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Abstract

Recently it has been shown that the theory in the quadratic gauge on 4-sphere, S4 consists of two

phases namely, the confined and the deconfined phases. A suitable finite field dependent BRST

(FFBRST) transformation interrelates two different gauge fixed theories. In this paper, we use

the FFBRST technique on the curved space for the first time and elaborate a novel application of

it. We propose two different formulations of this technique that transform the deconfined phase

action on sphere to the confined phase action on sphere inside the quadratic gauge. Both proposed

passages change the phase with BRST invariance to the phase without BRST invariance unlike

usual connections where the FFBRST operation leave the BRST symmetry intact and there is a

unique field theoretic essence of them, which makes them particularly important to study. Thus,

the two different field redefinitions act as a new mechanism that execute phase transition between

two real QCD phases on 4-sphere other than ghost condensation process.
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I. INTRODUCTION

Consequences of compactness of the manifold on the phenomena in gauge theories are

relevant physically as indicated by experimental evidences (Ref. [1] and refs. in that).

Therefore, the research in gauge theory on the sphere has generated a lot of interest as

the sphere is a simple compact manifold and a theory on the sphere lends a model to

study effects of compactness of the manifold on phenomena in QCD. In ref. [2] which

formulates the massless quantum electrodynamics on a sphere in Euclidean space with 5

dimensions, it was asserted that compactification of the space makes this theory infra-red

finite. Thereafter, gauge theories on a hypersphere with manifest O(n)-covariance have been

investigated in different contexts [3–9]. For example, the application of conformal Killing

vectors in constructing the O(n)-covariant formulation was demonstrated in Ref. [8].

The quadratic gauge which is found to have deep non perturbative implications is given

as follows in the Minkowski space [10]

Aa
µ(x)A

µa(x) = fa(x); for each a, (1)

where fa(x) is an arbitrary function of x. The corresponding Faddeev-Popov action is given

as

LQ = −
1

4
F a
µνF

µνa −
1

2ζ

∑

a

(Aa
µA

µa)2 − 2
∑

a

caAµa(Dµc)
a, (2)

where c, c̄ are ghost and anti-ghost fields respectively, ζ is an arbitrary gauge parameter, the

field strength F a
µν = ∂µA

a
ν(x)− ∂νA

a
µ(x)− gfabcAb

µ(x)A
c
ν(x) and (Dµc)

a = ∂µc
a − gfabcAb

µc
c.

The indices a, b and c are independently summed over 1 to N2 − 1 in Eq. (2). It has

been rigorously studied in various frameworks in the recent past [10–18]. To mention a

few of them, we showed that the quadratic gauge fixed theory can be transformed into the

effective theory in Lorenz gauge under proper field redefinitions [12]. In ref. [13], we applied

the quadratic gauge to SO(N) QCD to probe the infra-red behavior of the theory. We

constructed two superspace versions of this same theory, one employs a new and extended

BRST symmetry [14], and the other was developed without full anti-BRST symmetry [16].

The role of BRST transformation in quantizing the gauge theories is crucial. The in-

finitesimal anti-commuting parameter of a usual BRST transformation can be generalized

to be finite and field dependent leaving the form of a transformation unchanged as was
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first done in ref. [19]. The explicit dependence on space time coordinates is absent in the

generalized parameter. The field dependence of such FFBRST transformations varies the

path integral measure keeping other characteristics of infinitesimal BRST transformations

intact. Therefore, the generating functional of a BRST invariant theory loses invariance un-

der FFBRST. The change in the measure introduces a Jacobian in the path integral which

depends on generalized parameter. Thus, the action that represents the Jacobian acts as a

factor which can convert one effective theory to other. Therefore, FFBRST may be useful

to get an insight into phenomena in one theory given the knowledge of the same in the

other theory. Hence, this technique finds numerous applications in interrelating two BRST

invariant gauge fixed theories [20–25].

