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Abstract

We study the matrix-variate regression problem Yi =
∑

k β1kXiβ
⊤
2k+Ei for i = 1, 2 . . . , n

in the high dimensional regime wherein the response Yi are matrices whose dimensions p1×p2
outgrow both the sample size n and the dimensions q1× q2 of the predictor variables Xi i.e.,
q1, q2 ≪ n ≪ p1, p2. We propose an estimation algorithm, termed KRO-PRO-FAC, for
estimating the parameters {β1k} ⊂ ℜp1×q1 and {β2k} ⊂ ℜp2×q2 that utilizes the Kronecker
product factorization and rearrangement operations from Van Loan and Pitsianis (1993).
The KRO-PRO-FAC algorithm is computationally efficient as it does not require estimating
the covariance between the entries of the {Yi}. We establish perturbation bounds between
β̂1k − β1k and β̂2k − β2k in spectral norm for the setting where either the rows of Ei or the
columns of Ei are independent sub-Gaussian random vectors. Numerical studies on simulated
and real data indicate that our procedure is competitive, in terms of both estimation error
and predictive accuracy, compared to other existing methods.

Keywords: matrix regression, Kronecker product, low-rank approximation, matrix perturbations

1 Introduction

Regression is one of the most important and widely studied inference tasks in statistics and ma-

chine learning. Traditional applications of regression mainly focus on settings where the response

variables Y are either scalars or, more generally, Y ∈ ℜd for some “small” d. With the recent

advancements in computation and storage technology, it is now common to encounter scenar-

ios where the responses are (large) matrices. Examples include data from multivariate bioassay

study (Vølund, 1980), electroencephalography (Li and Zhang, 2017), images denoising (Kamm
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and Nagy, 1998; Nagy, 1996; Cai et al., 2019), and factors models in econometrics (Chen et al.,

2019; Wang et al., 2019).

These type of data naturally leads to the simple and intuitive notion of matrix-variate regression

wherein, given a collection of predictor and response tuples {(Xi, Yi)}ni=1 with Xi ∈ ℜq1×q2 and

Yi ∈ ℜp1×p2 , one typically assumes that the Yi are related to the Xi through the linear model

vec(Yi) = ν vec(Xi) + vec(Ei), i = 1, ..., n (1)

where ν ∈ ℜp1p2×q1q2 are the unknown regression coefficients, Ei ∈ ℜp1×p2 are the unobserved noise

matrices, and vec denote the vectorization operator that concatenates the column vectors of the

input matrix. We note that any linear model for {(Xi, Yi)} can be written in the form of Eq. (1)

In the high-dimensional regime wherein the dimensions of response variables (p1.p2) grow much

faster than the sample size n, i.e., pi/n→∞, the regression coefficient ν is overparameterized and

consistent estimation of ν is generally unfeasible unless one impose some structural assumptions

on Eq. (1) so as to reduce the effective number of parameters in ν.

Two of the most widely studied and adopted regularity conditions for ν is that it is low-rank

and/or sparse; see e.g., Yuan et al. (2007); Obozinski et al. (2011); Negahban and Wainwright

(2011); Chen et al. (2012); Bunea et al. (2012); Bing and Wegkamp (2019); Zheng et al. (2019); Zou

et al. (2020) and the references therein. In particular Negahban and Wainwright (2011) noted that

low-rank constraints are analogous to imposing sparsity on the data without explicitly specifying

any basis.

Despite the popularity of these sparse and/or low-rank assumptions, they do not lead to a

significant reduction in complexity of ν when the feature vectors {Xi} are low-dimensional but

the response {Yi} are high-dimensional. More specifically, suppose p1 = p2 = p, q1 = q2 = q, p≫ q

and p/n → ∞. If we only assume that ν is low-rank so that rk(ν) = d ≪ n then we still need

to estimate on the order of O(d(p2 + q2)) parameters for any matrix factorization of ν (such as

SVD) and is computationally infeasible as it is equivalent to the estimation of covariance matrices

in high-dimensional univariate linear regression with p predictor variables and n scalar responses.

In contrast if we assume sparsity on ν then, denoting the number of non-zero entries in ν by s,

we will in general need n = ω(s) to estimate ν consistently. As s/p2 ≪ p−1, this implies that

almost all of the entries in the responses {Yi} are ignorable. This is a rather strong assumption

that should be justified on a case-by-case basis.
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In this paper we consider a more refined variant of the low-rank assumption on ν by assuming

that it admits a representation/ approximation in terms of a (sum of) Kronecker products of

smaller matrices. More specifically, we shall assume that ν is of the form

ν =
d∑

k=1

β2k ⊗ β1k

for some collection of p1 × q1 matrices {β11, . . . , β1d} and p2 × q2 matrices {β21, . . . , β2d}. The

number of effective parameters in ν is then d(p1q1 + p2q2) which is substantially smaller than

O(d(p1p2 + q1q2)) for p1 ≫ q1, p2 ≫ q2. See Beylkin and Mohlenkamp (2002); De Lathauwer et al.

(2000); Tyrtyshnikov (2004) for futher discussion of Kronecker product factorization and its use

in large-scale matrix approximations.

Finally the linear model in Eq. (1) with the Kronecker product structure for ν is equivalent to

the bi-linear model

Yi =
d∑

k=1

β1kXiβ
⊤
2k + Ei. (2)

Under this perspective the {β1k} (resp. {β2k}) can be interpreted as the row effects (resp. column

effects) of Xi on the response Yi. The special case of d = 1 was considered previously in Ding

and Cook (2016) wherein the authors studied estimation of β11 and β21 using two-step MLEs; see

Section 2 for further discussions. In a related vein, Chen et al. (2019); Wang et al. (2019); Chen

and Fan (2021) considered factor models for Yi of the form Yi = β1Xiβ
⊤
2 but, in contrast to the

current paper, they assume that the Xi are either unknown or unobserved. They then propose

to estimate β1 and β2 via two-step PCA Finally, the bi-linear modeling of {Yi} also arise in the

context of image recognition (Crainiceanu et al., 2011; Wang et al., 2016; Ye, 2005; Zhang, 2005).

In particular Crainiceanu et al. (2011) proposed the notion of population value decomposition

for summarizing images population {Yi} by assuming that Yi ≈ PViD where P and D encode

“population frame of reference” for all {Yi} while Vi encode “subject-level” features specific to a

given Yi. Their P and D thus serve identical roles to that of {β11, β21} in Eq. (2) (when d = 1).

