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Structure and dynamics of amphiphilic patchy cubes in a nanoslit under shear
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Patchy nanocubes are intriguing materials with simple shapes and space-filling and multidirectional bonding
properties. Previous studies have revealed various mesoscopic structures such as colloidal crystals in the solid
regime and rod-like or fractal-like aggregates in the liquid regime of the phase diagram. Recent studies have
also shown that mesoscopic structural properties, such as average cluster size 〈M〉 and orientational order,
in amphiphilic nanocube suspensions are associated with macroscopic viscosity changes, mainly owing to
differences in cluster shape among patch arrangements. Although many studies have been conducted on the
self-assembled structures of nanocubes in bulk, little is known about their self-assembly in nanoscale spaces
or structural changes under shear. In this study, we investigated mixtures of one- and two-patch amphiphilic
nanocubes confined in two flat parallel plates at rest and under shear using molecular dynamics simulations
coupled with multiparticle collision dynamics. We considered two different patch arrangements for the two-
patch particles and two different slit widths H to determine the degree of confinement in constant volume
fractions in the liquid regime of the phase diagram. We revealed two unique cluster morphologies that have
not been previously observed under bulk conditions. At rest, the size of the rod-like aggregates increased
with decreasing H , whereas that of the fractal-like aggregates remained constant. Under weak shear with
strong confinement, the rod-like aggregates maintained a larger 〈M〉 than the fractal-like aggregates, which
were more rigid and maintained a larger 〈M〉 than the rod-like aggregates under bulk conditions.

I. INTRODUCTION

Self-assembly is a ubiquitous phenomenon that occurs
in colloidal suspensions. Because colloidal self-assemblies
have unique physical properties, they have attracted in-
terest in a wide range of research fields, such as drug
delivery, optical sensors, and enhanced oil recovery. In
addition, the transport properties of colloidal suspen-
sions are affected not only by the properties of the con-
stituent atoms, but also by their self-assembled struc-
tures. Therefore, the accurate control and prediction of
self-assemblies are essential for the development of func-
tional materials.
A promising approach to self-assembly manipulation

is the modification of particle surfaces by introducing
anisotropic surface interactions from patterned coatings
(so-called “patches”).1–3 Directional bonding via surface
patches provides diverse self-assembled, highly ordered
structures, including chains,2 micelles,4,5 and network
structures.6,7 In addition to surface anisotropy, particle-
shape anisotropy plays a critical role in the formation
of rich self-assembled structures.8–10 The combination
of surface and particle-shape anisotropies offers a wider
range of possibilities for controlling self-assemblies and
their resulting transport properties.
Among the various combinations of particle shape and

surface anisotropy examined to date, patchy nanocubes
have emerged as particularly intriguing materials ow-
ing to their simple geometry, space-filling properties,
and multidirectional interaction anisotropy. For exam-
ple, isotropic DNA-grafted nanocubes form a superlat-
tice of colloidal crystals that exhibit a unique phase
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transition,11–14 depending on the length and flexibility of
the DNA strands. Recent studies of anisotropically pat-
terned nanocubes in suspension based on molecular dy-
namics (MD) and Monte Carlo (MC) simulations15 have
revealed various finite-sized aggregates ranging from rods
to fractal objects. A more recent study16 in which ki-
netic MC calculations were used to explore the behaviors
of self-assembled clusters under shear found the shear-
induced growth and breakup of these clusters. We also in-
vestigated the structural formation and rheological prop-
erties of amphiphilic cubes in bulk solutions at rest and
under shear.17

Confinement in nanoscale channels is a key strategy
for achieving novel self-assembled morphologies. Owing
to the effect of spatial constraints and solid–liquid in-
terfaces, confinement to nanoscale dimensions is known
to induce unique structures and properties that differ
from those in the bulk.18–23 Previous studies have exten-
sively explored the structural dynamics of self-assembly
in bulk systems; however, the impact of wall interac-
tions has not received much attention. Some studies
have demonstrated the distinctive self-assembled struc-
tures and morphologies of amphiphilic nanoparticles con-
fined in narrow slit-like or tubular geometries. Fernández
et al.

