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Periodic Event-Triggered Boundary Control of Neuron Growth with

Actuation at Soma
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Abstract— Exploring novel strategies for the regulation of
axon growth, we introduce a periodic event-triggered control
(PETC) to enhance the practical implementation of the as-
sociated PDE backstepping control law. Neurological injuries
may impair neuronal function, but therapies like Chondroiti-
nase ABC (ChABC) have shown promise in improving axon
elongation by influencing the extracellular matrix. This ma-
trix, composed of extracellular macromolecules and minerals,
regulates tubulin protein concentration, potentially aiding in
neuronal recovery. The concentration and spatial distribution
of tubulin influence axon elongation dynamics. Recent research
explores feedback control strategies for this model, leading
to the development of an event-triggering control (CETC)
approach. In this approach, the control law updates when
the monitored triggering condition is met, reducing actuation
resource consumption. Through the meticulous redesign of the
triggering mechanism, we introduce a periodic event-triggering
control (PETC), updating control inputs at specific intervals,
but evaluating the event-trigger only periodically, an ideal tool
for standard time-sliced actuators like ChABC. PETC is a step
forward to the design of practically feasible feedback laws for
the neuron growth process. The PETC strategy establishes an
upper bound on event triggers between periodic examinations,
ensuring convergence and preventing Zeno behavior. Through
Lyapunov analysis , we demonstrate the local exponential
convergence of the system with the periodic event-triggering
mechanism in the L2-norm sense. Numerical examples are
presented to confirm the theoretical findings.

I. INTRODUCTION

Neurons, as fundamental components of neural networks,

are intricately involved in sensory processing [37]. They

play a critical role in acquiring and interpreting sensory

information by transmitting electrical signals through their

specialized structures. This communication occurs between

neurons via their axons, which function as cellular wires.

Axons consist of groups of proteins called “tubulin.” The

dynamics of these proteins facilitate the elongation of ax-

ons, allowing them to reach the target neuron, establish

synaptic connections, and complete the transmission process.

However, neurological diseases or injuries can disrupt or

completely halt this transmission such as Alzheimer’s disease

[27] and spinal cord injuries [26]. In such complications,

neurons may degenerate, leading to axonal shrinkage or an

inability to reach target neurons for signal transmission. Until

recently, the prevailing belief was that injured neurons could

not regenerate to complete the transmission process [19].

However, recent research has clarified that regeneration is
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possible under certain conditions. A recently developed ther-

apy method, Chondroitinase ABC, shows promising potential

for regenerating neurons [3], [21]. With this therapy, it is

possible to stimulate neuron elongation.

Advancements in ChABC and other therapy methods

could help neuron regeneration, but the key factor of this

regeneration will be the degree of neuronal elongation which

is a process regulated by tubulin dynamics. This dynamical

process is modeled with different mathematical approaches

and assumptions [15], [40]. However, a more comprehensive

model for tubulin-based axon elongation is proposed in [30].

This model comprises a diffusion-reaction-advection par-

tial differential equation (PDE) governing tubulin evolution

along the axon, alongside an ordinary differential equation

describing tubulin evolution at the axon’s far end, namely the

growth cone, and the axon’s length over time. This specific

model takes the form of a Stefan-type PDE, a well-studied

model in the literature [16]. Furthermore, mathematical sta-

bility analysis and the effect of model parameters of the axon

elongation are detailed in [29].

In recent times, PDE systems have garnered significant

attention across various disciplines. Control system engineer-

ing, in particular, has emerged as a prominent field offering

control strategies for these systems. A pioneering research

direction in this domain is boundary control of PDE systems

which is based on the work [25]. Following these important

initial studies, researchers have broadened their focus to in-

clude backstepping-based boundary control of various types

of PDEs, systems that combine PDEs with ODEs, as well

as systems that involve multiple interacting PDEs [24], [38],

[39]. While previous studies focus on constant domain size

in time, there are significant works on the global results of

moving domains in time [5], [9], [12], [13], [20], [28], [31].

This line of work has been extended to derive local stability

results for moving boundary nonlinear hyperbolic PDEs

[2], [4], [41]. Achieving stability for nonlinear parabolic

PDEs with moving boundaries, especially without using the

maximum principle, has been challenging until our recent

study on axonal growth [6], [7].

While the control methods discussed above operate con-

tinuously, certain technologies necessitate interventions only

when needed, driven by limitations in energy, communica-

tion, and computation [17]. These constraints suggest control

actions that are executed only when needed and thereby

enhance actuation resource usage, which is called the event-

triggering control. This concept was initially developed for

linear systems in [1], [18] and nonlinear systems in [22].

Following these establishments, it was proposed for infinite
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dimensional systems as event-triggered boundary control of

PDE systems in [14]. Static and dynamic triggering mecha-

nisms have been developed for ODEs and various classes of

PDEs, specifically, for Stefan problem in [32], [33]. Periodic

event-triggered control (PETC) and self-triggered control are

proposed in [35] and [36], respectively, for a class of reaction

diffusion PDEs. Moreover, this method finds application in

ensuring the safety and convergence to the set point of the

Stefan problems in the presence of actuator dynamics in [23].
In addressing the neuron growth problem, a dynamic

event-triggering mechanism for a coupled PDE-nonlinear

ODE with a moving boundary is introduced in [8]. Moti-

vated by the feasibility challenges encountered in real-time

implementation when applying feedback control to biological

systems for medical treatements, we convert the continuous

time event-triggered control (CETC) design by supplement-

ing a periodic sampling rule. This introduces a dynamic

periodic event-triggering control (PETC) approach, where

the triggering function is only checked periodically while

the control input being updated aperiodically. The PETC

improves the practical implementation of the control law be-

cause it can be applied to standard time-sliced actuators (like

ChABC) for axon growth. The strategy involves deriving a

novel triggering condition and establishing an upper bound

on the continuous-time event trigger between two periodic

examinations, explicitly derived as a sampling period in our

study. The problem statement in our current study diverges

from that addressed in [34], where observer-based PETC

was utilized for the classical one-phase Stefan problem.

