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CENTRAL ELEMENTS OF THE DEGENERATE QUANTUM

GENERAL LINEAR GROUP

HENGYUN YANG AND YANG ZHANG

Abstract. We construct central elements of the degenerate quantum general linear group

introduced by Cheng, Wang and Zhang [1]. In particular, we give an explicit formula for the

quantum Casimir element. Our method is based on the explicit L operators. Moreover, we

construct a universal L operator, which is a spectral parameter-dependent solution of the

quantum Yang–Baxter equation in the tensor product of the degenerate quantum general

linear group and the endomorphism ring of its natural representation. This construction

leads to the FRT approach to the degenerate quantum general linear group.

1. Introduction

Recently, Cheng, Wang and Zhang [1] introduced a class of new Hopf algebras called

degenerate quantum groups. This may be thought as a degenerate version of the usual

Drinfeld-Jimbo quantum groups [3, 4]. The origin of this idea traces back to the work of

Zachos, where he studied symmetry properties of wave functions of quantum mechanical

systems under the action of quantum sl2 at
√
−1, resulting in an Hopf algebra structure

Uq(sl1,1) defined by (2.11). In type A, the degenerate quantum group Uq(glm,n) is obtained

from the Drinfeld-Jimbo quantum group Uq(glm+n) by replacing the subalgebra Uq(sl2)

associated to the (m + 1)-th node of the Dynkin diagram of glm+n with Zachos’ algebra

Uq(sl1,1). Additionally, the associated Serre relations are appropriately modified during this

process. This construction can be generalised to degenerate quantum groups of types B,C

and D [1].

Intriguingly, the classification of finite dimensional simple modules of Uq(glm,n) is the same

[1, Theorem 4.1] as that for the quantum general linear supergroup Uq(glm|n) at generic q

[13]. This connection is particularly remarkable, as Uq(glm,n) is merely an ordinary Hopf

algebra containing no odd subspace. Unlike quantum supergroups, Uq(glm,n) does not arise

as a deformation of the universal enveloping algebra of any Lie superalgebra. Possible

connections between Uq(glm|n) and Uq(glm,n), and between B, C and D types of quantum

supergroups and degenerated quantum groups of the corresponding types [1, §6.1], were

discussed in [1, §6.3]. It indicates that degenerated quantum groups may provide a new way

to study the theory of quantum supergroups.

In this paper, we are concerned with the centre of the degenerate quantum general lin-

ear group Uq(glm,n), which was poorly understood. Characterising the centre will deepen
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understanding of representation theory and algebraic structure of Uq(glm,n). This has close

connections to soluble lattice models in statistical mechanics and topological invariants in

low-dimensional topology [1].

As a first step towards understanding the centre, we construct central elements of Uq(glm,n)

using the method of Zhang, Gould and Bracken [12, 15, 16]. This approach provides a sys-

tematic technique for constructing an infinite family of central elements associated with any

finite-dimensional Uq(glm,n)-module. The construction is based on a commutation condition

derived from the L operators L± of Uq(glm,n). We provide explicit constructions of these L

operators and, in particular, derive an explicit formula for the quantum Casimir element.

A similar method has been successfully applied in previous studies [2, 5, 6], where explicit

generators and relations were constructed for the centre of the Drinfeld-Jimbo quantum
group.

We construct a spectral parameter-dependent operator L(x), x ∈ C, and prove that it

is a solution of the quantum Yang-Baxter equation in Uq(glm,n)⊗ End(V ), where V is the

natural module of Uq(glm,n). These types of solutions are useful for constructing integrable

lattice models of quantum systems [10]. In the course of proof, we essentially utilise the RLL

relations, which motivate us to propose the FRT approach to the Uq(glm,n) [9]. The spectral

parameter-dependent operator and the FRT approach have been thoroughly studied for the

quantum general linear supergroup [12, 14].

In our forthcoming research, we will establish the Harish-Chandra isomorphism for the

centre of the degenerate quantum group. Subsequently, using the explicit construction given

in this paper, we aim to obtain an algebraic description of the centre in terms of generators

and relations. Our explicit L operators will also shed light on the expression of the universal

R-matrix of Uq(glm,n), which is usually difficult to construct.

The paper is organised as follows. In Section 2, we recall the definition of the degener-

ate quantum general linear group Uq(glm,n) and prove some useful commutation relations.

In Section 3, we first give a general method to construct central elements of Uq(glm,n),

and then use L operators to construct an explicit infinite family of central elements. Our

main results are given in Theorem 3.1 and Theorem 3.6. In Section 4, we construct the

spectral parameter-dependent universal L operator L(x) and propose the FRT approach to

degenerate quantum general linear groups.

2. Degenerate quantum general linear group

Let C be the complex field and Z+ be the set of non-negative integers. Throughout the

paper, we work over K = C(q), the field of rational functions in the indeterminate q. We

fix a pair of positive integers m,n. Let I = {1, 2, . . . , m + n} and I ′ = I \ {m + n}. Put

p = −q−1, and let qa = q if a ≤ m, qa = p if a > m.
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2.1. The degenerate quantum general linear group. We recall the definition from [1].

The degenerate quantum general linear group Uq(glm,n) is a unital associative algebra over

K generated by the elements ea, fa, Kb, K
−1
b , a ∈ I ′, b ∈ I, subject to the following relations

KaK
−1
a = 1, K±1

a K±1
b = K±1

b K±1
a ,(2.1)

KaebK
−1
a = q

δab−δa,b+1

a eb,(2.2)

KafbK
−1
a = q

−δab+δa,b+1

a fb,(2.3)

eafb − fbea = δab
ka − k−1

a

qa − q−1
a

, with ka = KaK
−1
a+1,(2.4)

eaeb = ebea, fafb = fbfa, |a− b| > 1,(2.5)

e2aea±1 − (qa + q−1
a )eaea±1ea + ea±1e

2
a = 0, a 6= m,(2.6)

f 2
afa±1 − (qa + q−1

a )fafa±1fa + fa±1f
2
a = 0, a 6= m,(2.7)

e2m = f 2
m = 0,(2.8)

emEm−1,m+2 − Em−1,m+2em = 0,(2.9)

fmEm+2,m−1 − Em+2,m−1fm = 0,(2.10)

where Em−1,m+2 and Em+2,m−1 are defined by

Em−1,m+2 := Em−1,m+1em+1 − q−1
m+1em+1Em−1,m+1,

Em+2,m−1 := fm+1Em+1,m−1 − qm+1Em+1,m−1fm+1,

Em−1,m+1 := em−1em+1 − q−1
m emem−1,

Em+1,m−1 := fmfm−1 − qmfm−1fm.

Denote by Uq(slm,n) the subalgebra of Uq(glm,n) generated by k±1
a , ea, fa for all a ∈ I ′.

Note that if m = 1 or n = 1, relations (2.9) and (2.10) do not exist. For any a 6= m, the

triple ea, fa, k
±1
a generates a copy of Uq(sl2). If a = m, the elements k±

m, em, fm generate a

subalgebra isomorphic to Uq(sl1,1) with relations

(2.11)

kmk
−1
m = 1, kmemk

−1
m = −em, kmfmk

−1
m = −fm,

emfm − fmem =
km − k−1

m

q − q−1
, e2m = f 2

m = 0.

This is Zachos’ algebra [11], which looks similar to the quantum supergroup Uq(sl1|1). How-

ever, despite the resemblance, Zachos’ algebra is not a quantum deformation of any Lie

algebra or Lie superalgebra [1, 11].

