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Abstract— If robots are to work effectively alongside people,
they must be able to interpret natural language references to
objects in their 3D environment. Understanding 3D referring
expressions is challenging—it requires the ability to both parse
the 3D structure of the scene and correctly ground free-
form language in the presence of distraction and clutter. We
introduce Transcrib3D, an approach that brings together 3D
detection methods and the emergent reasoning capabilities of
large language models (LLMs). Transcrib3D uses text as the
unifying medium, which allows us to sidestep the need to
learn shared representations connecting multi-modal inputs,
which would require massive amounts of annotated 3D data.
As a demonstration of its effectiveness, Transcrib3D achieves
state-of-the-art results on 3D reference resolution benchmarks,
with a great leap in performance from previous multi-modality
baselines. To improve upon zero-shot performance and facilitate
local deployment on edge computers and robots, we propose
self-correction for fine-tuning that trains smaller models, re-
sulting in performance close to that of large models. We show
that our method enables a real robot to perform pick-and-place
tasks given queries that contain challenging referring expres-
sions. Code will be available at https://ripl.github.io/
Transcrib3D.

I. INTRODUCTION

Comprehending a natural language expression that men-
tions an object within a given environment is a routine
activity for humans. It often occurs as part of a question
(e.g., “Whose jacket is hanging on the black chair?”) or an
instruction (e.g., “Pass me the smaller yellow mug.”). This
capability is important for embodied agents that work with
humans to accomplish tasks. While humans excel in this
task with over 90% accuracy on existing benchmarks [1],
contemporary methods only achieve mediocre accuracy.
They typically rely on supervised learning, e.g., training a
Transformer module to obtain contextualized embeddings of
various modalities (i.e., text, image, and point-cloud), from
which the final prediction is made by a small decoder.

However, bridging different modalities in a latent space is
challenging. For instance, state-of-the-art 2D vision-language
understanding models like CLIP [2] require billions of
image-text pairs for training, yet still exhibiting a limited
grasp of compositional and relational concepts [3]. The
challenge intensifies in 3D domains, where annotated data is
much more scarce [4]. As a result, the capacity of existing
models to perform 3D reference resolution is limited.

On the contrary, philosophers such as Ludwig Wittgenstein

*Denotes equal contribution.

Fig. 1: The overall Transcrib3D framework, which takes as
input the colored point-cloud and referring expression (in
green), and outputs the ID or bounding box of the referent
object. To resolve the referring expression “the chair in the
corner of the room, between the white and yellow desks”,
the framework needs to locate the pillow in the green box,
while all other pillows in red boxes are distractors.

argue that our understanding of reality is confined by the
language we use, who famously stated, “The limits of my
language mean the limits of my world.” This concept under-
pins our approach, wherein we propose to employ text as the
unifying medium to bridge the gap between 3D scene parsing
and referential reasoning. This approach is grounded in real-
izing that the challenge of resolving 3D referring expressions
can be fundamentally divided into two components: detection
(identifying objects in the scene) and reasoning (associating
one of the candidates with the referring expression). By
harnessing text as a cohesive bridge, we can capitalize on
the recent advancements in 3D detection and the enhanced
natural language reasoning abilities offered by large language
models (LLMs) [5].

Specifically, from the results of an off-the-shelf 3D detec-
tor [6], Transcrib3D first converts the detected spatial and
semantic 3D scene information—the category, location, spa-
tial extent, and color of objects—into texts, thereby creating
an object-centric 3D scene transcript (hence the name of
our method, Transcrib3D). We then filter out non-relevant
objects in regard to the query (e.g., information about a trash
can is not relevant to the expression “the white pillow on top
of the chair and next to a blue pillow”). Subsequently, we
compose a prompt that incorporates the filtered 3D transcript
and the referring expression, and process it through an LLM-
based reasoning mechanism. The reasoning module incor-
porates three key elements to make LLMs more effective
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Fig. 2: Transcrib3D enables a robot to resolve complex 3D
referring expressions necessary to to follow pick-and-place
instructions. In this example, the robot is tasked with a nat-
ural language instruction that includes challenging referring
expressions “cover the toy duckie surrounded by the cups
with the black cup farthest from the shortest cup”.

and generalizable for the task: (1) Iterative code generation
and reasoning; (2) Principle-guided zero-shot prompting; and
(3) Fine-tuning from self-reasoned correction.