In this paper we study estimation of {β1k, β2k} for the model in Eq. (2). Inspired by the work

of Van Loan and Pitsianis (1993) on the nearest Kronecker product problem, we observe that

ν exhibits a low-rank representation after reshaping and rearranging the entries of ν. In other

words, while ν =
∑d

k=1 β2k ⊗ β1k itself need not be low-rank, its rearranged version still admits a

low-rank representation or approximation. Leveraging this observation we propose an algorithm,
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termed KRO-PRO-FAC, for estimating ν with computational complexity of O(p1p2dq1q2) flops;

see Section 2). We next studied the theoretical properties of the KRO-PRO-FAC algorithm and

show that it yield, under reasonably mild conditions on the noise Ei and the dimensions pi (com-

pared with the sample size n), consistent estimates of the {β1k, β2k}; see Section 3. Numerical

experiments on simulated and real data are presented in Section 4. In particular our procedure

is shown to be competitive, in terms of both estimation error and predictive accuracy, to other

existing methods.

2 Methodologies

We now introduce some basic notations used throughout this paper. For p ∈ N, we denote the

set {1, ..., p} by [p]. Let O(·), O(·) and Θ(·) represent the standard big-O, little-o and big-theta

relationships. For two arbitrary real sequences (an)n∈N and (bn)n∈N, we write an ≪ bn if an/bn

converges to 0 as n → ∞; an ≍ bn means an/bn has a finite and non-zero limit as n → ∞. For

an arbitrary matrix M = (Mij) ∈ ℜp×q, the Frobenius norm, spectral norm and nuclear norm of

M are denoted by ∥M∥F , ∥M∥2 and ∥M∥∗, and if M is square then tr(M) and |M | denote its

trace and determinant. The symbol ’⊗’ represents the Kronecker product between matrices while

Ip denote the p× p identity matrix. The vectorization of a p× q matrix M is defined as

vec(M) = [a11 . . . ap1 . . . a12 . . . ap2 . . . ap1 . . . apq]
T ∈ ℜpq.

and we denote its inverse by vec−1(m, p, q) where m is a vector in ℜpq.

2.1 Dual Kronecker products structure

We first discuss the special case of Eq. (2) with d = 1, i.e., given a collection of matrix-variate

predictors {Xi}ni=1 ⊂ ℜq1×q2 and matrix-variate responses {Yi}ni=1 ⊂ ℜp1×p2 , we consider the bi-

linear model of the form

Yi = β1Xiβ
⊤
2 + Ei, i ∈ [n] (3)

where β1 ∈ ℜp1×q1 and β2 ∈ ℜp2×q2 are the unknown regression coefficients and Ei are unobserved

noise matrices. Under this model each column (resp. row) of Yi is a noisy perturbation of some
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linear combination of the columns of β1 (resp. rows of β⊤
2 ). Recall that Eq. (3) can be rewritten

in vectors form as

vec⊤(Yi) = vec⊤(Xi)(β
⊤
2 ⊗ β⊤

1 ) + vec⊤(Ei), i ∈ [n] (4)

and thus, by collecting all the vec⊤(Yi) into a matrix and letting ν = β2 ⊗ β1, leads to the linear

regression model

Y = X νT + E (5)

where Y and E are n×p1p2 matrices whose rows are the vec⊤(Yi) and vec⊤(Ei) respectively while

the design matrix X ∈ ℜn×q1q2 has rows vec⊤(Xi). Several variants of formulation in Eq. (4)

and Eq. (5) have been discussed in the literature; see e.g., Zhao and Leng (2014) for the case of

p1 = p2 = 1 and Kong et al. (2019) for the case of q1 = q2 = 1 and ν being low-rank. Here Eq. (5)

assumes that the mean coefficient ν admits a Kronecker product representation of β2 and β1.

Without the Kronecker product factorization, ν can be easily overparameterized with O(p1p2q1q2)

elements to be estimated. While ν is identifiable, is parametrization in terms of β1 and β2 is only

identifiable up to a constant, i.e., β2 ⊗ β1 = cβ2 ⊗ c−1β1 for any non-zero constant c.

As we allude to in the introduction, the bi-linear model in Eq. (3) had been studied previously

in Ding and Cook (2016) and we now describe the pertinent details of this work in the context

of the current paper. Denote the covariance matrix of Ei as Σvec(E). Ding and Cook (2016) then

assume that Σvec(E) can be decomposed as Σvec(E) = Σ2 ⊗ Σ1; here Σ1 and Σ2 represent the

covariance matrix for the rows and and columns of Yi respectively, i.e.,

Σ1 = E
{
(Y1 − E(Y1))(Y1 − E(Y1))

T
}
, Σ2 = E

{
(Y1 − E(Y1))

T (Y1 − E(Y1))
}

(6)

The above structure for Σvec(E) is quite natural for longitudinal data wherein each subject is mea-

sured repeatedly over two different domains. For example the rows of Yi can record measurements

over time while the columns of Yi record different covariates. Given Eq. (6), the number of pa-

rameters in Σvec(E) is then reduced drasticically from O(p21p22) to O(p21 + p22). This in turn allows

the dimension p1 and p2 to possibly outgrow the sample size n, i.e., n≪ min{p1, p2}.

Ding and Cook (2016) then consider MLE estimation of β1, β2,Σ1,Σ2 by further assuming that

the Ei follows the matrix normal distribution, i.e., vec(Ei) ∼ N (0,Σvec(E)); for more on the matrix

normal distribution see De Waal (1985); Gupta and Nagar (1999) and the references therein. With
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the above Kronecker product structure for the mean and covariance of Yi, the log-likelihood of

{Yi} given {Xi} is (ignoring unimportant constants)

2ℓ({Yi}; θ) = −np1 ln |Σ1| − np2 ln |Σ2| −
n∑
i=1

tr
{
Σ−1

2 (Yi − β1Xiβ
⊤
2 )

TΣ−1
1 (Yi − β1Xiβ

⊤
2 )

}
(7)

where θ = (β1, β2,Σ1,Σ2). Let θ̂ denote the MLE of θ from Eq. (7). As there are no closed-form

expression θ̂, Ding and Cook (2016) proposed a two-stage iterative algorithm for finding θ̂ that is

motivated by earlier work of Dutilleul (1999). More specifically the algorithm sequentially updates

either the row parameters (β1,Σ1) or the column parameters (β2,Σ2), with the remaining param-

eters hold fixed. While the dual Kronecker product structure and the resulting MLE procedure

provides a convenient way to model both the mean and covariance of the rows (and columns)

simultaneously, there are nevertheless two major concerns regarding this approach. Firstly the

MLE procedure is guaranteed to converge only to a stationary point but not necessarily a global

optimum. Secondly, the update for (β1,Σ1) (resp. (β2,Σ2)) require inverting Σ2 (resp. Σ1) and

thus each updates involve possibly O(n(p21p2 + p1p
2
2)) flops, which is computationally prohibitive

for moderate and/or large values of p1 and p2. In light of the above drawbacks we propose in

Section 2.2 a more computationally efficient procedure which estimates only β1 and β2 but not

Σ1,Σ2 or Cov[vec(Yi)].