24 found zigzag-like chain structures in Janus disks
under quasi-one-dimensional confinement. Kobayashi
and Arai25 found a variety of highly ordered struc-
tures in Janus nanoparticle suspensions confined in nan-
otubes, depending on the density and wall–colloid in-
teractions. The authors further investigated the struc-
tural changes and rheological behaviors of these suspen-
sions under nanotube flow by observing the change in
shear-thinning rate associated with self-assembly rear-
rangement. Nikoubashman26 studied the self-assembly
of spherical Janus particles in microfluidic channels, and
showed that the spatial cluster size distribution M(z)
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changed from uniform to nonuniform with increasing flow
rate. Baran et al.

27 observed different two-dimensional
crystallizations of Janus spheres in two parallel solid
plates of different widths. In a more recent study,28 the
authors reported a variety of layered structures parallel
to the walls, depending on the density, slit width H , and
particle–wall interactions. These studies show that com-
plex self-assembled structures not observed in the bulk
state occur even for common Janus spherical particles.
Because most previous simulation efforts have fo-

cused on Janus spheres in a confined geometry, knowl-
edge about nonspherical particles such as amphiphilic
nanocubes remains lacking. Unlike Janus spheres, am-
phiphilic nanocubes do not form micellar structures,
which may be the origin of the peculiar structural mor-
phologies not observed under bulk conditions, mainly ow-
ing to their intrinsic cluster shapes and wall–colloid in-
teractions. Moreover, confined liquids are ubiquitous in
experimental setups and natural phenomena; thus, fur-
ther studies are necessary to provide valuable insights
into the structural morphologies and resulting transport
properties of nanocubes in realistic environments.
In this study, we investigated the structures and dy-

namics of amphiphilic nanocubes confined in a nanoslit
geometry by incorporating repulsive interactions with
walls at rest and under shear. To consider hydrodynamic
interactions, we employed a combination of multiparticle
collision dynamics (MPCD) and conventional MD.29 We
investigated two mixtures of one- and two-patch cubes
with different patch arrangements in a constant-volume
fraction in the liquid regime of the phase diagram. We
found that the cluster size of the rod-like aggregates de-
pended on their degree of confinement C, whereas that
of the fractal-like aggregates remained almost constant.

II. MODEL AND METHODS

We employ MD simulations coupled with the
MPCD29–31 technique to incorporate hydrodynamic in-
teractions between solvents and solutes. Each cube con-
tains Nv vertex particles of mass ms and diameter av
arranged in a square lattice on its surface, as shown in
Fig. 1(a). The vertices are connected to their nearest
neighbor and the diametrically opposite one via a har-
monic potential.

Ub(rij) =
k

2
(rij − r0)

2
, (1)

where k is the spring constant, rij is the distance be-
tween the ith and jth particles, and r0 is the equilibrium
bond distance. To keep the colloidal shape nearly rigid,
we set the spring constant to k = 5000 kBT/a

2
v,

15–17,32,33

where kB is the Boltzmann constant and T is the temper-
ature. The cube diameter is set to d = 4 av, resulting in
a lattice spacing of 4/5 av and Nv = 98 vertex particles
per colloid. The size of the cube in this study is smaller

than that in our previous bulk conditions.15,17 This con-
dition is implemented in the present study to improve
the computational efficiency while maintaining sufficient
space for particle movement.
We consider suspensions of nearly rigid cubic particles

with one or two hydrophobic (HO) surfaces (so-called
“patches”) while the remaining surfaces are hydrophilic
(HI). Each patch consists of nine vertices (see Fig. 1 (a)).
The one-patch cube has a total of 6 patch arrangements,
while the two-patch cube has 16; however, we only con-
sider geometrically independent patch arrangements, as
shown in Fig. 1 (b–d). In the following sections, we refer
to these two different realizations of two-patch cubes as
types I and II, as shown in Fig. 1. We introduce the stan-
dard Lennard–Jones (LJ) potential between the vertex
particles of the HO patches to mimic (effective) solvent-
mediated attraction.