We evaluate our method on standard 3D referring ex-
pression resolution benchmarks, ReferIt3D [1] and ScanRe-
fer [7], achieving state-of-the-art performance on both. We
also perform real robot experiments (Fig. 2) that task a robot
manipulator with following natural language commands that
require sophisticated 3D spatial-semantic reasoning, demon-
strating the practicality of the method.

II. RELATED WORK

The problem of resolving 3D referring expressions has
garnered significant attention of late, in large part due to
the introduction of the ReferIt3D [1] and ScanRefer [7]
benchmarks. ReferIt3D contains two subsets: SR3D, which
consists of template-based utterances, and NR3D, which con-
sists of human-sourced free-form utterances. Contemporary
methods [8–11] perform 3D referring expression resolution
by aggregating different input modalities into contextualized
embeddings using Transformer architectures [12] in an end-
to-end fashion. MVT [8] projects 3D information into 2D
to achieve better feature encoding. BUTD-DETR [9] fine-
tunes detected 3D bounding boxes within the Transformer.
SAT [10] uses 2D semantics during training to learn a map-
ping from the query to its 3D grounding. HAM [11] presents
a hierarchical alignment model that learns multi-granularity
visual and linguistic representations. Different from these
methods, NS3D [13] proposes a neuro-symbolic framework
that utilizes a language-to-code model to generate programs,
where each module is represented by neural networks.
D3Net [14] and 3DJCG [15] jointly learn 3D captioning
and grounding together, where D3Net proposes self-critical
training while 3DJCG proposes task-agnostic shared modules
and separate task-specific heads. ViL3DRel [16] designs a
spatial self-attention layer to account for relative distances

and orientations between 3D objects. 3D-VisTA [17] per-
forms pre-training on a dataset of 278k 3D scene-text pairs,
and fine-tunes the model on specific tasks.

In contrast, we propose to connect 3D detection and the
LLM reasoning module via a textual representation, which
spares us from learning the joint representation of different
input modalities from limited 3D annotated data.

A. Grounding Large Language Models

LLMs trained on Internet-scale text data have shown dom-
inant performance across various NLP tasks [5]. However,
LLMs have to be grounded to answer questions or execute
actions in the physical world. VisProg [18] uses in-context
learning for LLMs to generate code for 2D image processing
tasks. SayCan [19] and SayPlan [20] instead modulate the
LLM outputs with a model of the perceived environment (i.e.,
“affordances” for SayCan and scene graphs for SayPlan).

When it comes to explicitly reason over 3D inputs, one
branch of works train multi-modal models that directly
incorporate 3D representations into the token library. 3D-
LLM [21] incorporates distilled 3D features [22] with lan-
guage tokens. 3D-VisTA [17] performs multi-modal fusion of
language and PointNet++ features [23] with self-supervised
masked encoding training.

Instead of multi-modal approaches, studies have investi-
gated the use of textual 3D information to enhance down-
stream tasks. For instance, Feng et al. [24] employ textual
3D data in conjunction with LLMs to generate 3D indoor
scenes. Similarly, Yu et al. [25] use LLMs for multi-robot
navigation, leveraging extracted 3D scene information. We
see this body of work as indicative of the promise of textual
3D scene information, and a motivation for our approach.
Concurrent with our work, Yang et al. [26] also use LLMs to
reason over textual data, however, their methodology differs
in its use of a three-step, task-specific reasoning process as
opposed to our general, flexible approach.