2.2 Kronecker products factorization and low-rank approximation

If we assume a high-dimensional setting where the sample size n is small or comparable to the

dimensions min{p1, p2} of the response then it is generally the case that we can not estimate

Cov(Yi) to any reasonable degree of accuracy. One simple and intuitive remedy to this issue is to

ignore the structure in Cov(Yi) and instead focus our effort on estimating ν.

Our starting point is the observation that although the OLS estimate ν̃ = [(X⊤X )−1X⊤Y ]⊤ is

a simple and elegant estimate of ν, it does not share the same Kronecker product structure as that

for ν = (β2 ⊗ β1). It is thus natural to consider projecting ν̃ onto the set formed by Kronecker

products of matrices with appropriate dimensions. In particular let p1, q1, p2, q2 be positive integers

and M be a matrix of dimensions p1p2 × q1q2. The nearest Kronecker product approximation to
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M with respect to the dimensions {pi, qi} is defined as

argmin
β1∈ℜp1×q1 ,β2∈ℜp2×q2

∥M − β2 ⊗ β1∥2F . (8)

Van Loan and Pitsianis (1993) showed that Eq. (8) has a closed-form solution given by the trun-

cated SVD of a rearranged version of M . More specifically first partition M into smaller matrices

Mij ∈ ℜp1×q1 for 1 ≤ i ≤ p2 and 1 ≤ j ≤ q2, i.e.,

M =


M11 M12 · · · M1q2

M21 M22 · · · M2q2

...
...

. . .
...

Mp21 Mp22 · · · Mp2q2 .

 (9)

Next define the rearrangement operation R(·) : ℜp1p2×q1q2 → ℜp2q2×p1q1 by

R(M) =


A1

A2

. . .

Aq2

 , Aj =


vec(M1j)

⊤

vec(M2j)
⊤

. . .

vec(Mp2j)
⊤

 . (10)

We emphasize that R(M) and M generally have different dimensions. In particular, if p1 ≍ p2,

q1 ≍ q2 and qi ≪ pi then M is a tall matrix but the dimensions of R(M) are comparable. The

solution of Eq. (8) is then equivalent to finding the closest rank-1 representation of R(M), i.e.,

min
β1,β2
∥M − β2 ⊗ β1∥F = min

β1,β2
∥R(M)− vec(β2)vec(β1)

⊤∥F (11)

and thus, by the Eckart-Young-Mirsky theorem (Eckart and Young, 1936), we can take β1 =

σ
1/2
1 vec−1(V1, p1, q1) and β2 = σ

1/2
1 vec−1(U1, p2, q2) where σ1,U1 and V1 are the leading singular

values and (left and right) singular vectors of R(M), respectively. See Van Loan and Pitsianis

(1993) for more details. In summary if we assume a Kronecker product structure for the regression

coefficient ν in Eq. (5) then our estimate for ν, β1 and β2 is given by

Step 1: Let ν̃ ← [(X⊤X )−1X⊤Y ]⊤ ∈ ℜp1p2×q1q2 be the OLS estimate of ν and let R(ν̃) be its

Pitsianis-Van Loan rearrangement; see Eq. (10).

Step 2: Compute the SVD R(ν̃) =
∑r

k=1 σ̂k ÛkV̂⊤
k with σ̂1 ≥ · · · ≥ σ̂r and r ≤ min{p1q1, p2q2}.
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Step 3: Let vec(β̂2) = σ̂
1/2
1 Û1 and vec(β̂1) = σ̂

1/2
1 V̂1

Step 4: Output the estimate ν̂ ← β̂2 ⊗ β̂1 for ν.

We emphasize that, despite the close connection between Kronecker products approximation and

low-rank approximations described in Eq. (11), the assumption of a Kronecker factorization for ν

is quite different from the assumption that ν is low-rank. Indeed, the rank of ν can be as large as

q1q2 (assuming p1p2 ≥ q1q2) even when R(ν) is a rank-1 matrix. This difference distinguishes our

work from those which introduce penalty terms to induce low-rank structure on ν directly; see

e.g., Kong et al. (2019); Wang et al. (2021); Feng et al. (2021) for recent examples of this latter

approach. We now consider a simple simulation study to further illustrate this distinction.

Example. We set the dimensions of Yi and Xi as p1 = p2 = q1 = q2 = 10. We then generate

n = 3000 samples of the {(Xi, Yi)} pair according to the model Yi = β1Xiβ
⊤
2 + Ei where the

{Xi} are iid random vectors with vec(Xi) ∼ N (0, I) and the vec(Ei) are also iid random vectors

with vec(Ei) ∼ N (0, I). Given the {(Xi, Yi)} we first compute the OLS estimate ν̃ and its

rearranged version R(ν̃). Next define, for a matrix M and an integer k ≥ 1, the function fk(M) =

(
∑k

i=1 σi(M))/∥M∥∗ corresponding to the (normalized) sum of the k largest singular values of M ;

here ∥M∥∗ denotes the nuclear norm of M . We then compute, for each k ∈ [100], the quantity

fk(ν̃) and fk(R(ν̃)). Finally we repeat the above steps for 1000 Monte Carlo replicates. We note

that the β1 and β2 are fixed constants and do not vary with the Monte Carlo replicates.

Figure 1 plots the (normalized) cumulative sum of the first k singular values of ν̃ and R(ν̃) for

k varying in {1, 2, . . . , 100}; note that fk(ν̃) = fk(R(ν̃)) = 1 when k = 100. From Figure 1 we see

that the largest singular value of R(ν̃) accounts for, on average, roughly 87% of ∥R(ν̃)∥∗ and thus

a rank-1 approximation of R(ν̃) is expected to preserve most of the information in R(ν̃) while also

removing the noise from the small singular values in R(ν̃). In contrast the largest singular value of

ν̃ only explains 5% of ∥ν̃∥∗ and thus computing ν̂ using low-rank approximations to ν̃ is possibly

problematic.