ULJ(rij) =







4εij

[

(

av

rij

)12

−
(

av

rij

)6
]

, rij ≤ rcut

0, rij > rcut

(2)

where rij denotes the distance between the i and jth
particles, εij = 1.0 kBT denotes the interaction strength,
and rcut = 2.5 av denotes the cutoff radius. The ex-
cluded volume interactions between the HI vertices and
between HO and HI vertices are modeled using the stan-
dard Week–Chandler–Andersen (WCA) potential.35

UWCA(rij) =

{

ULJ(rij) + ε, rij ≤ 21/6av
0, rij > 21/6av.

(3)

The cubic particles are confined to two flat plates and
experience repulsive interactions with the walls. The in-
teractions between the nanocubes and walls are modeled
as a hard impenetrable potential.26,36

Uw(xi) =







2
3
εwπ

[

2
15

(

av

xi

)9
−

(

av

xi

)3
+

√

10
3

]

, xi ≤ ( 2
5

)
1

6 av

0, xi > ( 2
5

)
1

6 av

(4)

where εw = 1.0 kBT and xi is the distance between
the ith particle and the wall. The dimensions of the
simulation box are 100 av × 100 av × H , with peri-
odic boundary conditions applied in the x and y direc-
tions. The walls are located at z = ±H/2 with no-slip
boundary conditions. We consider two slits of widths
H = 15 av and 25 av with a constant volume fraction
φ = Nd3/LxLyH = 0.0512; thus, the total numbers of
cubes are N = 200 and 120, respectively. To observe
the difference in structural properties with or without
wall interactions, we also consider a bulk simulation by
applying periodic boundary conditions in all directions.
The edge lengths of the cubic simulation box are set to
L = 80 av, with a volume fraction φ = 0.05 nearly equal
to that of the confined systems, resulting in N = 400
cubes. Here, we define C = d/H as the ratio of the
cube diameter to the slit width, which is a measure of
the C of the nanocube in space. Note that C does not
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FIG. 1. (a) Discrete particle model of a cube with diameter d = 4 av. The Nv vertex particles and bonds between nearest
neighbors are shown (diametric bonds are omitted for clarity). (b–d) Unfolded representations of (b) a one-patch cube and (c,
d) two-patch cubes. Hydrophilic and hydrophobic patches are colored blue and yellow, respectively. Snapshots were rendered
using Visual Molecule Dynamics (version 1.9.4).34 (e) Schematic representation of a slit with width H . A uniform shear velocity
profile is schematically depicted by red vectors. The maximum velocity in the flow direction is ±Vx at ±z = H/2.

exceed C = 1 because a slit with H < 4 av cannot con-
tain cubes with d = 4 av. To observe the effect of con-
finement, we include 〈M〉 for the bulk system (C = 0),
where H → ∞. To terminate cluster growth within a fi-
nite period, we consider 1:1 binary mixtures of one- and
two-patch cubes. As described below, the edge length of
the cubic simulation box in the z direction must be set
to Lz > H to guarantee no slip on the surfaces using the
virtual particle technique. We then set Lz = H + 5.0 av.

In the MPCD technique, solvent particles are explic-
itly treated as point particles of mass ms and propagated
through a series of streaming and collision steps. During
the streaming step, the particles are moved ballistically
over a time interval ∆tMPCD. In the subsequent collision
step, the particles are packed into small cells of length
av, and their momentum is exchanged by random colli-
sions. In this study, we use stochastic rotational dynam-
ics, (SRD)29 which is a variant of the MPCD algorithm.
This method involves the rotation of particles around
a random axis by degree α during the collision step to
mimic their collisional motion. The coupling of the sol-
vent to the vertex particles is achieved through partici-
pation in the collision step (note that the MPCD solvent
particles do not interact with the vertices through pair
potentials). In the SRD method, the cell length av deter-
mines the spatial hydrodynamic resolution. In addition,
the dynamic properties of the solvent are determined by
its parameters: ∆tMPCD, α, av, and (average) solvent
number density per cell nc. Inspired by previous studies,
we set the mass of the solvent particles to ms = 1, the
time step to ∆tMPCD = 0.1 τ where τ =