In this paper, two novel FFBRSTs are suggested that transform the action in the decon-

fined phase on 4-sphere to that in the confined phase on 4-sphere. The suggested passages

carry a unique physical significance that they execute transition between two real QCD

phases in compact space and convert phase with BRST invariance to phase without BRST

invariance unlike the usual cases. Before we proceed to the proposal in Sec. IV, Yang-Mills

theory on a general sphere is reviewed in the next section. In Sec. III however only 4-sphere,

S
4 is considered so that the study is rendered physically relevant and the phenomenon of

ghost condensation in the current theory on 4-sphere is reexamined.

II. QCD ON HYPERSPHERE

Here we revise the structure of QCD on hypersphere, Sn−1 of (n − 1) dimensions with

manifest O(n) covariance. The Euclidean space, Rn embeds this sphere. The sphere S
n−1

is considered to have a unit radius i.e., rαrα = 1, where rα is a cartesian coordinate of a

point on the sphere S
n−1 and α = 1, 2, ..., n. The spherical symmetry of the underlying

space implies that the angular momentum operator governs dynamics of a theory on sphere,

which is given by

Lαβ = −i
(

rα∂β − rβ∂α
)

; ∂β ≡
∂

∂rβ
, β, α = 1, 2, ..., n. (3)

Particularly,

Lµn = −Lnµ = irn∂µ, (4)
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as ∂
∂rn

is zero by definition regardless of what it operates on since the variable rn is not

independent. The operator Lαβ obeys the following Lie algebra

[Lαβ , Lγη] = i(δαγLβη − δβγLαη − δαηLβγ + δβηLαγ). (5)

The stereographic coordinates on the hyperplane R
n−1 that bisect the sphere are {yµ, µ =

1, 2, ..., n− 1}. These stereographic coordinates map coordinates of the point on sphere, rµ

as

rµ =
2yµ

1 + y2
, rn =

1− y2

1 + y2
, y2 ≡ yµyµ. (6)

The gauge field Ā on the sphere, Sn−1 and the field A on the stereographic plane are related

as follows [8]

Āµ(r) =
1 + y2

2
Aµ(y)− yµyνAν(y), Ān = −yµAµ; µ, ν = 1, 2, ..., n− 1. (7)

The overbar appearing through out this paper indicates fields on sphere. In Euclidean frame,

upper and lower indices signify the same tensor. The gauge field Ā is Lie algebra valued

i.e., Āµ = Āa
µT

a, where T a is a generator of SU(N) group. The stereographic projections in

Eqs. (6), (7) leads to the following transversality condition on sphere

rαĀα = 0 ⇒ rαĀ
a
α = 0, α = 1, 2, ..., n. (8)

Therefore, this condition is inherent to the QCD on hypersphere. This implies that the

gluon Āa are tangential to S
n−1.

The form of a gauge transformation relies on the underlying spatial geometry in which

theory is laid down. The gauge transformation on S
n−1 is the following

δĀa
β = rα(rαDβ − rβDα)ǫ

a = rαiLαβ ǫa, (9)

where ǫ is a parameter of the transformation, Dβǫ
a = ∂βǫ

a − gfabcĀb
βǫ

c. We see that the

operator Lαβ is a covariantized rendition of angular momentum owing to the local symmetry.

Now, rβδĀ
a
β = 0 which affirms that an infinitesimal gauge transformation is also tangent to

S
n−1. Eq. (9) can further be simplified as below

δĀa
β = (Dβ − rαrβDα)ǫ

a, because rαrα = 1. (10)
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The gauge invariant Yang-Mills action on S
n−1 under the transformation in Eq. (10) can be

given by

SYM = −
1

12

∫

dΩ F̄ a
αβγF̄

a
αβγ , (11)

where

F̄ a
αβγ = rγF̄

a
αβ + rβF̄

a
γα + rαF̄

a
βγ, (12)

which is the O(n) covariant rank-3 tensor and

dΩ =
1

|rn|

n−1
∏

µ=1

drµ (13)

is an invariant measure on S
n−1.