As with the usual Drinfeld-Jimbo quantum group, the degenerate quantum group Uq(glm,n)

has a Hopf algebra structure with a coproduct ∆ : Uq(glm,n) → Uq(glm,n) ⊗ Uq(glm,n), a

counit ǫ : Uq(glm,n) → K, and an antipode S : Uq(glm,n) → Uq(glm,n), which are defined,
3



respectively, by

∆(ea) = ea ⊗ ka + 1⊗ ea, ∆(fa) = fa ⊗ 1 + k−1
a ⊗ fa, ∆(Kb) = Kb ⊗Kb,

ǫ(ea) = ǫ(fa) = 0, ǫ(Kb) = 1,

and

(2.12) S(ea) = −eak
−1
a , S(fa) = −kafa, S(Kb) = K−1

b

for all a ∈ I ′, b ∈ I. We define the the opposite coproduct ∆′ by

∆′ := P∆,

where P (u1 ⊗ u2) = u2 ⊗ u1 for any u1, u2 ∈ Uq(glm,n).

Let V = Km+n, and let va ∈ V (a ∈ I) be the column vector with 1 at the a-th entry and

0 elsewhere. Let eab (a, b ∈ I) be the matrix units such that eabvc = δbcva for all a, b, c ∈ I.

Then there is a natural representation π : Uq(glm,n) → EndK(V ) [1, Lemma 4.3], defined by

(2.13) π(ea) = ea,a+1, π(fa) = ea+1,a, π(Kb) = 1 + (qb − 1)ebb, a ∈ I ′, b ∈ I.

For any u ∈ Uq(glm,n), we have

uva =
∑

b∈I

π(u)bavb, a ∈ I.

The classification of finite dimensional simple Uq(glm,n)-modules is essentially the same

as that for the quantum general linear supergroup Uq(glm|n) (or glm|n) [1, Theorem 4.1],

despite the fact that Uq(glm,n) is not a quantum deformation of any Lie (super) algebra.

2.2. Commutation relations. For any a, b ∈ I, let

Ea,a+1 = Ēa,a+1 = ea, Ea+1,a = Ēa+1,a = fa.

We define recursively the following elements of Uq(glm,n):

(2.14) Eab =

{
EacEcb − q−1

c EcbEac, a < c < b,

EacEcb − qcEcbEac, b < c < a,

and

(2.15) Ēab =

{
ĒacĒcb − qcĒcbĒac, a < c < b,

ĒacĒcb − q−1
c ĒcbĒac, b < c < a.

We will give some commutation relations among these elements. These relations will be

used in the construction of central elements and the universal L operators of Uq(glm,n).

Lemma 2.1. For any a 6= b ∈ I, the following relations hold in Uq(glm,n):

KcEab = EabKc, c 6= a, b,(2.16)

KaEab = qaEabKa, KbEab = q−1
b EabKb.(2.17)

These relations similarly apply to Ēab mutatis mutandis.
4



Proof. We prove the first relation. We may assume that a < b, and the case a > b can be

treated similarly. By definition (2.14) Eab (resp. Eba) is a linear combination of elements

of the form ei1ei2 · · · eib−a
(resp. fi1fi2 · · · fib−a

), where i1, i2, . . . , ib−a form a permutation of

a, a+ 1, . . . , b− 1. Assuming that a < c < b, we obtain Kcec−1 = q−1
c ec−1Kc, Kcec = qcecKc

and Kcei = eiKc for i 6= c, c−1. Then KcEab = EabKc for a < c < b. Similarly, (2.16) holds

for the cases a < b < c and c < a < b. Relations in (2.17) can be proved similarly. �

Lemma 2.2. We have the following relations:

[ea, Eba] = −kaEb,a+1, a + 1 < b,(2.18)

[fa, Eab] = Ea+1,bk
−1
a , a+ 1 < b,(2.19)

[eb, Eb+1,a] = Ebak
−1
b , a < b,(2.20)

[fb, Ea,b+1] = −kbEab, a < b,(2.21)

[ea, Ebc] = [fa, Ecb] = 0, b < c, {b, c} 6= {a, a+ 1}.(2.22)

Proof. Let us prove (2.18) first. For any a+ 1 < b, we have

[ea, Eba] = [ea, Eb,a+1Ea+1,a − qa+1Ea+1,aEb,a+1]

= [ea, Eb,a+1]fa + Eb,a+1[ea, fa]− qa+1([ea, fa]Eb,a+1 + fa[ea, Eb,a+1]).

We can prove by induction that [ea, Eb,a+1] = 0. It follows that

[ea, Eba] = Eb,a+1
ka − k−1

a

qa − q−1
a

− qa+1
ka − k−1

a

qa − q−1
a

Eb,a+1 = −kaEb,a+1,

where in the last equation we have used Lemma 2.1. Relations (2.19), (2.20) and (2.21) can

be proved similarly. The proof of [fa, Ecb] = 0 in (2.22) can be found in Lemma 3.8 [1], the

first relation in (2.22) can be proved similarly. �

Lemma 2.3. The following relations hold:

E2
ca = 0, a ≤ m < c,(2.23)

[Eab, Ecd] = 0, b < a < d < c or d < b < a < c,(2.24)

EacEbc = qcEbcEac, EcaEcb = qcEcbEca, c < a < b,(2.25)

EcaEcb = qcEcbEca, EacEbc = qcEbcEac, a < b < c,(2.26)

[Eab, Ecd] = (q − q−1)EcbEad, b < d < a < c or a < c < b < d,(2.27)

[Eab, Ebc]q−1

b
= Eac, [Ecb, Eba]qb = Eca a < b < c.(2.28)

Proof. The proof of relations (2.23), (2.24) and the first relations of (2.25) and (2.26), (2.27)

can be found in [1, Lemma 3.9]. The second relations of (2.25) and (2.26) can be proved by

using similar method as the first relations of (2.25) and (2.26), respectively. From the fact

that eaec = ecea and fafc = fcfa for |a− c| > 1, we can easily prove (2.28). �

Lemma 2.4. For a > b, we have

S(Eab) = −K−1
a KbĒab, S(Eba) = −ĒbaKaK

−1
b .

5



Proof. We prove the first equation by using induction on a− b, and similarly for the second.

If a− b = 1, by (2.12) we have

S(Ea,a−1) = −ka−1fa−1 = −K−1
a Ka−1Ēa,a−1.

In general, using definition (2.14) we obtain that

S(Eab) = S(Ea−1,b)S(Ea,a−1)− qa−1S(Ea,a−1)S(Ea−1,b)

= K−1
a−1KbĒa−1,bK

−1
a Ka−1Ēa,a−1 − qa−1K

−1
a Ka−1Ēa,a−1K

−1
a−1KbĒa−1,b

= q−1
a−1K

−1
a KbĒa−1,bĒa,a−1 −K−1

a KbĒa,a−1Ēa−1,b

= −K−1
a KbĒab,

where the second equation follows from the induction hypothesis and the third equation is

a consequence of Lemma 2.1. �

3. Central elements of Uq(glm,n)

3.1. A general construction. Although Uq(glm,n) is not a quantum deformation of any

existing Lie algebra or Lie superalgebra, we will show in this section that the method for

constructing central elements for quantum (super) groups, as given in [2, 15], is applicable

to Uq(glm,n). This is made possible due to its Hopf algebra structure.

To start with, let M be an arbitrary finite dimensional Uq(glm,n)-module, and let ζ :

Uq(glm,n) → EndK(M) be the corresponding representation of Uq(glm,n). Denote by Tr2 the

partial trace on the second tensor factor of Uq(glm,n)⊗ EndK(M), i.e.,

Tr2(u⊗A) = Tr(A)u, ∀u ∈ Uq(glm,n), A ∈ EndK(M),

where Tr denotes the usual trace.