B. LLM Reasoning

There are many techniques proposed to enhance the rea-
soning capabilities of LLMs [27–29]. The reasoning module
of our method is similar in spirit to the general framework of
ReAct [30], where each round of code generation is followed
by a round of LLM analysis to proceed with the reasoning
or debugging, although our context is 3D-specific. Self-
correction is also studied in LLM community. In contrast to
Reflexion [31], which uses test-time environmental feedback,
we instead collect feedback from training samples, and use
the corrected samples to fine-tune models.

III. METHODOLOGY

Figure 1 illustrates our proposed Transcrib3D framework.
Given the input colored point-cloud, Transcrib3D first applies
a 3D object detector to generate an exhaustive list of objects
in the scene transcribed as text (Section III-A). The list
is then filtered to identify objects relevant to the provided
referring expression (Section III-B). The resulting filtered ob-
ject information along with the referring expression serve as
input to the LLM-based reasoning module for inference. To



reach the final answer, the reasoning module includes a “code
interpreter” mode in which the LLM iterates between code
generation and reasoning over outputs from code execution
(Section III-C). We consider two options for interfacing with
the LLM: 1) zero-shot with principles-guided prompting, and
2) fine-tuning from self-reasoned correction (Section III-E).

A. Detect and Transcribe 3D Information

Given a colored point-cloud of the scene, we first perform
semantic segmentation of objects using Mask3D [6]. We
associate with each detected object its category based on the
semantics, center location, spatial extent according to the 3D
bounding box, as well as its mean color. The 3D orientation
of an object can also be incorporated using PartNet [32].
Transcrib3D compiles the information associated with all
detected objects as a list to form an object-centric scene
description. The following shows an example of such a
scene transcript (exact numeric values and duplicate object
categories are replaced by . . . ).

Spatial Semantic Scene Description for All Objects
scene0592: ... Scene center: [...] ... objs list:
monitor, id=0, ctr=[...], size=[...], rgb=[...];
...
box, id=5, ctr=[...], size=[...], rgb=[...];
copier, id=6, ctr=[...], size=[...], rgb=[...];
floor, id=7, ctr=[...], size=[...], rgb=[...];
wall, id=8, ctr=[...], size=[...], rgb=[...];
...
armchair, id=15, ctr=[...], size=[...], rgb=[...];
...
chair, id=19, ctr=[...], size=[...], rgb=[...];
...

B. Pre-Filtering Relevant Objects for Utterance

The aforementioned procedure results in a representation
of every object detected in the scene. However, only a small
fraction of these objects will typically be relevant to the
given referring expression. Given the utterance, “chair
in the corner of the room, between white
and yello desks”, the model identifies the following
objects as relevant,

Spatial Semantic Scene Description for Relevant Objects
scene0592: ... Scene center: [...] ... objs list:
wall, id=8, ctr=[...], size=[...], rgb=[...];
...
armchair, id=15, ctr=[...], size=[...], rgb=[...];
...
chair, id=19, ctr=[...], size=[...], rgb=[...];
...

and the remainder as irrelevant. Simplifying the object list by
filtering out irrelevant items (taking into account synonyms
and hypernyms) not only reduces processing time and the
number of tokens for LLMs, but also facilitates reasoning
by reducing content that may potentially be distracting. Such
an approach has been shown to improve the efficiency of
language grounding [33].

C. Iterative Code Generation and Reasoning

Compositional reasoning that involves arithmetic calcula-
tions, which is crucial for spatial reasoning, is well known

Fig. 3: Illustration of the iterative code generation and rea-
soning process. After the code generation, execution results
from a local Python interpreter is fed back to the LLM for
further reasoning. The LLM then proceeds to either 1) fix
code errors when encountered, 2) generate additional code
to obtain more information, or 3) output the referred objects
if it has all the needed information. This process continues
until the LLM believes the reasoning to be complete.