III. GHOST CONDENSATION AS A MECHANISM FOR CONFINEMENT ON

4-SPHERE

The deconfinement to confinement phase transition on 4-sphere due to the ghost conden-

sation is a crucial study for the present context which we now review. The generalization to

higher dimensions is obvious. We introduced the quadratic gauge and the related Faddeev-

Popov operator ∆FP on S
4 respectively as follows [18]

Āa
β(r)Ā

a
β(r) = fa(r); β = 1, 2, ..., 5, for each a, (14)

∆FP = det
[

2Āa
β

(

∂βδ
ab − gfacbĀc

β − rαrβ(∂αδ
ab − gfacbĀc

α)
)]

. (15)

Therefore, the gauge fixing and the ghost actions turn out to be as shown below

SGFQ + SghostQ =

∫

dΩ

[

−
1

2ξ
(Āa

βĀ
a
β)

2 − 2ˆ̄caĀa
βDβ c̄

a + 2ˆ̄caĀa
βrαrβDαc̄

a

]

, (16)

dΩ is the 4-sphere angular measure. Now, the built-in transversality eliminates the last term

in Eq. (16). Therefore, we have

SGFQ + SghostQ =

∫

dΩ

[

−
1

2ξ
(Āa

βĀ
a
β)

2 − 2ˆ̄caĀa
βDβ c̄

a

]

, since rβĀ
a
β = 0. (17)

The resulting quadratic gauge fixed action on S
4 is the following

Seff =

∫

dΩ

[

−
1

12
F̄ a
αβγF̄

a
αβγ −

1

2ξ
(Āa

βĀ
a
β)

2 − 2ˆ̄caĀa
βDβ c̄

a

]

. (18)

5



This action holds no indication of confinement, it signifies perturbative regime just like any

other usual action. Therefore, it characterizes the normal or deconfined phase on S
4.

Let us rewrite the ghost Lagrangian as follows

2ˆ̄caĀa
βDβ c̄

a = 2ˆ̄caĀa
β∂β c̄

a − 2gfabcˆ̄cac̄cĀb
βĀ

a
β. (19)

In the ghost condensed state, the vacuum expectation value of the first term on right hand

side vanishes [18]. The second term gives the mass matrix for gluons on S
4 as follows

(M2)abdyn = 2g

N2−1
∑

c=1

fabc〈ˆ̄cac̄c〉. (20)

In the state with all ghost-anti-ghost condensates identical i.e.,

〈ˆ̄c1c̄1〉 = ... = 〈ˆ̄c1c̄N
2−1〉 = ... = 〈ˆ̄cN

2−1c̄1〉 = ... = 〈ˆ̄cN
2−1c̄N

2−1〉 = K ′, (21)

an interesting case emerges. Before proceeding to that, it is useful to comment on BRST

variation of the condensate. Variation of the condensate under BRST is given as δ〈(ˆ̄cmc̄n)〉 =

〈δ(ˆ̄cmc̄n)〉 = ω
(

〈B̄mc̄n〉+ 1
2
fnij〈ˆ̄cmc̄ic̄j〉

)

(as δˆ̄cm = ωB̄m in terms of auxiliary field B̄). Since

Coleman Weinberg mechanism does not give rise to terms with ghost number 1 nor the

present theory contains such terms, condensates 〈B̄mc̄n〉 and 〈ˆ̄cmc̄ic̄j〉 must be identically

zero hence δ〈(ˆ̄cmc̄n)〉 = 0 which is consistent with Eq. (21).

The mass matrix in this state now simplifies to the following

(M2)abdyn = 2g

N2−1
∑

c=1

fabcK ′. (22)

This mass matrix is anti-symmetric and has N(N − 1) non-zero eigenvalues, which implies

that N(N − 1) off-diagonal gluons on sphere obtain mass Mgluon = 1√
2
(1 ± i)m and the

rest N − 1 diagonal gluons on 4-sphere remain massless. So in this description, only the

diagonal gluons mediate interactions in the Infra-red region which are long ranged. This

firmly indicates presence of Abelian dominance on the sphere. We demonstrated in Ref.

[10, 13] that Abelian dominance exists in Euclidean space too in the quadratic gauge fixed

theory. Thus, infrared sector of the quadratic gauge in R
4 and on S

4 is alike.