√

ms/kBTav,
the rotation angle to α = 130◦, the cell length to av = 1,
and the number density to nc = 5 a−3

v to obtain a liquid-
like Newtonian fluid.30,37 Under these parameters, the
mean free path is smaller than av, which violates Galilean
invariance. To avoid this problem, all collision cells are
shifted along a randomly chosen direction before the col-

lision steps.38

A uniform shear flow is established by moving the two
walls at a velocity Vx in opposite directions with no-
slip boundary conditions for the solvent particles (see
Fig. 1(e)). The applied Vx ranges from 10−3 av/τ to
10−1 av/τ , leading to apparent shear rates γ̇ in the range
of 8.0 × 10−5 τ−1 . γ̇ . 1.3 × 10−2 τ−1 for the channel
widths simulated. To ensure no slip on the surfaces un-
der the random grid-shifting scheme, the collision cells
across the walls are filled with virtual particles.39 A cell-
level thermostat is employed to maintain isothermal con-
ditions at T = 1.0 ε/kB and avoid viscous heating effects
in the non-equilibrium simulations. All simulations are
conducted using the HOOMD-blue software package (v.
2.9.6)40–43 with the third-party plugin “azplugins” (v.
0.6.2)44 to introduce the wall potential given in Eq. (4).
To achieve a better statistical analysis for each set of
parameters, we conduct three independent simulations.

III. RESULTS AND DISCUSSIONS

First, we investigated the self-assembled structures
of amphiphilic patchy cubes confined to a nanoslit at
rest. Cluster size distribution and mean cluster size
are fundamental and crucial structural properties for
amphiphilic colloidal particle suspensions because their
mesoscopic structural information is strongly correlated
with the resulting macroscopic transport properties, such
as viscosity.17,45–47 Therefore, understanding the effect of
dimensional constraint, including the interaction of the
self-assembled structures with the (repulsive) walls, is im-
portant for predicting and controlling the macroscopic
properties of a suspension in a nanoslit. To quantify
the size and distribution of the clusters, we performed
a cluster analysis using a density-based spatial clustering
algorithm (DBSCAN).48 Based on our previous study,
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nanocubes were assigned to the same cluster if the dis-
tance between the centers of mass of their HO patches
was less than 2.0 av. We then determined the aggregation
number M of each cluster. From these data, we calcu-
lated the mean aggregation number 〈M〉 =

∑

i P (Mi)Mi,
where P (M) is the cluster size distribution, defined as the
probability of finding a nanocube in an aggregate of M
cubes. In Fig. 2, we plotted the P (M) values for mix-
tures of one- and two-patch cubes with different patch
arrangements in a nanoslit at rest. For comparison, we
also included the P (M) values for the bulk system at
the same φ. For the bulk system, the P (M) values for
the different two-patch cube types are nearly identical
to our measurement errors (see Fig. 2(a) and (b)), re-
sulting in similar 〈M〉 for type I and type II, that was
also obtained in our previous simulations.15–17 However,
when the cubes are confined to the nanoslit, the clus-
ter distribution exhibits a clear difference between the
patch arrangements. For mixtures with type I two-patch
cubes, the cluster size distribution P (M) depends on C:
the P (M) for the slit of C = 0.27 shifts to a larger M
compared with that for the slit of C = 0.16, as shown
in Fig. 2(a). This behavior results from the formation
of perfectly rod-like aggregates in the type I two-patch
cube mixture owing to the opposite arrangement of the
HO patches (see Fig. 1(c)). As H decreases, clusters
consisting of type I two-patch cubes grow parallel to the
wall surfaces (see Fig. 3(b)). Therefore, the exposed HO
surfaces of the clusters consistently face each other, re-
sulting in the formation of larger (M ≥ 7) clusters. By
contrast, the P (M) values for mixtures with type II two-
patch cubes are nearly identical to our measurement er-
rors, regardless of H , as shown in Fig. 2(b). The distinct
behaviors of P (M) between the different two-patch cube
types are also reflected in the mean aggregation number
〈M〉. Figure 2(c) shows the changes in 〈M〉 as a function
of C, where C = d/H , as defined in Section=II. Com-
paring 〈M〉 between the type I and type II mixtures at
the same C, the dependence of this property on C can
be observed in the mixtures with type I two-patch cubes.
By contrast, 〈M〉 in the mixtures of type II two-patch
cubes remains approximately constant all C values in-
vestigated. These differences in P (M) may potentially
explain the distinct (local) rheological behavior of the
suspensions. Because previous studies17,46 have shown
that 〈M〉 is closely related to viscosity, the viscosity of
the mixture may be controlled by controlling H .