to be a weakness of Transformers and LLMs [34]. However,
most contemporary approaches to 3D referring expression
resolution rely on a single forward pass of a Transformer to
reach the final answer, which can be limiting in terms of rea-
soning power. In order to avoid this weakness, Transcrib3D
equips the LLM with a Python interpreter and directs the
LLM to generate code whenever quantitative evaluations are
necessary. Transcrib3D then locally executes the generated
code using a Python interpreter and appends the output
to the original conversation. The resulting prompt is sent
back to the LLM to generate the next response. If there
is any error in executing the generated code, Transcrib3D
also feeds information about the error back to the LLM
for re-generation. This process continues until the LLM
believes that the reasoning is complete. Figure 3 provides
an illustration of this process.

We want to emphasize that our design does not distinguish
between code generation and chat reasoning steps. Such a
framework simplifies the design, allows for flexible reason-
ing, and makes it easy for fine-tuning. But in turn, it requires
the LLM to have the ability to do both, so language models
that are specifically trained for only coding or only chatting
will not perform the best within our framework.

D. Principles-Guided Zero-Shot Prompting

Spatial reasoning can require complex compositional logic
that is challenging for LLMs [34]. For example, when
handling left/right spatial relations, which should factor in
the observer’s viewpoint, LLMs often naively ground them
with smaller/larger values in the x-coordinates. In order to
overcome these deficiencies, Transcrib3D employs a few
general principles to guide LLM reasoning in a zero-shot
fashion, including how to 1) use HSL space to match colors;
2) perform vector operations to resolve directional relations;
3) calculate the point-to-plane distance to determine who’s
closer to a wall, to name just a few. We find that this set of
guiding principles works across 3D referring benchmarks.
The full prompt will be included in the released code.



Self-Correction for fine-tuning

Assistant:
Based on the calculated metrics, we can see that chair 49 has the
smallest distance to the nearest two walls, which means it is most
likely to be in the corner of the room. It also has the smallest
distance to the nearest white desk and a relatively small distance
to the nearest yellow desk, which means it is likely to be between
a white desk and a yellow desk. Therefore, chair 49 is the most
likely to be the chair described in the description. Now the answer
is complete – ’ID’:49
User: The correct answer is object 18. Can you double check

the information of object 18 and the given prompt and see where
you got wrong?
Assistant: Let’s revisit the information provided for object 18 and

the constraints given in the prompt to identify where the mistake
might have occurred.
Object 18 is described as follows: - Type: Chair - Center: [-2.98,
-3.31, 0.39] - Size: [0.53, 0.61, 0.81] - RGB: [60, 58, 50]
The constraints from the prompt are: 1. The chair is in the corner
of the room. 2. The chair is between a white and a yellow desk.
Upon reviewing the code execution results, it was noted that
chair 18 has a relatively small distance to the nearest two walls,
indicating it could be in the corner of the room. Additionally, chair
18 has a very small distance to the nearest white desk (0.66) and a
reasonable distance to the nearest yellow desk (2.58), which aligns
with the constraint of being between a white and a yellow desk.
The mistake in the initial analysis was not properly considering

the combination of both constraints together. While chair 49
had the smallest distance to the nearest two walls and a very
small distance to the nearest white desk, it did not optimally
satisfy the condition of being between a white and a yellow desk
as well as chair 18 did. Chair 18’s proximity to both a white and
a yellow desk, along with its corner location, makes it the correct
answer according to the given constraints.

Prompt 1: An example of self-reasoned correction for fine-
tuning. During self-correction, the LLM realizes its mistake
during the initial analysis.

E. Fine-tuning from Self-Reasoned Correction

Rule-based systems [35] are effective for relatively sim-
ple domains that involve a limited set of spatial-semantic
concepts and structured language, but struggle to generalize,
particularly to open-world domains [36]. Motivated by the
now well known benefits of data-driven alternatives to rule-
based methods, we adopt a novel fine-tuning method for
LLMs that enables learning beyond the given set of rules
(i.e., the general guiding principles) by enabling the model
to learn from its own mistakes. In effect, we seek to endow
LLMs with introspection capabilities. We do so via the
following procedure:

1) Use the prompt with general principles on the training
set for the LLM to generate an initial set of answers
with elaborated reasoning process.