Realizing the identity in Eq. (21) within a legitimate mechanism on the 4-sphere is im-

portant to retain physical relevance of the infra-red consequence of the theory. This can
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be done in the following manner. Let’s first see the following map between ghost fields on

sphere and corresponding ghosts in the Euclidean space [7]

c̄a(r) =
1 + y2

2
ca(y), ˆ̄ca(r) =

1 + y2

2
c̃a(y), (23)

here c(y), c̃(y) are ghost and anti-ghost fields respectively in the flat space. We put this map

in following identity for ghost condensations in the flat spacetime R
4 whose demonstration

within Coleman Weinberg mechanism is provided in [10, 13],

〈c̃1c1〉 = ... = 〈c̃1cN
2−1〉 = ... = 〈c̃N

2−1c1〉 = ... = 〈c̃N
2−1cN

2−1〉 = K(Const.). (24)

As a result, the matrix in Eq. (22) becomes

(M2)abdyn = 2g

N2−1
∑

c=1

fabcK ′ = 2g
[1 + y2

2

]2
(

N2−1
∑

c=1

fabcK
)

. (25)

We need to diagonalize Eq. (25) to find the mass squared of a gluon on S
4, M2

a which is as

following

M2
a = 2g

[1 + y2

2

]2
m∗2

a = (1 + r5)
−2m2

a, m2
a ≡ 2gm∗2

a . (26)

Non zero m2
a and hence M2

a are imaginary numbers. M2
a = m2

a = 0 for diagonal gluons. The

Eq. (26) shows the consequence of the underlying curved space on mass in this theory [18].

Mass of an off-diagonal gluon on S
4 has become position dependent. Thus, the curvature

does not alter the infrared regime of this theory on S
4 from that of the effective theory in

quadratic gauge in the R
4 but it affects mass of a gluon on S

4 to be position dependent.

So, the effective action in the ghost condensed phase on S
4 which characterizes confine-

ment now becomes

Seff = SYM +

∫

dΩ
[

−
1

2ξ
(Āa

βĀ
a
β)

2 +M2
a Ā

a
βĀ

a
β

]

, (27)

with the M2
a being position dependent as in Eq. (26) and e.g, for SU(3), M2

3 = M2
8 = 0.

While for the off-diagonal gluons, M2
1 = +im2

1,M
2
2 = −im2

1, M2
4 = +im2

2,M
2
5 =

−im2
2, M2

6 = +im2
3,M

2
7 = −im2

3 (m2
1, m

2
2, m

2
3 are positive real). This action is not BRST

invariant under the transformation of a gauge field. Now, in the dual superconductor pic-

ture, Eq. (27) can taken to be the standard expression of the confined phase in this theory

regardless of a process through which it is attained. The particular condensation of ghosts

studied here is one of the methods which leads to confinement from deconfinement. In the

next section, we propose another mechanism to achieve confinement from the deconfined

phase in the given theory on S
4 that however brings with it a little difference.
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IV. GENERALIZED BRST AS A MECHANISM FOR CONFINEMENT ON 4-

SPHERE

Here we propose two different field redefinitions that can implement the same transition

between deconfined and confined phases. The action in the deconfined phase,

Seff =

∫

dΩ

[

−
1

12
F̄ a
αβγF̄

a
αβγ −

1

2ξ
(Āa

βĀ
a
β)

2 − 2ˆ̄caĀa
βDβ c̄

a

]

(28)

is invariant under the following BRST transformations

δĀa
β = ω(Dβ − rαrβDα)c̄

a = ω rαiLαβ c̄
a,

δc̄a =
ω

2
fabcc̄bc̄c,

δˆ̄ca = −ω
1

ξ
Āa

αĀ
a
α. (29)

Before we identify a suitable FFBRST in this case, we outline the procedure that generalizes

the BRST. The infinitesimal global parameter ω is made field dependent along with intro-

ducing a numerical parameter κ (0 ≤ κ ≤ 1). All the fields are then made κ dependent so

that φ(x, κ = 0) = φ(x) and φ(x, κ = 1) = φ′(x), the transformed field. Symbol φ generically

describes all the fields Ā, c̄, ˆ̄c. The BRST transformation in Eq. (29) is then given by

dφ = δb[φ(x, κ)]Θ
′(φ(x, κ)) dκ (30)

where Θ′ is a finite field dependent anti-commuting parameter and δb[φ(x, κ)] is the form

of the transformation for the corresponding field as in Eq. (29). The FFBRST is then

developed by integrating Eq. (30) from κ = 0 to κ = 1 as [19]