While the outcome in [34] pertains to a system exhibiting

geometric nonlinearity, the neuron growth process involves

both geometrical and analytical nonlinearities leading to

a local convergence result. The PETC boundary controller

guarantees L2 local exponential convergence in closed-loop,

akin CETC.
The paper’s structure is as follows: Section II introduces

the tubulin-driven axon growth model, including the steady-

state solution and reference error analysis, and control law

design. Section III presents the event-triggering mechanism

and results from prior work. Section IV introduces a novel

periodic event-triggering control for the axon growth prob-

lem. Finally, Section V presents numerical simulation results.
II. TUBULIN-DRIVEN AXON GROWTH MODELING AND

CONTROL

This section introduces the tubulin-driven axonal growth

model, a coupled moving boundary PDE with ODEs, and

a locally exponentially stabilizing continuous-time boundary

control law.

A. Understanding axon growth

1) A model with a moving boundary PDE: Tubulin, a

collection of proteins, facilitates the development of a newly

formed axon. Under the assumption that unattached tubulin

molecules along the axon is insignificant, and considering

that only tubulin molecules are accountable for axon growth,

the newborn evolution in time and space can be modeled as

follows [10], [11].

ct(x, t) = Dcxx(x, t) − acx(x, t) − gc(x, t), (1)

Fig. 1: Schematic of neuron and state variables

cx(0, t) + c(0, t) = −qs(t), (2)

c(l(t), t) = cc(t), (3)

ċc(t) = ãcc(t)− βcx(l(t), t)− κc2c(t) + c∞r̃g, (4)

l̇(t) = rg(cc(t)− c∞) (5)

where the constants in (4) are

ã1 =
a− rgc∞

lc
− g − r̃g, β =

D

lc
, κ =

rg
lc
. (6)

In this model, c(x, t) is the tubulin concentration in the axon,

varying with the spatial variable x over time t, while q
represents the combined tubulin flux and concentration at

soma. The axon length is denoted l(t), which is the distance

between the soma and the growth cone. The subscripts s and

c are used for the soma and the growth cone, respectively.

This notation can be seen in Fig. 1. The parameters, D, a
and g in (1) are tubulin diffusivity, velocity, and degradation

constants, respectively. The parameters in (4) and (5) include

lc representing the growth ratio, r̃g denoting the reaction

rate of the microtubules production process, c∞ as the

equilibrium of tubulin concentration in the cone, and rg
serving as a lumped parameter. Detailed descriptions and

derivations of rg and other parameters are available in [11].

2) The steady-state solution and reference error system:

We derive a steady-state solution for the concentration,

corresponding to a desired axon length ls, by setting the

time derivatives in (1), (4), and (5) to zero. The steady-state

spatially distributed steady-state tubulin concentration is

ceq(x) = c∞

(

K+e
λ+(x−ls) +K−e

λ−(x−ls)
)

, (7)

where

λ± =
a±

√

a2 + 4Dg

2D
, K± =

1

2
±

a− 2glc

2
√

a2 + 4Dg
, (8)

and the steady-state input for the combination of tubulin flux
and concentration in the soma is

q
∗

s = −c∞

(

K+(1 + λ+)e
−λ+ls +K−(1 + λ−)e

−λ
−
ls
)

. (9)

The reference error system relative to (1)-(5) is given by the

dynamics of errors given below

ut(x, t) = Duxx(x, t)− aux(x, t)− gu(x, t), (10)

ux(0, t) + u(0, t) = U(t), (11)

u(l(t), t) = h(X(t)), (12)

Ẋ(t) = AX(t) + f(X(t)) +Bux(l(t), t), (13)



where the reference error states, u(x, t), z1(t) and z2(t), and

the reference error input U(t) are defined as

u(x, t) =c(x, t)− ceq(x), U(t) = −(qs(t)− q∗s ) (14)

z1(t) =cc(t)− c∞, z2(t) = l(t)− ls. (15)

Here, X is a state vector in R
2, given as

X(t) = [z1(t) z2(t)]
⊤. (16)

The parameters and the functions in (10)-(13) are defined as

follows:

A =

[

ã1 −βã2
rg 0

]

, B =

[

−β
0

]

, (17)

f(X(t)) = −κz21(t) + βf1(z2(t)), (18)

h(X(t)) = z1(t) + h̃(z2(t)), (19)

h̃(z2(t)) = c∞

(

1−K+e
λ+z2(t) −K−e

λ−z2(t)
)

. (20)

ã2 =c∞
(

λ2
+K+ + λ2

−K−

)

, (21)

f1(z2(t)) =− c∞

(

K+λ+e
λ+z2(t) +K−λ−e

λ−z2(t)
)

+ ã2z2(t) + c∞
a− glc

D
. (22)