2) For any incorrect answer, augment the original prompt
with the correct object ID and request the LLM to
reflect on why the original answer is incorrect (“What
went wrong?”). This is followed by a request to output
“clean” reasoning for the correct answer.

3) Gather the reasoning processes of the correct examples,
and the re-generated ones of the initially incorrect
examples to produce the dataset for LLM fine-tuning.

Prompt 1 shows an example of the self-reasoned correction
step. Note that after fine-tuning, we no longer include general
principles in the prompt. In this way, the system not only
incorporates the guiding principles, but further improves
itself by learning from self-reasoned correction.

IV. EXPERIMENTS

We evaluate the effectiveness of Transcrib3D using the
ReferIt3D [1] and ScanRefer [7] benchmarks. ReferIt3D
formulates 3D referring expression understanding as the
multiple-choice problem: given a set of segmented objects in
a 3D scene along with a corresponding referring expression,
identify the unique referent object from the set, typically
containing several instances of the same fine-grained cate-
gory. There are five different types of relations in SR3D,
namely “horizontal”, “vertical”, “support”, “between” and
“allocentric”, which make up approximately 81%, 4%, 2%,
8%, and 5% of the data, respectively. ReferIt3D measures
performance in terms of accuracy. Both Sr3D and Nr3D are
split by “Easy”/“Hard” and “ViewDep”/“ViewIndep”. ”Easy”
samples has one or none distractors in a scene, while ”Hard”
samples have two or more. The view-dependent samples
contain language descriptions that rely on viewing direc-
tions. Unlike ReferIt3D, ScanRefer does not provide object
segmentation information, and instead tasks methods with
returning the 3D bounding box of the target object, given
the query utterance and a colored point-cloud. ScanRefer
measures performance in terms of accuracy conditioned on
the intersection-over-union (IoU) of the ground-truth 3D
bounding box over the predicted one, with thresholds at 25%
(acc@0.25IoU) or 50% (acc@0.5IoU).

A. Grounding Accuracy on ReferIt3D

We test different variations of our method against con-
temporary baselines on the SR3D and NR3D subsets of
ReferIt3D. On NR3D, we evaluate our best model, Tran-
scrib3D (GPT4-P), on the full test set, while other variants
of Transcrib3D are evaluated on a subset of 500 randomly
sampled data points. On SR3D, we evaluate all Transcrib3D
models on the same subset of 500 random samples from
the test set.1 Table I presents the results. Figure 4 also
provides a qualitative comparison between 3D-VisTA [17]
and Transcrib3D that highlights the strength of our method
with regards to complex reasoning.

B. Grounding Accuracy on ScanRefer

We test the best variant (GPT4-P) of our method with
different detection modules against baselines on the Scan-
Refer benchmark, which unlike ReferIt3D, does not provide
methods with the ground-truth bounding boxes during infer-
ence. In addition to comparing to baseline results reported in
their respective papers, we also re-run the checkpoints from
3D-VisTA [17], the best baseline method, on the same 500
random samples from the ScanRefer validation set. Table II

1We use a subset of the test set due to the cost of evaluating all variations
of Transcrib3D on the full test set, however we believe that the results would
be similar on the full test set due to the templated nature of the utterances.



Nr3D Sr3D

Method Overall Easy Hard View Dep. View Ind. Overall Easy Hard View Dep. View Ind.