2.3 KRO-PRO-FAC algorithm

A natural extension of the optimization problem in Eq. (8) is to approximate a matrix ν using

a sum of d Kronecker products which, by the above discussions, can be related to the sum of d
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Figure 1: cumulative singular value (averaged over 1000 replications) for (a) the OLS estimate ν̃

and (b) the rearranged estimate R(ν̃)

rank-1 matrices via

argmin
{(β1k,β2k)}

∥ν −
d∑

k=1

β2k ⊗ β1k∥F = argmin
{(β1k,β2k)}

∥R(ν)−
d∑

k=1

vec(β2k)vec(β1k)
⊤∥F . (12)

A solution of Eq. (12) is then once again given by the truncated SVD of R(ν). Eq. (12) furthermore

suggests a more general version of the regression problem in Eq. (3), namely that

Yi =
d∑

k=1

β1kXiβ
⊤
2k + Ei, i ∈ [n] (13)

with d≪ n≪ min{p1q1, p2q2}. Eq. (13) can be rewritten as

Y = X νT + E , ν =
d∑

k=1

β2k ⊗ β1k. (14)

Here we refer to d in Eq. (14), as the Kronecker product rank of ν. For ease of exposition (and with-

out loss of generality) we shall assume that the {β1k, β2k} are orthogonal, i.e., vec(β1s)
⊤
vec(β1t) =

vec(β2s)
⊤
vec(β2t) = 0 for all s ̸= t and ∥β1s∥F = ∥β2s∥F .
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Our estimate for ν and {β1k, β2k} proceeds in an analogous manner to that described in Sec-

tion 2.2. In particular we first compute the OLS estimate ν̃ = [(X⊤X )−1X⊤Y ]⊤, then rearrange ν̃

to obtain R(ν̃), and finally compute the truncated SVD of R(ν̃) to keep only the d largest singular

values and singular vectors. We termed this procedure as the KRO-PRO-FAC (Kronecker product

factorization) estimate of ν. See Algorithm 1 for a more formal descriptions. As the Kronecker

product rank d of ν is generally unknown, we estimate it using the ratio of singular values as

described in Lam and Yao (2012) and Ahn and Horenstein (2013), i.e., we estimate d by

d̂ = argmax
j∈{1,...,d̄}

σ̂j/σ̂j+1 (15)

where d̄ is a pre-specified constant and σ̂k’s are the singular values of R(ν̃) in a descending order.

The computational complexity of the KRO-PRO-FAC algorithm is O(p1p2q1q2min{p1q1, p2q2})

with the main computational bottleneck being the SVD of R(ν̃). If d is either known or is

estimated to be much smaller than the dimensions of R(ν̃) then the cost of the SVD step reduces

to O(p1p2q1q2d) flops by using either Lanczos bidiagonalization and/or randomized SVD, see e.g.,

Halko et al. (2011); Musco and Musco (2015); Tropp et al. (2017) and the references therein. Hence

the complexity for the full algorithm itself drops to O(np1p2q1q2). In contrast, any algorithm that

involves estimating the covariance matrices for the rows and/or columns will requires at least

O(n(p21p2 + p1p
2
2)) flops which is an enormous computational burden for large values of p1 and/or

p2.

Remark 1. We note that even if ν does not have the form as specified in Eq. (13) it can nev-

ertheless be well-approximated by a sum of Kronecker products. Kronecker products provide a

computational efficient building block for approximating large matrices in numerical linear alge-

bra application. See Beylkin and Mohlenkamp (2002); De Lathauwer et al. (2000); Tyrtyshnikov

(2004) for some general theory and see (Kamm and Nagy, 1998; Nagy, 1996; Werner et al., 2008;

Greenewald and Hero, 2015) for specific examples in image restoration and covariance estimation.

We emphasize that if M is a p1p2 × q1q2 matrix with p1p2 ≫ q1q2 then a rank d SVD of M will

require computing left singular vectors of length p1p2 while its Kronecker product factorization

only require computing factors of dimensions p1 × q1 and p2 × q2.

Remark 2. We note that Kronecker products factorization also featured prominently in the work

of Cai et al. (2019) but their research question is susbtantially different from that considered in the
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current paper. In particular our setting is that of linear regression where the goal is to estimate

the factorization (β1, β2) of ν given both the responses {Yi} and feature vectors {Xi}, i.e., our

estimation of (β1, β2) is a supervised learning problem. In contrast Cai et al. (2019) uses Kronecker

product approximation to perform dimension reduction of the {Yi} without observing any {Xi},

i.e., they are considering an unsupervised learning problem.

Algorithm 1: KRO-PRO-FAC algorithm

Input: Y , X and (p2, q2), (p1, q1), d̄

Output: (β̂1k, β̂2k)

1 Compute the OLS estimate ν̃ ← [(X⊤X )−1X⊤Y ]⊤.

2 Rearrange ν̃ to get R(ν̃) by Eq. (10).

3 Perform SVD on R(ν̃), i.e., R(ν̃) =
∑d̄

k=1 σ̂k ÛkV̂⊤
k with σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂d̄.

4 Estimate d by d̂ = argmaxj∈{1,...,d̄} σ̂j/σ̂j+1

5 Set vec(β̂2k) = σ̂
1/2
k Ûk and vec(β̂1k) = σ̂

1/2
k V̂k.

6 Output ν̂ ←
∑d̂

k=1 β̂2k ⊗ β̂1k

3 Theoretical Results

We now study large-sample and/or asymptotic results for the estimates of {β1k, β2k} obtained by

the KRO-PRO-FAC algorithm. Recall that, from our earlier discussions in Section 2, the rear-

ranged OLS estimateR(ν̃) can be viewed as a sum of rank-1 matricesR(ν) =
∑d

k=1 vec(β2k)vec(β1k)
⊤

additively perturbed by the noise matrix R(Ẽ) where Ẽ = [(X⊤X )−1X⊤E ]⊤. Therefore, if ∥Ẽ∥ is

sufficiently small compared to ∥R(ν)∥, then we can apply classical results in matrix perturbation

theory such as the sin-Θ theorem (Wedin, 1972) to show that the leading singular vectors of R(ν̃)

are “close” to the vec(β1k) and vec(β2k).

We now make the above description precise. Let R(ν) be a rank d matrix for some fixed

constant d not depending on p1, p2 and n. Denote the SVD of R(ν) by R(ν) = UDV⊤ where

D = diag(σk) is a d × d diagonal matrix of singular values, V = (V1, . . . ,Vd) is a p1q1 × d

orthonormal matrix of right singular vectors and U = (U1, . . . ,Ud) is a p2q2×d orthonormal matrix

of left singular vectors. Next let ÛD̂V̂⊤ denote the truncated SVD corresponding to the d largest
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singular values and singular vectors of R(ν̃). We first make an assumption on the relationship

between the matrix dimensions p1, p2, q1, q2 and the sample size n as well as the growth rate for

the singular values of R(ν).

Condition 1. Let p1, p2, q1, q2 and n satisfy

q1
q2

= Θ(1),
p1
p2

= Θ(1), q1q2 ≪ n, ln pi = o(n), i = 1, 2.

