2) (1 + (1 − ǫ1)k2)

{
log 2 +

Γ1

2
+ log cosh (

Γ1

2
)
}
, (4.4)

with

Γ1 = k1x− w1t+ δ; w1 =
k1 + (1− ǫ1)k

3
1

1− ǫ1k21
. (4.5)

So, the eq. (2.5) provides the first type of 1-soliton solution for the pKdV field v

v1 =
12

α

k1
(2 + ǫ2) (1− ǫ1k21)

Tanh
[1
2
(k1x− w1t+ δ)

]
. (4.6)

2-soliton solution of deformed pKdV: the case ǫ1 = ǫ2 = 1

The pKdV 2−soliton solution follows similar construction as in the case of the modified KdV for the

particular case ǫ1 = ǫ2 = 1. The field q takes the form [12, 14]

q = log
[
1 + eΓ1 + eΓ2 +A12e

Γ1eΓ2

]
, Γi = kix− wit+ δi, wi =

ki
1− k2i

, i = 1, 2. (4.7)

A12 = −
(w1 − w2)

2(k1 − k2)
2 + (w1 − w2)(k1 − k2)− (w1 − w2)

2

(w1 + w2)2(k1 + k2)2 + (w1 + w2)(k1 + k2)− (w1 + w2)2
. (4.8)

In order to exhibit the parity symmetry we follow the approach in [8] developed for the modified KdV.

So, in order to perform the transformation (2.8) and check the space-time parity inversion symmetry of the

2-soliton solution we will derive a new expression for q in (4.7), such that v2−sol in (2.5) becomes a manifestly

P invariant function. So, let us define a new parameter ∆, as A12 = e∆, and

Γj = kj x̃− wj t̃+ η0j −
∆

2
≡ ηj −

∆

2
, j = 1, 2 (4.9)

where

δj = −kjx∆ + wjt∆ + η0j −
∆

2
, j = 1, 2. (4.10)
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Therefore, q can be rewritten as

q = log
[
2e−∆/4 e(η1+η2)/2

(
e∆/4 cosh (

η1 + η2
2

) + e−∆/4 cosh (
η1 − η2

2
)

)]
. (4.11)

So, using (2.5) one has

v2−sol =
4

α
(w1 + w2)−

8

α
∂t log

[
e∆/4 cosh (

η1 + η2
2

) + e−∆/4 cosh (
η1 − η2

2
)
]
. (4.12)

Therefore, the 2-soliton

v2−sol = v2−sol

∣∣∣
η01=η02=0

, (4.13)

satisfies the symmetry

P(v2−sol) = −v2−sol + const. (4.14)

Moreover, using (2.5) and following similar steps as above one can show

P(w2−sol) = −w2−sol + const. (4.15)

Due to the condition η01 = η02 = 0, one can get the next relationships for the coordinates (x∆, t∆)

x∆ ≡
w2θ̃1 − w1θ̃2
k2w1 − k1w2

(4.16)

t∆ ≡
k2θ̃1 − k1θ̃2
k2w1 − k1w2

, θ̃j ≡
∆

2
+ δj , j = 1, 2. (4.17)

4.1 Tau function approach and P symmetric N-solitons of the usual pKdV

In order to find the N-soliton solutions of the pKdV model satisfying the symmetry properties (2.8) and (2.9)

we closely follow the construction performed for the KdV model in [15, 8]. So, we will construct a general

N−soliton solution possessing the space-time parity symmetry (2.8)-(2.9), for any shifted point and delayed

time (x∆, t∆) in space-time.

The usual pKdV equation of motion is defined by setting ǫ1 = ǫ2 = 0 and making the transformation

x → x− t in (2.1); so, one has

vt +
α

2
v2x + vxxx = 0. (4.18)

The Hirota’s tau function for the eq. (4.18) is introduced as

v =
12

α
∂x log τ. (4.19)

The Hirota bi-linear equation of (4.18), as well as multi-solitons, lumps, and breather wave-solutions have

recently been presented in [16]. Since the pKdV field v and the KdV field u can be related by u = ∂xv, one
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can take the same tau functions for the both models in order to construct their soliton solutions. So, let us

assume the next tau function for the N−soliton solution [17]

τN =
∑

µ

exp




N∑

j=1

µjΓj +

N∑

1≤j<l

µjµlθjl


 (4.20)

where the µ−summation is undertaken in all the permutations of µi = 0, 1, for i = 1, 2, ...N , and