SAT† [10] 49.2 56.3 42.4 46.9 50.4 57.9 61.2 50.0 49.2 58.3
BUTD-DETR† [9] 54.6 60.7 48.4 46.0 78.0 67.0 68.6 63.2 57.0 67.7
MVT† [8] 59.5 67.4 52.7 59.1 60.3 64.5 66.9 58.8 58.4 64.7

ViL3DRel§ [16] 64.4 70.2 57.4 62.0 64.5 72.8 74.9 67.9 63.8 73.2
3D-VisTA§ [17] 64.2 72.1 56.7 61.5 65.1 76.4 78.8 71.3 58.9 77.3

Transcrib3D (GPT-3.5-NP) 33.8 42.6 25.0 26.9 36.0 79.3 82.8 70.7 70.6 80.5
Transcrib3D (GPT-3.5-P) 46.6 56.0 37.1 29.9 51.9 80.0 80.8 78.1 82.4 79.7
Transcrib3D (GPT-4-NP) 64.5 71.8 57.1 49.4 71.3 97.4 98.4 94.7 87.3 98.7
Transcrib3D (GPT-4-P) 70.2 79.7 60.3 60.1 75.4 98.4 99.2 96.2 98.2 98.4

TABLE I: Grounding accuracy (%) on Nr3D and Sr3D. †denotes results from the official benchmarks while §denotes results
reported in the respective papers. “P”: “with principles”, “NP”: “no principles”. All our models are equipped with interactive
code generation. Transcrib3D with GPT-4 and general principles surpasses all baselines by a large margin.

(a) Utterance: “On the bed with
the laptop its the pillow by the
light.” This query requires un-
derstanding three constraints to-
gether: “On the bed”, “with the
laptop”, and “by the light”.

(b) Utterance: “The foremost
pillow on the bed of the group
of pillows.” This query requires
understanding that the pillow
needs to be among a group.

Fig. 4: Qualitative comparisons between Transcrib3D (ours,
in green) and 3D-VisTA (in red) on the NR3D dataset.

presents the results. We achieve state-of-the-art performance
on ScanRefer with both detected or ground-truth bounding
boxes. It is worth noting that the performance gain over the
baseline is greater with ground-truth compared to detected
bounding boxes. This is partly due to the fact that the
baseline method is trained with the lower-quality detected
bounding boxes, which ironically leads to the ground-truth
ones being out of distribution.

C. Effects of Fine-tuning Methods

We study the effects of our proposed approach that in-
volves fine-tuning from self-reasoned corrections. Following
Section III-E, we run Transcrib3D with GPT-4 on 500
samples from the NR3D training set and collect both correct
and incorrect examples. For the incorrect examples, we let
the LLM re-generate the self-corrected reasoning. We use
the combination of correct and self-corrected examples to
fine-tune the smaller model (i.e., gpt-3.5-turbo) for 3
epochs. We then evaluate all models on the same subset of
500 random samples from the NR3D test set. Notably, we
remove all rule-based prompts from the fine-tuning data so
that the fine-tuned models are not constrained to human-
designed rules, but are instead adaptive to new rules learned

Method Data Det. Overall
acc@0.25 acc@0.5

ViL3DRel [16] Full PG 47.9 37.7
3D-VisTA [17] Full M3D 50.6 45.8
3D-VisTA (re-run) Full M3D 50.7 45.9

3D-VisTA (re-run) Part. M3D 50.6 44.6
Transcrib3D Part. M3D 51.2 44.4
Transcrib3D + Cam Part. M3D 51.3 45.5

3D-VisTA (re-run) Part. GT 55.6 55.6
Transcrib3D Part. GT 62.0 62.0
Transcrib3D + Cam Part. GT 64.2 64.2

TABLE II: Grounding accuracy (%) on ScanRefer. “Full”:
the full validation set of ScanRefer consisting of 5410
samples; “Part.”: a subset of 500 random samples from the
validation set, which is the same for all methods; “Det.”: the
3D object detection module used in the model; “PG” stands
for PointGroup [37], while “M3D” stands for Mask3D [6]
(where the detection accuracy is 56.7 for PG and 73.7 for
M3D on the ScanNet dataset for the mAP@0.5 metric [6]),
and “GT” for ground-truth bounding boxes. We test our
method and re-run 3D-VisTA on the same subset of 500
samples with the Mask3D detector, GT bounding boxes, and
an additional “+ Cam” setting, where camera view informa-
tion provided by the ScanRefer dataset is also included in
the scene transcript. Note that ScanRefer allows the use of
all provided data modalities and ranks methods on the same
benchmark regardless. The zero-shot nature of our method
allows ease use of this extra information.

via self-correction.
Note that inference is typically faster with a smaller model.