Furthermore, for sufficiently large p1, p2, assume that the singular values of R(ν) satisfy

σk = O(p1), i = 1, 2, . . . , d

Condition 1 implies that R(ν) have bounded condition number.

We next recall the notion of a sub-Gaussian random vector

Definition 1. Let Z be a mean zero random variable. Then Z is said to be sub-Gaussian with

variance proxy σ2 if, for all t > 0 we have

P(|Z| > t) ≤ 2 exp
(
− t2

2σ2

)
. (16)

In other words, the tail probability of Z behaves similarly to that of a Gaussian distribution

with variance σ2. A mean zero random vector Z ∈ ℜp is then said to be a sub-Gaussian random

vector with covariance proxy Σ if w⊤Z is sub-Gaussian with variance proxy w⊤Σw for all w ∈ ℜp.

See Section 2.5 and Section 3.4 of Vershynin (2018) for further discussion and characterizations of

sub-Gaussian random vectors.

Now let {ξ1, . . . , ξn} be iid mean zero sub-Gaussian random vectors in ℜp1p2 with covariance

proxy I where I is the p1p2 × p1p2 identity matrix. We shall assume that the noise matrices Ei

are of the form

vec(Ei) = Σ
1/2
vec(E) ξi, i ∈ [n] (17)

for some p1p2 × p1p2 positive definite matrix Σ
1/2
vec(E) satisfying the following condition.

Condition 2. Σvec(E) is a block diagonal matrix , i.e., Σvec(E) = diag(Σ1,Σ2, . . . ,Σp2) where each

diagonal block is of size p1 × p1. Furthermore there exists a positive constant C independent of p1,

p2 and n such that

max
k∈[p2]

max
s∈[p1]

Σk(s, s) ≤ C. (18)

where Σk(s, t) is the (s, t) entry of Σk.
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Remark 3. We note that the block diagonal structure posited in Assumption 2 is different from

and arguably more flexible than assuming a Kronecker product structure for Σvec(E). More specif-

ically an arbitrary Σvec(E) has O(p21p
2
2) parameters. If Σvec(E) can be factored into the Kronecker

product of a p1 × p1 matrix and a p2 × p2 matrix then the number of parameters is reduced dras-

tically to O(p21 + p22) parameters. It was noted in Barratt (2018) that O(p21 + p22) parameters is

potentially too few as it preclude the use of some common matrix-variate Gaussian distribution to

model Σvec(E). In contrast, under Assumption (2), Σvec(E) has O(p2p
2
1) parameters. If p1 ≍ p2 ≍ p

then the above three scenarios correspond to O(p4), O(p2) and O(p3) parameters, respectively.

Finally we note that Assumption 2 is satisfied whenever the columns of Ei are uncorrelated. A

similar condition can be formulated for the case when the rows of Ei are uncorrelated. These

conditions are milder than assuming that the entries of Ei are mutually independent as is done in

Obozinski et al. (2011); Negahban and Wainwright (2011); Bunea et al. (2012); Bing and Wegkamp

(2019); Zou et al. (2020).

With the above assumptions in place, we now state our theoretical results for bounding the

estimation error between Û (resp. V̂) and U (resp. V). These errors are stated in terms of the

sin-Θ distance between linear subspaces, i.e., given two orthonormal matrices W1 and W2 the

sin-Θ distance between the linear subspaces spanned by W1 and W2 is defined as

∥ sinΘ (W1,W2)∥ =
√

1− σ2
min(W1,W2). (19)

where σmin(W1,W2) is the minimum singular value of W⊤
1 W2.

Theorem 1. Let {(Xi, Yi)} satisfy the linear model in Eq. (13) for some fixed d ≥ 1 not depending

on n and suppose that Condition 1 and 2 holds. Then there exists a constant C > 0 such that,

with probability at least 1− n−3, the following holds simultaneously,

|σ̂k − σk| ≤ C q1q2max
k∈p2

max
s∈[p1]

Σk(s, s)

√
p1 +

√
p2 + ln p1 + ln p2√

n
, (20)

max{∥sinΘ (U , Û)∥, ∥sinΘ (V , V̂)∥} ≤ C q1q2max
k∈p2

max
s∈[p1]

Σk(s, s)

√
p1 +

√
p2 + ln p1 + ln p2√
np1p2

. (21)

Theorem 1 implies the following upper bound for the error of ν̂ =
∑d

k=1 β̂2k⊗β̂1k as an estimate

for ν =
∑d

k=1 β2k ⊗ β1k. In particular the relative error of ν̂ − ν converges to 0 as p1, p2 and n

diverge and thus ν̂ is a consistent estimate for ν.
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Corollary 1. Suppose p1 = p2 = p and consider the setting in Theorem 1. Then there exists a

constant C > 0 such that with probability at least 1− n−3,

∥ν̂ − ν∥F
∥ν∥F

≤ C
√
np

. (22)

4 Numerical experiments

We evaluate the numerical performance of the KRO-PRO-FAC algorithm through a few simulation

studies and real data analysis.

4.1 Simulation studies

For the simulation experiments we set the dimensions of Yi and Xi to be p1 = p2 = 500 and

q1 = q2 = 2 while the sample size n is chosen in {200, 400, 1000, 2000, 3000}. For ease of exposition

we only consider the special case of Eq. (13) with d = 1, and thus ν = β2⊗β1 where β1 and β2 are

500 × 2 matrices. We first generate vec(β1) from the standard multivariate normal distribution

on ℜ1000 and similarly for vec(β2); note that neither β1 nor β2 are expected to be sparse and

furthermore the estimation of these βk when n = 200 or n = 400 falls within the setting of

regression with high-dimensional responses. We then generate X1, X2, . . . , Xn where the vec(Xi)

are iid standard multivariate normals in ℜ4.

Given the {Xi} we then consider the following 4 different models for the random noises {Ei}.

The first three models corresponds to vec(Ei) ∈ ℜ25000 that are multivariate normals while the last

model corresponds to vec(Ei) with entries independently sampled from Student’s t distribution

with 5 degrees of freedom. The entries of Ei for Model 4 have heavier tails compared to that for

Models 1–3.

Model 1: Identity covariance: Σvec(E) = Ip1p2×p1p2 and vec(Ei)’s are generated independently

from the standard multivariate normal distribution.

Model 2: Banded covariance: Σvec(E) = LL⊤ where L is a lower triangular banded matrix in

ℜp1p2×p2p2 with Lij = 0 for i < j or i − j > b. The bandwidth b is set to 5 and the

diagonal elements are generated from N (3, 1) and the non-zero off-diagonal elements

are generated from N (0, 1). L is fixed over the 100 replications.
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Model 3: AR(1): Σvec(E) = (ρ|i−j|)p1p2×p1p2 with ρ = 0.9. Here we generate vec(E1), . . . , vec(En)

based on Matlab codes from arima.

