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A scalar field with an exponential potential in FLRW universe admits the exact solution. We
uncover the hidden symmetries behind the system by utilising the Eisenhart lift of field theories.
We find that a conformal Killing vector field in the field space exists only for a particular combination
of exponential functions which includes a single exponential potential. This implies the existence of
additional conserved quantity and explains the integrability of the system.

I. INTRODUCTION

Power-law inflation [1] is a model of inflation in which the scale factor grows as a power-law of cosmic time instead
of exponential of time. It is described by a scalar field with an exponential potential of the form V (φ) = V0e

−λφ

(in the reduced Planck units 8πG = 1). A remarkable property of the model is that it admits the exact solutions of
equations of motion of scalar factor and the scalar field and hence is integrable. This fact suggests the existence of
symmetries of the system.
An important step toward revealing the hidden symmetries of power-law inflation was taken in [2] where the Noether

symmetry for the Lagrangian was studied. It was found there that such a symmetry exists only for λ =
√
6/2.

However, to our knowledge, no symmetries for general λ have been found. Although power-law inflation is ruled out
as a model of inflation by the Planck data [3], exponential potentials appear ubiquitously from the perspective of
higher dimensional theories such as string theory and/or by changing the frame (Jordan vs. Einstein), and the study
of symmetries of such a system may be interesting in its own right.
In this paper, we find symmetries for power-law inflation by applying the Eisenhart lift of scalar field theory

introduced in [4] to the system of a scalar field in Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The
equations of motion of the scale factor and the scalar field are then reduced to geodesic equations for null geodesics in
lifted field space. Thus, finding the conserved quantities of the system is reduced to finding the conserved quantities
along null geodesics. We find that a nontrivial conformal Killing vector field exists for a particular combination
of exponential functions which includes a single exponential potential with general λ: the “hidden symmetry” of
power-law inflation is revealed.
The paper is organized as follows. After reviewing Eisenhart lift for the scalar fields in Sec. II, the system of a

homogeneous scalar field in FLRW universe is lifted, and the existence a conformal Killing vector field for a particular
combination of exponential functions and the relation to the previous work are discussed in Sec. III. Sec. IV is devoted
to summary. In Appendix A, the explicit solutions of the equations of motion are constructed for a single exponential
potential.
Our convention of the metric signature is (−,+,+,+) and we use the units of 8πG = c = 1.

II. EISENHART LIFT OF RIEMANNIAN TYPE FOR A PARTICLE AND FOR SCALAR FIELDS

A. Eisenhart Lift for Scalar Fields

Eisenhart showed that the classical motion of a particle under the influence of a potential is equivalent to a geodesic
of a higher dimensional Riemannian manifold with one extra coordinate [5] (see [6, 7] for a review). Hence, finding
the conserved quantities of the system is reduced to finding the conserved quantities for geodesics.
The Eisenhart lift is extended to scalar field theories by [4]. Consider the system of n scalar fields in a four

dimensional spacetime (with the metric gµν)

S =

∫

d4x
√
−g

(

1

2
R − 1

2
gµνkIJ (φ)∂µφ

I∂νφ
J − V (φ)

)

, (1)

where the first term is the Einstein -Hilbert term (in units of 8πG = 1) and I = 1, . . . , n is the field space index and
kIJ (φ) is the scalar field space metric, while µ is the spacetime index. The Einstein equation and the equation of
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motion of φI are given by

Rµν − 1

2
gµνR = kIJ∂µφ

I∂νφ
J − 1

2
gµν

(

gαβkIJ∂αφ
I∂βφ

J + 2V
)

(2)

✷φI + ΓI
JKgµν∂µφ

J∂νφ
K − kIJ∂JV = 0 , (3)

where ΓI
JK is the Christoffel symbol constructed from the field space metric kIJ .

[4] observed that the same dynamics can be described by the following Eisenhart lift through the introduction of
the fictitious vector field Bµ

IR =

∫

d4x
√
−g

(

1

2
R− 1

2
gµνkIJ(φ)∂µφ

I∂νφ
J +

1

4V (φ)
(∇µB

µ)
2

)

. (4)

The Einstein equation and the equations of motion of φI and Bµ are

Rµν − 1

2
gµνR = kIJ∂µφ

I∂νφ
J − 1

2
gµν

(

gαβkIJ∂αφ
I∂βφ

J
)

+ 2B(µ∂ν)πB − gµνB
α∂απB − gµνV π2

B (5)

✷φI + ΓI
JKgµν∂µφ

J∂νφ
K − π2

Bk
IJ∂JV = 0 , (6)

∂µπB = 0 , (7)

where

πB =
∇µB

µ

2V
. (8)

From Eq. (7), πB is a constant. Plugging this into Eq. (5) and Eq. (6) and setting πB = 1 reproduces Eq. (2) and
Eq. (3).