An important ingredient in the construction is the elementK2ρ. In the context of quantum

(super) groups, 2ρ denotes the sum of positive roots and K2ρ is merely a product of Kα

over all positive roots α. However, when dealing with Uq(glm,n), it is crucial to define

K2ρ properly to ensure consistency with the antipode S. Recall from [1, Lemma 5.1] that

K2ρ ∈ Uq(glm,n) is defined by

(3.1) K2ρ =

{
K ′

2ρ, if m+ n is even,

K ′
2ρK

′, if m+ n is odd,

where

K ′
2ρ =

m∏

a=1

Km−n+1−2a
a

n∏

b=1

Km+n+1−2b
m+b , K ′ =

m∏

a=1

Ka

n∏

b=1

K−1
m+b.

This invertible element satisfies

S2(u) = K2ρuK
−1
2ρ , ∀u ∈ Uq(glm,n),

6



which is analogous to the usual quantum group case. In particular, it is straightforward to

check the following useful relations:

(3.2)

K ′
2ρeaK

′−1
2ρ = kaeak

−1
a = q2aea, ∀a 6= m,

K ′eaK
′−1 = ea, ∀a 6= m,

K2ρemK
−1
2ρ = kmemk

−1
m = −em.

Now we construct central elements of Uq(glm,n) as follows.

Theorem 3.1. Let ζ : Uq(glm,n) → EndK(M) be a representation, and let ΓM ∈ Uq(glm,n)⊗
EndK(M) be an element satisfying

[ΓM , (1⊗ ζ)∆(u)] = 0, ∀u ∈ Uq(glm,n).

Then the elements

Ck = Tr2((1⊗ ζ(K2ρ))Γ
k
M), k ≥ 1

belong to the centre of Uq(glm,n).

Proof. For any k ≥ 1, it suffices to show that Ck commutes with the generators ea, fa, K
±1
b ,

a ∈ I ′, b ∈ I. Let Γk
M =

∑
i xi ⊗ ζ(yi) be a finite sum, where xi, yi ∈ Uq(glm,n). Then for

any a ∈ I ′, we have [Γk
M , (1⊗ ζ)∆(ea)] = 0. It follows that

0 = Tr2
(
(1⊗ ζ(k−1

a K2ρ))[Γ
k
M , (id⊗ ζ)∆(ea)]

)

=
∑

i

Tr2
(
(1⊗ ζ(k−1

a K2ρ))[xi ⊗ ζ(yi), ea ⊗ ζ(ka) + 1⊗ π(ea)]
)

=
∑

i

(xiea − eaxi)Tr(ζ(K2ρyi)) +
∑

i

xi

(
Tr(ζ(k−1

a K2ρyiea))− Tr(ζ(k−1
a K2ρeayi))

)

= [Ck, ea] +
∑

i

xi

(
Tr(ζ(k−1

a K2ρyiea))− Tr(ζ(k−1
a K2ρeayi))

)
.

We will show that the sum in the last equation equals zero. This implies that [Ck, ea] = 0,

proving that Ck commutes with ea. Note that

Tr(ζ(k−1
a K2ρybea)) = Tr(ζ(eak

−1
a K2ρyb)) =

{
−Tr(ζ(k−1

m emK2ρyb)), if a = m,

q2aTr(ζ(k
−1
a eaK2ρyb)), if a 6= m.

If a = m, by the last equation of (3.2) we have emK2ρ = −emK2ρ, whence

Tr(ζ(k−1
m K2ρybem)) = −Tr(ζ(k−1

m emK2ρyb)) = Tr(ζ(k−1
m K2ρemyb)).

Therefore, we have [Ck, em] = 0. If a 6= m, then

eaK2ρ =

{
eaK

′
2ρ = q−2

a K ′
2ρ = q−2

a K2ρ, if m+ n is even,

eaK
′
2ρK

′ = q−2
a K ′

2ρK
′ = q−2

a K2ρ, if m+ n is odd,
7



where we have used relations in (3.2). It follows that

Tr(ζ(k−1
a K2ρybea)) = q2aTr(ζ(k

−1
a eaK2ρyb)) = Tr(ζ(k−1

a K2ρeayb)).

Thus, we obtain [Ck, ea] = 0 for a 6= m. Similarly, one can prove that [Ck, fa] = [Ck, Kb] = 0

for 1 ≤ a ≤ m + n − 1 and 1 ≤ b ≤ m + n. Therefore, the elements Ck are central in

Uq(glm,n). �

3.2. Explicit formulae for central elements. We will construct an explicit element ΓM

which satisfies the condition in Theorem 3.1. In this way, we obtain corresponding central

elements Ck for all k ≥ 1. In the following, we are concerned with M = V = Km+n, the

natural representation of Uq(glm,n) as given in (2.13).

We define the following two elements of Uq(glm,n)⊗ EndK(V ):

L+ =
∑

a∈I

Ka ⊗ eaa + (q − q−1)
∑

a<b

KbEab ⊗ eba,(3.3)

L− =
∑

a∈I

K−1
a ⊗ eaa − (q − q−1)

∑

a<b

EbaK
−1
b ⊗ eab.(3.4)

The element L− has the inverse given as follows.

Lemma 3.2. Recall that S is the antipode of Uq(glm,n) given by (2.12). Then

(3.5) (L−)−1 = (S ⊗ 1)(L−) =
∑

a∈I

Ka ⊗ eaa + (q − q−1)
∑

a<b

KaĒba ⊗ eab.

Proof. Using Lemma 2.4, we obtain

(S ⊗ 1)(L−) =
∑

a∈I

Ka ⊗ eaa − (q − q−1)
∑

a<b

S(EbaK
−1
b )⊗ eab

=
∑

a∈I

Ka ⊗ eaa + (q − q−1)
∑

a<b

KaĒba ⊗ eab.

This proves the second equation. Next we check directly that (S ⊗ 1)(L−) is the inverse of

L−. Note that

L−((S ⊗ 1)(L−)) = 1⊗ 1 + (q − q−1)
∑

a<b

(Ēba − Eba − (q − q−1)

b−1∑

c=a+1

EcaĒbc)⊗ eab.

We claim that

Ēba = Eba + (q − q−1)

b−1∑

c=a+1

EcaĒbc, a < b,

and hence L−((S ⊗ 1)(L−)) = 1 ⊗ 1. To prove this claim, we use induction on b − a. If

b = a + 1, then Ēba = Eba = fa holds true by definition. Assume that the claim holds for
8



Ēb−1,a for b− a > 1. Then we obtain

Ēba = Ēb,b−1Ēb−1,a − q−1
b−1Ēb−1,aĒb,b−1

=Eb,b−1(Eb−1,a + (q − q−1)

b−2∑

c=a+1

EcaĒb−1,c)− q−1
b−1(Eb−1,a + (q − q−1)

b−2∑

c=a+1

EcaĒb−1,c)Eb,b−1

=Eb,b−1Eb−1,a − q−1
b−1Eb,b−1Eb−1,a + (q − q−1)

b−2∑

c=a+1

Eca(Eb,b−1Ēb−1,c − q−1
b−1Ēb−1,cEb,b−1)

=Eba + (qb−1 − q−1
b−1)Eb−1,aEb,b−1 + (q − q−1)

b−2∑

c=a+1

EcaĒbc

=Eba + (q − q−1)
b−1∑

c=a+1

EcaĒbc.

Therefore, the claim holds. Similarly, one can prove that ((S ⊗ 1)(L−))L− = 1 ⊗ 1, and

hence (S ⊗ 1)(L−) is the inverse of L−. �

Recall that π is the natural representation of Uq(glm,n). The elements L± have the

following important property.

Lemma 3.3. For any u ∈ Uq(glm,n), we have

(3.6) L±(1⊗ π)(∆(u)) = (1⊗ π)(∆′(u))L±.