B. Control Law Design

1) Linearization of the finite-dimensional part of the cas-

cade system : We begin by linearizing the nonlinear ODEs

defined in (13) around zero states:

ut(x, t) =Duxx(x, t)− au(x, t)− gu(x, t), (23)

ux(0, t) + u(0, t) =U(t), (24)

u(l(t), t) =H⊤X(t), (25)

Ẋ(t) =A1X(t) +Bux(l(t), t), (26)

where the vector H ∈ R
2 is defined as

A1 =

[

ã1 ã3
rg 0

]

, H =

[

1 −
(a− glc)c∞

D

]⊤

, (27)

where ã3 = a2+Dg−aglc
D2 . By applying the following back-

stepping transformation

w(x, t) =u(x, t)−

∫ l(t)

x

k(x, y)u(y, t)dy

− φ(x − l(t))⊤X(t), (28)

we can map the linearized reference error system to a desired

target system which is

wt(x,t) = Dwxx(x, t) − awx(x, t)− gw(x, t)

− l̇(t)F (x,X(t)), (29)

wx(0, t)+w(0, t) = −
1

D
(H − ǫ)

⊤
Bu(0, t), (30)

w(l(t), t) = ǫ⊤X(t), (31)

Ẋ(t) = (A1 +BK⊤)X(t) +Bwx(l(t), t), (32)

with the redundant nonlinear term F (x,X(t)) ∈ R in (29)

is described as

F (x,X(t)) =
(

φ′(x− l(t))T − k(x, l(t))CT
)

X(t), (33)

where K ∈ R
2 is chosen as

k1 >
ã1
β
, k2 >

ã3
β
. (34)

to make A1 + BK Hurwitz and ǫ ∈ R
2 will be chosen in

the stability analysis.

The approach for obtaining gain kernels in (28), namely

k(x, y) and φ(x), is detailed in [6]. Simply, k(x, y) and φ(x)
are obtained as:

k(x, y) = −
1

D
φ(x − y)⊤B, (35)

φ(x)⊤ =
[

(H − ǫ)⊤ K⊤ − 1
DH⊤BH⊤

]

eN1x

[

I
0

]

, (36)

where the matrix N1 ∈ R4×4 is defined as

N1 =

[

0 1
D

(

gI +A+ a
DBH⊤

)

I 1
D

(

BH⊤ + aI
)

]

. (37)

The inverse transformation is presented as follows:

u(x, t) =w(x, t) +

∫ l(t)

x

q(x, y)w(y, t)dy

+ ϕ(x− l(t))⊤X(t) (38)

Detailed solutions for the gain kernels are provided in [6].

2) Continuous-time and sampled-data control law: By

taking the spatial derivative of the transformation and substi-

tuting x = 0 into both the backstepping transformation and

its spatial derivative, and setting boundary condition (30), the

control law is derived as

U(t) = −
1

D

∫ l(t)

0

p(x)Bu(x, t)dx + p(l(t))X(t), (39)

where

p(x) = φ′(−x)⊤ + φ(−x)⊤. (40)

The system outlined in (1)-(5), with the continuous-time

controller input (39), is locally exponentially stable in the L2-

norm sense, as demonstrated in [8]. To develop the periodic

event-triggered control mechanism, the CTC input is sampled

at discrete intervals, which holds it constant between events.

This approach yields the following sampled-data control.

Uω
k (t) := U(tωk ), (41)

where is employed at

ux(0, t) + u(0, t) = Uω
k (t). (42)

for ∀t ∈ [tωk , t
ω
k+1), k ∈ N with the increasing time sequence,

Iω = {tωk}k∈N, where tω0 = 0 and ω = {“c”, “p”}.

The notations “c” and “p” represent CETC and PETC,

respectively. It’s important to note that at each sampling time,

the control input is sampled from (39), in other word, the

sampled-data control law is the emulation of the continuous-

time controller that is to be implemented in a Zero-Order

Hold fashion.



III. CONTINUOUS-TIME EVENT TRIGGERED CONTROL

In this section, we provide a summary of a CETC design

detailed in [8].

Definition 1: Continuous-time event-triggering consists of

two stages: the occurrence of the event and the application

of the control signal when the event occurs. These steps are

1) Detection of the time that event occurs: The set Ic =
{tc0, t

c
1, t

c
2, . . .} where tc0 = 0, represents an increasing

sequence of time instances where the events occur.

This set is generated using the following rules. (i) If

S(t, tck) = ∅, events occur at times {t0, . . . , tck}. (ii) If

S(t, tck) 6= ∅, the subsequent event time is determined

as tck+1 = inf (S(t, tck)) where

S(t, tck) = {t ∈ R+|t > tck ∧ d2(t) > −γm(t)} (43)

for all t ∈ [tck, t
c
k+1), d(t) is given as

d(t) = U(t)− U c
k(t) (44)

and m(t) satisfies the ODE

ṁ(t) = −ηm(t) + ρd(t)2 − β1X(t)2 − β2X(t)4

− β3X(t)6 − β4|w(0, t)|
2 − β5||w(x, t))||

2. (45)

The event-triggering design parameters are σ ∈ (0, 1),
γ > 0, η > 0, and βi and ρ are selected according to

the specifications outlined in [8] as

ρ ≥
d21D

δ1
, βi =

αi

γ(1− σ)
, (46)

where δ1 = 2D2.