Γj = kix− wit+ ξ0j , eθij =

(
ki − kj
ki + kj

)2

, wi = k3i . (4.21)

The ξ′0js are arbitrary constants related to the space-time translation invariance of the pKdV equation, such

that each j−soliton component of the N−soliton can be located anywhere at ξ0j . A subset of solutions

possessing the space-time symmetry (2.8)-(2.9) is achieved by making a particular choice of the set of

parameters ξ0j , such that the space-time translation symmetry of the solution (4.20) is broken. So, let us

consider [8]

Γj = kj(x− x∆)− wj(t− t∆) + η0j −
1

2

j−1∑

i=1

θij −
1

2

N∑

i=j+1

θji ≡ ηj −
1

2

j−1∑

i=1

θij −
1

2

N∑

i=j+1

θji. (4.22)

With these redefinitions and the tau function (4.20) one can write the N−soliton solution in the equivalent

form

vN = −
6

α
(
∑

j

kj) +
12

α
∂x

[
log

∑

ν

Kν cosh



1

2

N∑

j=1

νjηj




]
, (4.23)

where the summation in ν involves all the permutations of νi = 1,−1, i = 1, 2, ...N , and Kν = Πi>j(ki −

νiνjkj).

Then, from (4.23) let us define the N−soliton solution with space-time translation symmetry broken as

vN = vN |η0j=0. (4.24)

It is a matter of direct verification that this solution vN will exhibit the symmetry (2.8)-(2.9), i.e.

P(vN ) = −vN + const. (4.25)

Next, we present the above constructions for the cases N = 1, 2, 3, and describe the main properties of the

corresponding solitons.

Case N = 1. One has τ1 = 1 + eΓ1 , which can be written as

τ1 = 2e−
η1
2

[
cosh

η1
2

]
, η1 = k1(x − x∆)− w1(t− t∆) + η01. (4.26)

Next, one has

log (τ1) = log 2−
η1
2

+ log
[
cosh

η1
2

]
. (4.27)
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Therefore, inserting (4.27) into (4.19) one can write

v1 = −
6k1
α

+
12

α
∂x log

[
cosh

η1
2

]
|η01=0. (4.28)

This expression satisfies the symmetry transformation P(v1) = −v1 + const. This soliton can be written as

v1 = −
6k1
α

{
1− Tanh

[k1(x− x∆)− w1(t− t∆)

2

]}
. (4.29)

This is the topological 1-kink solution of the pKdV model (4.18).

Case N = 2. The tau function becomes

τ2 = 1 + eΓ1 + eΓ2 + eΓ1+Γ2+θ12 , (4.30)

which, following the above construction, can be rewritten as

τ2 =
2

k1 − k2
e(η1+η2)/2

[
(k1 − k2) cosh

(
η1 + η2

2

)
+ (k1 + k2) cosh

(
η1 − η2

2

)]
. (4.31)

ηi = ki(x− x∆)− wi(t− t∆) + η0i, i = 1, 2. (4.32)

Then, inserting (4.27) into (4.19) and taking into account (4.23) and (4.24) it is straightforward to construct

a P invariant 2-soliton as

v2 = −
6

α
(k1 + k2) +

12

α
∂x log

[
(k1 − k2) cosh

(
η1 + η2

2

)
+ (k1 + k2) cosh

(
η1 − η2

2

)]∣∣∣
η01=η02=0

. (4.33)

Thus, this pKdV 2-soliton solution transforms under the parity transformation as P(v2) = −v2 + const.

Case N = 3. It can be constructed following similarly steps. So, the tau function τ3 becomes

τ3 = 1 + eΓ1 + eΓ2 + eΓ3 + eΓ1+Γ2+θ12 + eΓ1+Γ3+θ13 + eΓ2+Γ3+θ23 + eΓ1+Γ2+Γ3+θ12+θ13+θ23 , (4.34)

which can be rewritten as

τ3 =
2e(η1+η2+η3)/2

(k1 − k2)(k1 − k3)(k2 − k3)

[
C(x, t)

]
(4.35)

C(x, t) ≡ (k1 − k2)(k1 − k3)(k2 − k3) cosh [(η1 + η2 + η3)/2] +

(k1 + k2)(k1 + k3)(k2 − k3) cosh [(−η1 + η2 + η3)/2] +

(k1 + k2)(k1 − k3)(k2 + k3) cosh [(η1 − η2 + η3)/2] +

(k1 − k2)(k1 + k3)(k2 + k3) cosh [(η1 + η2 − η3)/2],

ηi = ki(x− x∆)− wi(t− t∆) + η0i, i = 1, 2, 3.