III. INTEGRABLE COSMOLOGY: SCALAR FIELD IN FLRW UNIVERSE

We apply the formalism of the Eisenhart lift of scalar fields to the system of a single scalar field in Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe [8].

A. Field Space Metric and the Equations of Motion

We consider a flat FLRW universe gµνdx
µdxν = −N(t)2dt2 + a(t)2dx2 where N(t) is the lapse function and a(t)

is the scale factor. Assuming that a scalar field φ and a vector field Bµ are homogeneous, the lifted system Eq. (4)
reduces to the particle system whose Lagrangian is

L = −3a

N
ȧ2 +

a3

2N
φ̇2 +

1

4Na3V
χ̇2 ≡ 1

2
GABφ̇

Aφ̇B , (9)

where χ ≡ Na3B0, φA = (a, φ, χ), and the field space metric GAB is given by

GAB =





− 6a
N

a3

N
1

2Na3V



 . (10)

In terms of the conjugate momenta, pa = −6aȧ/N, pφ = a3φ̇/N, pχ = χ̇
2Na3V

which coincides with πB in Eq. (8), the
Hamiltonian becomes

H =
1

2
GABpApB = N

(

− 1

12a
p2a +

1

2a3
p2φ + a3V (φ)p2χ

)

, (11)

and variation of H with respect to N yields the Hamiltonian constraint

H =
1

2

(

−p2a
6a

+
p2φ
a3

+ 2a3V (φ)p2χ

)

= 0 . (12)
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Therefore, pA is a null vector. Henceforth, we set N = 1.
The equations of motion of φA are null geodesic equations of GAB and are derived from the canonical equations of

motion, φ̇A = ∂H
∂pA

, ṗA = − ∂H
∂φA . Along with the Hamiltonian constraint Eq. (12), they are given by

ä

a
= −1

3

(

φ̇2 − V p2χ

)

, (13)

φ̈+ 3
ȧ

a
φ̇+ V ′p2χ = 0, (14)

(

ȧ

a

)2

=
1

3

(

1

2
φ̇2 + V p2χ

)

, (15)

where pχ is a constant, and as shown in IIA, setting pχ = 1 reproduces the Einstein equations and the equation of
motion of φ in a flat FLRW universe.

B. Conformal Killing Vectors

We look for constants of motion in the field space with the metric GAB (10).
One immediately finds that the vector field ∂/∂χ is a Killing vector field since the metric components do not depend

on χ. Moreover, in the special case when the potential V is constant, the metric components do not depend on φ and
additional Killing vector field ∂/∂φ arises.
We are interested in whether other conformal Killing vector fields ξA exist for some potential V (φ) so that ξApA is

a constant of motion. This is accomplished by solving the conformal Killing equations ∇(AξB) = fGAB.
In particular, we find that for the potential given by

V (φ) = V0

(

c1e
αφ + c2e

−αφ
)−2+

√

6
α (16)

where V0, c1, c2 and α are constants, there exists a conformal Killing vector field

ξ(1) = −a−
√
6α+1

(

c1e
αφ − c2e

−αφ
) ∂

∂a
+
√
6a−

√
6α
(

c1e
αφ + c2e

−αφ
) ∂

∂φ
. (17)

ξ(1) satisfies the conformal Killing equation

∇(Aξ(1)B) = fGAB (18)

with

f =
1

3
∇Aξ

A
(1) =

√
6

(

α−
√
6

4

)

a−
√
6α
(

c1e
αφ − c2e

−αφ
)

. (19)

There also exists a Killing vector field ξ(2) = ∂/∂χ, and ξ(1) and ξ(2) commute, [ξ(1), ξ(2)] = 0. Therefore, together
with the Hamiltonian constraint Eq. (12), we have three linearly independent constants of motion for the system with
three degrees of freedom, and the system is completely integrable (in the sense of Liouville). This is the main result
of this paper.
It is interesting to note that for c1 = 0 or c2 = 0 V (φ) becomes

V (φ) = V0 exp
[

±
(√

6− 2α
)

φ
]

, (20)

which includes general exponential potential since α is an arbitrary constant. It is also interesting to note that in
this case the Cotton tensor vanishes and the field space is conformally flat. The explicit solutions of the equations of
motion for this potential are constructed in Appendix A.