2) Event-based control corresponding to the sampled-data

control law (41) where p(x) is defined in (40).

Remark 1: The triggering mechanism defined by (43) and

(45) has the property of d2(t) ≤ γm(t) and m(t) > 0,
∀ t ∈ [0, sup{Ic}) as detailed in [8].

Remark 2: Considering the increasing set of event-times

{tck}k∈N with t0 = 0, the following bound is obtained for

the time derivative of the input holding error

ḋ2(t) ≤ρ1d
2(t) + α1X(t)2 + α2X(t)4 + α3X(t)6

+ α4w(0, t)
2 + α5||w(x, t)||

2, (47)

where the parameters, ρ1, α1, α2, α3, α4, α5 are given by

ρ1 = 7|p(0)B|2, (48)

α1 =
21

2

∣

∣

∣

∣

∣

1

D
ζ(y)B

∫ l(t)

0

ϕ(x− l(t))⊤dx

∣

∣

∣

∣

∣

2

+ 28(p(0)Bp(l(t)))2

+21
((

p(0)
(

1−
a

D

)

+ ṗ(0)
)

B
)2

(ϕ(0)⊤)2 + 28(p(l(t))A)2

+14
(∣

∣

∣
ṗ(l(t)) +

a

D
p(l(t)) +

rg

D
e1p(l(t))

∣

∣

∣
BH

⊤

)2

, (49)

α2 = 7
(

rge1ṗ(l(t)) + 2kn

∣

∣

∣
ṗ(l(t)) +

a

D
p(l(t))

∣

∣

∣
B + p(l(t))κ

)2

(50)

α3 = 7

(

2kn
D

rge1p(l(t))B

)2

+ 28 (kmp(l(t)))2 , (51)

α4 = 21
((

p(0)
(

1−
a

D

)

+ ṗ(0)
)

B
)2

, (52)

α5 = 7

∣

∣

∣

∣

1

D
ζ(y)B

∣

∣

∣

∣

2
(

9

2
+

9

2

(

∫ l(t)

0

∫ l(t)

x

q(x, y)2dydx

))

+21
((

p(0)
(

1−
a

D

)

+ ṗ(0)
)

B
)2

Ḡ(l(t))2, (53)

ζ(y) :=

∫ l(t)

0

Dp̈(y)− aṗ(y) + gp(y)− p(0)Bp(y)dy, (54)

Ḡ(l(t)) :=

∫ l(t)

0

q(0, x)dx. (55)

Theorem 1: [8] For the event-triggered mechanism described

in (41)-(43), the set of event-times {tck}k∈N ensures that the

function Γc(t) := d(t)2−γm(t) remains non-positive for all

t ∈ [tck, t
c
k+1), where k ∈ N.

The proof of this theorem and the following results are

given in [8] and the following hold:

1) The set of event-times {tck}k∈N with triggering mech-

anism (41)-(43) and with the design parameters speci-

fied in (48)-(53), ensures that Zeno behavior does not

occur. This is because there exists a minimal dwell-

time, τ > 0, between two execution times, given by

τ =

∫ 1

0

1

a1s2 + a2s+ a3
ds, (56)

where

a1 = ρσγ > 0, (57)

a2 = 1 + 2ρ1 + (1− σ)ρ+ η > 0, (58)

a3 = (1 + ρ1 + γ(1− σ)ρ+ η)
1− σ

σ
> 0. (59)

2) Given an initial condition m(0) < 0, the variable m(t)
governed by (45), satisfies m(t) < 0 for all t > 0.

3) The closed-loop system (1)-(5), along with the event-

triggered mechanism (41), locally exponentially con-

verges to the desired axon length in the L2-sense.

In the next section, we propose a periodic event-triggering

mechanism.

IV. PERIODIC EVENT TRIGGERING MECHANISM

In this section, we propose a periodic event-triggering

mechanism for axonal growth.

Definition 2: Consider the event-triggering function Γp(t),
which undergoes periodic evaluation with a period of h > 0.

The PETC that generates the events are characterized by two

parts:

1) The event-trigger mechanism: A periodic event-trigger

that determines the event times

tpk+1 = inf{t ∈ R+|t > tpk, Γ
p(t) > 0, t = nh,

h > 0, n ∈ N}, (60)

with tp0 = 0 where h is sampling period and

Γp(t) = υ1d
2(t)− υ2m(t) (61)

where υ1 > 0 and υ2 > 0.

2) The feedback control law that is derived as

Up
k (t) =−

1

D

∫ l(tp
k
)

0

p(x)Bu(x, tpk)dx+ p(l(tpk))X(tpk)

(62)



for all t ∈ [tpk, t
p
k+1) for k ∈ N.

Note that periodicity in the triggering conditions (60),

allows us to monitor the triggering function periodically

and update the control laws aperiodically, removing the

continuous monitoring of the PDE-ODE state variables.

Then, the boundary condition (11) becomes

ux(0, t) + u(0, t) = U(tpk). (63)

A. Design of the periodic event triggering function Γp(t)

Selection of the sampling period. The sampling period,

denoted as h, represents the unit of time during which the

control input is updated. Let the periodic event-triggered

function given by (60), along with the boundary condition

in (63) and the plant dynamics from (1)-(5), satisfy the

condition Γp(t) ≤ 0 for all t within the interval t ∈ [tpk, t
p
k+1)

for k ∈ N. Hence, it follows that m(t) < 0 for all t > 0.