Similarly, it is straightforward to construct a P invariant 3-soliton as

v3 = −
6

α
(k1 + k2 + k3) +

12

α
∂x logC(x, t)

∣∣∣
η01=η02=η03=0

. (4.36)

Clearly, this pKdV 3-soliton solution transforms as P(v3) = −v3 + const.

So, the P invariant N-soliton solutions would allow us to show that the (x, t)−integrated anomalies of

the integrable pKdV model vanish. In particular, for the quasi-conserved charges q
(5)
1 (3.16) and q

(5)
3 (3.18)

defined for X = 0, one can show the vanishing of the (x, t)−integrated anomaly −αv2xv4x (3.22) (or (3.24))

using the parity P argument.
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4.2 A direct method and a second type of 1-kink solutions

Next we present a direct method in order to find a second type of 1-soliton solution for any set {ǫ1, ǫ2}, which

generalizes the one obtained above through the tau function method. In fact, a direct method provides a

general 1-soliton solution of (2.6) by assuming the form

qI = q0

{
log cosh [

ζ

2a
] + b ζ + c

}
, ζ = kx− w1t+ δ. (4.37)

Note that we have incorporated the term q0(b ζ+c) corresponding to the continuous linear background (2.7).

A direct substitution of qI into (2.6) provides the relationships

w1 =
a2k + (1 − ǫ1)k

3

a2 − ǫ1k2
; q0 =

3a2

(a2 + (1− ǫ1)k2)(2 + ǫ2)
, (4.38)

such that a, b and c are arbitrary real parameters. So, through (2.5) one has the second type of 1-soliton

solution for v

vI = −qobw1 +
12a

α

k

(a2 − ǫ1k2)(2 + ǫ2)
Tanh

[ 1

2a
(kx− w1t+ δ)

]
. (4.39)

This is a new general form of a 1-kink soliton plus a constant background which can not be found by the

tau function method. Clearly, the two types of solutions v1 in (4.6) and the kink sector of vI in (4.39)

become the same for a2 = 1 and for arbitrary values of the set {ǫ1, ǫ2}. However, the solution vI describes

a family of kinks parametrized by an additional free parameter a, which can be related to the width of the

kink ∼ 2a
k . As the initial condition of our numerical simulations for 2-kink collision below we will consider

the superposition of two solitons of the general type (4.39) located some distance apart.

5 Analytical quasi-integrability of the pmRLW theory (ǫ1 = ǫ2 = 1)

Let us consider a sub-model of (2.1) defined by the special case ǫ1 = ǫ2 = 1. So, one has the sub-model

vt + vx +
α

2
v2x +

α

4
wxvt − vxxt = 0. (5.1)

This model can be considered as the potential modified regularized long wave model (pmRLW). The non-

integrable mRLW model has been discussed before, see [8] and references therein. The analytical form of a

2-soliton solution of (5.1) and its P invariant representation was obtained in (4.13)-(4.14).

So, taking into account that the 2-soliton (4.13) satisfies the parity symmetry (4.14), and the symmetry

of the auxiliary field w in (4.15), one can show analytically the vanishing of the anomalies belonging to the

various quasi-conservation laws. Thus, it is an analytical proof of the quasi-integrability of the pmRLW

theory (5.1), i.e. the deformed pKdV for ǫ1 = ǫ2 = 1. Notice that similar argument has been used in order

to present this proof for the KdV-like quasi-conservation laws in [8]. Here, we are generalizing this proof for

the new quasi-conservation laws presented above. Then, it is worth to mention that this adds a new strong

result on the analytical proof, not only numerical, of the quasi-integrability of a (non-integrable) theory,

discussed in [12, 8].
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6 Numerical treatment of the anomalies

Here we numerically simulate the vanishing of some representative anomalies of the deformed pKdV model,

which have been discussed above through the symmetry arguments to advance the, so far, only plausible

explanation for the anomalous charges in the soliton collision of the deformations of the integrable models,

such as the SG [6], NLS [9, 10] and KdV [8] models, respectively. The above properties will be qualitatively

reproduced in our numerical simulations of the 2-kink interaction of the deformed pKdV model, for a variety

of soliton configurations and a wide range of values of the set of deformation parameters {ǫ1, ǫ2}.