A fine-tuned small model with comparable performance to
that of a large model on this task would be more desirable
for local deployment on edge computers or robots, with
additional privacy benefits. Table III presents the results.

D. Referring Expressions for Robot Manipulation

We demonstrate how Transcrib3D supports a robot’s abil-
ity to follow natural-language instructions for pick-and-



Models Total Easy Hard

GPT-3.5 (zero-shot) 33.8 42.6 24.0
GPT-3.5 (correct-only fine-tuning) 60.7 52.8 41.9
GPT-3.5 (self-correct fine-tuning) 61.5 54.6 80.0
GPT-4 (zero-shot) 69.4 78.7 60.0

TABLE III: Performance of fine-tuning models on NR3D.
Fine-tuned GPT-3.5 models demonstrate a significant im-
provement in performance when compared to zero-shot
models, closely approaching the capabilities of GPT-4. The
model fine-tuned on self-corrected examples sees an increase
in performance compared to that fine-tuned on only correct
examples, particularly for hard queries. Notably, the fine-
tuned models are not provided with rule-based prompts
during both fine-tuning and inference time, suggesting that
implicit decision rules are learned from examples.

place manipulation, particularly when complicated referring
expressions are involved. As a core capability of robot
manipulation, language-guided pick-and-place involves (i)
breaking down the language instruction into two referring
expressions, one each for the “pick” and “place” identities;
(ii) resolving the referring expressions in the context of
the robot’s surrounding environment; and (iii) performing
the pick-and-place actions. We conduct the pick-and-place
task with a Universal Robots UR5 arm equipped with a
Robotiq 3-Finger Adaptive Robot Gripper placed in a table-
top setting. Figure 2 visualizes the execution of one utterance
using our method.

To parse the given instruction, we employ a language
model-generated program (LMP) from few-shot prompting
as in Code-as-Policies [38], which is instructed to call the
put_first_on_second(arg1, arg2) function with
desired arguments arg1 and arg2. This approach allows
free-form texts as input, which is more flexible and natural
than template parsing. The following is an example that is
used in the prompt for the LMP:
'# query: Pick up the orange between the apples \
and place it in the bowl with a banana in it.
put_first_on_second("orange between the apples", \
"bowl with a banana in it")'

The put_first_on_second(arg1, arg2) func-
tion first composes an exhaustive list of objects in the
environment along with their spatial-semantic details. To do
so, the function employs MDETR [39], an open-vocabulary
object segmentation method, that takes as input an RGB
image and an object category, and outputs the 2D spatial
attributes of all objects in the scene of that category. The
2D attributes are then lifted to 3D using depth information
from a Realsense RGB-D camera. Repeating the process
for all candidate object categories results in a 3D spatial-
semantic transcript of all objects in the scene. Transcrib3D
then reasons over this transcript along with the referring
expression to identify the object in question. Finally, we
compute the pick and place poses accordingly to control the
robot’s end effector. We provide the pseudo-code below.
def put_first_on_second(self, arg1, arg2):

# obtain the objects list in the environment
objs = self.env.get_objs()

(a) “the cup between the two left-
most duckies”

(b) “the toy duckie surrounded
by the white cups”

Fig. 5: Qualitative comparison of the grounding performance
of (top) CaP and (bottom) CaP+Transcrib3D on a real robot.