Model 4: Heavy-tailed : Σvec(E) is proportional to Ip1p2×p1p2 and the entries of vec(Ei)’s are ran-

dom samples from the Student’s t-distribution with 5 degrees of freedom.

For each choice of the noise model for Ei we then generate {Yi} according to Eq. (3) and then

estimate ν̂ based on the {Xi, Yi} using the KRO-PRO-FAC algorithm. For illustrative comparisons

we considered, in addition to the default described in Algorithm 1, two other variants which

performs rank regularization of either the responses or the OLS estimate. More specifically the

first variant uses, instead of the observed Yi, its truncated rank−α SVD Y
(α)
i for estimating ν. We

termed this variant as KRO-PRO-FAC (α) and note that it is motivated by the fact that while Yi

is, with probability 1 full rank, E[Yi] = β1Xiβ
⊤
2 is low-rank for all i and thus a rank-regularized

version of the {Yi} might lead to better estimate of ν. The second variant also performs rank

regularization, but on the OLS estimate ν̃ as opposed to the responses {Yi}. Letting ν̃(γ) be the

truncated rank−γ SVD of ν̃ we then perform the remaining steps of Algorithm 1 with ν̃(γ) in place

of ν̃. We termed this variant as rdu-rank-KRO (γ) and note that it is motivated by the notion of

reduced-rank-regression in Izenman (1975). For this simulation we chose α = γ = 2.

Finally we also estimate ν using the MLE based procedure described in Ding and Cook (2016).

Recall that this MLE based approach posits both a Kronecer product structure for both the re-

gression coefficient ν and the covariance matrix of vec(Ei). We use the implementation from is

based on R codes from MatrixEnv and denote the resulting estimates as dual-KRO-MLE. Table 1

summarizes some key differences between the 4 methods described above. For numerical compar-

isons we evaluate the relative errors ∥ν̂− ν∥F/∥ν∥F for each methods and averaged these over 100

independent Monte Carlo replicates. The results are presented in Table 2 through Table 5 for the

four noise models described above.

For Model 1 we see from Table 2 that both the KRO-PRO-FAC and KRO-PRO-FAC (α)

method have the smallest estimation error. The dual-KRO-MLE estimate is substantially less

accurate compared to that of KRO-PRO-FAC and KRO-PRO-FAC (α) especially when the sample

size is small, e.g., n = 200 or n = 400. This is in a sense expected as the entries of Ei are iid and

thus there are few if any benefits in estimating and/or incorporating the covariance structure of

{Yi}. Finally, the rdu-rank-KRO (γ) method has the highest estimation error and this observation
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Table 1: Method Comparison

method data ν estimation Kronecker structure on

KRO-PRO-FAC Yi OLS mean

KRO-PRO-FAC (α) rank−α Y
(α)
i OLS mean

rdu-rank-KRO (γ) Yi rank−γ OLS ν̃(γ) mean

dual-KRO-MLE Yi column & row separate estimates mean & covariance

Table 2: Average relative estimation error (%) under the identity covariance (Model 1)

∥ν̂ − ν∥F/∥ν∥F
sample size (n)

200 400 1000 2000 3000

KRO-PRO-FAC 0.339 0.237 0.151 0.106 0.087

KRO-PRO-FAC (α = 2) 0.339 0.238 0.151 0.106 0.087

rdu-rank-KRO (γ = 2) 63.998 63.998 63.997 63.997 63.997

dual-KRO-MLE 76.938 52.702 20.721 8.377 6.563

also extends to the results for Model 2 through 4 as presented in Table 3 through Table 5 This is

once again expected as, recalling the earlier discussions in Example 2.2, the Kronecker structure

in the regression coefficient ν is fundamentally different from assuming ν to be low-rank. In other

words imposing rank constraints on ν̃ only leads to information loss due to model misspecification.

For Model 2 we see from Table 3 that the KRO-PRO-FAC algorithm has the smallest estimation

error with the KRO-PRO-FAC (α) variant being slightly worse. The estimate obtained from the

Table 3: Average relative estimation error (%) under the banded covariance with a bandwidth

b = 5 (Model 2)

∥ν̂ − ν∥F/∥ν∥F
sample size (n)

200 400 1000 2000 3000

KRO-PRO-FAC 1.508 1.059 0.666 0.472 0.385

KRO-PRO-FAC (α = 2) 1.552 1.116 0.746 0.576 0.506

rdu-rank-KRO (γ = 2) 63.963 63.997 63.999 63.998 63.998

dual-KRO-MLE 38.934 19.116 7.211 2.292 2.418
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Table 4: Average relative estimation error (%) under the AR(1) setting with ρ = 0.9 (Model 3)

∥ν̂ − ν∥F/∥ν∥F
sample size (n)

200 400 1000 2000 3000

KRO-PRO-FAC 0.351 0.247 0.157 0.110 0.090

KRO-PRO-FAC (α = 2) 0.512 0.440 0.391 0.373 0.371

rdu-rank-KRO (γ = 2) 63.998 63.998 63.997 63.997 63.997

dual-KRO-MLE 0.250 0.177 0.113 0.079 0.064

Table 5: Average relative estimation error (%) under the Student’s t-distribution with 5 degrees

of freedom (Model 4)

∥ν̂ − ν∥F/∥ν∥F
sample size (n)

200 400 1000 2000 3000

KRO-PRO-FAC 0.439 0.308 0.194 0.137 0.112

KRO-PRO-FAC (α = 2) 0.440 0.308 0.195 0.137 0.113

rdu-rank-KRO (γ = 2) 63.998 63.998 63.997 63.997 63.997

dual-KRO-MLE 69.049 39.734 12.677 7.141 5.010

17



dual-KRO-MLE algorithm is noticably worse compared to both the KRO-PRO-FAC and KRO-

PRO-FAC (α) and furthermore appeared to be sensitive to the sample size n, i.e., its estimation

error is much larger than its competitors when n = 200 or n = 400. We note that for this Model

2, 90% of the non-zero correlations in Σvec(E) have absolute value less than 0.5, which suggests

either weak or mild dependence among rows and columns in vec(Yi).

For Model 3 we see from Table 4 that the dual-KRO-MLE algorithm yields the most accurate

estimates with errors that are slightly smaller than that of KRO-PRO-FAC and KRO-PRO-FAC

(α) methods. There is thus value in joint modeling of the mean ν and the covariance structure

for the {Yi}. Note, however, that the KRO-PRO-FAC algorithm is much less computationally

demanding compared to dual-KRO-MLE.