Proof. We introduce the following elements:

L̃+ : = 1⊗ 1 + (q − q−1)
∑

a<b

Eab ⊗ eba,

L̃− : = 1⊗ 1− (q − q−1)
∑

a<b

Eba ⊗ eab,

which are related to L± by

L+ = (
∑

a∈I

Ka ⊗ eaa)L̃
+, L− = L̃−(

∑

a∈I

K−1
a ⊗ eaa).

To prove (3.6), it suffices to show the following equations:

L̃+(Ec,c+1 ⊗ π(kc) + 1⊗ ec,c+1) = (Ec,c+1 ⊗ π(k−1
c ) + 1⊗ ec,c+1)L̃

+,(3.7)

L̃+(Ec+1,c ⊗ 1 + k−1
c ⊗ ec+1,c) = (Ec+1,c ⊗ 1 + kc ⊗ ec+1,c)L̃

+,(3.8)

L̃−(Ec,c+1 ⊗ 1 + k−1
c ⊗ ec,c+1) = (Ec,c+1 ⊗ 1 + kc ⊗ ec,c+1)L̃

−,(3.9)

L̃−(Ec+1,c ⊗ π(kc) + 1⊗ ec+1,c) = (Ec+1,c ⊗ π(k−1
c ) + 1⊗ ec+1,c)L̃

−.(3.10)
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We will only prove (3.7) and (3.8), the other two follow similarly. Consider (3.7), and

define

A1 = L̃+(Ec,c+1 ⊗ π(kc))− (Ec,c+1 ⊗ π(k−1
c ))L̃+,

A2 = [L̃+, (1⊗ ec,c+1)].

Then (3.7) is equivalent to A1 + A2 = 0. Note that

A1 = Ec,c+1 ⊗ (π(kc)− π(k−1
c )) + (q − q−1)

∑

a<b

Aab,

where

Aab = EabEc,c+1 ⊗ ebaπ(kc)− Ec,c+1Eab ⊗ π(k−1
c )eba.

By (2.13), we have

ebaπ(kc) = eba + (qc − 1)δacebc + (q−1
c+1 − 1)δa,c+1eb,c+1,

π(k−1
c )eba = eba + (q−1

c − 1)δbceca + (qc+1 − 1)δb,c+1ec+1,a.

It follows that
∑

a<b

Aab =
∑

a<c,b=c,c+1

Aab +
∑

b>c+1,a=c,c+1

Aab +
∑

a=c,b=c+1

Aab.

Applying (2.14) and Lemma 2.3, we obtain
∑

a<c,b=c,c+1

Aab =
∑

a<c

(EacEc,c+1 ⊗ eca − Ec,c+1Eac ⊗ q−1
c eca)

+
∑

a<c

(Ea,c+1Ec,c+1 ⊗ ec+1,a − Ec,c+1Ea,c+1 ⊗ qc+1ec+1,a)

=
∑

a<c

Ea,c+1 ⊗ eca.

Similarly, one can deduce that
∑

b>c+1,a=c,c+1

Aab = −
∑

b>c+1

Ecb ⊗ eb,c+1,

∑

a=c,b=c+1

Aab = (qc − qc+1)E
2
c,c+1 ⊗ ec+1,c = 0.

Therefore, we have

A1 =Ec,c+1 ⊗ (π(kc)− π(k−1
c )) + (q − q−1)

∑

a<b

Aab

=(q − q−1)Ec,c+1 ⊗ (ecc − ec+1,c+1) + (q − q−1)
(∑

a<c

Ea,c+1 ⊗ eca −
∑

b>c+1

Ecb ⊗ eb,c+1

)
.

On the other hand, we have

A2 = [L̃+, (1⊗ ec,c+1)] = (q − q−1)(
∑

b>c

Ecb ⊗ eb,c+1 −
∑

a<c

Ea,c+1 ⊗ eca).
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It is clear that A1 + A2 = 0, proving (3.7).

We proceed to prove (3.8). Define

B1 = [L̃+, Ec+1,c ⊗ 1] = −(q − q−1)
∑

a<b

[Ec+1,c, Eab]⊗ eba.

Applying Lemma 2.2, we obtain

B1 = −(q − q−1)
(
[Ec+1,c, Ec,c+1]⊗ ec+1,c +

∑

a<c

[Ec+1,c, Ea,c+1]⊗ ec+1,a +
∑

b>c+1

[Ec+1,c, , Ecb]⊗ ebc
)

= −(q − q−1)
(
− kc − k−1

c

qc − q−1
c

⊗ ec+1,c +
∑

a<c

−kcEac ⊗ ec+1,a +
∑

b>c+1

Ec+1,bk
−1
c ⊗ ebc

)

= (kc − k−1
c )⊗ ec+1,c + (q − q−1)

(∑

a<c

kcEac ⊗ ec+1,a −
∑

b>c+1

Ec+1,bk
−1
c ⊗ ebc

)
.

On the other hand, we have

B2 = L̃+(k−1
c ⊗ ec+1,c)− (kc ⊗ ec+1,c)L̃

+

= (k−1
c − kc)⊗ ec+1,c + (q − q−1)

(
−

∑

a<c

kcEac ⊗ ec+1,a +
∑

b>c+1

Ec+1,bk
−1
c ⊗ ebc

)
.

Clearly, B1+B2 = 0, which is equivalent to (3.8). This finishes the proof of the lemma. �

Now we define the following element ΓV ∈ Uq(glm,n)⊗EndK(V ) associated to the natural

representation V :

(3.11) ΓV := (L−)−1L+.

Lemma 3.4. For any u ∈ Uq(glm,n), we have

[ΓV , (1⊗ π)(∆(u))] = 0.

Proof. Using Lemma 3.3, we have

(L−)−1L+(1⊗ π)(∆(u)) = (L−)−1(1⊗ π)(∆′(u))L+ = (1⊗ π)(∆(u))(L−)−1L+.

This completes the proof. �

Combining Lemma 3.4 and Theorem 3.1, we obtain explicit central elements Ck of

Uq(glm,n) associated to V for any k ≥ 1.

Example 3.5. Let Uq(gl1,1) be the degenerate quantum group generated by K±
1 , K

±
2 , E =

E12 and F = E21, subject to the following relations:

K1EK−1
1 = qE, K2EK−1

2 = −qE,

K1FK−1
1 = q−1F, K2FK−1

2 = −q−1F,

EF − FE =
K1K

−1
2 −K−1

1 K2

q − q−1
,
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E2 = F 2 = 0.

Then using the element ΓV defined by (3.11) and Theorem 3.1, we obtain a central element

C1 = q−1K2
1 − q−1K2

2 − (q − q−1)2K1K2FE.

This is analogous to the quantum Casimir element of Uq(gl2).

To obtain a more concise formula for the central elements, we introduce a variant of ΓV

defined by

Γ :=
ΓV − 1⊗ 1

q − q−1
.

This still satisfies the commutation relation in Lemma 3.4 and will be used to construct the
central elements as described below.

We introduce some notation. Define the following elements:

(3.12)

Xab = KbEab, Xba = KaĒba, a < b,

Xaa =
Ka − 1

q − q−1
, a ∈ I.

Then we can rewrite L+ and (L−)−1 defined by (3.3) and (3.5) as

L+ = 1⊗ 1 + (q − q−1)
∑

a≤b

Xab ⊗ eba,

(L−)−1 = 1⊗ 1 + (q − q−1)
∑

a≥b

Xab ⊗ eba.

It follows that

Γ =
(L−)−1L+ − 1⊗ 1

q − q−1
=

∑

a,b∈I

Xab ⊗ eba + (q − q−1)
∑

a≥b,a≥c

XabXca ⊗ ebc.

The following is a consequence of Lemma 3.4 and Theorem 3.1.