We have presented in (4.39) a general one kink-type solution of the model for any set of the deformation

parameters {ǫ1, ǫ2}, and it exhibits a general dispersion relation (4.38). We will use two of this exact one

soliton solution located far apart as the initial condition in order to simulate two-soliton collision for the

deformed model. Our initial condition must be a field configuration which reduces the emission of radiation

in order to accurately simulate the various quantities, such as the charges and anomalies.

Since an analytical solution for 2-soliton for any values of ǫ1 and ǫ2 of (2.1) is not known; as mentioned

above, we will take as an initial condition the superposition of two solitons of the general type (4.39) located

some distance apart. So, let us consider a linear superposition of two expressions of type (4.37)

q2s(x, t) = q1

{
log cosh [

ζ1
2a1

] + b1ζ1 + c1

}
+ q2

{
log cosh [

ζ2
2a2

] + b2ζ2 + c2

}
, (6.1)

wj =
a2jkj + (1 − ǫ1)k

3
j

a2j − ǫ1k2j
; qj =

3a2j
[a2j + (1 − ǫ1)k2j ](2 + ǫ2)

; ζj = kjx− wjt+ δj , j = 1, 2; (6.2)

such that aj , bj and cj , j = 1, 2, are arbitrary real parameters. The expression of each component of the

field q2s(x, t) is presented in (4.37). We closely follow the numerical techniques presented in the Appendix

of [8].

We plot the function q2s(x, ti) (upper green line in top left panel of Fig.1), and the kink v2s(x, ti) (bottom

green line in the top left panel of Fig.1) for initial time ti = 0. The field v2s(x, ti) (green) represents the initial

configuration of our numerical solution of the model (2.1) for two-soliton collision. Notice that the auxiliary

field q2s(x, ti) (green) undergoes significant changes only around the kink regions from an approximately

linear behavior in regions far away from the kinks; so, realizing the continuous linear background solution

in (2.7) as the vacuum of the theory. Whereas, the field v2s(x, ti) behaves as a two-kink-like function and

approaches constant values asymptotically for x → ±∞. These patterns and properties will be useful when

imposing the relevant initial and boundary conditions of our numerical simulations. So, in the bottom lines

of the top left panel of Fig. 1 we plot the field configurations of the 2-soliton of the pKdV model. One

has the kink v2sol (bottom lines) and the field q2sol (upper lines) for three successive times, i.e. the initial

(green), collision (orange) and final (magenta) times, respectively, for ǫ1 = 1.2, ǫ2 = 0.9..

We examine numerically the quasi-conservation law (3.12) and the relevant anomaly density α
(5)
4 (x, t) in

(3.25). The Fig.1 (top right) shows the anomaly density α
(5)
4 (x, t) for three successive times, initial (green),

collision (orange) and final (magenta), respectively. The bottom figures show the plots (
∫ +L

−L
dxα

(5)
4 (x, t))
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and (
∫ t

t=ti
dt′

∫ +L

−L dx′ α
(5)
4 (x′, t′). Notice the vanishing of the (x, t)−integrated anomaly at the order of

≈ 10−3. So, one can regard q
(5)
4,X in (3.19) as an asymptotically conserved charge within numerical accuracy,

for the 2-kink collision.

Next, we examine numerically the non-local quasi-conservation law (3.33) and the relevant anomaly

density α̂ in (3.35). The plot in Fig.2 (top Fig.) shows the anomaly density α̂ for three successive times,

initial (green), collision (orange) and final (magenta), respectively. The middle and bottom figures show the

plots (
∫ +L

−L dx α̂(x, t)) and (
∫ t

t=ti
dt′

∫ +L

−L dx′ α̂(x′, t′). Notice the vanishing of the (x, t)−integrated anomaly

at the order of ≈ 10−9. So, one can regard q̂ in (3.34) as a non-local charge which is asymptotically conserved

within numerical accuracy, for the 2-kink collision.