φ′ ≡ φ(x, κ = 1) = φ(x, κ = 0) + δb[φ(0)]Θ[φ(x)] (31)

where Θ[φ(x)] =
∫ 1

0
dκ′Θ′[φ(x, κ)]. Like usual BRST transformation, FFBRST transforma-

tion leaves the effective action in Eq. (28) invariant but it does not leave the path integral

measure, Dφ invariant since the transformation parameter is field dependent. It produces

a non-trivial Jacobian J i.e., Dφ(κ) → J(κ)Dφ(κ). This J can further be cast as a local

exponential functional of fields, eiSJ (where the SJ is the action representing the Jacobian

factor J) if the following condition is satisfied [19]

∫

Dφ(x, κ)

[

1

J

dJ

dκ
− i

dSJ

dκ

]

ei(SJ+Seff ) = 0. (32)
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Thus the procedure for FFBRST may be summarised in three steps as (i) calculate the

infinitesimal change in Jacobian, 1
J
dJ
dκ
dκ using

J(κ)

J(κ+ dκ)
= 1−

1

J(κ)

dJ(κ)

dκ
dκ =

∑

φ

±
δφ(x, κ + dκ)

δφ(x, κ)
(33)

for infinitesimal BRST transformation, + or − sign is for Bosonic or Fermion nature of the

field φ respectively (ii) make a suitable ansatz for SJ , (iii) then check Eq. (32) for this ansatz

and if that is consistent, finally replace J(κ) by eiSJ in the generating functional

W =

∫

Dφ(x)eiSeff (φ) =

∫

Dφ(x, κ)J(κ)eiSeff (φ(x,κ)). (34)

Setting κ = 1, this would then provide the new effective action S ′
eff = SJ + Seff .

A. FFBRST 1:

Let us now construct a FFBRST transformation that can transform the action in de-

confined phase to that in confined phase inside the quadratic gauge only on 4-sphere. We

begin with introducing the batch of new fields W̄ a whose BRST transformation would be

decided later. They are commuting scalars. To this end, we choose the following finite field

dependent parameter

Θ′[φ(κ)] = −i

∫

dΩ
[

γ1W̄
aĀa

β[(Dβ c̄)
a − rβrτ (Dτ c̄)

a] + γ2ξλ
aˆ̄ca

]

. (35)

The λa are constants to be set later, γ1, γ2 are numbers related to FFBRST and ξ is a

parameter of the quadratic gauge. Sum over the group index a is understood. Square of

the field dependent parameter, Θ′2 = 0. Although it seems that the parameter depends on

coordinates explicitly but it does not as Āa
βrβ = 0 which gets rid of the term rβrτ (Dτ c̄)

a. The

addition of this term is useful as we shall just see since on sphere δb[(Dβ c̄)
a−rβrτ (Dτ c̄)

a] = 0

and not δ(Dβ c̄)
a. Thus, ansatz of the parameter is still in line with the expectation that it

should not depend on coordinates. There are a few qualities of this FFBRST parameter not

found in the usual ones. It consists of a covariant derivative and a new field which exists

neither before nor after FFBRST operation. The usual FFBRST parameters are of the form

(anti ghost)(gauge1 + gauge2) and connect two gauge conditions in flat spacetime [20–25]

whereas parameter in Eq. (35) has entirely different structure.
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The change in the Jacobian 1
J
dJ
dκ

due to FFBRST parameter in Eq. (35) as per Eq. (33)

is the following

1

J

dJ

dκ
= −

( δΘ′

δW̄ d
δbW̄

d +
δΘ′

δĀd
β

[(Dβ c̄)
d − rβrτ (Dτ c̄)

d]−
δ(Θ′gf def c̄ec̄f)

2δc̄d
−

δΘ′

δ∂β c̄d
g

2
∂β(f

def c̄ec̄f)

+
δΘ′

δˆ̄cd
1

ξ
Ād

βĀ
βd
)