Theorem 3.6. For k ∈ Z+, the elements

Ck = Tr2

(
(1⊗ π(K2ρ))

( ∑

a,b∈I

Xab ⊗ eba + (q − q−1)
∑

a≥b,a≥c

XabXca ⊗ ebc
)k
)

lie in the centre of Uq(glm,n), where π is the natural representation defined by (2.13), and

K2ρ and Xab are defined by (3.1) and (3.12), respectively.

Using Theorem 3.6, it is straightforward to check that the central element C1 associated

to Γ is given by the following formula: if m+ n is even,

C1 =

m∑

a=1

qm−n+1−2a
a

Ka − 1

q − q−1
+

m+n∑

b=m+1

q3m+n+1−2b
b

Kb − 1

q − q−1

+ (q − q−1)
( ∑

a≥b,b≤m

qm−n+1−2b
b KbĒabKaEba +

∑

a≥b,b>m

q3m+n+1−2b
b KbĒabKaEba

)
,
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and if m+ n is odd, then

C1 =

m∑

a=1

qm−n+2−2a
a

Ka − 1

q − q−1
+

m+n∑

b=m+1

q3m+n−2b
b

Kb − 1

q − q−1

+ (q − q−1)
( ∑

a≥b,b≤m

qm−n+2−2b
b KbĒabKaEba +

∑

a≥b,b>m

q3m+n−2b
b KbĒabKaEba

)
.

We call element C1 the quantum Casimir element of Uq(glm,n).

4. A universal L operator and the FRT approach

The aim of this section is to construct a spectral parameter-dependent solution which

satisfies the quantum Yang-Baxter equation in Uq(glm,n)⊗ EndK(V )⊗ EndK(V ). As a by-

product, we propose the FRT approach to the degenerate quantum general linear group

using the RTT relation. This is analogous to the classic work [9] in the context of quantum
groups.

4.1. The main result. Recall that the R-matrix associated to the natural representation V

of Uq(glm,n) is an invertible element R ∈ EndK(V ⊗V ) satisfying the quantum Yang-Baxter

equation in EndK(V ⊗ V ⊗ V ):

R12R13R23 = R23R13R12.

This element R has been constructed explicitly in [1].

Our construction of L(x) will make use of the R-matrix and the L operators L±. Recall

from [1] that

(4.1) R = 1⊗ 1 +
∑

a∈I

(qa − 1)eaa ⊗ eaa + (q − q−1)
∑

a<b

eab ⊗ eba ∈ EndK(V ⊗ V ).

Let va, a ∈ I be the standard basis of V . Then it is clear that

(4.2) R(va ⊗ vb) =






va ⊗ vb, a < b,

qava ⊗ va, a = b,

va ⊗ vb + (q − q−1)vb ⊗ va, a > b.

Let T be the linear permutation operator on V ⊗V such that T (u⊗v) = v⊗u for u, v ∈ V ,

and let R−T := T (R−1)T . Then we have

R−T = 1⊗ 1 +
∑

a∈I

(q−1
a − 1)eaa ⊗ eaa − (q − q−1)

∑

a<b

eba ⊗ eab.

For any x ∈ C, we define the R-matrix R(x) ∈ EndK(V ⊗ V ) by

R(x) := xR − x−1R−T .

Similarly, recalling the elements L± given in (3.3) and (3.4), we introduce

(4.3) L(x) := xL+ − x−1L−, x ∈ C.
13



The element L(x) belongs to Uq(glm,n)⊗EndK(V ) and is referred to as a universal L operator

[12]. Note that (π ⊗ 1)L(x) = R(x).

The following is the main result of this section.

Theorem 4.1. Let L(x) be as defined in (4.3). Then L(x) satisfies the quantum Yang-

Baxter equation in Uq(glm,n)⊗ EndK(V )⊗ EndK(V ):

L12(x)L13(xy)R23(y) = R23(y)L13(xy)L12(x), x, y ∈ C .

4.2. Proof of Theorem 4.1. To prove Theorem 4.1, we expand the quantum Yang-Baxter

equation with parameters x, y and compare coefficients of xiyj. It turns out that we only

need to prove the following proposition.

Proposition 4.2. Maintain the notation above. We have

L±
12L

±
13R23 = R23L

±
13L

±
12, L±

12L
∓
13R23 = R23L

∓
13L

±
12.

Proof. The proof of these equations involves considering many similar cases. To illustrate the

method, we will prove the first relation as an example. We establish L+
12L

+
13R23 = R23L

+
13L

+
12

by acting on the basis vectors 1 ⊗ vc ⊗ vd (c, d ∈ I) of Uq(glm,n) ⊗ EndK(V ) ⊗ EndK(V ).

The proof is then divided into the following three claims.

Claim 1: L+
12L

+
13R23(1⊗ vc ⊗ vc) = R23L

+
13L

+
12(1⊗ vc ⊗ vc) for all c ∈ I.

On the right hand side, we have

R23L
+
13L

+
12(1⊗ vc ⊗ vc) = R23L

+
13(Kc ⊗ vc ⊗ vc + (q − q−1)

∑

c<b

KbEcb ⊗ vb ⊗ vc)

= R23(K
2
c ⊗ vc ⊗ vc + (q − q−1)

∑

c<b

KcKbEcb ⊗ vb ⊗ vc

+ (q − q−1)
∑

c<b

KbEcbKc ⊗ vc ⊗ vb + (q − q−1)2
∑

c<b,c<a

KbEcbKaEca ⊗ va ⊗ vb)

= qcK
2
c ⊗ vc ⊗ vc + (q − q−1)

∑

c<b

KcKbEcb ⊗ vb ⊗ vc

+ (q − q−1)2
∑

c<b

KcKbEcb ⊗ vc ⊗ vb + (q − q−1)
∑

c<b

KbEcbKc ⊗ vc ⊗ vb

+ (q − q−1)2
∑

c<a

qaKaEcaKaEca ⊗ va ⊗ va + (q − q−1)3
∑

c<a<b

KaEcaKbEcb ⊗ va ⊗ vb

+ (q − q−1)2(
∑

c<b<a

+
∑

c<a<b

)KbEcbKaEca ⊗ va ⊗ vb.
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On the left hand side, we have

L+
12L

+
13R23(1⊗ vc ⊗ vc) = qcL

+
12L

+
13(1⊗ vc ⊗ vc)

= qcL
+
12(Kc ⊗ vc ⊗ vc + (q − q−1)

∑

c<b

KbEcbKc ⊗ vc ⊗ vb)

= qcK
2
c ⊗ vc ⊗ vc + (q − q−1)qc

∑

c<b

KbEcbKc ⊗ vb ⊗ vc + (q − q−1)qc
∑

c<b

KcKbEcb ⊗ vc ⊗ vb

+ (q − q−1)2qc
∑

c<a

KaEcaKaEca ⊗ va ⊗ va + (q − q−1)2qc
∑

c<a<b

KaEcaKbEcb ⊗ va ⊗ vb

+ (q − q−1)2qc
∑

c<b<a

KaEcaKbEcb ⊗ va ⊗ vb.

These six terms in the above expression are denoted by Si, 1 ≤ i ≤ 6, respectively. Applying

Lemma 2.1, we obtain

S2 = (q − q−1)
∑

c<b

KbKcEcb ⊗ vb ⊗ vc,

S3 = (q − q−1)(q − q−1 + q−1
c )

∑

c<b

KcKbEcb ⊗ vc ⊗ vb

= (q − q−1)2
∑

c<b

KcKbEcb ⊗ vc ⊗ vb + (q − q−1)
∑

c<b

KbEcbKc ⊗ vc ⊗ vb,

where in the expression for S3 we have used the fact that q − q−1 = qc − q−1
c for any c ∈ I.