pick_id = get_obj_id(objs, arg1) # Referring
place_id = get_obj_id(objs, arg2) # Referring
pick_pose, place_pose = self.get_obj_pose(

objs, pick_id, place_id)
self.env.step({'pick': pick_pose, \

'place': place_pose}) # robot manipulation

We apply our method to robot manipulation by integrat-
ing Transcrib3D as the perception process in the Code-as-
Policies (CaP) [38] framework (“CaP+Transcrib3D”). As a
baseline, we compare to the standard implementation of
Code-as-Policies, which uses MDETR [39] for perception
(“CaP”). When grounding an object in the scene, CaP as-
sumes that the object can be uniquely identified by MDETR
according to its associated noun phrase (e.g., “the duckie”).
CaP then simply selects the output grounding with the
highest score. In order to make the comparison fair, we
extend CaP’s prompt so that it is able to use the entire
referring expression as the object identifier, which is indeed
unique. Otherwise, CaP would perform poorly in our setting,
since it has never seen complicated referring expressions in
the original prompts.

We evaluate the performance of both methods on five
different natural language instructions (each involving two
referring expressions). Figure 5 shows a qualitative com-
parison for one of the test cases. Our results reveal that
when assessed at both the referring expression and instruc-
tion levels, CaP+Transcrib3D significantly outperforms CaP.
CaP+Transcrib3D achieves an instruction success rate of
80% (4 out of 5) compared to 20% (1 out of 5) for CaP, and
correctly resolves 90% of the referring expressions (9 out of
10) compared to 40% (4 out of 10) for CaP. This underscores
a pronounced benefit in employing Transcrib3D for resolving
referring expressions within robot pick-and-place tasks.

V. DISCUSSION

We acknowledge that Transcrib3D is not without any limi-
tations. First, our scene transcript is object-centric. Although
object-level details such as bounding boxes are sufficient for
numerous 3D spatial reasoning tasks, there exist scenarios
that necessitate a finer level of object details. We show



(a) Utterance: “The cylinder
shaped trash can.” Our model is
unable to ground the “cylinder”
shape, leading to failure.

(b) Utterance: “This door is
open and has nothing blocking
it.” This query requires under-
standing the concept of “open”,
which is hard to infer from a
bounding box.

Fig. 6: Typical failure cases in Transcrib3D, with ground-
truth bounding boxes shown in green and ours in red.

examples of two such cases in Figure 6. Second, our reliance
on existing 3D detectors introduces a constraint: the quality
of 3D detection itself. In our experiments, we observed that
even state-of-the-art 3D detection methods [6, 40] yield sub-
optimal results, highlighting the room for improvement in 3D
detection. Third, our method involves manual specification
of the desired information to be extracted from 3D detections
(e.g., each object’s center, size, and orientation), which has
its limitations. An adaptive feature selection strategy could
potentially yield better results.

However, even with those limitations, our method sur-
passes all current multi-modality baselines. This achieve-
ment leads us to propose two critical insights: firstly, the
connection module facilitating interaction between different
modalities may not be as effective since our experiment
can be roughly regarded as a controlled test that replaces a
typical multi-modal cross-attention module with just text, and
demonstrates that it works better; and secondly, the reasoning
module might be too simplistic to ground the complex logic
inherent in natural language. We believe that the observed
limitations in current multi-modality methods can largely
be attributed to the scarcity of annotated 3D data, which
is orders-of-magnitude smaller than its 2D counterpart, pri-
marily due to the higher cost in its collection. We call for
more efficient data collection pipelines in 3D and robotics,
potentially leveraging generative methods.

VI. CONCLUSION

We introduce Transcrib3D, a simple and effective method
for the 3D grounding of natural language referring ex-
pressions that requires no training, yet delivers state-of-
the-art performance across leading 3D reference resolution
benchmarks. The idea of using text as a unifying medium to
connect the 3D scene and LLM reasoning not only achieves
great results, but also provides critical insights into the
bottleneck of current multi-modal methods.
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