, d is summed over, δb denotes BRST variation

= i

∫

dΩ
(

γ1δb(W̄
a)Āa

β [(Dβ c̄)
a − rβrτ (Dτ c̄)

a] + γ1W̄
aδb(Ā

a
β)[(Dβ c̄)

a − rβrτ (Dτ c̄)
a]

− γ1W̄
aĀa

βδb[(Dβ c̄)
a − rβrτ (Dτ c̄)

a] + γ2λ
aĀa

βĀ
a
β

)

= i

∫

dΩ
(

γ1δb(W̄
a)Āa

β [(Dβ c̄)
a − rβrτ (Dτ c̄)

a] + γ1W̄
a[(Dβ c̄)

a − rβrτ (Dτ c̄)
a]2

− γ1W̄
aĀa

βδb[(Dβ c̄)
a − rβrτ (Dτ c̄)

a] + γ2λ
aĀa

βĀ
a
β

)

. (36)

Now we use following identities in above expression

rβĀ
d
β = 0 in the first term,

δb[Dβ c̄)
d − rβrτ (Dτ c̄)

d)] = 0 in the third term due to nipotency,

(Dβ c̄)
d(Dβ c̄)

d = rβ(Dβ c̄)
drτ (Dτ c̄)

d = 0 in the second term.

Using these identities in Eq. (36), we get the following simplification

1

J

dJ

dκ
= i

∫

dΩ
(

γ1δbW̄
aĀβa(Dβ c̄)

a + γ2λ
aĀa

βĀ
βa
)

.

The clue for determining δbW̄
d will now be visible.

The 1
J
dJ
dκ

does not contain terms that have Θ′ as multiplicative factor, therefore the

dependence on κ of SJ(κ) is multiplicative [19]. This suggests that fields in the ansatz for

the SJ are κ independent. Therefore, the ansatz for the SJ representing Jacobian would be

as given below

SJ [φ(κ), κ] =

∫

dΩ
(

α1(κ) δbW̄
aĀβa(Dβ c̄)

a + α2(κ) λ
aĀa

βĀ
βa
)

(37)

where α1(κ), α2(κ) are arbitrary functions of κ with initial condition αi(κ = 0) = 0 and

fields explicitly do not depend upon κ. Condition in Eq. (32) in this case becomes
∫

Dφ[x, κ]

∫

dΩ
(

[α̇1(κ)− γ1] δbW̄
aĀβa(Dβ c̄)

a + [α̇2(κ)− γ2]λ
aĀa

βĀ
βa
)

ei(Seff+SJ) = 0,

which gives the following relation among parameters

α1 = γ1.κ

α2 = γ2.κ.
(38)
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We choose arbitrary parameters γ1 = 2, γ2 = 1 in Eq. (38). Thus, the additional Jacobian

contribution at κ = 1 is

SJ =

∫

dΩ
(

2 δbW̄
aĀβa(Dβ c̄)

a + λaĀa
βĀ

βa
)

.

Adding this Jacobian action, SJ to the Seff in Eq. (28) we get at κ = 1 the following

Seff + SJ =

∫

dΩ
[−1

12
F̄ a
αβγF̄

a
αβγ −

1

2ξ
(Āa

βĀ
a
β)

2 + 2(δbW̄
a − ˆ̄ca)Āβa(Dβ c̄)

a + λaĀa
βĀ

βa
]

.(39)

There are two important points to be noted here, (i) the new set of fields W̄ a does not

appear in this final action, (ii) if we choose the following BRTS transformation of W̄ a, the

third term vanishes,

δbW̄
a = ˆ̄ca. (40)

We can freely choose this transformation as W̄ as appear neither in deconfined nor in confined

phase. Therefore, using this transformation, we get

Seff + SJ =

∫

dΩ
[

−
1

12
F̄ a
αβγF̄

a
αβγ −

1

2ξ
(Āa

βĀ
a
β)

2 + λaĀa
βĀ

βa
]

. (41)

It is clear from Eq. (41) that λas are mass squared of gluons on S
4 i.e., λa = M2

a . We

set λa = M2
a as elaborated below Eq. (27). The difference from the ghost condensation

mechanism is that here λa = M2
a are not position dependent in this mechanism since the

parameter Θ′ is not coordinate dependent as mentioned earlier. The M2
a are imaginary

numbers in the pattern given below Eq. (27). We have therefore attained precisely the same

confined phase action on 4-sphere as in Eq. (27) through a method of field redefinition with

the unique parameter in Eq. (35) and Jacobian contribution in Eq. (39).