Let us consider S4. If c ≥ m, then qc = qa for any a > c. If a ≥ m > c, then E2
ac = 0 by

Lemma 2.3. Therefore, we have

S4 = (q − q−1)2
∑

m≤c<a

qaKaEcaKaEca ⊗ va ⊗ va + (q − q−1)2qc
∑

c<m≤a

q−1
a KaE

2
caKa ⊗ va ⊗ va

=
∑

c<a

(q − q−1)2qaKaEcaKaEca ⊗ va ⊗ va.

Applying Lemma 2.3 again, we obtain

S5 = (q − q−1)2(q−1
c + q − q−1)

∑

c<a<b

KaEcaKbEcb ⊗ va ⊗ vb

= (q − q−1)2
∑

c<a<b

KbEcbKaEca ⊗ va ⊗ vb + (q − q−1)3
∑

c<a<b

KaEcaKbEcb ⊗ va ⊗ vb,

S6 = (q − q−1)2
∑

c<b<a

KbEcbKaEca ⊗ va ⊗ vb.

Adding up Si for 1 ≤ i ≤ 6, we obtain the expression for R23L
+
13L

+
12(1 ⊗ vc ⊗ vc) obtained

earlier.

Claim 2: L+
12L

+
13R23(1⊗ vc ⊗ vd) = R23L

+
13L

+
12(1⊗ vc ⊗ vd) for all c < d.

On the right hand side, we have

R23L
+
13L

+
12(1⊗ vc ⊗ vd)
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=R23

(
KdKc ⊗ vc ⊗ vd + (q − q−1)

∑

d<b

KbEdbKc ⊗ vc ⊗ vb

+ (q − q−1)
∑

c<b

KdKbEcb ⊗ vb ⊗ vd + (q − q−1)2
∑

d<b, c<a

KbEdbKaEca ⊗ va ⊗ vb
)

=KdKc ⊗ vc ⊗ vd + (q − q−1)
∑

d<b

KbEdbKc ⊗ vc ⊗ vb + (q − q−1)qdK
2
dEcd ⊗ vd ⊗ vd

+ (q − q−1)(
∑

c<b<d

+
∑

b>d

)KdKbEcb ⊗ vb ⊗ vd + (q − q−1)2
∑

b>d

KdKbEcb ⊗ vd ⊗ vb

+ (q − q−1)2
∑

b>d

qbKbEdbKbEcb ⊗ vb ⊗ vb + (q − q−1)2
∑

b>d

KbEdbKdEcd ⊗ vd ⊗ vb

+ (q − q−1)2(
∑

d<a<b

+
∑

c<a<d<b

)KbEdbKaEca ⊗ va ⊗ vb

+ (q − q−1)2
∑

d<b<a

KbEdbKaEca ⊗ va ⊗ vb + (q − q−1)3
∑

d<b<a

KbEdbKaEca ⊗ vb ⊗ va,

where in the last equation we have partitioned the sum
∑

c<b into
∑

b=d +
∑

c<b<d+
∑

b>d

and similarly split
∑

d<b,c<a into
∑

d<a=b +
∑

a=d<b +
∑

d<a<b +
∑

c<a<d<b +
∑

d<b<a.

Considering the left hand side, we have

L+
12L

+
13R23(1⊗ vc ⊗ vd) = L+

12L
+
13(1⊗ vc ⊗ vd)

= L+
12(Kd ⊗ vc ⊗ vd + (q − q−1)

∑

b>d

KbEdbKc ⊗ vc ⊗ vb)

= KcKd ⊗ vc ⊗ vd + (q − q−1)Kc

∑

b>d

KbEdb ⊗ vc ⊗ vb + (q − q−1)
∑

b>c

KbEcbKd ⊗ vb ⊗ vd

+ (q − q−1)2
∑

b>d

KbEcbKbEdb ⊗ vb ⊗ vb + (q − q−1)2
∑

b>d

KdEcdKbEdb ⊗ vd ⊗ vb

+ (q − q−1)2(
∑

d<b<a

+
∑

c<a<d<b

+
∑

d<a<b

)KaEcaKbEdb ⊗ va ⊗ vb.

We denote the eight terms appearing in the above expression by S ′
i, 1 ≤ i ≤ 8, respectively.

Now we compare two expressions for R23L
+
13L

+
12(1⊗ vc ⊗ vd) and L+

12L
+
13R23(1⊗ vc ⊗ vd).

Notice that S ′
1 and S ′

2 have appeared in the expression for R23L
+
13L

+
12(1⊗ vc ⊗ vd). Splitting

the sum
∑

b>c into
∑

b=d+
∑

c<b<d+
∑

b>d, we obtain

S ′
3 = (q − q−1)qdK

2
dEcd ⊗ vd ⊗ vd + (q − q−1)(

∑

c<b<d

+
∑

b>d

)KdKbEcb ⊗ vb ⊗ vd.

Using Lemma 2.1 and Lemma 2.3, we have

S ′
4 = (q − q−1)2

∑

b>d

qbK
2
bEcbEdb ⊗ vb ⊗ vb = (q − q−1)2

∑

b>d

q2bK
2
bEdbEcb ⊗ vb ⊗ vb

= (q − q−1)2
∑

b>d

qbKbEdbKbEcb ⊗ vb ⊗ vb,
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S ′
5 = (q − q−1)2

∑

b>d

KdKbEcdEdb ⊗ vd ⊗ vb

= (q − q−1)2
∑

b>d

KdKb(q
−1
d EdbEcd + Ecb)⊗ vd ⊗ vb

= (q − q−1)2
∑

b>d

KbEdbKdEcd ⊗ vd ⊗ vb + (q − q−1)2
∑

b>d

KdKbEcb ⊗ vd ⊗ vb,

S ′
6 = (q − q−1)2

∑

d<b<a

KbEdbKaEca ⊗ va ⊗ vb,

S ′
7 = (q − q−1)2

∑

c<a<d<b

KbEdbKaEca ⊗ va ⊗ vb,

S ′
8 = (q − q−1)2

∑

d<a<b

KaKbEcaEdb ⊗ va ⊗ vb

= (q − q−1)2
∑

d<a<b

KaKb(EdbEca + (q − q−1)EdaEcb)⊗ va ⊗ vb

= (q − q−1)2
∑

d<a<b

KaKbEdbEca ⊗ va ⊗ vb + (q − q−1)3
∑

d<a<b

KaEdaKbEcb ⊗ va ⊗ vb.

Summing up the expressions for S ′
i, 1 ≤ i ≤ 8, we obtain R23L

+
13L

+
12(1⊗ vc ⊗ vd) as desired.

Finally, we need to verify the following.

Claim 3: L+
12L

+
13R23(1⊗ vc ⊗ vd) = R23L

+
13L

+
12(1⊗ vc ⊗ vd) for all c > d.