The parameter h is selected to satisfy

0 < h ≤ τ, (64)

where the upper bound, τ , is the minimum inter-event time

of the CETC design defined in (56)-(59).

Proposition 1: Under the definition of the periodic event-

triggered boundary control (63), with the sampling period

h < τ , it holds that

Γc(t) ≤
1

q

(

(a+ γρ)d2(nh)eq(t−nh) − γρd2(nh)

+ qγm(nh)e−η(t−nh)

)

, (65)

for all t ∈ [nh, (n+1)h) and any n ∈ [tpk/h, t
p
k+1/h) ⊂ N,

where q = 1+ η+ ρ1 and Γc(t) = d2(t)− γm(t) for γ > 0.

Proof. Taking the time derivative of Γc(t) in t ∈ [nh, (n+
1)h) and n ∈ [tpk/h, t

p
k+1/h) ⊂ N, one can show that

Γ̇c(t) = 2d(t)ḋ(t)− γṁ(t) (66)

≤ d2(t) + ḋ2(t)− γṁ(t). (67)

By using Lemma 1, we get

Γ̇c(t) ≤(1 + ρ1 + γρ)d2(t)− (γβ1 − α1)X(t)2

− (γβ2 − α2)X(t)4 − (γβ3 − α3)X(t)6

− (γβ4 − α4)u(0, t)
2 − (γβ5 − α5) ||u(x, t)||

2

+ ηγm(t). (68)

By using the definition of Γc(t), we get

Γ̇c(t) ≤(1 + ρ1 + γρ)Γc(t)− (γβ1 − α1)X(t)2

− (γβ2 − α2)X(t)4 − (γβ3 − α3)X(t)6

− (γβ4 − α4)u(0, t)
2 − (γβ5 − α5) ||u(x, t)||

2

+ ((1 + ρ1 + γρ) γ + ηγ)m(t). (69)

Since m(t) satisfies Remark 1 and (1)-(5) with the event-

triggered control law (41) is locally exponentially con-

vergen, (69) exhibit smooth behavior in the interval t ∈
[nh, (n + 1)h) and for any n ∈ [tpk/h, t

p
k+1/h) ⊂ N.

This establishes the existence of a non-negative function

ι(t) ∈ C0((tpk, t
p
k+1);R+) such that:

Γ̇c(t) =(1 + ρ1 + γρ)Γ(t)− (γβ1 − α1)X(t)2

− (γβ2 − α2)X(t)4 − (γβ3 − α3)X(t)6

− (γβ4 − α4)u(0, t)
2 − (γβ5 − α5) ||u(x, t)||

2

+ ((1 + ρ1 + γρ) γ + ηγ)m(t)− ι(t), (70)

for all t ∈ [nh, (n+ 1)h) and for any n ∈ [tpk/h, t
p
k+1/h) ⊂

N. Moreover, through the substitution of d2(t) = Γc(t) +
γm(t), we can rephrase the dynamics of m(t) as follows:

ṁ(t) =− ρΓc(t)− (η + ργ)m(t) + β1X(t)2 + β2X(t)4

+ β3X(t)6 + β4|u(0, t)|
2 + β5||u(x, t))||

2, (71)

for all t ∈ [nh, (n+1)h) and for any n ∈ [tpk/h, t
p
k+1/h) ⊂

N. Subsequently, by combining (70) with (71), we can derive

the subsequent system of ODEs:

ṙ(t) = A1r(t) + v(t),

where

r(t) =

[

Γc(t)
m(t)

]

, A1 =

[

q − η + γρ γ (q + γρ)
−ρ −η − ργ

]

,

v(t) =

[

f1(t)
f2(t)

]

, (72)

where

f1(t) =− (γβ1 − α1)X(t)2 − (γβ2 − α2)X(t)4

− (γβ3 − α3)X(t)6 − (γβ4 − α4)u(0, t)
2

− (γβ5 − α5) ||u(x, t)||
2 − ι(t), (73)

f2(t) =β1X(t)2 + β2X(t)4 + β3X(t)6 + β4|u(0, t)|
2

+ β5||u(x, t))||
2, (74)

and

q = 1 + η + ρ1. (75)

The solution to (72) for all t ∈ [nh, (n+ 1)h) and for any

n ∈ [tpk/h, t
p
k+1/h) ⊂ N can be expressed as:

r(t) = eA1(t−nh)r(nh) +

∫ t

nh

eA1(t−ξ)v(ξ)dξ, (76)

which gives us

Γc(t) = C1e
A1(t−nh)r(nh) + C1

∫ t

nh

eA1(t−ξ)v(ξ)dξ,

(77)

where C1 = [1 0]. Since matrix A1 has two distinct

eigenvalues, we can diagonalize the matrix exponential eA1t

as it is defined in [35]. Thus, we can derive the second part

of (77) as

C1e
A1(t−ξ)v(ξ) =

[

g1(t) g2(t)
]

[

f1(t)
f2(t)

]

, (78)

where

g1(t) =
q + γρ

q
e(1+ρ1)t −

ργ

q
e−ηt, (79)

g2(t) =
γ (q + γρ)

q

(

e(1+ρ1)t − e−ηt
)

. (80)

Since we have the following relationship

1 + η + 7|p(0)B|2 > 0, (81)

we can get

g1(t) =
1

q

(

−γρ+ (q + ργ)eqt
)

e−ηt, (82)

g2(t) =
γ(q + γρ)

q

(

−1 + eqt
)

e−ηt. (83)