Finally, for Model 4 we see from Table 5 that the KRO-PRO-FAC algorithm outperforms all

of its competitors. In particular it is slightly better than KRO-PRO-FAC(α) and is much better

than dual-KRO-MLE. These results are similar to that in Table 2 and one possible explanation

for this similarity is that both models induce the same covariance structure for {Yi}.

4.2 Real data analysis

We now apply the KRO-PRO-FAC algorithm to the electroencephacology (EEG) dataset from

the UC Irvine Machine Learning Repository. The data arises from a study of EEG measurements

related to alcoholoism in which there are 122 subjects from either the alcoholic group (77 subjects)

or the control group (45 subjects). For each subject a series of voltage measurements is made at

256 different time points from 64 different regions of the scalp, i.e., the EEG response for the

ith subject in the jth group (with j = 1 and j = 2 denoting the alcoholic and control) can be

viewed as a matrix Yij with 256 rows and 64 columns. A key research question for this dataset is to

identify which of the 64 brain channel accounts for most of the differences in voltages measurements

between the two groups.

To answer the above inquiry we partition the data according to the subject grouping and fit

a bi-linear model of the form Eq (13) to each group. As the EEG dataset contains no other

covariates, this lead to a model of the form

vec(Yij) =
( d(j)∑
k=1

β
(j)
2k ⊗ β

(j)
1k

)
+ vec(Eij), i ∈ [nj], j = 1, 2 (23)
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where β
(j)
2k ∈ ℜ64×1 and β

(j)
1k ∈ ℜ256×1. In other words, the mean response ν(j) = E[vec(Yij)] for

the jth group is a sum of d(j) Kronecker products and thus ν(1) − ν(2) is the effect of alcoholism

(when compared to the control group) on the voltage measurements. We emphasize that the

number of Kronecker factors d(j) are possibly different between the two groups. We apply the

KRO-PRO-FAC algorithm to these {Yij} with d(1) = 2 and d(2) = 3 chosen via the singular value

ratio criterion as described in Eq. (15). Let ν̂(1) =
∑2

k=1 β̂
(1)
2k ⊗ β̂

(1)
1k and ν̂(2) =

∑2
k=1 β̂

(2)
2k ⊗ β̂

(2)
1k be

the resulting estimates of ν(1) and ν(2).

Given these ν̂(1) and ν̂(2) we then follow the same post-processing steps described in Ding

and Cook (2016) for multiple testing among the brain locations. Firsly, we isolate the alcoholism

effects of each channel by averaging out the time effects ν̂(1)− ν̂(2), ie., we take the column means

of the vec−1(ν̂(1) − ν̂(2), 256, 64) where vec−1(·, 256, 64) yields a matrix of dimensions 256 × 64.

This yields in a vector θ̂ ∈ ℜ64 which we then conduct multiple t-test for the null hypothesis

that H0 : θi = 0 and compute the resulting p-values. Finally we apply the Benjamini–Yekutieli

procedure (Benjamini and Yekutieli, 2001) to adjust these p-values.

The left panel of Figure 2 reports these adjusted p-values (on a log10 scale). For comparisons

we also repeat the same post-processing analysis but replaced the estimates ν̂(1) and ν̂(2) by the

the OLS estimate Ȳ (1) = n−1
1

∑
i∈n1

Yi1 and Ȳ (2) = n−1
2

∑
i∈n2

Yi2 and present the adjusted p-values

for these OLS estimates in the right panel of Figure 2. Figure 2 indicates that, for a significant

level of 0.05, the KRO-PRO-FAC estimates lead to the detectation of 20 possibly relevant channels

while the OLS estimates detect only 3 possibly relevant channels. We note that Li and Zhang

(2017); Ding and Cook (2016) also analyzed the same data set and their estimates detect 24 and

26 possibly relevant channels, respectively. Our detections using the KRO-PRO-FAC estimates

are thus comparable with those from Li and Zhang (2017); Ding and Cook (2016); indeed they all

detected the regions from 21 to 25, from 44 to 52 and from 57 and 62. The main benefit of using

the KRO-PRO-FAC estimates is that they can be commputed efficiently and do not depend on

knowing or estimating Cov[vec(Yij)].

5 Conclusion

In this paper we consider matrix regression Yi =
∑

k β1kXiβ
⊤
2k+Ei where the responses Yi are high-

dimensional matrices and propose a computationally efficient procedure for estimating {β1k, β2k}
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Figure 2: Benjamini–Yekutieli adjusted p-values (on a scale of − log10) for 64 brain channels

obtained from the (a) Kronecker products estimates in Eq. (23) with d = 2 and d = 3 for the

alcoholic and control group (b) OLS estimates

20



based on the nearest Kronecker products approximation to the OLS estimate ν̂ of ν =
∑

k β2k ⊗

β1k. We now mention three potential directions for future research. The empirical results in

Section 4.1 show that the KRO-PRO-FAC procedure has smallest estimation error when the

noise entries for Ei are independent and is slightly worse than the dual-KRO-MLE procedure

of Ding and Cook (2016) when the noise of Ei are highly correlated. As the dual-KRO-MLE is

somewhat computationally demanding, it will be valuable to refine our KRO-PRO-FAC procedure

for handling highly dependent rows and columns without compromising its computation efficiency.

Secondly, the performance of the low-rank variant KRO-PRO-FAC (α) is also quite competitive

but its theoretical property is currently unaddressed. Finally, for many type of matrix data such

as those arising in image analysis, the ordering of the rows and columns for these matrices are

based on latent but important features. For example, pixels’ intensities in an image usually

exhibit some continuity in both vertical and horizontal directions. How to meaningfully extract

these latent features and incorporate them into the matrix regression problem is an open and

interesting research question.
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Appendix A: Proofs of Stated Results

A.1 Proof of Theorem 1

For convenience of notation, we take

(X⊤X )−1X⊤︸ ︷︷ ︸
q1q2×n

=
[
C1, C2, . . . , Cq1q2

]⊤
, C1, C2, . . . , Cq1q2 ∈ ℜn (24)

E︸︷︷︸
n×p1p2

=


vec(E1)

⊤

...

vec(En)
⊤

 =
[
D1,D2, . . . ,Dp1p2

]
=

[
F1,F2, . . . ,Fp1p2

]
Σ

1/2
vec(E) (25)

where D1,D2 · · · Dp1p2 ∈ ℜn and F1,F2 · · · Fp1p2 ∈ ℜn with Fs = (ξ1s, . . . , ξns)
⊤ being independent

with independent entries.