On the right hand side, we have

R23L
+
13L

+
12(1⊗ vc ⊗ vd) = R23L

+
13(Kc ⊗ vc ⊗ vd + (q − q−1)

∑

c<b

KbEcb ⊗ vb ⊗ vd)

=R23

(
KdKc ⊗ vc ⊗ vd + (q − q−1)

∑

d<b

KbEdbKc ⊗ vc ⊗ vb + (q − q−1)
∑

c<b

KdKbEcb ⊗ vb ⊗ vd

+ (q − q−1)2
∑

d<b,c<a

KbEdbKaEca ⊗ va ⊗ vb
)

=KdKc ⊗ vc ⊗ vd + (q − q−1)KdKc ⊗ vd ⊗ vc + (q − q−1)qcKcEdcKc ⊗ vc ⊗ vc

+ (q − q−1)
∑

b>c

KbEdbKc ⊗ vc ⊗ vb + (q − q−1)
∑

d<b<c

KbEdbKc ⊗ vc ⊗ vb

+ (q − q−1)2
∑

d<b<c

KbEdbKc ⊗ vb ⊗ vc + (q − q−1)
∑

b>c

KdKbEcb ⊗ vb ⊗ vd

+ (q − q−1)2
∑

b>c

KdKbEcb ⊗ vd ⊗ vb + (q − q−1)2
∑

b>c

qbKbEdbKbEcb ⊗ vb ⊗ vb

+ (q − q−1)2
∑

a>c

KcEdcKaEca ⊗ va ⊗ vc + (q − q−1)3
∑

a>c

KcEdcKaEca ⊗ vc ⊗ va

+ (q − q−1)2(
∑

c<a<b

+
∑

c<b<a

)KbEdbKaEca ⊗ va ⊗ vb + (q − q−1)3
∑

c<b<a

KbEdbKaEca ⊗ vb ⊗ va
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+ (q − q−1)2
∑

d<b<c<a

KbEdbKaEca ⊗ va ⊗ vb + (q − q−1)3
∑

d<b<c<a

KbEdbKaEca ⊗ vb ⊗ va.

We proceed to compute the left hand side:

L+
12L

+
13R23(1⊗ vc ⊗ vd) = L+

12L
+
13(1⊗ vc ⊗ vd + (q − q−1)1⊗ vd ⊗ vc)

= L+
12(Kd ⊗ vc ⊗ vd + (q − q−1)Kc ⊗ vd ⊗ vc + (q − q−1)

∑

b>d

KbEdb ⊗ vc ⊗ vb

+ (q − q−1)2
∑

b>c

KbEcb ⊗ vd ⊗ vb)

= KcKd ⊗ vc ⊗ vd + (q − q−1)
∑

b>c

KbEcbKd ⊗ vb ⊗ vd + (q − q−1)KdKc ⊗ vd ⊗ vc

+ (q − q−1)2
∑

b>d

KbEdbKc ⊗ vb ⊗ vc + (q − q−1)2Kd

∑

b>c

KbEcb ⊗ vd ⊗ vb

+ (q − q−1)Kc

∑

a>c,b>d

KbEdb ⊗ vc ⊗ vb + (q − q−1)2KaEca

∑

b>d

KbEdb ⊗ va ⊗ vb

+ (q − q−1)3
∑

a>d,b>c

KaEdaKbEcb ⊗ va ⊗ vb

= KcKd ⊗ vc ⊗ vd + (q − q−1)
∑

b>c

KbEcbKd ⊗ vb ⊗ vd + (q − q−1)KdKc ⊗ vd ⊗ vc

+ (q − q−1)2KcEdcKc ⊗ vc ⊗ vc + (q − q−1)2(
∑

a>c

+
∑

d<a<c

)KaEdaKc ⊗ va ⊗ vc

+ (q − q−1)2
∑

a>c

KdKbEca ⊗ vd ⊗ va + (q − q−1)K2
cEdc ⊗ vc ⊗ vc

+ (q − q−1)(
∑

b>c

+
∑

d<b<c

)KcKbEdb ⊗ vc ⊗ vb + (q − q−1)2
∑

a>c

KaEcaKaEda ⊗ va ⊗ va

+ (q − q−1)2
∑

a>c

KaEcaKcEdc ⊗ va ⊗ vc + (q − q−1)2(
∑

c<b<a

+
∑

c<a<b

+
∑

d<b<c<a

)KaEcaKbEdb ⊗ va ⊗ vb

+ (q − q−1)3
∑

a>c

KaEdaKaEca ⊗ va ⊗ va + (q − q−1)3
∑

b>c

KcEdcKbEcb ⊗ vc ⊗ vb

+ (q − q−1)3(
∑

c<a<b

+
∑

c<b<a

+
∑

d<a<c<b

)KaEdaKbEcb ⊗ va ⊗ vb.

It remains to compare the expressions for both sides. In the expression for L+
12L

+
13R23(1⊗

vc ⊗ vd), we observe

(q − q−1)2KcEdcKc ⊗ vc ⊗ vc + (q − q−1)K2
cEdc ⊗ vc ⊗ vc

=(q − q−1)2KcEdcKc ⊗ vc ⊗ vc + (q − q−1)q−1
c KcEdcKc ⊗ vc ⊗ vc

=(q − q−1)qcKcEdcKc ⊗ vc ⊗ vc,
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where the last equation follows from the substitution q−1
c = qc − (q − q−1). Note that the

resulting expression is a term of R23L
+
13L

+
12(1⊗ vc ⊗ vd). This method will be continued for

further comparison. Applying Lemma 2.1 and Lemma 2.3, we have

(q − q−1)2
∑

a>c

KaEdaKc ⊗ va ⊗ vc + (q − q−1)2
∑

a>c

KaEcaKcEdc ⊗ va ⊗ vc

= (q − q−1)2
∑

a>c

Ka(EdcEca − q−1
c EcaEdc)Kc ⊗ va ⊗ vc + (q − q−1)2q−1

c

∑

a>c

KaEcaEdcKc ⊗ va ⊗ vc

= (q − q−1)2
∑

a>c

KaEdcEcaKc ⊗ va ⊗ vc

= (q − q−1)2
∑

a>c

KcEdcKaEca ⊗ va ⊗ vc.

Using (2.16) and (2.28), we deduce

(q − q−1)2(
∑

d<b<c<a

+
∑

b>a>c

)KaEcaKbEdb ⊗ va ⊗ vb

= (q − q−1)2(
∑

d<b<c<a

+
∑

b>a>c

)KbEdbKaEca ⊗ va ⊗ vb.

Using (2.16) and (2.27), we arrive at

(q − q−1)2
∑

a>b>c

KaEcaKbEdb ⊗ va ⊗ vb + (q − q−1)3
∑

a>b>c

KaEdaKbEcb ⊗ va ⊗ vb

= (q − q−1)2
∑

a>b>c

(KaKbEcaEdb + (q − q−1)KaKbEdaEcb)⊗ va ⊗ vb

= (q − q−1)2
∑

a>b>c

KbKa(EcaEdb + (q − q−1)EdaEcb)⊗ va ⊗ vb

= (q − q−1)2
∑

a>b>c

KbEdbKaEca ⊗ va ⊗ vb.

From (2.17), (2.26), and q − q−1 + q−1
a = qa for a ∈ I, we have

(q − q−1)2
∑

a>c

KaEcaKaEda ⊗ va ⊗ va + (q − q−1)3
∑

a>c

KaEdaKaEca ⊗ va ⊗ va

= (q − q−1)2
∑

a>c

Ka(q
−1
a EcaEdaKa + (q − q−1)EdaKaEca)⊗ va ⊗ va

= (q − q−1)2
∑

a>c

Ka(q
−1
a EdaKaEca + (q − q−1)EdaKaEca)⊗ va ⊗ va

= (q − q−1)2
∑

a>c

(qa − 1)KaEdaKaEca ⊗ va ⊗ va + (q − q−1)2
∑

a>c

KaEdaKaEca ⊗ va ⊗ va.

Now the remaining terms in L+
12L

+
13R23(1 ⊗ vc ⊗ vd) and R23L

+
13L

+
12(1 ⊗ vc ⊗ vd) coincide.

Combining the results together, we complete the proof of Claim 3. �
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We are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Expanding the quantum Yang-Baxter equation in the theorem and

comparing the coefficients of xiyj for i, j ≥ 0, we obtain the following equations:

L±
12L

±
13R23 = R23L

±
13L

±
12, L±

12L
∓
13R23 = R23L

∓
13L

±
12, L±

12L
±
13R

−T
23 = R−T

23 L±
13L

±
12,

L+
12L

−
13R23 − L−

12L
+
13R

−T
23 = R23L

−
13L

+
12 − R−T

23 L+
13L

−
12.