It’s apparent that g1(t) remains positive for t > 0. Fur-

thermore, considering the relation (46), and using ascending



order of triggering times that is the solution of (56) is

represented by

τ =
1

q
ln

(

1 +
σq

(1− σ)(q + γρ)

)

, (84)

one can show that

C1e
A1(t−ξ)

v(ξ) =
α1(q + γρ)

q

(

e
qτ − e

q(t−ξ)
)

e
−η(t−ξ)

X(t)2

+
α2(q + γρ)

q

(

e
qτ − e

q(t−ξ)
)

e
−η(t−ξ)

X(t)4

+
α3(q + γρ)

q

(

e
qτ − e

q(t−ξ)
)

e
−η(t−ξ)

X(t)6

+
α4(q + γρ)

q

(

e
qτ − e

q(t−ξ)
)

e
−η(t−ξ)

u(0, t)2

+
α5(q + γρ)

q

(

e
qτ − e

q(t−ξ)
)

e
−η(t−ξ)||u(x, t)||2. (85)

Given the stipulated intervals nh ≤ ξ ≤ t ≤ (n + 1)h,

and h ≤ τ , upon thorough examination of (85), it emerges

that the inequality (γβi − αi)g1(t − ξ) − βig2(t − ξ) > 0
satisfied for all i = 1, 2, 3, 4, 5. This observation prompts

us to establish C1e
A1(t−ξ)v(ξ) which holds for all t and ξ

within the range of nh ≤ ξ ≤ t ≤ (n + 1)h, and for n ∈
[tpk/h, t

p
k+1/h) ⊂ N. Taking this observation into account

alongside (77), we can derive the following expression for

t ∈ [nh, (n+ 1)h):

Γc(t) ≤
1

q
(−γ(q + γρ)m(nh)− γρΓc(nh)

+(q + γρ) (Γc(nh) + γm(nh)) eq(t−nh)
)

. (86)

Upon performing the substitution Γc(nh) into (86), we are

able to derive the inequality (65) which is valid for all t ∈
[nh, (n+ 1)h). This concludes the proof.

Building upon Lemma 2, the update time for the control

input can be determined by identifying when the subsequent

condition is met for any t ∈ [nh, (n + 1)h), thereby

challenging the positive definiteness of Γc(t).

(q + γρ)d2(nh)eq(t−nh) − γρd2(nh) + qγm(nh) > 0,
(87)

Thus, one can choose this condition as Γp(t) such that

Γp(t) = (q + γρ)eqhd2(t)− γρd2(t) + qγm(t), (88)

which completes the design process.

Theorem 2: Let the design parameters, ρ, ρ1 and βi as

defined in (46), (48)-(53), set the sampling rate in accordance

with (64), let γ, η > 0 and σ ∈ (0, 1). Let us consider the

periodic event-triggering mechanism (60)-(62) with the Γp(t)
as defined in (88) which generates the increasing sequence

of times {tpk}k∈N with tp0 = 0. Then, for Γc(t) and m(t)
with m(t) > 0, it holds that Γc(t) ≤ 0 and m(t) > 0 for all

t > 0.

Proof. Due to space constraints, we omit this proof, which

can be stated following the steps of the proof of Theorem 2

in [35].

B. Local exponential convergence under PETC

In order to prove that the closed-loop system (1)-(5)

with the control law (41) and the periodic event-triggering

mechanism (60) and (88), is locally exponentially conver-

gent, we first obtain the following target system by applying

transformation (28)

wt(x, t) = Dwxx(x, t)− awx(x, t)− gw(x, t)− l̇(t)F (x,X(t))

− φ(x− l(t))⊤f(X(t))−G(x, l(t))h∗(X), (89)

wx(0, t) + w(0, t) = d(t)−
1

D
(H − ǫ)⊤ Bu(0, t), (90)

w(l(t), t) = h
∗(X(t)) + ǫ

⊤
X(t), (91)

Ẋ(t) = (A+BK)X(t) + f(X(t)) +Bwx(l(t), t), (92)

where G(x, l(t)) :=
(

φ′(x− l(t))⊤ + a
Dφ(x − l(t))⊤

)

B.
Using the transformation below

̟(x, t) = w(x, t) − h∗(X(t)) (93)

converts (89)-(92) into

̟t(x, t) = D̟xx(x, t) − a̟x(x, t) − g̟(x, t)

+ gh∗(X(t))− l̇(t)F (x,X(t)) − ḣ∗(X(t))B̟x(l(t), t)

− φ(x − l(t))⊤f(X(t))−G(x, l(t))h∗(X)

− ḣ∗(X(t)) ((A+BK)X(t) + f(X(t))) , (94)

̟x(0, t) +̟(0, t) = d(t) −
1

D
(H − ǫ)

⊤
Bu(0, t)

+ h∗(X(t)), (95)

̟(l(t), t) = ǫ⊤X(t), (96)

Ẋ(t) = (A+BK)X(t) + f(X(t)) +B̟x(l(t), t). (97)

Below, we state the convergence result.

Theorem 3: Let the design parameters, ρ, ρ1 and βi given

as defined in Theorem 2. Consider the periodic event-

triggering rule (60)-(62) with the periodic event-triggering

function (88) and sampling rate h defined in (64), which

generates an increasing event-times {tpk}k∈N. Assuming the

well-posedness, the closed-loop system of (1)-(5) with the

boundary control law (88) and (40) is locally exponentially

convergent in L2-norm sense.