Note also that if α =
√
6
4 , then f = 0 and the conformal Killing vector field becomes a Killing vector field found by

[2]. Moreover, the potential Eq. (16) reduces to

V (φ) = V0

(

c1e
√

6
4 φ + c2e

−
√

6
4 φ
)2

, (21)

which coincides with that found by [2] where the integrable cosmological models are studied by searching for the
Noether symmetry for the Lagrangian.
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IV. SUMMARY

We applied the Eisenhart lift for scalar fields to a scalar field in a flat FLRW universe and found that a conformal
Killing vector field exists for a particular combination of exponential functions (16) which includes the potential for

power-law inflation model. When restricting α =
√
6/4, the conformal Killing vector and the scalar potential reduce

to those found in the literature.
The existence of the conformal Killing vector implies the existence of additional conserved quantity and explains

why the scalar field as well as the scale factor can be solved exactly for an exponential potential in FLRW universe.
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Appendix A: Construction of the Solutions

Given three constants of motion, H,C = ξA(1)pA and pχ, we can construct the solutions of the equations of motion

by follow the proof of the Liouville theorem given in [9]. For simplicity, we consider the special case with c1 = 0 and
c2 = 1 so that

V (φ) = V0e
−(

√
6−2α)φ ≡ V0e

−λφ , (A1)

By setting pχ = 1 we reduce the degrees of freedom, and the two constants of motion are

C = a−
√
6α+1e−αφpa +

√
6a−

√
6αe−αφpφ , (A2)

H =
1

2

(

−p2a
6a

+
p2φ
a3

+ 2a3V (φ)

)

= 0 . (A3)

These equations are solved for pa and pφ

pa =
C

2
a
√
6α−1eαφ +

6V0

C
a5−

√
6αe(α−

√
6)φ ≡ fa(a, φ, C) , (A4)

pφ =
C

2
√
6
a
√
6αeαφ −

√
6V0

C
a6−

√
6αe(α−

√
6)φ ≡ fp(a, φ, C) . (A5)

If we can introduce new canonical coordinates and momenta (Q1, Q2, P1, P2) by a canonical transformation such

that P1 = C and P2 = H , then the canonical equations motion become Q̇1 = ∂H/∂P1 = 0, Q̇2 = ∂H/∂P2 = 1 and
the solutions are trivially given by Q1 = const. and Q2 = t+ const. which involve two additional constants.
In fact, such a canonical transformation is provided by the following generating function

S(a, φ, C) =

∫

fa(a, φ, C)da + fφ(a, φ, C)dφ . (A6)

Then, the new coordinates are given by (i = 1, 2)

Qi =
∂S

∂Pi

=

∫ (

∂fa
∂Pi

da+
∂fφ
∂Pi

dφ

)

. (A7)

Moreover, from the definition of the new momenta, C = P1 and H = P2, we have the following relations

(

∂C
∂pa

∂C
∂pφ

∂H
∂pa

∂H
∂pφ

)(

∂fa
∂P1

∂fa
∂P2

∂fφ
∂P1

∂fφ
∂P2

)

=

(

1 0
0 1

)

. (A8)
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Then, ∂fa
∂Pi

and
∂fφ
∂Pi

in the integrand can be expressed as functions of a, φ, pa and pφ. In concretely Q1 and Q2 are
written by

Q1 =

∫

1
∂C
∂pa

∂H
∂pφ

− ∂C
∂pφ

∂H
∂pa

(

∂H

∂pφ
da− ∂H

∂pa
dφ

)

(A9)

Q2 =

∫

1
∂C
∂pa

∂H
∂pφ

− ∂C
∂pφ

∂H
∂pa

(

− ∂C

∂pφ
da+

∂C

∂pa
dφ

)

, (A10)

and using Eq. (A2) and Eq. (A3), we obtain

Q1 =
12V0

(
√
6α− 6)C2

a6−
√
6αe(α−

√
6)φ +

1√
6α

a
√
6αeαφ = const. , (A11)

Q2 =
6

α(2α−
√
6)C

a3−
√
6αe−αφ = t+ const. . (A12)

We seek a particular solution by setting constants zero so that Q1 = 0 andQ2 = t. Then, from Eq. (A11), eφ ∝ a
√
6−2α

and putting this into Eq. (A12), we find

a ∝ t
2

(
√

6−2α)2 = t
2
λ2 , (A13)

φ =
2√

6− 2α
ln t+ const. =

2

λ
ln t+ const. , (A14)

thus reproducing the well-known solutions for power-law inflation [1].
More detailed accounts will be given elsewhere [10].
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