Set ∆ =
[
(X⊤X )−1X⊤E)

]⊤
and recall that R(ν) =

∑d
k=1 vec(β2k)vec(β1k)

⊤ =
∑d

k=1 σk UkV⊤
k .

We then have

R(ν̂) =
d∑

k=1

σk UkV⊤
k +R(∆)

By Weyl’s inequality (Problem III.6.13 in Bhatia (2013)) and Wedin sin-Θ (Wedin, 1972) theorem

we have

|σ̂k − σk| ≤
∥∥R(∆)

∥∥ (26)

∥sinΘ (U1, Û1)∥2, ∥sinΘ (V1, V̂1)∥2 ≤
min{∥Û⊤

1 R(∆)∥2, ∥R(∆)V̂1∥2}
σ̂d

≤ ∥R(∆)∥2
σ̂d

(27)
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It thus suffices to bound the spectral norm of R(∆). First note that R(∆) can be written as a

block matrix of the form

R(∆) =


∆̃11 ∆̃12 . . . ∆̃1q1

∆̃21 ∆̃22 . . . ∆̃2q1

...
...

. . .
...

∆̃q21 ∆̃q22 . . . ∆̃q2q1

 , ∆̃kℓ =


D⊤

1 C(k−1)q1+ℓ . . . D⊤
p1
C(k−1)q1+ℓ

D⊤
p1+1C(k−1)q1+ℓ . . . D⊤

2p1
C(k−1)q1+ℓ

...
. . .

...

D⊤
(p2−1)p1+1C(k−1)q2+ℓ . . . D⊤

p1p2
C(k−1)q1+ℓ


The matrix ∆̃kℓ can be further expressed as

∆̃kℓ =
[
Σ

1/2
1 ζ1 Σ

1/2
2 ζ2 . . . Σ

1/2
p2 ζp1

]
, ζs = [Fs,Fp1+s,F2p1+s, . . . ,F(p2−1)p1+s]

⊤C(k−1)q1+ℓ (28)

Note that for ease of exposition we had suppressed the dependency on k and ℓ in the notation for

ζs. This should cause minimal confusion as we can fix some arbitrary k and ℓ before proceeding

with the subsequent derivations.

We now derive a concentration inequality for ∥∆̃kℓ∥ using a standard ϵ-net argument.

Step 1: ϵ net Let ϵ = 1/4 and choose an ϵ netM of the sphere Sp2−1 and an ϵ net R of the

sphere Sp1−1. We have

|M| ≤ 9p2 , |R| ≤ 9p1

The spectral norm of ∆̃kℓ can then be bounded as

∥∆̃kℓ∥2 ≤ 2 max
x∈M,y∈R

⟨∆̃kℓx, y⟩

Step 2: Concentration Fix x ∈M and y ∈ R. We then have

⟨∆̃kℓx, y⟩ =
p2∑
i=1

xiζ
⊤
i Σ

1/2
i y =

p2∑
i=1

xi
[ p1∑
s=1

p1∑
k=1

Σ
1/2
i (k, s)ζikys

]
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Using properties of the Orlicz Ψ2-norm (see e.g., Proposition 2.6.1 in Vershynin (2018)) we have

∥⟨∆̃kℓx, y⟩∥2ψ2
≤C

p2∑
i=1

x2
i

∥∥ p1∑
s=1

p1∑
k=1

Σ
1/2
i (k, s)ζikys

∥∥2

ψ2

≤C
p2∑
i=1

x2
i

p1∑
s=1

y2s

p1∑
k=1

∥∥Σ1/2
i (k, s)ζik

∥∥2

ψ2

≤Cmax
i,k
∥ζik∥2ψ2

p2∑
i=1

x2
i

p1∑
s=1

y2s

p1∑
k=1

∣∣Σ1/2
i (k, s)

∣∣2
≤Cmax

i,k
∥ζik∥2ψ2

max
i∈[p2]

max
s∈[p1]

Σi(s, s)

≤C∥(X⊤X )−1X∥2max
i∈[m]

max
s∈[r]

Σi(s, s)

where the second to last inequality is because

p1∑
k=1

∣∣Σ1/2
i (k, s)

∣∣2 = p1∑
k=1

Σ
1/2
i (s, k)Σ

1/2
i (k, s) = Σi(s, s).

Let K = ∥(X⊤X )−1X∥ ×maxi∈[m] maxs∈[r] Σi(s, s). We therefore have, for all u ≥ 0, that

P (⟨∆̃kℓx, y⟩ ≥ u) ≤ 2 exp (−cu2/K2). (29)

Step 3: Union bound By union over theM and R, then with probability 1− 2 exp (−u2),

we have for any u > 0

∥∆̃kℓ∥ ≤ C∥(X⊤X )−1X∥2max
i∈[p2]

max
s∈[p1]

Σi(s, s)(
√
p2 +

√
p1 + u). (30)

This upper bound is independent of {k, ℓ} and since ∥R(∆)∥ ≤
∑q1

k=1

∑q2
ℓ=1∥∆̃kℓ∥, we obtain the

desired results in Theorem 1.

A.2 Proof of Corollary 1

We will continue to use the same notations as that in the proof of Theorem 1. Let P0 = UU⊤ and

P1 = VV⊤. Similarly, let P̂0 = Û Û⊤ and P̂1 = V̂V̂⊤. Note that these matrices are all of rank at

most d. As R(ν) = P0R(ν)P1, we have

P̂0R(ν̃)P̂1 −R(ν) = (P̂0 − P0)R(ν̃)P̂1 + P0R(ν̃)(P̂1 − P1) + P0R(∆)P1.

We therefore have

∥P̂0R(ν̃)P̂1 −R(ν)∥F ≤
√
d∥P̂0 − P0∥2 × ∥R(ν̃)∥2 +

√
d∥P̂1 − P1∥2 × ∥R(ν̃)∥2 +

√
d∥R(∆)∥2.
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Now ∥P̂0−P0∥2 ≤ 2∥ sinΘ(Û ,U)∥2 and similarly for ∥P̂1−P1∥2. Then from the conditions in

Assumption 1, we have

∥P̂0R(ν̃)P̂1 −R(ν)∥F ≤ 2
√
d∥ sinΘ(Û ,U)∥2 × (∥R(ν)∥2 + ∥R(∆)∥2) + ∥R(∆)∥2 = O(n−1/2p1/2)

Finally, as ν̂ and ν are the inverse rearrangement of P̂0R(ν̃)P̂1 and R(ν), respectively, we have

∥ν̂ − ν∥F
∥ν∥F

=
∥P̂0R(ν̃)P̂1 −R(ν)∥F

∥ν∥F
= O((np)−1/2)

as desired.
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