7 Discussions and some conclusions

We have examined the quasi-integrability properties of a particular deformation of the potential KdV model

(pKdV) (2.1) using a direct approach in order to construct the quasi-conservation laws, and through a

numerical simulation of 2-kink collisions. For the undeformed pKdV (ǫ1 = ǫ2 = 0) we have constructed the

parity P symmetric N-soliton solutions, and shown that the (x, t)−integrated anomalies of the usual pKdV

model vanish. As representative quasi-conservation laws of the pKdV model we have examined the quasi-

conserved charges q
(5)
1 (3.16) and q

(5)
3 (3.18) for X = 0, and shown the vanishing of the common anomaly

−αv2xv4x using its odd parity property under P symmetry. In addition, we have discussed an anomaly

cancellation mechanism in order to get the exact conserved charge q
(5),γ
X=0 = q

(5)
1 − γ q

(5)
3 in (3.30) for the

parameter value γ = 1.

Some charges, such as Q1 in (3.37), when evaluated for the composite field q ∼ ‘kink′ + qclb must be

renormalized by subtructing the infinite contribution of the continuous linear background qclb in (2.7), i.e. the

kink charge Q1 kink must be renormalized. This is analog to the renormalization procedure in the defocusing

NLS model in which the normalization and momentum charges associated to the dark soliton itself have

been renormalized by subtructing a continuous wave background [13].

Taking into account that the 2-soliton (4.13) satisfies the parity symmetry (4.14) it has been shown the

analytical vanishing of the anomalies. Therefore, it provides an analytical proof of the quasi-integrability

of the pmRLW theory (5.1), i.e. a sub-model of deformed pKdV in the particular case ǫ1 = ǫ2 = 1. So,

this adds a new strong result on the analytical proof, not only numerical, of the quasi-integrability of a

(non-integrable) theory, discussed in [12, 8] for deformed KdV models.

We have considered numerically the behavior of the quasi-conservation laws (3.12) and (3.33) with the

relevant anomaly densities α
(5)
4 (x, t) in (3.25) and α̂(x, t) in (3.35), respectively. The Fig.1 (top right) and

Fig. 2 (top) show the anomaly densities for three successive times, initial (green), collision (orange) and

final (magenta), respectively. The figures show the x−integrated and the (x, t)−integrated anomalies. The

(x, t)−integrated anomalies in the both cases vanish within numerical accuracy. So, one can regard the
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Figure 1: (color online) Numerically simulated two-kink collision, v field of (2.1) (bottom of top left

figures), and the field q of (2.6) (upper of top left figures). The top Figs. show three successive

times, initial (green), collision (orange) and final (magenta), respectively, for ǫ2 = 0.9, ǫ1 = 1.2.

The top right Fig. shows the anomaly density α
(5)
4 (x, t) in (3.25) for three successive times, initial,

collision and final, respectively. The bottom left Fig. shows the x−integrated anomaly and the

bottom right shows the (x, t)−integrated anomaly. Notice that the right bottom figure vanishes

within numerically accuracy.
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Figure 2: (color online) Numerically simulated two-kink collision for ǫ2 = 0.9, ǫ1 =

1.2. The top Fig. shows the anomaly density α̂ in (3.35) for three successive times,

initial (green), collision (orange) and final (magenta), respectively. The middle

Fig. shows the x−integrated anomaly and the bottom shows the (x, t)−integrated

anomaly. Notice that this figure vanishes within numerically accuracy ≈ 10−9.
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charges q
(5)
4,X in (3.19) and q̂ in (3.34) as asymptotically conserved charges within numerical accuracy, for the

2-kink collision.

Some qualitative aspects of the Liouville’s theorem remain true for continuous integrable systems ad-

mitting a Lax pair representation [1]. So, one must have an infinite number of conservation laws whose

conserved charges are in involution [1, 2]. In this context, the presence of the novel towers of asymptotically

conserved charges as above, even in the standard pKdV model, are restricted to special field configurations

satisfying the symmetry (2.8) and (2.9). Therefore, one can not use these charges, even though they are

infinitely many, in order to match to the number of degrees of freedom of the pKdV model. Of course, the

true conserved charges hold for general field configurations, i.e. being solitonic or not. We believe, that an

anomaly cancellation mechanism is required in order to get the set of true conserved charges of the standard

pKdV model. For example, in order to get an exact conservation law in (3.28) for X = 0 one must have

γ = 1, which is the condition for the anomaly cancellation. In fact, subtructing the quasi-conservation laws

(3.9) and (3.11) (for X = 0) one can get (3.28) to be an exact conservation law provided that X = 0 and

γ = 1, since their anomalies −αv2xv4x cancel to each other for γ = 1. Of course, the charge q
(5)γ=1
X=0 in (3.28)

will be conserved for general solutions of the pKdV.
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