For a more detailed understanding, we analyzed the
M(z) of the mixtures along the direction normal to the
wall surface (z) with H = 15 av (C = 0.27) at rest, as
shown in Fig. 3(a). Here, the M(z) at each z position
was calculated by averaging the centroids of the clusters
between z ± 0.5 av. Note that only the upper half of the
distribution is shown because of the channel symmetry;
thus, z = 0 av refers to the center of the slit. Based on
the arrangement of the HO patches on the cubes, the
type I and II two-patch cubes self-assemble into elon-
gated rods and fractal-like structures, respectively.15–17

0.0
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0.4
(a) Type I C = 0.00

C = 0.16
C = 0.27

P
(M

)
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0.3

0.4

2 4 6 8 10 12

(b) Type II

P
(M

)

M

3

4

0.0 0.1 0.2 0.3

(c)
Type I
Type II

〈M
〉

C

FIG. 2. Cluster size distribution P (M) in mixtures of one-
and (a) type I and (b) type II two-patch cubes confined in
nanoslits of C = 0.16 (H = 25 av) and C = 0.27 (H = 15 av)
and the bulk system (C = 0.00) at rest. (c) Mean aggregation
number 〈M〉 as a function of the degree of confinement C.

FIG. 3. (a) Spatial cluster size distribution M(z) of the mix-
tures along the direction normal to the wall surface (z) with
C = 0.27 (H = 15 av). (b–c) Representative snapshots of
mixtures of one- and (b) type I and (c) type II two-patch
cubes confined in a slit of C = 0.27 (H = 15 av) from the top
view in the z direction.
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FIG. 4. Schematic representation of a M = 3 cluster of rod-
like (type I) and fractal (type II) shapes in a slit.

Under strong confinement (C = 0.267), the characteris-
tic M(z) behavior appears, depending on the shape of
the clusters. For mixtures with type I two-patch cubes,
a uniform distribution of M(z) ≈ 2.5 is observed over
the entire range (0 av ≤ z ≤ 4 av) investigated. Near the
wall surface (z ≥ 5 av), the (average) spatial cluster size
M(z) becomes smaller than that at 0 av ≤ z ≤ 4 av, and
no clusters for z ≥ 6 av are observed. This finding may be
attributed to the excluded volume interactions between
the particles and walls. The center of mass of a single par-
ticle cannot exist in the region z ≥ (7.5− 2) av = 5.5 av.
Furthermore, the centers of mass of clusters with M > 2
cannot enter the near-wall region unless the clusters are
aligned parallel to the wall surface. For mixtures with
type II two-patch cubes, the peak of M(z) at z ≤ 1 av
becomes more pronounced and M(z) decays in the range
of z > 1 av, which we attribute to differences in the ge-
ometric shapes of the clusters between the two patch
cube types. Figure 4 shows a representative schematic
of M = 3 clusters of rod-like (type I) and fractal (type
II) shapes in a slit with width H = 15 av (C = 0.27).
Rod-like clusters (Fig. 3(a)) that are oriented parallel to
the wall surface can move freely in the direction perpen-
dicular to the wall surface. However, fractal-like clus-
ters (Fig. 3(b)) have three-dimensional geometries, re-
sulting in local packing within the confined system. Con-
sequently, the centers of mass of the fractal clusters are
trapped in the central region of the slit with a noticeable
peak of M(z) at z < 1.0 av.