It can be readily verified that these equations follow from the four key equations given in

Proposition 4.2. �

4.3. The FRT approach. Motivated by Proposition 4.2, we propose the FRT approach to

the degenerate quantum group Uq(glm,n) using the RTT relation. Similar to the quantum

group case [9], we conjecture that this approach will provide an equivalent formulation

of degenerate quantum general linear groups and can be generalised to other types. Our

formalism will be guided by ideas from [14].

Recall from [8] that an ideal a of an Hopf algebra A is called cofinite if dimA/a is finite.

Define the finite dual Uq(glm,n)
◦ of U(glm,n) by

Uq(glm,n)
◦ := {f ∈ (Uq(gm,n))

∗ | Kerf contains a cofinite ideal a of Uq(glm,n)}.

It follows from the standard Hopf algebra theory that Uq(glm,n)
◦ is a Hopf algebra.

For any a, b ∈ I, we define the matrix element tab ∈ Uq(glm,n)
◦ by

〈tab, u〉 := π(u)ab, u ∈ Uq(glm,n),

where π is the natural representation defined by (2.13). Let Mm,n be the unital subalgebra

of Uq(glm,n)
◦ generated by tab, a, b ∈ I. The multiplication on Mm,n is given by

(4.4) 〈tt′, u〉 =
∑

(u)

〈t⊗ t′, u(1) ⊗ u(2)〉 =
∑

(u)

〈t, u(1)〉〈t′, u(2)〉,

for any t, t′ ∈ Mm,n, u ∈ Uq(glm,n), where we have used Sweedler’s notation ∆(u) =
∑

(u) u(1) ⊗ u(2). The algebra Mm,n has a bialgebra structure with comultiplication ∆ and

counit ǫ given by

(4.5) ∆(tab) =
∑

c∈I

tac ⊗ tcb, ǫ(tab) = δab, tab ∈ Mm,n, a, b ∈ I.

Applying π ⊗ 1 to both sides of relation (3.6) for L+, we obtain

(4.6) R(π ⊗ π)∆(u) = (π ⊗ π)∆′(u)R, u ∈ Uq(glm,n).

This leads to the following relations.
20



Lemma 4.3. The algebra Mm,n is generated by the matrix elements tab, a, b ∈ I with the

following relations:

(tab)
2 = 0, a ≤ m < b or b ≤ m < a,

tactbc = qctbctac, a > b,

tabtac = qatactab, b > c,

tactbd = tbdtac, a > b, c < d,

tactbd = tbdtac + (q − q−1)tbctad, a > b, c > d.

Proof. Let R =
∑

a,b,c,d∈I R
ac
bdeab ⊗ ecd. By (4.1), the nonzero entries of R are

Rab
ab = 1, a 6= b, Raa

aa = qa, Rab
ba = q − q−1, a < b.

The left hand side of (4.6) can be written as

R(π ⊗ π)∆(u) =
∑

a,a′,b,b′,c,d∈I

∑

(u)

(Rab
a′b′eaa′ ⊗ ebb′)(π(u(1))a′cea′c)⊗ (π(u(2))b′deb′d)

=
∑

a,a′,b,b′,c,d∈I

Rab
a′b′(

∑

(u)

π(u(1))a′cπ(u(2))b′d)eac ⊗ ebd

=
∑

a,a′,b,b′,c,d∈I

Rab
a′b′〈ta′ctb′d, u〉eac ⊗ ebd.

Similarly, the right hand side of (4.6) has the expression

(π ⊗ π)∆′(u)R =
∑

a,a′,b,b′,c,d∈I

Ra′b′

cd 〈tbb′taa′ , u〉eac ⊗ ebd.

There, we obtain

∑

a′,b′∈I

Rab
a′b′ta′ctb′d =

∑

a′,b′∈I

tbb′taa′R
a′b′

cd , a, b, c, d ∈ I,

from which the relations stated in the lemma follow. �

Remark 4.4. Let T1 =
∑

a,b∈I eab⊗tab and T2 =
∑

a,b∈I tab⊗eab. The relations in Lemma 4.3

can be written concisely as

RT1T2 = T2T1R.

Remark 4.5. Lemma 4.3 can be regarded as a sign-free version of [17, Lemma 2.6], which

deals with the quantum general linear supergroup (see also [14]). This comparison reveals

an interesting connection between degenerate quantum groups and quantum supergroups,

suggesting that the study of one object may offer insights into the other.

Recall from (3.3) and (3.4) the L operators L±. We may write them as follows:

L+ =
∑

a,b∈I

ℓ+ab ⊗ eab and L− =
∑

a,b∈I

ℓ−ab ⊗ eab,
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where ℓ±ab ∈ Uq(glm,n) for all a, b ∈ I. Noting that (π ⊗ 1)L+ = R, (π ⊗ 1)L− = R−T , and

R =
∑

a,b,c,d∈I R
ac
bdeab ⊗ ecd, we have

〈tab, ℓ+cd〉 = Rac
bd and 〈tab, ℓ−cd〉 = (R−1)cadb, a, b, c, d ∈ I.

Let U(R) denote the unital subalgebra of Uq(glm,n) generated by the elements ℓ±ab for all

a, b ∈ I. In view of Proposition 4.2, those generators satisfy the following relations:

(4.7) L±
1 L

±
2 R = RL±

2 L
±
1 , L−

1 L
+
2 R = RL+

2 L
−
1 ,

where L±
1 =

∑
a,b∈I eab⊗ ℓ±ab and L±

2 =
∑

a,b∈I ℓ
±
ab⊗ eab. More explicitly, the relations among

generators ℓ+ab can be written as follows:

(ℓ+ab)
2 = 0, a ≤ m < b or b ≤ m < a,

ℓ+acℓ
+
bc = qcℓ

+
bcℓ

+
ac, a < b,

ℓ+abℓ
+
ac = qaℓ

+
acℓ

+
ab, b < c,

ℓ+acℓ
+
bd = ℓ+bdℓ

+
ac, a > b, c < d,

ℓ+acℓ
+
bd = ℓ+bdℓ

+
ac + (q − q−1)ℓ+bcℓ

+
ad, a < b, c < d.

The same relations hold for all elements ℓ−ab, and the commutation relations between ℓ+ab and

ℓ−cd for all a, b, c, d ∈ I can be derived explicitly in a similar manner.

The subalgebra U(R) of Uq(glm,n) has a bialgebra structure with comultiplication and

counit defined as follows:

∆(ℓ±ab) =
∑

c∈I

ℓ±ac ⊗ ℓ±cb, ǫ(ℓ±ab) = δab, a, b ∈ I.

Conjecture 4.6. The equality U(R) = Uq(glm,n) holds, and consequently, U(R) inherits a

Hopf algebra structure.

The proof of this conjecture requires deep understanding of structural properties of

Uq(glm,n), which will be studied systematically in a subsequent paper. The following verifies

the simplest case of this conjecture.

Example 4.7. Consider Uq(gl1,1) with the presentation in terms of K±1
1 , K±

2 , E = E12 and

F = E21 given in Example 3.5. The R-matrix of the natural representation is given by (4.1)
as

R = qe11 ⊗ e11 + e12 ⊗ e12 + q−1e22 ⊗ e22 + e21 ⊗ e21 + (q − q−1)e12 ⊗ e21.

By definition (3.3) and (3.4), we have the following generators of U(R):

ℓ+11 = K1, ℓ+12 = 0, ℓ+21 = K2E12, ℓ+22 = K2,

ℓ−11 = K−1
1 , ℓ−12 = E21K

−1
2 , ℓ−21 = 0, ℓ−22 = K−1

2 .

These generators satisfy relations given in (4.7), and clearly generate the whole algebra

Uq(gl1,1).
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