Proof. To demonstrate the local convergence of the system,

we initially establish the system properties in a non-constant

spatial interval as derived in [8], outlined as follows:

0 < l(t) ≤ l̄, |l̇(t)| ≤ v̄ (98)

for some l̄ > ls > 0 and v̄ = D
16(D+1) . As demonstrated

in Theorem 2 of [8], m(t) < 0 for all t ∈ [tpk, t
p
k+1) where

k ∈ N, implying Γc(t) ≤ 0 for t ∈ [tpk, t
p
k+1). Assuming

the well-posedness of the closed-loop system and following

the methodology outlined in [8], the subsequent Lyapunov

functional is considered

V (t) = V1(t)−m(t), (99)

where

V1(t) =d1
1

2

∫ l(t)

0

̟(x, t)2dx+X(t)⊤
(

d2P1 +
1

2
P2

)

X(t)

(100)



and d1 > 0, d2 > 0, P1 ≻ 0 and P2 � 0 are positive definite

and positive semidefinite matrices satisfying the Lyapunov

equations:

(A+BK⊤)⊤P1 + P1(A+BK⊤) = −Q1,

(A+BK⊤)⊤(P1 + P2) + (P1 + P2)(A+BK⊤) = −Q2

where

P1 =

[

p1,1 p1,2
p1,2 p2,2

]

, P2 =

[

Dǫ1
β − 2p1,1 0

0 0

]

(101)

where we pick ǫ ∈ R
2 as ǫ1 ≥ 2lcp1,1 and ǫ2 =

p1,2

lcd1
for

some positive definite matrices Q1 ≻ 0 and Q2 ≻ 0. By

taking the time derivative of (100), applying Poincaré’s, Ag-

mon’s, and Young’s inequalities, we first derive the following

expression:

V̇ ≤− α∗V + ξ1V
3/2 + ξ2V

2 + ξ3V
5/2 + ξ4V

3 (102)

where

α∗ = min

{

g

2
,

1

2λmin(P1 + P2)
, η

}

, (103)

ξ1 =

(

Dd1|ǫB̄|+ 2d2
∣

∣P⊤
1 BB̄

∣

∣

)

κ2 +
d1rg
2 (1 + L1) + rg

d
3/2
2 λmin(P1 + P2)3/2

,

(104)

ξ2 =
Ξ1

d22λmin(P1 + P2)2
, ξ3 =

4d2km|P1|

d
5/2
2 λmin(P1 + P2)5/2

,

(105)

ξ4 =
Ξ2

d32λmin(P1 + P2)3
, (106)

where d1 and d2 are chosen to satisfy

d1 ≥ max

{

8l̄ (D + 2) + 16l̄β4

D
,
4β5 + 7

g

}

, (107)

d2 ≥
4

λmin(Q2)

(

Dd1
∣

∣ǫB̄|(A+BK)
∣

∣+ β1

)

+
4

λmin(Q2)

((

D + 2 +Dd1 +
d1a

2
+ 2β4

)

2

β2

)

.

(108)

Note that the positive constant parameters are also defined

as follows:

F (0, X(t))2 ≤ L1X
⊤X, (109)

∫ l(t)

0

(

φ(x − l(t))⊤
)2

dx ≤ Ln2
, (110)

∫ l(t)

0

(

φ′(x− l(t))⊤B − ak(x, l(t))
)2

dx ≤ Ln3
(111)

Ξ1 = 4Dd1|ǫB̄|k2m|P1|
2 + 8d2

∣

∣P⊤
1 BB̄

∣

∣ k2m|P1|
2 + β2

+ 2d21Ln3
k2n +

d21
2
Ln2

κ2 + d21c
2
∞r2gkl + 8d2κ|P |β5kl

+ 2d2κ|P |
(

d21
(

β2(1 − ǫ1)
2
(

1 + Ḡ(l(t))2
)

+D
))

kl,
(112)

Ξ2 = d21c
2
∞r2gkl +

d21
2
Ln2

4k2m|P1|
2 + β3

+
(

d21
(

β2(1− ǫ1)
2
(

1 + Ḡ(l(t))2
)

+D
)

+ 4β5

)

kl,
(113)

kl = max {|K+λ+| , |K−λ−|}
2
, B̄ = [−β−1 0], (114)

kn = c∞ max{K+λ
2
+,K−λ

2
−}, (115)

km = c∞ max{K+λ
3
+,K−λ

3
−}, (116)

− ex + x+ 1 ≤ x2 for x ≤ 1.79. (117)

Given (102), we can demonstrate that within the region

Ω1 := {(̟,X) ∈ L2×R
2|V (t) < M0} where t ∈ (tpk, t

p
k+1)

for k ∈ N, there exists a positive constant M0 > 0
ensuring the satisfaction of the system properties (98). The

existence of such M0 > 0 is established in Lemma 2 of

[6]. From this result, we have M0 = λmin(P1)
d2

r2 where

r = min
{

v̄
rg
, ls, l̄− ls

}

for t ∈ (tpk, t
p
k+1), k ∈ N. Next,

we analyze the convergence within the time interval t ∈
(tpk, t

p
k+1) for k ∈ N, and subsequently for t ∈ (0, t). Then,

a positive constant M exists such that when V (tj) < M , the

following norm estimate is valid for t ∈ [tpk, t
p
k+1), where

k ∈ N:

V (tpk+1) ≤ V (tpk)e
−α∗

2
(tp

k+1
−tp

k
). (118)

For M > 0, we define the set Ω := {(̟,X) ∈ L2 ×
R

2|V (t) < M}. From Lemma 2 in [6], it is clear that if

M ≤ M0, then Ω ⊂ Ω1 which satisfy the system properties

(98) and the norm estimate defined in (118) for t ∈ [tpk, t
p
k+1),

where k ∈ N. Hence, we set M ≤ p∗, where p∗ is a non-zero

root of the following polynomial

−α∗V + ξ1V
3/2 + ξ2V

2 + ξ3V
5/2 + ξ4V

3 = 0 (119)

for V > 0. Given that all coefficients of this polynomial

are positive, at least one positive root p∗ exists. Thus, (102)

implies

V̇ ≤ −
α∗

2
V (t) (120)

for t ∈ [tpk, t
p
k+1), where k ∈ N and M = min{M0, p

∗}.

The smoothness of V (t) within this interval ensures that

V (tp
−

k+1) = V (t) and V (tp
+

k ) = V (tpk), where tp
+

k and tp
−

k

denote the right and left limits of t = tpk, respectively. Thus,

we can have the norm estimate in (118). Then, for any t ≥ 0
in t ∈ [tpk, t

p
k+1) where k ∈ N, we have

V (t) ≤ e−α∗(t−tp
k
)V (tpk) ≤ e−α∗tV (0). (121)

Recalling m(t) < 0 and (99), we can write

V1(t)−m(t) ≤ e−α∗tV (0) (122)

by applying the comparison principle one can obtain the

following norm estimate for the target system (̟,X):

d1
1

2
||̟(x)||2 + d2X(t)⊤

(

P1 +
1

d2
P2

)

X(t)

≤e−α∗t

(

d1
2
||̟(0)||2 + d2X(0)⊤

(

P1 +
1

d2
P2

)

X(0)

)

− e−α∗tm(0) (123)

Utilizing the invertibility of the transformation (93), we

subsequently prove that the target system (w,X) is also
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Fig. 2: Comparison between periodic-event triggering control input Up
k
(t),

continuous time event triggering control input Uc
k(t) and the continuous

control law U(t)

locally exponentially convergent. For the original system

(u,X), we leverage the invertibility of the backstepping

transformation given in (28). Consequently, we conclude

that the closed-loop system is also locally exponentially

convergent. This completes the proof.

V. NUMERICAL SIMULATIONS

In this section, we conduct numerical simulations for

the system represented by equations (1)-(5), employing the

control law (39) along with the designed periodic event-

triggering mechanism (60) utilizing the triggering function

(88). The model parameters are detailed in Table I. Initial

conditions are specified as c0(x) = 1.5c∞ for the tubulin

concentration along the axon and l0 = 1µm for the initial

axon length. Control gain parameters are set as k1 = −0.001
and k2 = 3×1013. The event-triggering parameters are set as

follows m(0) = −0.5, β1 = 2.5× 108, β2 = 8× 109, β3 =
1× 1011, β4 = 4× 1011, β5 = 4.5× 1011, ρ = 1.5× 10−15,

γ = 1, η = 2 and σ = 0.8. Moreover, the sampling period

for the periodic event-triggering mechanism is selected as

h = 0.5 ms which is smaller than the minimal dwell time

τ ≈ 0.54 ms.

Fig. 2 illustrates the evolution of the continuous-time

control input, U(t), the event-triggering control input, U c
k(t),

as defined in (41) with the triggering mechanism given by

(43)-(45), and the periodic event-triggering control input,

Up
k (t), as defined in (62) with the triggering condition in (60)

and triggering function in (88). While PETC closely emulates

the CETC control input behavior, both PETC and CETC min-

imized the necessity of control law updates by maintaining

comparable performance. In Fig. 3, tubulin concentration,

c(x, t), and axon length, l(t), converge to the steady-state

solution of the tubulin concentration and the desired axon

length. Note that tubulin concentration exhibits smoother

changes with the PETC mechanism compared to the CETC

mechanism which enhances the practical applicability.

TABLE I: Biological constants and control parameters
Parameter Value Parameter Value

D 10× 10−12m2/s r̃g 0.053
a 1× 10−8m/s γ 104

g 5× 10−7 s−1 lc 4µm
rg 1.783× 10−5 m4/(mols) ls 12µm
c∞ 0.0119 mol/m3 l0 1µm

VI. CONCLUSION

This paper proposes a periodic-event triggering control of

the axonal growth problem which is modeled as coupled PDE

and nonlinear ODE. The nature of the actuation mechanism

acting on the soma motivates the development of proof-

based sampled-and-hold control techniques for practicality.

By virtue of emulating the continuous-time feedback law

and using recent techniques to carefully refine a specific

category of continuous-time dynamic event trigger, we con-

ceived a strategy that only requires periodic monitoring

of the triggering condition and aperiodic updates of the

control action. Given the vast number of neuron cells each

with distinct parameters, future research will consider the

unknown model parameters by prioritizing the estimation

of these parameters and implementing adaptive control for

this model. More precisely, exploiting Batch Least Squares

Identifiers (BaLSI) techniques finite-time identification of the

unknown parameters, and local exponential convergence are

challenging but promising.
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