Next, we discuss the steady-state structural morpholo-
gies confined to the nanoslit under shear. Figure 5 shows
the changes in 〈M〉 as a function of γ̇. Comparing 〈M〉
between the type I and type II mixtures at the same γ̇,
we find that type I mixtures have larger 〈M〉 than type
II mixtures for two different C over the entire range of
γ̇ investigated. This behavior is peculiar to the confined
systems. For the bulk system, the bonding energy per
cube ELJ/M for aggregates composed of M type II cubes
is consistently higher than that for aggregates of type
I cubes. Thus, clusters composed of type II cubes are
more resistant to shear than clusters of type I cubes.17

We anticipate that the parallel orientation of the rod-
like clusters consisting of type I two-patch cubes to the
wall surfaces can be enhanced by restricting the three-
dimensional free rotational motion of the clusters in a

1.0

1.5

2.0

2.5

3.0

3.5

4.0

10-4 10-3 10-2

Type I, C = 0.16
Type II, C = 0.16
Type I, C = 0.27
Type II, C = 0.27

〈M
〉

γ. [1/τ]

FIG. 5. Mean aggregation number 〈M〉 as a function of the
shear rate γ̇ for mixtures of one- and two-patch cubes confined
in slits.
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0.8
(a) γ. = 7.0 × 10-4
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-1

γ. = 1.3 × 10-3
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-1

γ. = 2.7 × 10-3
 τ

-1

γ. = 6.7 × 10-3
 τ

-1

γ. = 1.3 × 10-2
 τ

-1
P

(M
)

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10 12

(b)

P
(M

)

M

FIG. 6. Cluster size distribution P (M) in sheared mixtures of
one- and (a) type I and (b) type II two-patch cubes confined
in a slit of C = 0.27 (H = 15 av).

confined slit space. Such a parallel alignment along the
flow direction would reduce the shear-induced collision of
each cluster.
Figure 6 shows the P (M) for sheared mixtures of one-

and two-patch cubes confined in a slit of width H =
15 av. In mixtures with type I two-patch cubes under
weak shear (7.0 × 10−4 τ−1 ≤ γ̇ ≤ 2.7 × 10−3 τ−1), the
peak of P (M) at 6 ≤ M ≤ 8 remains roughly unchanged
(see Fig. 6(a)), indicating the existence of long elongated
rods even in sheared systems. However, in the case of
type II two-patch cubes, the peak of P (M) at M ≥ 6 is
much less pronounced (Fig. 6(b)). Furthermore, P (M)
at M = 3 and M = 4 remains nearly constant for γ̇ ≤
2.7 × 10−3 τ−1 and exceeds that of the type I mixtures,
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0
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3
(a) γ. = 1.3 × 10-4

 τ
-1

γ. = 6.7 × 10-3
 τ

-1

γ. = 1.3 × 10-2
 τ

-1

M
(z

)

0

1

2

3

0 1 2 3 4 5 6 7

(b)

M
(z

)

z [av]

FIG. 7. Spatial cluster size distribution M(z) in mixtures of
(a) type I and (b) type II two-patch cubes along the direction
normal to the wall surface (z) with C = 0.27 (H = 15 av)
under various shear rates γ̇. The black lines represent the
data at the equilibrium state.