B. FFBRST 2:

Confinement can be achieved through one more distinct FFBRST transformation which

we now explain. FFBRST parameter in this case is relatively simple and as follows

Θ′[φ(κ)] = −i

∫

dΩ
[

ˆ̄ca(γ1Ā
a
αĀ

a
α + γ2ξλ

a)
]

. (42)

The λa are constants to be chosen later, γ1, γ2 are numbers related to FFBRST and, ξ is a

gauge parameter. Moreover, Θ′2 = 0. Sum over the group index a is understood.
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The change in the Jacobian 1
J
dJ
dκ

owing to the FFBRST parameter in Eq. (42) as per

Eq. (33) is the following

1

J

dJ

dκ
= −

( δΘ′

δĀd
β

[(Dβ c̄)
d − rβrτ (Dτ c̄)

d] +
δΘ′

δˆ̄cd
1

ξ
Ād

βĀ
βd
)

, d is summed over

= i

∫

dΩ
(γ1

ξ
(Āa

βĀ
a
β)

2 + 2γ1ˆ̄c
aĀβa[(Dβ c̄)

a − rβrτ (Dτ c̄)
a] + γ2λ

aĀa
βĀ

βa
)

= i

∫

dΩ
(γ1

ξ
(Āa

βĀ
a
β)

2 + 2γ1ˆ̄c
aĀβa(Dβ c̄)

a + γ2λ
aĀa

βĀ
βa
)

since rβĀ
βd = 0. (43)

Now the rest of the procedure is the same as described in FFBRST 1. We take γ1 = γ2 = 1.

Condition in Eq. (32) leads to the following Jacobian contribution in terms of the action SJ

at κ = 1

SJ [φ(κ), κ] =

∫

dΩ
(1

ξ
(Āa

βĀ
a
β)

2 + 2ˆ̄caĀβa(Dβ c̄)
a + λaĀa

βĀ
βa
)

(44)

Adding this Jacobian contribution, SJ to the Seff in Eq. (28) at κ = 1 we see that ghost

term cancels and we get the following

Seff + SJ =

∫

dΩ
[

−
1

12
F̄ a
αβγF̄

a
αβγ +

1

2ξ
(Āa

βĀ
a
β)

2 + λaĀa
βĀ

βa
]

. (45)

It is almost the same action of confined phase in Eq. (27) except for the sign of the gauge

fixing term. To fix it, we can further apply a second FFBRST transformation such that

ξ → ξ′ in the same gauge [19]. As done earlier, λa = M2
a is set as elaborated below Eq. (27).

Please note again that masses in this process are not position dependent. We have thus

got confinement on S
4 using a different field transformation with the unique parameter in

Eq. (42) and Jacobian contribution as in Eq. (44).

V. CONCLUSION

We proposed a novel process in two unique field redefinitions to achieve confinement from

the deconfined phase on 4-sphere within the quadratic gauge besides the ghost condensation

mechanism. There is also a difference in the final outcome of the ghost condensation and

that of field transformation, which is that in the later case mass of a gluon on 4-sphere is

not position dependent since the field dependent parameter is coordinate independent. The

FFBRST parameters act as order parameters of the transition. In FFBRST 1, the method is

required to be extended to include a coavariant derivative as one of the grassmann variables
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and a new field that does not exist in any of phases. FFBRST 2 is relatively simple but has

a disadvantage that it uses one more subsequent FFBRST that changes ξ → ξ′ in the same

gauge to get the exact action in the confined phase.

The passages illustrated here are from phase having BRST invariance to phase without

BRST invariance, which stand out among usual cases. The reverse phase transition from the

confined to deconfined phase is not feasible as the former phase is not BRST invariant and

FFBRST operates consistently upon BRST invariant actions only. So, both the FFBRSTs

only implement deconfinement to confinement phase transition on 4-sphere just like the

mechanism of ghost condensation. The field dependent parameters in Eqs. (35), (42) act as

order parameters of the transition.
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