reflecting the high stability of clusters with fractal shapes
against shear. As γ̇ increases, the peak of P (M) shifts to
lower M values for both mixtures, indicating a gradual
breakup of the clusters with 〈M〉 → 1 at γ̇ & 10−2 τ−1.
Figure 7 shows the M(z) of mixtures confined in a slit

of width H = 15 av under various γ̇. For the mixtures
with type I two-patch cubes (Fig. 7(a)), M(z) slightly
increases around the center of the slit (0 av ≤ z ≤ 1 av)
but decreases in the region of z ≥ 1 av under weak
shear (γ̇ = 1.3 × 10−4 τ−1) compared with the equilib-
rium structures. For the mixtures with type II two-patch
cubes (Fig. 7(b)), we observe (weak) shear-induced clus-
ter growth; M(z) completely increases and is highest at
the center of the slit. For both mixtures, as γ̇ further
increases, M(z) shows a more uniform distribution. We
also find that M(z) increases to M ≈ 1.25 at z = 5 av be-
cause of the increase in free particles in the system owing
the gradual breakup of the clusters.

IV. SUMMARY AND CONCLUSIONS

MD simulations coupled with MPCD were performed
to investigate the structure formation and dynamics of
amphiphilic cubes in nanoslits. We examined two types
of dilute mixtures of one- and two-patch cubes in a 1:1
ratio with different HO patch arrangements at a constant

volume fraction. To study the effect of confinement, we
considered two different H as well as bulk conditions.
The confined nanocubes experienced a shear flow induced
by the walls moving at a constant Vx.

The resulting shapes of the clusters depended on the
arrangement of the HO patches; rod- and fractal-like ag-
gregates were obtained in two-patch cubes with opposite
and adjacent arrangements, respectively. We also ob-
served that the cluster sizes of the rod-like aggregates
depended on C, whereas those of the fractal-like aggre-
gates remained nearly constant regardless of C. The 〈M〉
of the rod-like aggregates increased with decreasing H ,
accompanied by a shift to a larger M in the cluster dis-
tribution. This increase was related to the spatial ar-
rangement of the clusters under confinement. The rod-
like clusters grew parallel to the wall with the HO planes
consistently facing each other, leading to the formation of
more elongated rods withM > 6, which was not observed
in the bulk condition. By contrast, the distributions and
cluster sizes of the fractal-like aggregates remained nearly
identical over the entire range of H investigated.

To further investigate the spatial arrangement of the
clusters under strong confinement, we analyzed M(z)
along the direction normal to the wall surface. At
rest, the rod-like aggregates had a uniform size distri-
bution; however, the cluster size of the fractal-like ag-
gregates was largest at the center of the slit and be-
came smaller than that of the rod-like aggregates far-
ther away from the center. This finding was attributed
to differences in the geometric shapes of the clusters be-
tween the two-patch cube types: fractal-like clusters of
two- or three-dimensional shapes were trapped within
the confined geometry, whereas rod-like clusters (one-
dimensional shapes) were oriented parallel to the walls
and moved freely in the direction normal to the walls.

We also studied the structural changes in the clusters
under shear. In the weakly sheared mixture, the 〈M〉 of
the rod-like aggregates was larger than that of the fractal-
like aggregates. Such behavior is unique to self-assembled
structures with a confined geometry because fractal-like
aggregates are more resistant to flow than rod-like aggre-
gates owing to their higher bonding energy in the bulk
state. These differences in P (M) may potentially ex-
plain the distinct (local) rheological behavior of the sus-
pensions. Because previous studies17,46 have shown that
〈M〉 is closely related to viscosity, the viscosity of the
mixture may be controlled by controlling H .

Our study focused only on the hydrophilic (HI) (re-
pulsive) interactions of the walls in dilute suspensions.
Modification of the wall surfaces with HO materials may
lead to different self-assembled morphologies compared
with those observed in the presence of purely repulsive
interactions.25,26,49 Moreover, anisotropic wall interac-
tions, such as those found in Janus-like nanotubes,50–52

slits,28 and the stripe pattern of HI and HO wall
surfaces,53 may yield more complex self-assembled struc-
tures. In addition to wall interactions, future work in
this area should consider the density of nanocubes in
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the suspension. In principle, a higher volume fraction
of amphiphilic nanocubes could form larger clusters with
highly orientationally ordered structures such as nematic
or smectic structures, similar to lyotropic liquid crystals.
We plan to study such systems in the future.
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